WO2017170004A1 - 信号折返し回路及び信号折返し方法 - Google Patents

信号折返し回路及び信号折返し方法 Download PDF

Info

Publication number
WO2017170004A1
WO2017170004A1 PCT/JP2017/011311 JP2017011311W WO2017170004A1 WO 2017170004 A1 WO2017170004 A1 WO 2017170004A1 JP 2017011311 W JP2017011311 W JP 2017011311W WO 2017170004 A1 WO2017170004 A1 WO 2017170004A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
wavelength band
optical signal
optical
line
Prior art date
Application number
PCT/JP2017/011311
Other languages
English (en)
French (fr)
Inventor
聰 見上
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN201780020508.XA priority Critical patent/CN109075857B/zh
Priority to EP17774545.2A priority patent/EP3439201B1/en
Priority to US16/086,683 priority patent/US10587343B2/en
Priority to JP2018509103A priority patent/JP6699721B2/ja
Publication of WO2017170004A1 publication Critical patent/WO2017170004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/035Arrangements for fault recovery using loopbacks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0777Monitoring line amplifier or line repeater equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/297Bidirectional amplification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/298Two-way repeaters, i.e. repeaters amplifying separate upward and downward lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0275Transmission of OAMP information using an optical service channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength

Definitions

  • the present invention relates to an optical signal folding circuit and a folding method used in an optical submarine cable system.
  • FIG. 7 is a block diagram showing a configuration example of the relay apparatus 900 related to the present invention.
  • the repeater 900 is an optical signal repeater (optical repeater) used in an optical submarine cable system.
  • the relay apparatus 900 includes optical amplifiers 901 and 902.
  • the optical amplifiers 901 and 902 are designed to be suitable for amplification of C-band optical signals.
  • C-band generally indicates a wavelength band of 1530 nm to 1565 nm.
  • the optical signal of the uplink having the carrier wavelength in the C-band is wavelength-multiplexed and input.
  • the input uplink optical signal is amplified by an optical amplifier 901.
  • the upstream optical signal amplified by the optical amplifier 901 is output from UP OUT (upstream output).
  • DOWN IN (downlink input) in FIG. 7 a downlink optical signal having a carrier wavelength in the C-band is wavelength-multiplexed and input.
  • the input downlink optical signal is amplified by an optical amplifier 902.
  • the optical signal amplified by the optical amplifier 902 is output from DOWN OUT (downstream output).
  • the optical signal input / output in the relay device 900 is transmitted between the land device or another relay device.
  • Signal folding circuits 903 and 904 are provided at the outputs of the optical amplifiers 901 and 902, respectively.
  • the signal folding circuits 903 and 904 are composed of an optical fiber grating and two optical couplers.
  • the signal folding circuits 903 and 904 reflect the monitoring signal among the optical signals output from the optical amplifiers 901 and 902 and fold it back to the line in the opposite direction.
  • the monitoring signal is a signal for monitoring the system and has a wavelength different from that of the transmitted data.
  • the monitoring signals returned by the signal return circuits 903 and 904 are returned to the land device using the opposing optical lines.
  • the land device can remotely monitor the operation of the relay device 900 using the returned monitoring signal.
  • a downlink supervisory signal included in an optical signal output from the optical amplifier 901 is combined with an uplink optical signal by a signal folding circuit 904.
  • the land device connected to the destination of the upstream output (UP OUT) can receive the downstream monitoring signal.
  • Patent Document 1 describes an optical amplification repeater system including a monitoring signal light folding circuit.
  • the relay device 900 shown in FIG. 7 and the invention described in Patent Document 1 wraps the monitoring signal in a system in which optical signals in a plurality of wavelength bands (that is, C-band and L-band) are transmitted. Does not have a configuration for.
  • “L-band” generally indicates a wavelength band of 1570 nm to 1610 nm.
  • An object of the present invention is to provide a technique for returning a monitoring signal in a relay apparatus that relays optical signals in a plurality of wavelength bands.
  • the signal folding circuit of the present invention is a signal connecting between a line in the first direction and a line in the second direction through which an optical signal in the first wavelength band and an optical signal in the second wavelength band are transmitted.
  • a folding circuit A first coupler for branching the optical signal of the line in the first direction; A first filter for extracting at least one of a first wavelength band monitoring signal and a second wavelength band monitoring signal from an optical signal branched by a first coupler, which is used in a first direction line; , A second coupler for coupling the monitoring signal extracted by the first filter to the second line; Is provided.
  • the signal loopback method of the present invention is a signal for connecting between a line in a first direction and a line in a second direction through which an optical signal in a first wavelength band and an optical signal in a second wavelength band are transmitted. It is a folding method, Branch the optical signal of the line in the first direction, Extracting at least one of the monitoring signal of the first wavelength band and the monitoring signal of the second wavelength band, which is used in the line in the first direction, from the branched optical signal; Coupling the extracted monitoring signal to the second line; It is characterized by that.
  • FIG. 6 is a diagram illustrating an example of wavelengths of optical signals that pass through the relay apparatus 100.
  • FIG. It is a block diagram which shows the structural example of the relay apparatus 200 of 2nd Embodiment. It is a block diagram which shows the structural example of the relay apparatus 300 of 3rd Embodiment. It is a block diagram which shows the structural example of the relay apparatus 400 of 4th Embodiment. It is a block diagram which shows the structural example of the relay apparatus 500 of 5th Embodiment. It is a block diagram which shows the structural example of the relay apparatus 900 relevant to this invention.
  • FIG. 1 is a block diagram illustrating a configuration example of the relay device 100 according to the first embodiment of this invention.
  • the relay device 100 is a submarine repeater used in an optical submarine cable system, for example.
  • arrows attached to signals are used for explanation of operation examples, and the types and directions of signals are not limited.
  • the relay device 100 is connected with four submarine cables. “UP IN” is an upstream signal input, “UP OUT” is an upstream signal output, “DOWN IN” is a downstream signal input, and “DOWN OUT” is a downstream signal output.
  • the relay apparatus 100 includes a relay function that amplifies bidirectional optical signals in the upstream direction and the downstream direction.
  • the repeater 100 includes multiplexers / demultiplexers 111 to 114, optical amplifiers 121 to 124, and signal folding circuits 131 to 134.
  • the multiplexers / demultiplexers 111 to 114 are optical wavelength filters, for example, and multiplex and demultiplex optical signals in the C-band and L-band wavelength bands. The wavelength of the optical signal that passes through the signal folding circuits 131 to 134 will be described with reference to FIG.
  • Optical amplifiers 121 and 123 are optical fiber amplifiers designed to be suitable for amplification of C-band optical signals.
  • the optical amplifiers 122 and 124 are optical fiber amplifiers designed to be suitable for amplification of L-band optical signals.
  • the upstream optical signal input from UP IN is a wavelength multiplexed signal including C-band and L-band optical signals.
  • the upstream optical signal is separated by the multiplexer / demultiplexer 111 into a C-band optical signal and an L-band optical signal.
  • the C-band optical signal is amplified by the optical amplifier 121.
  • the L-band optical signal is amplified by the optical amplifier 122.
  • the optical signals amplified by the optical amplifiers 121 and 122 are wavelength-multiplexed by the multiplexer / demultiplexer 112 and output from UP OUT.
  • UP OUT is connected to another adjacent relay device or land device.
  • the downstream optical signal input from DOWN IN is also amplified by optical amplifier 123 or optical amplifier 124 in the same procedure as the upstream optical signal, and output from DOWN OUT.
  • the signal folding circuits 131 to 134 each have a function of reflecting an optical signal having a part of the wavelengths of the optical signals output from the optical amplifiers 121 to 124 and folding the reflected signal using a line in the opposite direction.
  • Each of the signal folding circuits 131 to 134 includes a reflective element and two optical couplers.
  • the configuration and operation of the signal folding circuits 131 to 134 will be described using the signal folding circuit 131 as an example.
  • the signal folding circuit 131 includes couplers 141 and 143 and a reflective element 142.
  • As the couplers 141 and 143 optical directional couplers can be used.
  • An optical fiber grating can be used as the reflecting element 142.
