WO2017170031A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2017170031A1
WO2017170031A1 PCT/JP2017/011433 JP2017011433W WO2017170031A1 WO 2017170031 A1 WO2017170031 A1 WO 2017170031A1 JP 2017011433 W JP2017011433 W JP 2017011433W WO 2017170031 A1 WO2017170031 A1 WO 2017170031A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fuel
internal combustion
combustion engine
delivery pipe
Prior art date
Application number
PCT/JP2017/011433
Other languages
English (en)
French (fr)
Inventor
平田 靖雄
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/086,114 priority Critical patent/US10519894B2/en
Priority to DE112017001596.0T priority patent/DE112017001596B4/de
Publication of WO2017170031A1 publication Critical patent/WO2017170031A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/002Electric control of rotation speed controlling air supply
    • F02D31/003Electric control of rotation speed controlling air supply for idle speed control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/0245Means for varying pressure in common rails by bleeding fuel pressure between the high pressure pump and the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • F02M63/023Means for varying pressure in common rails
    • F02M63/0235Means for varying pressure in common rails by bleeding fuel pressure
    • F02M63/025Means for varying pressure in common rails by bleeding fuel pressure from the common rail
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the present disclosure relates to a control device that controls an internal combustion engine including a high-pressure pump for fuel.
  • the pressure in the pressure accumulating vessel is higher than the pressure in the normal range when the high pressure pump is abnormal and the relief valve is used due to the deterioration of the high pressure pump and the low viscosity fuel.
  • the valve opening pressure may be lower. In that case, the relief valve is not opened, and the pressure accumulating container is continuously used at a pressure higher than the pressure in the normal range.
  • the present disclosure has been made in order to solve the above-described problems.
  • the main purpose of the present disclosure is to reduce the pressure in the pressure accumulating vessel when the high-pressure pump is abnormal even if the high-pressure pump is deteriorated or low-viscosity fuel is used.
  • An object of the present invention is to provide a control device for an internal combustion engine that can be easily reduced.
  • the present disclosure employs the following means.
  • the first means is driven by the rotation of the drive shaft of the internal combustion engine and discharges the fuel pressurized in the pressurizing chamber, and the pressure accumulating container for storing the fuel discharged by the high pressure pump in a pressurized state;
  • a relief valve that opens when the pressure of the fuel in the pressure accumulating vessel is higher than a predetermined pressure and returns the fuel in the pressure accumulating vessel to a predetermined chamber in which fuel having a pressure lower than the pressure of the fuel in the pressurizing chamber exists.
  • the idle rotational speed of the internal combustion engine is increased to a predetermined rotational speed.
  • the high-pressure pump is driven by the rotation of the drive shaft of the internal combustion engine and discharges the fuel pressurized in the pressurizing chamber.
  • the fuel discharged by the high-pressure pump is stored in a pressure accumulation state in a pressurized state.
  • the relief valve is opened, and the fuel in the pressure accumulating vessel is returned to the predetermined chamber in which fuel having a pressure lower than the pressure of the fuel in the pressurizing chamber exists. For this reason, when the relief valve is opened, the pressure of the fuel in the pressure accumulating vessel can be made lower than the pressure of the fuel in the pressurizing chamber, and the pressure resistance of the pressure accumulating vessel can be suppressed from decreasing.
  • the idle rotation speed of the internal combustion engine increases to the predetermined rotation speed. Be made.
  • the high-pressure pump is driven by the rotation of the drive shaft of the internal combustion engine. For this reason, the discharge amount of the high-pressure pump can be increased by increasing the idle rotation speed of the internal combustion engine. Therefore, even when the high-pressure pump is deteriorated or a low-viscosity fuel is used, the pressure of the fuel in the pressure accumulating vessel is easily increased to the predetermined pressure, and the relief valve is easily opened. As a result, it becomes easy to lower the pressure in the pressure accumulator vessel when the high pressure pump is abnormal, and the design pressure resistance of the pressure accumulator vessel can be lowered.
  • FIG. 1 is a schematic diagram showing an engine and its peripheral configuration.
  • FIG. 2 is a diagram showing the relationship between the discharge of the high-pressure pump and the pressure change in the injection stop state
  • FIG. 3 is another view showing the relationship between the discharge of the high-pressure pump and the pressure change in the injection stop state.
  • FIG. 4 is another diagram showing the relationship between the discharge of the high-pressure pump and the pressure change in the injection stop state
  • FIG. 5 is a diagram showing a pressure change in an idling state when the high-pressure pump is abnormal.
  • FIG. 6 is a flowchart showing a procedure of engine control for urging the relief valve to open
  • FIG. 7 is a time chart showing an example of the operation by the engine control of FIG.
  • FIG. 8 is a time chart showing another example of the operation by the engine control of FIG.
  • the engine 10 includes a crankshaft 12 (corresponding to a drive shaft), a cam 14, a low pressure pump 20, a high pressure pump 30, a delivery pipe 60, a fuel injection valve 62, a relief valve 80, and the like.
  • the cam 14 is driven by the rotation of the crankshaft 12.
  • the low pressure pump 20 sucks the fuel in the fuel tank 18 and discharges it after being pressurized.
  • the pressure of the fuel discharged by the low pressure pump 20 is adjusted by a regulator (not shown) or the like.
  • the high-pressure pump 30 includes a cylinder body 32, a plunger 34, a metering valve 36, a discharge valve 38, and the like.
  • a low pressure chamber 40 and a pressurizing chamber 42 are formed in the cylinder body 32.
  • the fuel discharged by the low pressure pump 20 is supplied to the low pressure chamber 40 (corresponding to a predetermined chamber) via the pipe 22. That is, the fuel discharged by the low pressure pump 20 is stored in the low pressure chamber 40.
  • the low pressure chamber 40 and the pressurizing chamber 42 are connected via a metering valve 36.
  • the metering valve 36 switches between blocking and communication between the low pressure chamber 40 and the pressurizing chamber 42.