  • the optical signal output from the optical amplifier 121 is branched by the coupler 141 of the signal folding circuit 131 and enters the reflection element 142.
  • the reflective element 142 reflects only an optical signal having a part of the wavelength of the incident optical signal. Specifically, the reflection element 142 reflects only the optical signal having the wavelength of the monitoring signal of the C-band uplink. In other words, the reflective element 142 extracts the C-band uplink monitoring signal.
  • the reflected monitoring signal is input to the downstream optical amplifier 123 via the couplers 141 and 143. Since the optical amplifier 123 is a C-band amplifier, the uplink monitoring signal is amplified by the optical amplifier 123 together with the downlink optical signal.
  • the signal folding circuit 131 can fold an optical signal having a part of the wavelength (that is, a monitoring signal) out of the C-band upstream optical signal to the downstream transmission line.
  • a monitoring signal By reflecting the monitoring signal of the C-band upstream signal by the signal folding circuit 131, the upstream monitoring signal can be transmitted to the land device on the downstream path.
  • the uplink of the relay device 100 can be monitored remotely.
  • the relay apparatus 100 shown in FIG. 1 includes signal folding circuits on transmission paths in both the C-band and L-band wavelength bands. That is, the signal folding circuit 131 is used for folding the uplink C-band monitoring signal, and the signal folding circuit 132 is used for folding the uplink L-band monitoring signal.
  • the signal folding circuit 132 includes couplers 151 and 153 and a reflective element 152. As the couplers 151 and 153, optical directional couplers can be used. An optical fiber grating can be used as the reflective element 152.
  • the optical signal output from the optical amplifier 122 is branched by the coupler 151 of the signal folding circuit 132 and enters the reflection element 152.
  • the reflective element 152 reflects only an optical signal having a part of the wavelength of the incident optical signal.
  • the reflecting element 152 reflects only the optical signal having the wavelength of the L-band uplink monitoring signal.
  • the reflected monitoring signal is input to the downstream optical amplifier 124 via the couplers 151 and 153.
  • the signal folding circuit 133 is used for folding the downstream C-band monitoring signal
  • the signal folding circuit 134 is used for folding the downstream L-band monitoring signal.
  • the monitoring signal is transmitted to the land device connected to the line in the opposite direction.
  • the upstream land device connected to the destination of the upstream output (UP OUT) can monitor both the C-band and L-band downstream.
  • the downlink land device connected to the destination of the downlink output (DOWN OUT) can monitor both the C-band and L-band uplinks.
  • FIG. 2 is a diagram illustrating an example of the wavelength of an optical signal that passes through the relay apparatus 100.
  • the uplink signal indicated by “UP” in FIG. 2 includes wavelength multiplexed signals of wavelengths ⁇ 1 to ⁇ m and wavelengths ⁇ m + 1 to ⁇ n, and monitoring signals of wavelengths ⁇ svC-U and wavelengths ⁇ svL-U.
  • the downlink signal indicated by DOWN in FIG. 2 includes wavelength multiplexed signals of wavelengths ⁇ 1 to ⁇ m and wavelengths ⁇ m + 1 to ⁇ n, and monitoring signals of wavelengths ⁇ svC-D and ⁇ svL-D.
  • m and n are natural numbers satisfying m ⁇ n.
  • Optical signals having wavelengths ⁇ 1 to ⁇ m are C-band main signals
  • optical signals having wavelengths ⁇ m + 1 to ⁇ n are L-band main signals.
  • the C-band main signal has a maximum of m wavelengths multiplexed
  • the L-band main signal has a maximum of nm wavelengths.
  • the monitoring signals of wavelengths ⁇ svC-U and ⁇ svL-U are a C-band uplink monitoring signal and an L-band uplink monitoring signal, respectively.
  • the monitoring signals of wavelengths ⁇ svC-D and ⁇ svL-D are a C-band downlink monitoring signal and an L-band downlink monitoring signal, respectively.
  • the wavelengths ⁇ svC-U, ⁇ svL-U, ⁇ svC-D, and ⁇ svL-D of the monitoring signal are different from each other and do not overlap with the wavelength of the main signal.
  • Each monitoring signal may be composed of signals having a plurality of wavelengths.
  • the relay apparatus 100 having such a configuration can relay optical signals in a plurality of wavelength bands and can return a monitoring signal.
  • the relay apparatus 100 since the relay apparatus 100 includes signal folding circuits for each of the C-band optical signal and the L-band optical signal, it is possible to loop back not only the C-band but also the L-band monitoring signal. Further, since the folded monitoring signal is multiplexed on the input side of any of the optical amplifiers 121 to 124, the monitoring signal is amplified by the optical amplifier and output. As a result, the optical level of the monitoring signal output from the relay device 100 increases, and the monitoring sensitivity of the land device is improved.
  • FIG. 3 is a block diagram illustrating a configuration example of the relay device 200 according to the second embodiment of this invention.
  • the relay apparatus 200 is a repeater used in the optical submarine cable system, similarly to the relay apparatus 100 of the first embodiment.
  • the same reference numerals are assigned to the already described elements, and overlapping descriptions are omitted as appropriate.
  • the relay apparatus 200 includes signal folding circuits 211 and 212 instead of the signal folding circuits 131 to 134, as compared with the relay apparatus of the first embodiment.
  • the signal folding circuits 211 and 212 each have a function of folding an optical signal having a part of the wavelength of the optical signal output from the multiplexer / demultiplexers 112 and 114 to a line in the opposite direction.
  • Each of the signal folding circuits 211 and 212 includes two reflecting elements and two optical couplers.
  • the functions of the signal folding circuits 211 and 212 will be described by taking the signal folding circuit 211 as an example.
  • the signal folding circuit 211 includes couplers 241 and 243 and a reflective element 242.
  • As the couplers 241 and 243 optical directional couplers can be used.
  • the multiplexer / demultiplexer 112 wavelength-multiplexes and outputs the C-band optical signal and the L-band optical signal.
  • the wavelength-multiplexed optical signal is branched by the coupler 241 of the signal folding circuit 211 and enters the reflection element 242.
  • the reflection element 242 includes two fiber gratings having different reflection wavelengths.
  • the reflecting element 242 For this reason, two optical signals having different wavelengths are reflected by the reflecting element 242.
  • the reflected optical signal is input to the downlink multiplexer / demultiplexer 113 via the couplers 241 and 243.
  • the optical signal reflected by the reflecting element 242 is amplified by the optical amplifier 123 or 124 corresponding to the wavelength, multiplexed by the multiplexer / demultiplexer 114, and output from DOWN OUT.
  • the signal folding circuit 211 can fold an optical signal having a part of the wavelength out of the C-band and L-band upstream optical signals to the downlink.
  • the signal loopback circuit 211 can wrap the C-band uplink monitoring signal (wavelength ⁇ svC-U) and the L-band uplink monitoring signal (wavelength ⁇ svL-U) to the downlink.
  • both C-band and L-band monitoring signals of the uplink can be transmitted to the land device connected to the downlink, and the uplink of the relay device 200 can be remotely monitored in the land device.
  • the signal folding circuit 212 can fold down both C-band and L-band downlink monitoring signals (wavelengths ⁇ svC-D and ⁇ svL-D), in the land device connected to the uplink, The downlink of relay device 200 can be monitored remotely.
  • the relay apparatus 200 can relay optical signals in a plurality of wavelength bands, and can return a monitoring signal.
  • the relay device 200 is configured in comparison with the relay device 100 of the first embodiment because the optical signals combined by the multiplexer / demultiplexer 112 or 114 are turned back by the signal folding circuits 211 and 212, respectively. Is simplified.
  • the monitoring signal is amplified by the optical amplifier and output. . As a result, the light level of the monitoring signal is increased, and the monitoring sensitivity of the land device is improved.
  • FIG. 4 is a block diagram illustrating a configuration example of the relay device 300 according to the third embodiment of this invention.
  • the relay apparatus 300 is a submarine repeater used in the optical submarine cable system, like the relay apparatus 200 of the second embodiment.
  • the relay device 300 includes a signal folding circuit 311 instead of the signal folding circuits 211 and 212, as compared with the relay device 200 of the second embodiment.
  • the signal folding circuit 311 has a function of folding an optical signal having a part of the wavelengths of the optical signals output from the multiplexers / demultiplexers 112 and 114 using an optical transmission line in the opposite direction.
  • the signal folding circuit 311 includes two sets of reflecting elements and two optical couplers.
  • the function of the signal folding circuit 311 includes couplers 312 and 314 and reflecting elements 313 and 315.
  • couplers 312 and 314 optical directional couplers can be used.
  • reflecting elements 313 and 315 two optical fiber gratings connected in series can be used, respectively.
  • the uplink optical signal output from the multiplexer / demultiplexer 112 is branched by the coupler 312 of the signal folding circuit 311 and enters the reflecting element 313.
  • the reflective element 313 reflects only an optical signal having a part of the wavelength of the incident optical signal.
  • the reflection element 313 includes, for example, two fiber gratings having different reflection wavelengths. For this reason, optical signals of at least two wavelengths are reflected by the reflective element 313.
  • the reflected optical signal is coupled to the downlink via the couplers 312 and 314, and is output from DOWN OUT. In this manner, the signal folding circuit 311 can fold an optical signal having a part of the wavelength among the optical signals of the C-band and L-band uplinks to the downlink transmission line.
  • both the C-band and L-band of the uplink are used using the downlink.
  • the monitoring signal can be transmitted to a land device connected to the downlink.
  • the uplink of relay device 300 can be monitored remotely.
  • the signal folding circuit 311 reflects the C-band and L-band downlink monitoring signals (wavelengths ⁇ svC-D and ⁇ svL-D) by the reflecting element 315, thereby allowing both the C-band and L-band to be reflected.
  • the downlink monitoring signal can be returned to the uplink.
  • the relay apparatus 300 of the third embodiment can relay optical signals in a plurality of wavelength bands, and can wrap up both C-band and L-band upstream monitoring signals in the signal folding circuit 311. Furthermore, since the relay apparatus 300 loops back both the uplink and downlink monitoring signals by one signal folding circuit 311, the configuration is further simplified compared to the relay apparatus 200.
  • FIG. 5 is a block diagram illustrating a configuration example of the relay device 400 according to the fourth embodiment of the present invention. Similar to the relay device 200 of the second embodiment, the relay device 400 is a submarine repeater used in an optical submarine cable system.
  • the relay device 400 includes reflective elements 411 and 412 as compared to the relay device 200 of the second embodiment.
  • the reflection element 411 reflects only the wavelength ⁇ svC-U of the uplink C-band monitoring signal
  • the reflection element 412 reflects only the wavelength ⁇ svC-D of the downlink C-band monitoring signal.
  • the signal folding circuits 421 and 422 having such a configuration fold back only the C-band monitoring signal to the line on the opposite side.
  • a pump laser diode for pumping the amplification medium is shared between the C-band optical amplifier 121 and the L-band optical amplifier 122. For this reason, for example, when the pumping light output decreases due to a failure of the upstream pumping laser diode, the outputs of both the optical amplifiers 121 and 122 decrease. Therefore, the failure of the upstream pump laser diode can be monitored by the downstream land device by turning back only the C-band monitoring signal in the upstream channel. The same applies to the detection of a failure of the pump laser diode in the downlink.
  • the signal folding circuits 421 and 422 may fold only the L-band monitoring signal to the opposite line and monitor the failure of the excitation laser diode by the L-band monitoring signal.
  • the relay apparatus 400 can relay optical signals in a plurality of wavelength bands, and can return the monitoring signal.
  • the relay apparatus 400 loops back one of the C-band and L-band monitoring signals in the signal loopback circuits 421 and 422.
  • the land apparatus can know the failure of the relay apparatus 400 accompanying the failure of the excitation laser diode by the monitoring signal. Since the signal folding circuits 421 and 422 only need to reflect the monitoring signal of only one of the C-band and L-band, the signal folding circuit has a configuration compared to the relay device of the first to third embodiments. It can be simplified.
  • FIG. 6 is a block diagram illustrating a configuration example of the relay device 500 according to the fifth embodiment of the present invention.
  • Relay device 500 includes a signal folding circuit 511.
  • the reflective elements 313 and 315 of the relay device 300 of the third embodiment are reflected on the reflective elements 512 and 513 that reflect only the C-band or L-band monitoring signal, as in the fourth embodiment.
  • the structure replaced with is provided.
  • the relay device 500 monitors the failure of the relay device 500 due to the failure of the excitation laser diode by turning back only one of the monitoring signals of C-band and L-band. A land station can be notified by a signal. Since the signal folding circuit 511 only needs to reflect either the C-band or L-band monitoring signal, the configuration of the signal folding circuit can be simplified as compared with the relay device of the first to third embodiments. .
  • the signal folding circuit (421) transmits the optical signal in the first wavelength band (C-band) and the optical signal in the second wavelength band (L-band) in the first direction (UP). Is a signal folding circuit that connects between the second line and the second direction (DOWN) line.
  • the first coupler (241) branches the optical signal of the line in the first direction.
  • the first filter (411) is a light that is used in the line in the first direction and is obtained by branching at least one of the monitoring signal in the first wavelength band and the monitoring signal in the second wavelength band by the first coupler. Extract from signal.
  • the second coupler (243) couples the monitoring signal ( ⁇ svC-U or ⁇ svL-U) extracted by the first filter to the second line.
  • the signal folding circuit having such a configuration can also wrap the monitoring signal in a relay device that relays optical signals in a plurality of wavelength bands.
  • a signal folding circuit that connects between a line in a first direction and a line in a second direction through which an optical signal in a first wavelength band and an optical signal in a second wavelength band are transmitted, A first coupler for branching the optical signal of the line in the first direction; A first signal that is used in the first direction line and extracts at least one of the first wavelength band monitoring signal and the second wavelength band monitoring signal from the optical signal branched by the first coupler. 1 filter, A second coupler for coupling the monitoring signal extracted by the first filter to a second line;
  • a signal folding circuit comprising:
  • the first coupler is disposed on the line in the first direction in which the optical signal in the first wavelength band and the optical signal in the second wavelength band are multiplexed, and the second coupler is Arranged on the line in the second direction in which the optical signal of the first wavelength band and the optical signal of the second wavelength band are multiplexed;
  • the first coupler is disposed on the line in the first direction in which the optical signal in the first wavelength band and the optical signal in the second wavelength band are multiplexed, and the second coupler is Arranged on the line in the second direction in which the optical signal of the first wavelength band and the optical signal of the second wavelength band are multiplexed;
  • the second coupler branches the optical signal of the line in the second direction and inputs it to the second filter,
  • the first coupler couples the monitoring signal extracted by the second filter to the first line;
  • Appendix 5 The signal folding circuit according to appendix 3 or 4, wherein the first filter extracts the monitoring signal of the first wavelength band and the monitoring signal of the second wavelength band.
  • a first multiplexer / demultiplexer that separates a wavelength-multiplexed optical signal propagating in the first direction into an optical signal in the first wavelength band and an optical signal in the second wavelength band;
  • a second multiplexer / demultiplexer that combines the optical signal in the first wavelength band and the optical signal in the second wavelength band, separated by the first multiplexer / demultiplexer;
  • a third multiplexer / demultiplexer for separating the wavelength-multiplexed optical signal propagating in the second direction into the optical signal in the first wavelength band and the optical signal in the second wavelength band;
  • a fourth multiplexer / demultiplexer that combines the optical signal in the first wavelength band and the optical signal in the second wavelength band, separated by the third multiplexer / demultiplexer;
  • a signal folding circuit according to any one of appendices 1 to 6,
  • a relay device comprising:
  • the first coupler is disposed on an output side of an optical amplifier that amplifies the optical signal in the first wavelength band and the optical signal in the second wavelength band separated by the first multiplexer / demultiplexer.
  • Appendix 14 14. The signal folding method according to appendix 12 or 13, wherein the monitoring signal in the first wavelength band and the monitoring signal in the second wavelength band are extracted from the branched line signal in the first direction.
  • Appendix 15 The signal loopback according to appendix 12 or 13, wherein only one of the monitoring signal in the first wavelength band and the monitoring signal in the second wavelength band is extracted from the branched line signal in the first direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