  • the driving state of the metering valve 36 is controlled by an ECU (Electric Control Unit) 90.
  • the plunger 34 is supported by the cylinder body 32 so as to reciprocate.
  • the plunger 34 is driven by the rotation of the cam 14 to reciprocate.
  • fuel is sucked from the low pressure chamber 40 into the pressurizing chamber 42 and the fuel in the pressurizing chamber 42 is pressurized.
  • the fuel pressurized in the pressurizing chamber 42 is supplied to the delivery pipe 60 through the pipe 44 via the discharge valve 38.
  • the discharge valve 38 is a check valve that allows the fuel to flow only from the pressurizing chamber 42 toward the pipe 44, and opens when the fuel pressure in the pressurizing chamber 42 exceeds a predetermined discharge pressure.
  • Delivery pipe 60 (corresponding to a pressure accumulating vessel) stores fuel discharged by high-pressure pump 30 in a pressurized state.
  • the relief valve 80 opens when the pressure of the fuel in the delivery pipe 60 (pipe 44) is higher than the valve opening pressure (corresponding to a predetermined pressure), and returns the fuel in the delivery pipe 60 to the low pressure chamber 40.
  • This valve opening pressure is set lower than the pressure resistance (rail pressure resistance) before the delivery pipe 60 deteriorates (fatigue).
  • the fuel pressure in the low-pressure chamber 40 is lower than the fuel pressure in the pressurizing chamber 42.
  • the delivery pipe 60 has four fuel injection valves 62 attached thereto.
  • the fuel injection valve 62 directly injects the fuel in the delivery pipe 60 into the cylinder of the engine 10.
  • the driving state of the fuel injection valve 62 is controlled by the ECU 90.
  • the ECU 90 (corresponding to a control device) is a microcomputer including a CPU, a ROM, a RAM, a drive circuit, an input / output interface, and the like.
  • the ECU 90 is an engine ECU or the like that controls the operating state of the engine 10, and performs idle rotation speed control or the like that maintains the idle rotation speed of the engine 10 at the target idle rotation speed.
  • the ECU 90 controls the metering valve 36 so as to close the valve.
  • the fuel in the pressurizing chamber 42 is pressurized and the fuel pressure rises.
  • the discharge valve 38 is opened. The fuel discharged from the discharge valve 38 is supplied to the delivery pipe 60, stored in a pressurized state, and supplied to the fuel injection valve 62.
  • the high pressure pump 30 pressurizes and discharges the sucked fuel.
  • the fuel discharge amount is adjusted by controlling the closing timing of the metering valve 36.
  • FIG. 2 is a diagram showing the relationship between the discharge of the high-pressure pump 30 and the pressure change when the injection is stopped.
  • the fuel injection by the fuel injection valve 62 is stopped and the fuel is discharged by the high-pressure pump 30 at 600 rpm corresponding to the idling state of the engine 10.
  • the pressure of the fuel in the delivery pipe 60 increases every time the high-pressure pump 30 discharges, and reaches an upper limit pressure at which the injection by the fuel injection valve 62 can be controlled in the vicinity of 0.5 s. Thereafter, the fuel pressure reaches the opening pressure of the relief valve 80 by the discharge about six times, and the relief valve 80 is opened.
  • the pressure of the fuel in the delivery pipe 60 is reduced to the pressure of the fuel in the low pressure chamber 40, and is maintained in the vicinity of the pressure.
  • the pressure indicated by the broken line indicates the case where the clearance of the plunger 34 is the smallest within the tolerance.
  • FIG. 3 shows the same relationship as FIG. 2 at 2500 rpm corresponding to the upper limit of the rotational speed of the engine 10 at the time of fail-safe.
  • the pressure of the fuel in the delivery pipe 60 increases every time the high-pressure pump 30 discharges, and reaches the upper limit pressure at which the injection by the fuel injection valve 62 can be controlled in the vicinity of 0.1 s. Thereafter, the fuel pressure reaches the valve opening pressure of the relief valve 80 by the discharge about five times, and the relief valve 80 is opened. By opening the relief valve 80, the pressure of the fuel in the delivery pipe 60 is reduced to the pressure of the fuel in the low pressure chamber 40, and is maintained in the vicinity of the pressure.
  • FIG. 4 shows the same relationship as in FIG. 2 at a fuel temperature of 30 ° C., 50 ° C., and 80 ° C., respectively, at 600 rpm, a small lift amount of the plunger 34, and a maximum within the clearance tolerance of the plunger 34.
  • the amount by which the fuel pressure in the delivery pipe 60 increases for each discharge by the high-pressure pump 30 decreases. As the fuel temperature increases, the number of discharges from reaching the injection control upper limit pressure to reaching the relief valve opening pressure increases.
  • FIG. 5 is a view showing a pressure change in an idling state of the engine 10 when the high-pressure pump 30 is abnormal. At time t11, an abnormality has occurred in the drive system or control system of the high-pressure pump 30. And the discharge amount by the high-pressure pump 30 does not change from the maximum amount (the total amount in the pressurization stroke).
  • the pressure of the fuel in the delivery pipe 60 suddenly increases, and the relief valve 80 is opened at time t12.
  • the clearance of the plunger 34 is increased, so that the fuel pressure in the delivery pipe 60 gradually increases until the relief valve 80 reaches the valve opening pressure. Not reach.
  • the delivery pipe 60 is continuously used at a pressure higher than the pressure in the normal range, the delivery pipe 60 is deteriorated (fatigue), and the pressure resistance of the delivery pipe 60 is lower than the pressure of the fuel in the delivery pipe 60. There is a fear.
  • FIG. 6 is a flowchart showing the procedure of this engine control. This series of processing is repeatedly executed by the ECU 90 at a predetermined cycle.
  • the abnormality determination pressure (corresponding to the determination pressure) is lower than the pressure resistance after deterioration of the delivery pipe 60, lower than the upper limit pressure at which injection by the fuel injection valve 62 can be controlled, and the valve opening pressure of the relief valve 80 (predetermined) Pressure).