複数の波長帯の光信号を中継する中継装置において、監視信号を折り返すために、信号折返し回路は、第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し回路であって、第1の方向の回線の光信号を分岐する第1のカプラと、第1の方向の回線で用いられる、第1の波長帯域の監視信号と第2の波長帯域の監視信号との少なくとも一方を第1のカプラで分岐された光信号から抽出する第1のフィルタと、第1のフィルタで抽出された監視信号を第2の回線に結合させる第2のカプラと、を備える。

Description

信号折返し回路及び信号折返し方法
 本発明は、光海底ケーブルシステムで用いられる、光信号の折返し回路及び折返し方法に関する。
 図7は、本発明に関連する中継装置900の構成例を示すブロック図である。中継装置900は、光海底ケーブルシステムで用いられる、光信号の中継器(光中継器)である。中継装置900は、光アンプ901、902を備える。光アンプ901、902は、C-bandの光信号の増幅に適するように設計されている。なお、本願において、「C-band」は、おおむね1530nm~1565nmの波長帯を示す。
 図7のUP IN(上り入力)からは、キャリアの波長がC-band内にある上り回線の光信号が波長多重されて入力される。入力された上り回線の光信号は、光アンプ901で増幅される。光アンプ901で増幅された上り光信号は、UP OUT(上り出力)から出力される。図7のDOWN IN(下り入力)からは、キャリアの波長がC-band内にある下り回線の光信号が波長多重されて入力される。入力された下り回線の光信号は、光アンプ902で増幅される。光アンプ902で増幅された光信号は、DOWN OUT(下り出力)から出力される。中継装置900において入出力される光信号は、陸上装置あるいは他の中継装置との間で伝送される。
 光アンプ901、902の出力には、それぞれ、信号折返し回路903、904が備えられる。信号折返し回路903、904は、光ファイバグレーティング及び2台の光カプラで構成される。信号折返し回路903、904は、光アンプ901、902から出力される光信号のうち、監視信号を反射して、反対方向の回線へ折り返す。監視信号はシステムの監視用の信号であり、伝送されるデータとは異なる波長を持つ。信号折返し回路903、904で折り返された監視信号は、対向する光回線を用いて陸上装置に折り返される。陸上装置は、折り返された監視信号を用いて、中継装置900の動作を遠隔からモニタできる。例えば、光アンプ901から出力される光信号に含まれる下り回線の監視信号は、信号折返し回路904によって上り回線の光信号と結合される。その結果、上り出力(UP OUT)の先に接続された陸上装置は、下り回線の監視信号を受信できる。
 本発明に関連して、特許文献1には、監視信号光折返し回路を備える光増幅中継システムが記載されている。
特開2002-280968号公報
 光海底ケーブルシステムの大容量化のために、これまで広く用いられてきたC-bandの光信号に加えて、L-bandの光信号をも増幅可能な光中継装置が検討されている。しかしながら、図7に示される中継装置900及び特許文献1に記載された発明は、複数の波長帯(すなわち、C-band及びL-band)の光信号が伝送されるシステムにおいて、監視信号を折り返すための構成を備えていない。なお、本願において、「L-band」は、おおむね1570nm~1610nmの波長帯を示す。
 (発明の目的)
 本発明は、複数の波長帯の光信号を中継する中継装置における、監視信号を折り返すための技術を提供することを目的とする。
 本発明の信号折返し回路は、第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し回路であって、
 第1の方向の回線の光信号を分岐する第1のカプラと、
 第1の方向の回線で用いられる、第1の波長帯域の監視信号と第2の波長帯域の監視信号との少なくとも一方を第1のカプラで分岐された光信号から抽出する第1のフィルタと、
 第1のフィルタで抽出された監視信号を第2の回線に結合させる第2のカプラと、
を備える。
 本発明の信号折返し方法は、第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し方法であって、
 第1の方向の回線の光信号を分岐し、
 第1の方向の回線で用いられる、第1の波長帯域の監視信号と第2の波長帯域の監視信号との少なくとも一方を分岐された光信号から抽出し、
 抽出された監視信号を第2の回線に結合させる、
ことを特徴とする。
 複数の波長帯の光信号を中継する中継装置において、監視信号を折り返すことを可能とする。
第1の実施形態の中継装置100の構成例を示すブロック図である。 中継装置100を通過する光信号の波長の例を示す図である。 第2の実施形態の中継装置200の構成例を示すブロック図である。 第3の実施形態の中継装置300の構成例を示すブロック図である。 第4の実施形態の中継装置400の構成例を示すブロック図である。 第5の実施形態の中継装置500の構成例を示すブロック図である。 本発明に関連する中継装置900の構成例を示すブロック図である。
 図1は、本発明の第1の実施形態の中継装置100の構成例を示すブロック図である。中継装置100は、例えば、光海底ケーブルシステムにおいて用いられる、海底中継器である。以降の図面において、信号に付された矢印は動作例の説明のために付されたものであり、信号の種類及び方向を限定しない。
 中継装置100には、4本の海底ケーブルが接続される。「UP IN」は上り信号の入力、「UP OUT」は上り信号の出力、「DOWN IN」は下り信号の入力、「DOWN OUT」は下り信号の出力である。中継装置100は、上り方向と下り方向との双方向の光信号を増幅する中継機能を備える。中継装置100は、合分波器111~114、光アンプ121~124、信号折返し回路131~134を備える。合分波器111~114は例えば光波長フィルタであり、C-band及びL-bandの波長帯の光信号を合波及び分波する。信号折返し回路131~134を通過する光信号の波長については、図2を用いて説明する。
 光アンプ121及び123はC-bandの光信号の増幅に適するように設計された光ファイバ増幅器である。光アンプ122及び124はL-bandの光信号の増幅に適するように設計された光ファイバ増幅器である。
 UP INから入力された上り光信号は、C-band及びL-bandの光信号を含む、波長多重信号である。上り光信号は、合分波器111において、C-bandの光信号とL-bandの光信号とに分離される。C-bandの光信号は、光アンプ121で増幅される。L-bandの光信号は、光アンプ122で増幅される。光アンプ121及び122で増幅された光信号は、合分波器112で波長多重され、UP OUTから出力される。UP OUTは、隣接する他の中継装置や、陸上装置に接続される。DOWN INから入力される下り方向の光信号も、上り方向の光信号と同様の手順により光アンプ123又は光アンプ124によって増幅され、DOWN OUTから出力される。
 信号折返し回路131~134は、それぞれ、光アンプ121~124から出力される光信号の一部の波長の光信号を反射して、反射した信号を反対方向の回線を用いて折り返す機能を備える。信号折返し回路131~134は、いずれも、反射素子及び2台の光カプラを備える。
 信号折返し回路131~134の構成及び動作について、信号折返し回路131を例に説明する。信号折返し回路131は、カプラ141及び143並びに反射素子142を備える。カプラ141及び143として、光方向性結合器を用いることができる。反射素子142として、光ファイバグレーティングを用いることができる。光アンプ121から出力される光信号は信号折返し回路131のカプラ141で分岐され、反射素子142に入射する。反射素子142は、入射された光信号のうち一部の波長の光信号のみを反射する。具体的には、反射素子142は、C-bandの上り回線の監視信号の波長の光信号のみを反射する。すなわち、反射素子142は、C-bandの上り回線の監視信号を抽出する。
 反射された監視信号は、カプラ141及び143を経由して、下り方向の光アンプ123に入力される。光アンプ123はC-bandの増幅器であるため、上り回線の監視信号は、下り回線の光信号とともに光アンプ123で増幅される。
 このようにして、信号折返し回路131は、C-bandの上り光信号のうち、一部の波長の光信号(すなわち、監視信号)を下り伝送路へ折り返すことができる。C-bandの上り信号の監視信号を信号折返し回路131によって反射させることで、上り回線の監視信号を、下り回線の経路上にある陸上装置に送信することができる。その結果、下り回線に接続された陸上装置において、中継装置100の上り回線を遠隔で監視できる。
 図1に示す中継装置100は、C-band及びL-bandの双方の波長帯の伝送路にそれぞれ信号折返し回路を備える。すなわち、信号折返し回路131は上りC-bandの監視信号の折返しに用いられ、信号折返し回路132は上りL-bandの監視信号の折返しに用いられる。信号折返し回路132は、カプラ151及び153と反射素子152とで構成される。カプラ151及び153として、光方向性結合器を用いることができる。反射素子152として、光ファイバグレーティングを用いることができる。光アンプ122から出力される光信号は信号折返し回路132のカプラ151で分岐され、反射素子152に入射する。反射素子152は、入射された光信号のうち一部の波長の光信号のみを反射する。具体的には、反射素子152は、L-bandの上り回線の監視信号の波長の光信号のみを反射する。反射された監視信号は、カプラ151及び153を経由して、下り方向の光アンプ124に入力される。同様に、信号折返し回路133は下りC-bandの監視信号の折返しに用いられ、信号折返し回路134は下りL-bandの監視信号の折返しに用いられる。
 このような構成により、監視信号は、反対方向の回線に接続された陸上装置へ送信される。その結果、上り出力(UP OUT)の先に接続された上り回線の陸上装置は、C-band及びL-bandの双方の下り回線を監視できる。また、下り出力(DOWN OUT)の先に接続された下り回線の陸上装置は、C-band及びL-bandの双方の上り回線を監視できる。
 図2は、中継装置100を通過する光信号の波長の例を示す図である。図2に「UP」で示される上り信号は、波長λ1~λm及び波長λm+1~λnの波長多重信号、波長λsvC-U及び波長λsvL-Uの監視信号を含む。図2にDOWNで示される下り信号は、波長λ1~λm及び波長λm+1~λnの波長多重信号、波長λsvC-D及びλsvL-Dの監視信号を含む。m、nはm<nを満たす自然数である。波長λ1~λm(λCと総称する)の光信号は、C-bandの主信号であり、波長λm+1~λn(λLと総称する)の光信号は、L-bandの主信号である。すなわち、C-bandの主信号は最大でm波長が多重されており、L-bandの主信号は最大でn-m波長が多重されている。
 波長λsvC-U及びλsvL-Uの監視信号は、それぞれ、C-bandの上り回線の監視信号及びL-bandの上り回線の監視信号である。波長λsvC-D及びλsvL-Dの監視信号は、それぞれ、C-bandの下り回線の監視信号及びL-bandの下り回線の監視信号である。監視信号の波長λsvC-U、λsvL-U、λsvC-D及びλsvL-Dは互いに異なっているとともに、主信号の波長とも重複しない。また、それぞれの監視信号は、複数の波長の信号で構成されてもよい。
 このような構成を備える中継装置100は、複数の波長帯の光信号を中継できるとともに、監視信号を折り返すことを可能とする。特に、中継装置100はC-bandの光信号及びL-bandの光信号のそれぞれに信号折返し回路を備えるため、C-bandのみならずL-bandの監視信号をも折り返すことが可能である。また、折り返された監視信号は光アンプ121~124のいずれかの入力側で合波されるため、監視信号は光アンプで増幅して出力される。その結果、中継装置100から出力される監視信号の光レベルが上昇し、陸上装置でのモニタ感度が改善される。
 (第2の実施形態)
 図3は、本発明の第2の実施形態の中継装置200の構成例を示すブロック図である。中継装置200は、第1の実施形態の中継装置100と同様に、光海底ケーブルシステムにおいて用いられる中継器である。以降の実施形態の説明では、既出の要素には同一の参照符号を付して、重複する説明は適宜省略する。
 中継装置200は、第1の実施形態の中継装置と比較して、信号折返し回路131~134に代えて、信号折返し回路211及び212を備える。信号折返し回路211及び212は、それぞれ、合分波器112及び114から出力される光信号の一部の波長の光信号を反対方向の回線へ折り返す機能を備える。信号折返し回路211及び212は、いずれも、2台の反射素子及び2台の光カプラを備える。
 信号折返し回路211及び212の機能について、信号折返し回路211を例に説明する。信号折返し回路211は、カプラ241及び243と反射素子242とで構成される。カプラ241及び243として、光方向性結合器を用いることができる。反射素子242として、直列に接続された2台の光ファイバグレーティングを用いることができる。合分波器112からは、C-bandの光信号とL-bandの光信号とが波長多重されて出力される。波長多重された光信号は信号折返し回路211のカプラ241で分岐され、反射素子242に入射する。反射素子242は、反射波長が異なる2台のファイバグレーティングを備える。このため、波長が異なる2つの光信号が反射素子242において反射される。反射された光信号は、カプラ241及び243を経由して、下り方向の合分波器113に入力される。反射素子242で反射された光信号は、その波長に対応した光アンプ123又は124によって増幅され、合分波器114で合波されてDOWN OUTから出力される。このようにして、信号折返し回路211は、C-band及びL-bandの上り光信号のうち、一部の波長の光信号を下り回線へ折り返すことができる。
 信号折返し回路211は、C-bandの上り回線の監視信号(波長λsvC-U)及びL-bandの上り回線の監視信号(波長λsvL-U)を、下り回線に折り返すことができる。その結果、上り回線のC-band及びL-bandの両方の監視信号を下り回線に接続された陸上装置に伝送し、当該陸上装置において、中継装置200の上り回線を遠隔で監視できる。同様に、信号折返し回路212はC-band及びL-bandの双方の下り回線の監視信号(波長λsvC-D及びλsvL-D)を折り返すことができるため、上り回線に接続された陸上装置において、中継装置200の下り回線を遠隔で監視できる。
 第2の実施形態の中継装置200は、複数の波長帯の光信号を中継できるとともに、監視信号を折り返すことを可能とする。特に、中継装置200は、合分波器112又は114で合波された光信号をそれぞれ1台の信号折返し回路211、212で折り返すため、第1の実施形態の中継装置100と比較して構成が簡略化される。また、中継装置200は、第1の実施形態の中継装置100と同様に、折り返された監視信号は光アンプの入力側で合波されるため、監視信号は光アンプで増幅して出力される。その結果、監視信号の光レベルが上昇し、陸上装置でのモニタ感度が改善される。
 (第3の実施形態)
 図4は、本発明の第3の実施形態の中継装置300の構成例を示すブロック図である。中継装置300は、第2の実施形態の中継装置200と同様に、光海底ケーブルシステムにおいて用いられる、海底中継器である。
 中継装置300は、第2の実施形態の中継装置200と比較して、信号折返し回路211及び212に代えて、信号折返し回路311を備える。信号折返し回路311は、合分波器112及び114から出力される光信号の一部の波長の光信号を反対方向の光伝送路を用いて折り返す機能を備える。信号折返し回路311は、2組の反射素子及び2台の光カプラを備える。
 信号折返し回路311の機能について説明する。信号折返し回路311は、カプラ312及び314、反射素子313及び315を備える。カプラ312及び314として、光方向性結合器を用いることができる。反射素子313及び315として、それぞれ、直列に接続された2台の光ファイバグレーティングを用いることができる。
 合分波器112から出力される上り回線の光信号は信号折返し回路311のカプラ312で分岐され、反射素子313に入射する。反射素子313は、入射された光信号のうち一部の波長の光信号のみを反射する。反射素子313は、例えば、反射波長が異なる2台のファイバグレーティングを備える。このため、少なくとも2つの波長の光信号が反射素子313において反射される。反射された光信号は、カプラ312及び314を経由して、下り回線に結合され、DOWN OUTから出力される。このようにして、信号折返し回路311は、C-band及びL-bandの上り回線の光信号のうち、一部の波長の光信号を下り伝送路へ折り返すことができる。
 C-band及びL-bandの上り監視信号(波長λsvC-U及びλsvL-U)を反射素子313によって反射させることで、下り回線を用いて、上り回線のC-band及びL-bandの両方の監視信号を、下り回線に接続された陸上装置に送信することができる。その結果、下り回線に接続された陸上装置において、中継装置300の上り回線を遠隔で監視できる。同様に、信号折返し回路311は、C-band及びL-bandの下り監視信号(波長λsvC-D及びλsvL-D)を反射素子315によって反射させることで、C-band及びL-bandの双方の下り監視信号を、上り回線へ折り返すことができる。
 第3の実施形態の中継装置300は、複数の波長帯の光信号を中継できるとともに、信号折返し回路311においてC-band及びL-bandの双方の上り監視信号を折り返すことができる。さらに、中継装置300は、上り回線及び下り回線の双方の監視信号を1台の信号折返し回路311で折り返すため、中継装置200と比較して、さらに構成が簡略化される。
 (第4の実施形態)
 図5は、本発明の第4の実施形態の中継装置400の構成例を示すブロック図である。中継装置400は、第2の実施形態の中継装置200と同様に、光海底ケーブルシステムにおいて用いられる、海底中継器である。
 中継装置400は、第2の実施形態の中継装置200と比較して、反射素子411及び412を備える。反射素子411は上り回線のC-bandの監視信号の波長λsvC-Uのみを反射し、反射素子412は下り回線のC-bandの監視信号の波長λsvC-Dのみを反射する。このような構成を備える信号折返し回路421及び422は、C-bandの監視信号のみを、反対側の回線に折り返す。
 C-bandの光アンプ121とL-bandの光アンプ122との間で、増幅媒体を励起する励起レーザダイオードが共用される場合がある。このため、例えば上り回線の励起レーザダイオードの故障によって励起光の出力が低下すると、光アンプ121及び122の双方の出力が低下する。従って、上り回線においてC-bandの監視信号のみを折り返すことによっても、上り回線の励起レーザダイオードの故障を、下り回線の陸上装置で監視できる。下り回線の励起レーザダイオードの故障の検出においても同様である。なお、信号折返し回路421及び422は、L-bandの監視信号のみを反対側の回線に折り返し、L-bandの監視信号によって励起レーザダイオードの故障を監視してもよい。