  • the value of the abnormality counter (i) that counts an abnormal state in which the fuel pressure is high is incremented. (S12).
  • the value of the abnormality counter (i) is reset to zero.
  • the abnormality determination value 1 is set to a value with which it can be determined that the fuel pressure in the delivery pipe 60 does not reach the valve opening pressure of the relief valve 80. A period from when the pressure of the fuel in the delivery pipe 60 becomes higher than the abnormality determination pressure until the value of the abnormality counter (i) becomes the abnormality determination value 1 corresponds to the first period. In this determination, when it is determined that the value of the abnormality counter (i) is larger than the abnormality determination value 1 (S14: YES), the target idle rotation speed of the engine 10 is increased to a predetermined rotation speed (S15).
  • the predetermined rotation speed is set to 1000 rpm, for example.
  • the target idle rotation speed of the engine 10 is set to the normal target idle rotation speed. (For example, 600 rpm) is set (S16).
  • the abnormality determination value 2 is set to a value that can suppress a decrease in the pressure resistance of the delivery pipe 60 to the pressure resistance after the deterioration due to the deterioration of the delivery pipe 60.
  • a period from when the value of the abnormality counter (i) becomes the abnormality determination value 1 to when the value of the abnormality counter (i) becomes the abnormality determination value 2 corresponds to the second period. In this determination, when it is determined that the value of the abnormality counter (i) is larger than the abnormality determination value 2 (S17: YES), the operation of the engine 10 is stopped (S18).
  • FIG. 7 is a time chart showing an example of the operation by the engine control of FIG.
  • the fuel pressure in the delivery pipe 60 becomes higher than the abnormality determination pressure, and the abnormality counter (i) starts counting.
  • the fuel pressure in the delivery pipe 60 increases, but does not reach the valve opening pressure of the relief valve 80.
  • the value of the abnormality counter (i) becomes larger than the abnormality determination value 1, and the target idle rotation speed of the engine 10 is increased to 1000 rpm.
  • the amount of fuel discharged by the high-pressure pump 30 increases, and the fuel pressure in the delivery pipe 60 increases.
  • the pressure of the fuel in the delivery pipe 60 rises to the valve opening pressure of the relief valve 80, and the relief valve 80 opens.
  • the fuel pressure in the delivery pipe 60 is reduced to near the fuel pressure in the low-pressure chamber 40, and the target idle speed of the engine 10 is set to 600 rpm. After time t23, the actual idle speed of the engine 10 is maintained around 600 rpm.
  • FIG. 8 is a time chart showing an operation example in that case.
  • the fuel pressure in the delivery pipe 60 becomes higher than the abnormality determination pressure, and the abnormality counter (i) starts counting.
  • the fuel pressure in the delivery pipe 60 increases, but does not reach the valve opening pressure of the relief valve 80.
  • the value of the abnormality counter (i) becomes larger than the abnormality determination value 1, and the target idle rotation speed of the engine 10 is increased to 1000 rpm.
  • the amount of fuel discharged by the high-pressure pump 30 increases and the fuel pressure in the delivery pipe 60 increases, but does not reach the valve opening pressure of the relief valve 80.
  • the value of the abnormality counter (i) becomes larger than the abnormality determination value 2, and the operation of the engine 10 is stopped. After the time t33, the fuel discharge by the high-pressure pump 30 is stopped, so that the fuel pressure in the delivery pipe 60 gradually decreases.
  • the rotational speed of the engine 10 may be made higher than the idle rotational speed by an accelerator operation or the like by a driver of a vehicle on which the engine 10 is mounted. Also in this case, if the pressure of the fuel in the delivery pipe 60 becomes higher than the opening pressure of the relief valve 80 due to an increase in the amount of fuel discharged by the high-pressure pump 30, the relief valve 80 opens and the inside of the delivery pipe 60. The fuel pressure drops. Accordingly, the target idle speed of the engine 10 is set to 600 rpm.
  • the idle rotation speed of the engine 10 is Increased to a predetermined rotational speed.
  • the high-pressure pump 30 is driven by the rotation of the crankshaft 12 of the engine 10. For this reason, the discharge amount of the high-pressure pump 30 can be increased by increasing the idle rotation speed of the engine 10. Therefore, even when the high-pressure pump 30 is deteriorated or a low-viscosity fuel is used, the pressure of the fuel in the delivery pipe 60 can be easily increased to the valve opening pressure, and the relief valve 80 can be easily opened. Become. As a result, it becomes easy to lower the pressure in the delivery pipe 60 when the high-pressure pump 30 is abnormal, and the design pressure resistance of the delivery pipe 60 can be lowered.
  • the fuel is returned from the delivery pipe 60 to the low pressure chamber 40 by the relief valve 80, it is possible to suppress an increase in the temperature of the fuel in the fuel tank 18 as compared with the configuration in which the fuel is returned to the fuel tank 18. .
  • the abnormality determination pressure is set lower than the upper limit pressure at which the fuel injection by the fuel injection valve 62 provided in the engine 10 can be controlled. For this reason, even when the high-pressure pump 30 is abnormal, it becomes easy to avoid that the fuel injection by the fuel injection valve 62 becomes uncontrollable.
  • the abnormality determination pressure is set lower than the pressure resistance when the delivery pipe 60 is deteriorated. For this reason, even when the delivery pipe 60 is deteriorated and the high-pressure pump 30 is abnormal, the pressure of the fuel in the delivery pipe 60 can be easily maintained lower than the pressure resistance.
  • the idle rotation speed of the engine 10 may be increased to 800 rpm or 1200 rpm.
  • the fuel can be returned from the delivery pipe 60 to the pipe 22 and the fuel tank 18 by the relief valve 80.