 このように、第4の実施形態の中継装置400は、複数の波長帯の光信号を中継できるとともに、監視信号を折り返すことを可能とする。中継装置400は、信号折返し回路421及び422においてC-band又はL-bandのいずれか一方の監視信号を折り返す。そして、陸上装置は、励起レーザダイオードの故障に伴う中継装置400の故障を監視信号により知ることができる。信号折返し回路421及び422は、C-band及びL-bandの一方のみの監視信号を反射すればよいため、第1乃至第3の実施形態の中継装置と比較して、信号折返し回路の構成が簡略化できる。
 (第5の実施形態)
 図6は、本発明の第5の実施形態の中継装置500の構成例を示すブロック図である。中継装置500は、信号折返し回路511を含む。中継装置500は、第3の実施形態の中継装置300の反射素子313及び315を、第4の実施形態と同様に、C-band又はL-bandの監視信号のみを反射する反射素子512及び513に置き換えた構成を備える。
 第4の実施形態の中継装置400と同様に、中継装置500は、C-band及びL-bandの一方の監視信号のみを折り返すことにより、励起レーザダイオードの故障に伴う中継装置500の故障を監視信号により陸上局に通知できる。信号折返し回路511はC-band又はL-bandのいずれかの監視信号を反射すればよいため、第1乃至第3の実施形態の中継装置と比較して、信号折返し回路の構成が簡略化できる。
 (第6の実施形態)
 本発明の効果は、以下の第6の実施形態の信号折返し回路によっても実現される。以下では、図5を参照して、第4の実施形態の各要素の名称あるいは参照符号との対応を括弧内に示す。すなわち、信号折返し回路(421)は、第1の波長帯域(C-band)の光信号と第2の波長帯域(L-band)の光信号とが伝送される、第1の方向(UP)の回線及び第2の方向(DOWN)の回線の間を接続する信号折返し回路である。
 第1のカプラ(241)は、第1の方向の回線の光信号を分岐する。第1のフィルタ(411)は、第1の方向の回線で用いられる、第1の波長帯域の監視信号と第2の波長帯域の監視信号との少なくとも一方を第1のカプラで分岐された光信号から抽出する。第2のカプラ(243)は、第1のフィルタで抽出された監視信号(λsvC-U又はλsvL-U)を第2の回線に結合させる。
 このような構成を備える信号折返し回路も、複数の波長帯の光信号を中継する中継装置において、監視信号を折り返すことを可能とする。
 なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。
 (付記1)
 第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し回路であって、
 第1の方向の回線の光信号を分岐する第1のカプラと、
 前記第1の方向の回線で用いられる、前記第1の波長帯域の監視信号と前記第2の波長帯域の監視信号との少なくとも一方を前記第1のカプラで分岐された光信号から抽出する第1のフィルタと、
 前記第1のフィルタで抽出された監視信号を第2の回線に結合させる第2のカプラと、
を備える信号折返し回路。
 (付記2)
 前記第1及び第2のカプラ並びに前記第1のフィルタは、分離された前記第1の波長帯域の光信号の回線と前記第2の波長帯域の光信号の回線ごとに配置され、前記第1のフィルタは、前記第1のフィルタが配置された回線の波長帯域の前記監視信号を抽出する、付記1に記載された信号折返し回路。
 (付記3)
 前記第1のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第1の方向の回線に配置され、前記第2のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第2の方向の回線に配置され、
 前記第1のフィルタは前記第1及び第2の波長帯域の少なくとも一方の前記監視信号を折り返す、付記1に記載された信号折返し回路。
 (付記4)
 前記第2の方向の回線で用いられる、前記第1の波長帯域の監視信号と前記第2の波長帯域の監視信号との少なくとも一方を抽出する第2のフィルタをさらに備え、
 前記第1のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第1の方向の回線に配置され、前記第2のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第2の方向の回線に配置され、
 前記第2のカプラは前記第2の方向の回線の光信号を分岐して前記第2のフィルタに入力し、
 前記第1のカプラは前記第2のフィルタで抽出された監視信号を前記第1の回線に結合させる、
付記1に記載された信号折返し回路。
 (付記5)
 前記第1のフィルタは、前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号を抽出する、付記3又は4に記載された信号折返し回路。
 (付記6)
 前記第1のフィルタは前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号の一方のみを抽出する、付記3又は4に記載された信号折返し回路。
 (付記7)
 前記第1の方向に伝搬する、波長多重された光信号を前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とに分離する第1の合分波器と、
 前記第1の合分波器で分離された、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを結合する第2の合分波器と、
 前記第2の方向に伝搬する、波長多重された光信号を前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とに分離する第3の合分波器と、
 前記第3の合分波器で分離された、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを結合する第4の合分波器と、
 付記1乃至6のいずれかに記載された信号折返し回路と、
を備える中継装置。
 (付記8)
 前記第1及び第3の合分波器で分離された前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを増幅する光アンプをさらに備える、付記7に記載された中継装置。
 (付記9)
 前記第1のカプラは、前記第1の合分波器で分離された、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを増幅する光アンプの出力側に配置される、付記8に記載された中継装置。
 (付記10)
 第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し方法であって、
 第1の方向の回線の光信号を分岐し、
 前記第1の方向の回線で用いられる、前記第1の波長帯域の監視信号と前記第2の波長帯域の監視信号との少なくとも一方を前記分岐された光信号から抽出し、
 前記抽出された監視信号を第2の回線に結合させる、
信号折返し方法。
 (付記11)
 前記第1の回線の光信号を前記第1の波長帯域の光信号の回線と前記第2の波長帯域の光信号の回線ごとに分離し、
 前記監視信号を前記第1の波長帯域の光信号の回線と前記第2の波長帯域の光信号の回線ごとに抽出する、
付記10に記載された信号折返し方法。
 (付記12)
 前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第1の方向の回線の光信号を分岐し、
 分岐された前記第1の方向の回線の信号から前記第1及び第2の波長帯域の少なくとも一方の前記監視信号を抽出し、
 前記第1の方向の回線の信号から抽出された前記監視信号を前記第2の方向の回線と結合させる、
付記10に記載された信号折返し方法。
 (付記13)
 前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第2の方向の回線の光信号を分岐し、
 分岐された前記第2の方向の回線の信号から前記第1及び第2の波長帯域の少なくとも一方の前記監視信号を抽出し、
 前記第2の方向の回線の信号から抽出された前記監視信号を前記第1の方向の回線と結合させる、
付記10に記載された信号折返し方法。
 (付記14)
 分岐された前記第1の方向の回線の信号から、前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号を抽出する、付記12又は13に記載された信号折返し方法。
 (付記15)
 分岐された前記第1の方向の回線の信号から、前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号の一方のみを抽出する、付記12又は13に記載された信号折返し方法。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記の実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
 この出願は、2016年3月30日に出願された日本出願特願2016-067181を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 100、200、300、400、500、900  中継装置
 111~114  合分波器
 121~124、901、902  光アンプ
 131~134、211、212、311、421、511、903、904  信号折返し回路
141、151、241、312、  カプラ
142、152、242、313、315、411、412、512  :反射素子