  • the engine 10 is not limited to a direct injection engine that uses gasoline as a fuel, but can also be a direct injection engine that uses ethanol or the like as a fuel, or a diesel engine equipped with a common rail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

内燃機関(10)の駆動軸(12)の回転により駆動され、加圧室(42)で加圧した燃料を吐出する高圧ポンプ(30)と、高圧ポンプにより吐出された燃料を加圧状態で蓄える蓄圧容器(60)と、蓄圧容器内の燃料の圧力が所定圧よりも高い場合に開いて、蓄圧容器内の燃料を加圧室内の燃料の圧力よりも低い圧力の燃料が存在する所定室(40)へ戻すリリーフ弁(80)と、を備える内燃機関に適用される制御装置(90)であって、蓄圧容器内の燃料の圧力が、所定圧よりも低く設定された判定圧よりも高い状態が第1期間よりも長く続いた場合に、内燃機関のアイドル回転速度を所定回転速度まで上昇させる。

Description

内燃機関の制御装置 関連出願の相互参照
 本出願は、2016年3月28日に出願された日本出願番号2016-063161号に基づくもので、ここにその記載内容を援用する。
 本開示は、燃料の高圧ポンプを備える内燃機関を制御する制御装置に関する。
 従来、燃料の高圧ポンプの異常時にリリーフ弁を開くことにより、異常時における蓄圧容器内の最高圧力が、燃料噴射弁の開弁限界圧以上にならないようにするものがある(特許文献1参照)。
特許第5525760号公報
 ところで、特許文献1に記載のものでは、リリーフ弁が開いた場合に、蓄圧容器内の圧力は、燃料噴射弁の開弁限界圧よりも低くなるものの、正常範囲の圧力よりも高くなる。そして、正常範囲の圧力よりも高い圧力で蓄圧容器が継続して使用された場合は、蓄圧容器の耐圧が低下するおそれがある。これに対して、リリーフ弁が開いた場合に、蓄圧容器内の圧力が、耐圧の低下を生じない圧力まで低下するように構成することが考えられる。
 しかしながら、そのような構成を採用したとしても、高圧ポンプの劣化や粘性の低い燃料が使用されることにより、高圧ポンプの異常時に蓄圧容器内の圧力が、正常範囲の圧力よりも高く且つリリーフ弁の開弁圧よりも低くなるおそれがある。その場合、リリーフ弁が開かず、正常範囲の圧力よりも高い圧力で蓄圧容器が継続して使用されることとなる。
 本開示は、上記課題を解決するためになされたものであり、その主たる目的は、高圧ポンプの劣化や粘性の低い燃料の使用があったとしても、高圧ポンプの異常時に蓄圧容器内の圧力を低下させ易くすることのできる内燃機関の制御装置を提供することにある。
 上記課題を解決するため、本開示は以下の手段を採用した。
 第1の手段は、内燃機関の駆動軸の回転により駆動され、加圧室で加圧した燃料を吐出する高圧ポンプと、前記高圧ポンプにより吐出された燃料を加圧状態で蓄える蓄圧容器と、前記蓄圧容器内の燃料の圧力が所定圧よりも高い場合に開いて、前記蓄圧容器内の燃料を前記加圧室内の燃料の圧力よりも低い圧力の燃料が存在する所定室へ戻すリリーフ弁と、を備える内燃機関に適用される制御装置であって、前記蓄圧容器内の燃料の圧力が、前記所定圧よりも低く設定された判定圧よりも高い状態が第1期間よりも長く続いた場合に、前記内燃機関のアイドル回転速度を所定回転速度まで上昇させる。
 上記構成によれば、高圧ポンプは、内燃機関の駆動軸の回転により駆動され、加圧室で加圧した燃料を吐出する。高圧ポンプにより吐出された燃料は、蓄圧容器に加圧状態で蓄えられる。蓄圧容器内の燃料の圧力が所定圧よりも高い場合にリリーフ弁が開いて、蓄圧容器内の燃料が、加圧室内の燃料の圧力よりも低い圧力の燃料が存在する所定室へ戻される。このため、リリーフ弁が開くことにより、蓄圧容器内の燃料の圧力を加圧室内の燃料の圧力よりも下げることができ、蓄圧容器の耐圧が低下することを抑制することができる。
 ここで、蓄圧容器内の燃料の圧力が、所定圧よりも低く設定された判定圧よりも高い状態が第1期間よりも長く続いた場合に、内燃機関のアイドル回転速度が所定回転速度まで上昇させられる。高圧ポンプは、内燃機関の駆動軸の回転により駆動されている。このため、内燃機関のアイドル回転速度を上昇させることにより、高圧ポンプの吐出量を増加させることができる。したがって、高圧ポンプが劣化したり、粘性の低い燃料が使用されたりした場合であっても、蓄圧容器内の燃料の圧力を上記所定圧まで上昇させ易くなり、リリーフ弁を開き易くなる。その結果、高圧ポンプの異常時に蓄圧容器内の圧力を低下させ易くなり、蓄圧容器の設計耐圧を低くすることができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、エンジン及びその周辺構成を示す模式図であり、 図2は、噴射停止状態における高圧ポンプの吐出と圧力変化との関係を示す図であり、 図3は、噴射停止状態における高圧ポンプの吐出と圧力変化との関係を示す他の図であり、 図4は、噴射停止状態における高圧ポンプの吐出と圧力変化との関係を示す他の図であり、 図5は、高圧ポンプ異常時におけるアイドリング状態での圧力変化を示す図であり、 図6は、リリーフ弁の開弁を促すエンジン制御の手順を示すフローチャートであり、 図7は、図6のエンジン制御による動作の一例を示すタイムチャートであり、 図8は、図6のエンジン制御による動作の他の例を示すタイムチャートである。
 以下、4気筒のガソリンエンジン(内燃機関に相当)に具現化した一実施形態について、図面を参照しつつ説明する。
 図1に示すように、エンジン10は、クランク軸12(駆動軸に相当)、カム14、低圧ポンプ20、高圧ポンプ30、デリバリパイプ60、燃料噴射弁62、リリーフ弁80等を備えている。カム14は、クランク軸12の回転により駆動される。
 低圧ポンプ20は、燃料タンク18内の燃料を吸入し、加圧した後に吐出する。低圧ポンプ20により吐出される燃料の圧力は、レギュレータ(図示略)等により調節されている。
 高圧ポンプ30は、シリンダボディ32、プランジャ34、調量弁36、及び吐出弁38等を備えている。