Claims (15)

  1.  第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し回路であって、
     前記第1の方向の回線の光信号を分岐する第1のカプラと、
     前記第1の方向の回線で用いられる、前記第1の波長帯域の監視信号と前記第2の波長帯域の監視信号との少なくとも一方を前記第1のカプラで分岐された光信号から抽出する第1のフィルタと、
     前記第1のフィルタで抽出された監視信号を第2の回線に結合させる第2のカプラと、
    を備える信号折返し回路。
  2.  前記第1及び第2のカプラ並びに前記第1のフィルタは、分離された前記第1の波長帯域の光信号の回線と前記第2の波長帯域の光信号の回線ごとに配置され、前記第1のフィルタは、前記第1のフィルタが配置された回線の波長帯域の前記監視信号を抽出する、請求項1に記載された信号折返し回路。
  3.  前記第1のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第1の方向の回線に配置され、前記第2のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第2の方向の回線に配置され、
     前記第1のフィルタは前記第1及び第2の波長帯域の少なくとも一方の前記監視信号を折り返す、請求項1に記載された信号折返し回路。
  4.  前記第2の方向の回線で用いられる、前記第1の波長帯域の監視信号と前記第2の波長帯域の監視信号との少なくとも一方を抽出する第2のフィルタをさらに備え、
     前記第1のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第1の方向の回線に配置され、前記第2のカプラは、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第2の方向の回線に配置され、