 シリンダボディ32には、低圧室40及び加圧室42が形成されている。低圧ポンプ20により吐出された燃料は、配管22を介して低圧室40(所定室に相当)に供給される。すなわち、低圧ポンプ20により吐出された燃料は、低圧室40内に蓄えられる。低圧室40と加圧室42とは、調量弁36を介して接続されている。調量弁36は、低圧室40と加圧室42との遮断及び連通を切り替える。調量弁36の駆動状態は、ECU(Electric Control Unit)90により制御される。
 プランジャ34は、シリンダボディ32により往復動自在に支持されている。プランジャ34は、カム14の回転により駆動されて往復動する。プランジャ34の往復動により、低圧室40から加圧室42内へ燃料が吸入され、加圧室42内の燃料が加圧される。加圧室42内で加圧された燃料は、吐出弁38を介して配管44を通ってデリバリパイプ60へ供給される。吐出弁38は、加圧室42から配管44の方向へのみ燃料を流通させる逆止弁であり、加圧室42内の燃料の圧力が所定の吐出圧以上になると開く。
 デリバリパイプ60(蓄圧容器に相当)は、高圧ポンプ30により吐出された燃料を加圧状態で蓄える。リリーフ弁80は、デリバリパイプ60(配管44)内の燃料の圧力が開弁圧(所定圧に相当)よりも高い場合に開いて、デリバリパイプ60内の燃料を低圧室40へ戻す。この開弁圧は、デリバリパイプ60が劣化(疲労)する前の耐圧(レール耐圧)よりも低く設定されている。低圧室40内の燃料の圧力は、加圧室42内の燃料の圧力よりも低くなっている。リリーフ弁80が一旦開くと、デリバリパイプ60内の燃料の圧力は低圧室40内の燃料の圧力付近で維持される。
 デリバリパイプ60には、4つの燃料噴射弁62が取り付けられている。燃料噴射弁62は、デリバリパイプ60内の燃料をエンジン10の気筒内に直接噴射する。燃料噴射弁62の駆動状態は、ECU90により制御される。
 ECU90(制御装置に相当)は、CPU、ROM、RAM、駆動回路、入出力インターフェース等を備えるマイクロコンピュータである。ECU90は、エンジン10の運転状態を制御するエンジンECU等であり、エンジン10のアイドル回転速度を目標アイドル回転速度に維持するアイドル回転速度制御等を実行する。
 次に、高圧ポンプ30の作動について説明する。
 (1)吸入行程
 プランジャ34が下降し、加圧室42内の圧力が低下することに基づいて、低圧室40から加圧室42へ燃料が吸入される。そして、ECU90により、開弁状態を保持するように調量弁36が制御される。
 (2)戻し行程
 調量弁36が開いた状態では、プランジャ34が下死点から上死点に向かって上昇しても、プランジャ34により加圧された加圧室42内の燃料は、調量弁36を介して低圧室40へ戻される。
 (3)加圧行程
 戻し行程中に、ECU90により、閉弁するように調量弁36が制御される。この状態でプランジャ34がさらに上死点に向けて上昇すると、加圧室42内の燃料が加圧され燃料の圧力が上昇する。そして、加圧室42内の燃料の圧力が所定の吐出圧以上になると吐出弁38が開く。吐出弁38から吐出された燃料は、デリバリパイプ60へ供給されて加圧状態で蓄えられ、燃料噴射弁62へ供給される。
 上記(1)~(3)の行程を繰り返すことにより、高圧ポンプ30は吸入した燃料を加圧して吐出する。燃料の吐出量は、調量弁36の閉弁タイミングを制御することにより調節される。
 図2は、噴射停止状態における高圧ポンプ30の吐出と圧力変化との関係を示す図である。同図では、エンジン10のアイドリング状態に相当する600rpmにおいて、燃料噴射弁62による燃料の噴射を停止させて、高圧ポンプ30による燃料の吐出を行った場合を示している。同図に示すように、高圧ポンプ30による吐出毎にデリバリパイプ60内の燃料の圧力が上昇し、0.5s付近で燃料噴射弁62による噴射を制御可能な上限圧に達している。その後、6回程度の吐出により、燃料の圧力がリリーフ弁80の開弁圧に到達して、リリーフ弁80が開いている。リリーフ弁80が開くことにより、デリバリパイプ60内の燃料の圧力が低圧室40内の燃料の圧力まで低下し、その圧力付近で維持されている。なお、破線で示す圧力は、プランジャ34のクリアランスが公差内で最小の場合を示している。
 図3は、フェールセーフ時におけるエンジン10の回転速度の上限に相当する2500rpmにおいて、図2と同様の関係を示している。同図に示すように、高圧ポンプ30による吐出毎にデリバリパイプ60内の燃料の圧力が上昇し、0.1s付近で燃料噴射弁62による噴射を制御可能な上限圧に達している。その後、5回程度の吐出により、燃料の圧力がリリーフ弁80の開弁圧に到達して、リリーフ弁80が開いている。リリーフ弁80が開くことにより、デリバリパイプ60内の燃料の圧力が低圧室40内の燃料の圧力まで低下し、その圧力付近で維持されている。
 図4は、600rpm、プランジャ34のリフト量小、プランジャ34のクリアランス公差内で最大として、それぞれ燃料温度30℃、50℃、80℃において図2と同様の関係を示している。同図に示すように、高圧ポンプ30による吐出毎にデリバリパイプ60内の燃料の圧力が上昇する量は減少している。そして、燃料温度が高くなるほど、噴射制御上限圧に到達してからリリーフ開弁圧に到達するまでの吐出回数が増加している。
 図5は、高圧ポンプ30の異常時におけるエンジン10のアイドリング状態での圧力変化を示す図である。時刻t11において、高圧ポンプ30の駆動系あるいは制御系に異常が生じている。そして、高圧ポンプ30による吐出量が、最大量(加圧行程における全量)から変化しなくなっている。
 実線で示す高圧ポンプ30の劣化前では、デリバリパイプ60内の燃料の圧力が急激に上昇して、時刻t12においてリリーフ弁80が開いている。これに対して、破線で示す高圧ポンプ30の劣化後では、プランジャ34のクリアランスが大きくなっているため、デリバリパイプ60内の燃料の圧力が緩やかに上昇して、リリーフ弁80の開弁圧まで到達しない。そして、正常範囲の圧力よりも高い圧力でデリバリパイプ60が継続して使用されることにより、デリバリパイプ60が劣化(疲労)し、デリバリパイプ60の耐圧がデリバリパイプ60内の燃料の圧力を下回るおそれがある。また、デリバリパイプ60内の燃料の圧力が、燃料噴射弁62による噴射を制御可能な上限圧を超えた状態が継続するおそれがある。そして、デリバリパイプ60内の燃料の圧力が、燃料噴射弁62による噴射を制御可能な上限圧を超えた状態では、デリバリパイプ60や配管44、燃料噴射弁62から燃料漏れが生じるおそれがある。
 そこで、本実施形態では、高圧ポンプ30に異常が生じた場合に、リリーフ弁80の開弁を促すエンジン制御を実行する。図6は、このエンジン制御の手順を示すフローチャートである。この一連の処理は、ECU90により所定の周期で繰り返し実行される。
 まず、デリバリパイプ60内の燃料の圧力が、異常判定圧よりも高いか否か判定する(S11)。異常判定圧(判定圧に相当)は、デリバリパイプ60の劣化後の耐圧よりも低く、且つ燃料噴射弁62による噴射を制御可能な上限圧よりも低く、且つリリーフ弁80の開弁圧(所定圧)よりも低く設定されている。この判定において、デリバリパイプ60内の燃料の圧力が、異常判定圧よりも高いと判定した場合(S11:YES)、燃料の圧力が高い異常状態をカウントする異常カウンタ(i)の値をインクリメントする(S12)。具体的には、異常カウンタの前回値である異常カウンタ(i-1)に1を加えて、それを異常カウンタ(i)の値とする。一方、S11の判定において、デリバリパイプ60内の燃料の圧力が、異常判定圧よりも高くないと判定した場合(S11:NO)、異常カウンタ(i)の値を0にリセットする。
 続いて、異常カウンタ(i)の値が、異常判定値1よりも大きいか否か判定する(S14)。異常判定値1は、デリバリパイプ60内の燃料の圧力が、リリーフ弁80の開弁圧まで到達しないと判定することのできる値に設定されている。デリバリパイプ60内の燃料の圧力が異常判定圧よりも高くなってから、異常カウンタ(i)の値が異常判定値1になるまでの期間が、第1期間に相当する。この判定において、異常カウンタ(i)の値が、異常判定値1よりも大きいと判定した場合(S14:YES)、エンジン10の目標アイドル回転速度を所定回転速度まで上昇させる(S15)。所定回転速度は、例えば1000rpmに設定されている。一方、S14の判定において、異常カウンタ(i)の値が、異常判定値1よりも大きくないと判定した場合(S14:NO)、エンジン10の目標アイドル回転速度を、通常時の目標アイドル回転速度(例えば600rpm)に設定する(S16)。
 続いて、異常カウンタ(i)の値が、異常判定値1よりも大きく設定された異常判定値2よりも大きいか否か判定する(S17)。異常判定値2は、デリバリパイプ60の劣化により、デリバリパイプ60の耐圧が劣化後の耐圧まで低下することを抑制することのできる値に設定されている。異常カウンタ(i)の値が異常判定値1になってから、異常カウンタ(i)の値が異常判定値2になるまでの期間が、第2期間に相当する。この判定において、異常カウンタ(i)の値が、異常判定値2よりも大きいと判定した場合(S17:YES)、エンジン10の運転を停止する(S18)。具体的には、燃料噴射弁62による燃料の噴射を停止させるとともに、点火プラグによる点火を停止させる。その後、この一連の処理を一旦終了する(END)。一方、S17の判定において、異常カウンタ(i)の値が、異常判定値2よりも大きくないと判定した場合(S17:NO)、この一連の処理を一旦終了する(END)。
 図7は、図6のエンジン制御による動作の一例を示すタイムチャートである。
 時刻t21において、デリバリパイプ60内の燃料の圧力が異常判定圧よりも高くなり、異常カウンタ(i)のカウントが開始される。時刻t21以後、デリバリパイプ60内の燃料の圧力は上昇するものの、リリーフ弁80の開弁圧まで到達しない。時刻t22において、異常カウンタ(i)の値が異常判定値1よりも大きくなり、エンジン10の目標アイドル回転速度が1000rpmまで上昇させられる。時刻t22以後、高圧ポンプ30による燃料の吐出量が増加して、デリバリパイプ60内の燃料の圧力が上昇する。時刻t23において、デリバリパイプ60内の燃料の圧力が、リリーフ弁80の開弁圧まで上昇し、リリーフ弁80が開く。これにより、デリバリパイプ60内の燃料の圧力が、低圧室40内の燃料の圧力付近まで低下し、エンジン10の目標アイドル回転速度が600rpmに設定される。時刻t23以後、エンジン10の実際のアイドル回転速度が、600rpm付近で維持される。
 ただし、高圧ポンプ30の劣化が過度に進行したり、想定外に粘性の低い燃料が使用されたりすることが重なるおそれがある。この場合は、エンジン10のアイドル回転速度を所定回転速度まで上昇させても、デリバリパイプ60内の燃料の圧力がリリーフ弁80の開弁圧まで上昇しないおそれがある。その結果、デリバリパイプ60の耐圧が低下するおそれがある。
 この点、図6のエンジン制御によれば、異常カウンタ(i)の値が、異常判定値2よりも大きいと判定した場合に、エンジン10の運転が停止される。図8は、その場合の動作例を示すタイムチャートである。
 時刻t31において、デリバリパイプ60内の燃料の圧力が異常判定圧よりも高くなり、異常カウンタ(i)のカウントが開始される。時刻t31以後、デリバリパイプ60内の燃料の圧力は上昇するものの、リリーフ弁80の開弁圧まで到達しない。時刻t32において、異常カウンタ(i)の値が異常判定値1よりも大きくなり、エンジン10の目標アイドル回転速度が1000rpmまで上昇させられる。時刻t32以後、高圧ポンプ30による燃料の吐出量が増加して、デリバリパイプ60内の燃料の圧力が上昇するものの、リリーフ弁80の開弁圧まで到達しない。時刻t33において、異常カウンタ(i)の値が異常判定値2よりも大きくなり、エンジン10の運転が停止される。時刻t33以後、高圧ポンプ30による燃料の吐出が停止するため、デリバリパイプ60内の燃料の圧力が徐々に低下する。
 なお、エンジン10を搭載した車両のドライバによるアクセル操作等により、エンジン10の回転速度がアイドル回転速度よりも上昇させられることがある。その場合も、高圧ポンプ30による燃料の吐出量が増加することで、デリバリパイプ60内の燃料の圧力がリリーフ弁80の開弁圧よりも高くなれば、リリーフ弁80が開いてデリバリパイプ60内の燃料の圧力が低下する。それに伴い、エンジン10の目標アイドル回転速度が600rpmに設定される。
 以上詳述した本実施形態は、以下の利点を有する。
 ・デリバリパイプ60内の燃料の圧力が、リリーフ弁80の開弁圧よりも低く設定された異常判定圧よりも高い状態が第1期間よりも長く続いた場合に、エンジン10のアイドル回転速度が所定回転速度まで上昇させられる。高圧ポンプ30は、エンジン10のクランク軸12の回転により駆動されている。このため、エンジン10のアイドル回転速度を上昇させることにより、高圧ポンプ30の吐出量を増加させることができる。したがって、高圧ポンプ30が劣化したり、粘性の低い燃料が使用されたりした場合であっても、デリバリパイプ60内の燃料の圧力を上記開弁圧まで上昇させ易くなり、リリーフ弁80を開き易くなる。その結果、高圧ポンプ30の異常時にデリバリパイプ60内の圧力を低下させ易くなり、デリバリパイプ60の設計耐圧を低くすることができる。
 ・エンジン10のアイドル回転速度を上記所定回転速度まで上昇させており且つデリバリパイプ60内の燃料の圧力が異常判定圧よりも高い状態が、第2期間よりも長く続いた場合に、エンジン10の運転が停止される。したがって、エンジン10のアイドル回転速度を所定回転速度まで上昇させてもリリーフ弁80が開かない場合は、エンジン10の運転を停止してデリバリパイプ60の耐圧低下を抑制することができる。
 ・リリーフ弁80によりデリバリパイプ60から低圧室40へ燃料が戻されるため、燃料タンク18へ燃料を戻す構成と比較して、燃料タンク18内の燃料の温度が上昇することを抑制することができる。
 ・異常判定圧は、エンジン10が備える燃料噴射弁62による燃料の噴射を制御可能な上限圧よりも低く設定されている。このため、高圧ポンプ30の異常時であっても、燃料噴射弁62による燃料の噴射を制御不能な状態になることを避け易くなる。
 ・異常判定圧は、デリバリパイプ60が劣化した場合の耐圧よりも低く設定されている。このため、デリバリパイプ60が劣化しており且つ高圧ポンプ30の異常時であっても、デリバリパイプ60内の燃料の圧力を耐圧よりも低く維持し易くなる。
 なお、上記実施形態を、以下のように変更して実施することもできる。上記実施形態と同一の部材については、同一の符号を付すことにより説明を省略する。
 ・リリーフ弁80の開弁圧よりも低く設定された異常判定圧よりも高い状態が第1期間よりも長く続いた場合に、エンジン10のアイドル回転速度を800rpmや1200rpmまで上昇させてもよい。
 ・リリーフ弁80によって、デリバリパイプ60から、配管22や燃料タンク18へ燃料を戻すこともできる。
 ・図6のフローチャートにおいて、S17及びS18の処理を省略することもできる。
 ・エンジン10として、ガソリンを燃料に用いる直噴エンジンに限らず、エタノール等を燃料に用いる直噴エンジンや、コモンレールを備えるディーゼルエンジンを採用することもできる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (5)

  1.  内燃機関(10)の駆動軸(12)の回転により駆動され、加圧室(42)で加圧した燃料を吐出する高圧ポンプ(30)と、前記高圧ポンプにより吐出された燃料を加圧状態で蓄える蓄圧容器(60)と、前記蓄圧容器内の燃料の圧力が所定圧よりも高い場合に開いて、前記蓄圧容器内の燃料を前記加圧室内の燃料の圧力よりも低い圧力の燃料が存在する所定室(40)へ戻すリリーフ弁(80)と、を備える内燃機関に適用される制御装置(90)であって、
     前記蓄圧容器内の燃料の圧力が、前記所定圧よりも低く設定された判定圧よりも高い状態が第1期間よりも長く続いた場合に、前記内燃機関のアイドル回転速度を所定回転速度まで上昇させる内燃機関の制御装置。
  2.  前記内燃機関のアイドル回転速度を前記所定回転速度まで上昇させており且つ前記蓄圧容器内の燃料の圧力が前記判定圧よりも高い状態が、第2期間よりも長く続いた場合に、前記内燃機関の運転を停止させる請求項1に記載の内燃機関の制御装置。
  3.  前記内燃機関は、燃料を加圧して前記高圧ポンプへ吐出する低圧ポンプ(20)を備え、
     前記所定室は、前記低圧ポンプにより吐出された燃料を蓄える低圧室(40)である請求項1又は2に記載の内燃機関の制御装置。
  4.  前記判定圧は、前記内燃機関が備える燃料噴射弁(62)による燃料の噴射を制御可能な上限圧よりも低く設定されている請求項1~3のいずれか1項に記載の内燃機関の制御装置。
  5.  前記判定圧は、前記蓄圧容器が劣化した場合の耐圧よりも低く設定されている請求項1~4のいずれか1項に記載の内燃機関の制御装置。
PCT/JP2017/011433 2016-03-28 2017-03-22 内燃機関の制御装置 WO2017170031A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/086,114 US10519894B2 (en) 2016-03-28 2017-03-22 Control device for internal combustion engine
DE112017001596.0T DE112017001596B4 (de) 2016-03-28 2017-03-22 Steuervorrichtung für Maschine mit interner Verbrennung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016063161A JP6508104B2 (ja) 2016-03-28 2016-03-28 内燃機関の制御装置
JP2016-063161 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017170031A1 true WO2017170031A1 (ja) 2017-10-05

Family

ID=59964427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011433 WO2017170031A1 (ja) 2016-03-28 2017-03-22 内燃機関の制御装置

Country Status (4)

Country Link
US (1) US10519894B2 (ja)
JP (1) JP6508104B2 (ja)
DE (1) DE112017001596B4 (ja)
WO (1) WO2017170031A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508104B2 (ja) 2016-03-28 2019-05-08 株式会社デンソー 内燃機関の制御装置
JP6426689B2 (ja) * 2016-12-22 2018-11-21 トヨタ自動車株式会社 車載エンジンの制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031816A (ja) * 2008-07-31 2010-02-12 Denso Corp 蓄圧式燃料供給システムの制御装置
JP2011132941A (ja) * 2009-11-26 2011-07-07 Nippon Soken Inc 圧力制御弁
JP2012229623A (ja) * 2011-04-25 2012-11-22 Denso Corp 内燃機関の高圧燃料供給装置
JP5525760B2 (ja) * 2009-06-01 2014-06-18 日立オートモティブシステムズ株式会社 内燃機関の高圧燃料供給装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5525760A (en) 1978-08-16 1980-02-23 Hitachi Ltd De-frosting controller
JP2007285235A (ja) * 2006-04-18 2007-11-01 Honda Motor Co Ltd ディーゼルエンジンの燃料供給装置
US20080203347A1 (en) * 2007-02-28 2008-08-28 Santos Burrola Control valve for a gas direct injection fuel system
US8091530B2 (en) * 2008-12-08 2012-01-10 Ford Global Technologies, Llc High pressure fuel pump control for idle tick reduction
US9683512B2 (en) * 2014-05-23 2017-06-20 Ford Global Technologies, Llc Pressure device to reduce ticking noise during engine idling
JP6239473B2 (ja) 2014-09-19 2017-11-29 株式会社東芝 光電変換素子、太陽電池および多接合型太陽電池
JP6508104B2 (ja) 2016-03-28 2019-05-08 株式会社デンソー 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031816A (ja) * 2008-07-31 2010-02-12 Denso Corp 蓄圧式燃料供給システムの制御装置
JP5525760B2 (ja) * 2009-06-01 2014-06-18 日立オートモティブシステムズ株式会社 内燃機関の高圧燃料供給装置
JP2011132941A (ja) * 2009-11-26 2011-07-07 Nippon Soken Inc 圧力制御弁
JP2012229623A (ja) * 2011-04-25 2012-11-22 Denso Corp 内燃機関の高圧燃料供給装置

Also Published As

Publication number Publication date
DE112017001596B4 (de) 2022-06-09
JP2017180101A (ja) 2017-10-05
DE112017001596T5 (de) 2018-12-13
US20190195164A1 (en) 2019-06-27
US10519894B2 (en) 2019-12-31
JP6508104B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
US7779819B2 (en) Control method for an overpressure valve in a common-rail fuel supply system
US7325537B2 (en) Method, computer program, and control and/or regulating unit for operating an internal combustion engine
US20130213504A1 (en) Fluid control apparatus and fuel supply system
CN105089891B (zh) 用于低燃料泵送体积的直喷式泵控制
WO2017170031A1 (ja) 内燃機関の制御装置
US11078876B2 (en) Relief valve determination device for high-pressure fuel supply system
US9739209B2 (en) Method for operating a fuel injection system of an internal combustion engine
JP5141724B2 (ja) 高圧ポンプの制御装置
WO2020153312A1 (ja) 燃料噴射システムの制御装置
JP4075567B2 (ja) 内燃機関の燃料供給装置
JP6428460B2 (ja) 内燃機関の制御装置
JP7054712B2 (ja) 内燃機関の燃料圧力制御装置
RU2730540C1 (ru) Система подачи топлива дизеля
EP3061956A2 (en) Control device and control method of fuel pressure of engine
JP4329755B2 (ja) 内燃機関の高圧燃料ポンプ
JP2023009458A (ja) エンジン装置
JP2006152852A (ja) 内燃機関の燃料配管
CN107923336B (zh) 用于操作燃料喷射系统的操作方法和燃料喷射系统
JP2017082695A (ja) 内燃機関の始動制御装置
JP5626142B2 (ja) 蓄圧式燃料噴射装置
EP2771557A1 (en) Method and apparatus for controlling the fuel supply of an internal combusiton engine
JP5983465B2 (ja) 燃料噴射装置
JP2004285963A (ja) 内燃機関の燃料噴射制御装置
JP2018159318A (ja) 内燃機関の制御装置
JP2018127898A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774572

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774572

Country of ref document: EP

Kind code of ref document: A1