     前記第2のカプラは前記第2の方向の回線の光信号を分岐して前記第2のフィルタに入力し、
     前記第1のカプラは前記第2のフィルタで抽出された監視信号を前記第1の方向の回線に結合させる、
    請求項1に記載された信号折返し回路。
  5.  前記第1のフィルタは、前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号を抽出する、請求項3又は4に記載された信号折返し回路。
  6.  前記第1のフィルタは前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号の一方のみを抽出する、請求項3又は4に記載された信号折返し回路。
  7.  前記第1の方向に伝搬する、波長多重された光信号を前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とに分離する第1の合分波器と、
     前記第1の合分波器で分離された、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを結合する第2の合分波器と、
     前記第2の方向に伝搬する、波長多重された光信号を前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とに分離する第3の合分波器と、
     前記第3の合分波器で分離された、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを結合する第4の合分波器と、
     請求項1乃至6のいずれか1項に記載された信号折返し回路と、
    を備える中継装置。
  8.  前記第1及び第3の合分波器で分離された前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを増幅する光アンプをさらに備える、請求項7に記載された中継装置。
  9.  前記第1のカプラは、前記第1の合分波器で分離された、前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とを増幅する光アンプの出力側に配置される、請求項8に記載された中継装置。
  10.  第1の波長帯域の光信号と第2の波長帯域の光信号とが伝送される、第1の方向の回線及び第2の方向の回線の間を接続する信号折返し方法であって、
     前記第1の方向の回線の光信号を分岐し、
     前記第1の方向の回線で用いられる、前記第1の波長帯域の監視信号と前記第2の波長帯域の監視信号との少なくとも一方を前記分岐された光信号から抽出し、
     前記抽出された監視信号を第2の回線に結合させる、
    信号折返し方法。
  11.  前記第1の方向の回線の光信号を前記第1の波長帯域の光信号の回線と前記第2の波長帯域の光信号の回線ごとに分離し、
     前記監視信号を前記第1の波長帯域の光信号の回線と前記第2の波長帯域の光信号の回線ごとに抽出する、
    請求項10に記載された信号折返し方法。
  12.  前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第1の方向の回線の光信号を分岐し、
     前記分岐された前記第1の方向の回線の信号から前記第1及び第2の波長帯域の少なくとも一方の前記監視信号を抽出し、
     前記第1の方向の回線の信号から抽出された前記監視信号を前記第2の方向の回線と結合させる、
    請求項10に記載された信号折返し方法。
  13.  前記第1の波長帯域の光信号と前記第2の波長帯域の光信号とが多重された前記第2の方向の回線の光信号を分岐し、
     前記分岐された前記第2の方向の回線の信号から前記第1及び第2の波長帯域の少なくとも一方の前記監視信号を抽出し、
     前記第2の方向の回線の信号から抽出された前記監視信号を前記第1の方向の回線と結合させる、
    請求項10に記載された信号折返し方法。
  14.  前記分岐された前記第1の方向の回線の信号から、前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号を抽出する、請求項12又は13に記載された信号折返し方法。
  15.  分岐された前記第1の方向の回線の信号から、前記第1の波長帯域の監視信号及び前記第2の波長帯域の監視信号の一方のみを抽出する、請求項12又は13に記載された信号折返し方法。
PCT/JP2017/011311 2016-03-30 2017-03-22 信号折返し回路及び信号折返し方法 WO2017170004A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780020508.XA CN109075857B (zh) 2016-03-30 2017-03-22 信号回送回路和信号回送方法
EP17774545.2A EP3439201B1 (en) 2016-03-30 2017-03-22 Signal loopback circuit and signal loopback method
US16/086,683 US10587343B2 (en) 2016-03-30 2017-03-22 Signal loopback circuit and signal loopback method
JP2018509103A JP6699721B2 (ja) 2016-03-30 2017-03-22 信号折返し回路及び信号折返し方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-067181 2016-03-30
JP2016067181 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170004A1 true WO2017170004A1 (ja) 2017-10-05

Family

ID=59965260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011311 WO2017170004A1 (ja) 2016-03-30 2017-03-22 信号折返し回路及び信号折返し方法

Country Status (5)

Country Link
US (1) US10587343B2 (ja)
EP (1) EP3439201B1 (ja)
JP (1) JP6699721B2 (ja)
CN (1) CN109075857B (ja)
WO (1) WO2017170004A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168099A1 (ja) * 2018-03-02 2019-09-06 日本電気株式会社 光中継器、伝送路ファイバの監視方法、及び光伝送システム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017056438A1 (ja) * 2015-09-29 2017-04-06 日本電気株式会社 光中継器及び光中継器の制御方法
EP3625904B1 (en) * 2017-05-17 2022-04-27 Alcatel Submarine Networks Use of band-pass filters in supervisory signal paths of an optical transport system
US11569907B2 (en) * 2020-08-26 2023-01-31 Ciena Corporation Per-band fault signaling in a multi-band optical transmission system
US11146350B1 (en) * 2020-11-17 2021-10-12 Cox Communications, Inc. C and L band optical communications module link extender, and related systems and methods
US11539448B2 (en) * 2021-04-01 2022-12-27 Google Llc Submarine cable interface for connection to terrestrial terminals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292037A (ja) * 1992-04-07 1993-11-05 Mitsubishi Electric Corp 光中継装置
JPH09247106A (ja) * 1996-03-07 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 波長多重光通信の監視方法
JP2000059306A (ja) * 1998-08-14 2000-02-25 Nec Corp 光増幅中継器
JP2001053685A (ja) * 1999-08-11 2001-02-23 Sumitomo Electric Ind Ltd 光伝送監視装置、光伝送監視方法、光増幅システム、光増幅システムの制御方法及び光伝送システム

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0541061B1 (en) 1991-11-08 1997-07-02 Mitsubishi Denki Kabushiki Kaisha Optical-fiber light amplifier
US5500756A (en) * 1992-02-28 1996-03-19 Hitachi, Ltd. Optical fiber transmission system and supervision method of the same
JP3008667B2 (ja) * 1992-05-07 2000-02-14 日本電気株式会社 光中継方式
JP3611631B2 (ja) * 1995-03-20 2005-01-19 Kddi株式会社 線路監視方法および線路監視装置
US6441955B1 (en) * 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
JP3639109B2 (ja) * 1998-04-02 2005-04-20 富士通株式会社 光伝送装置、光伝送システム及び光端局
JP3288023B2 (ja) * 1998-10-27 2002-06-04 日本電信電話株式会社 光伝送システム
JP3670156B2 (ja) * 1999-03-18 2005-07-13 富士通株式会社 監視光信号を伝送するための方法、装置及びシステム
JP3608521B2 (ja) 2001-03-19 2005-01-12 日本電気株式会社 光増幅中継システム
US7336901B1 (en) * 2004-02-24 2008-02-26 Avanex Corporation Reconfigurable optical add-drop multiplexers employing optical multiplex section shared protection
JP5246164B2 (ja) * 2007-09-20 2013-07-24 日本電気株式会社 光通信伝送システムおよび光通信伝送システムの性能確認方法
US8009983B2 (en) * 2008-06-26 2011-08-30 Tyco Electronics Subsea Communications Llc High loss loop back for long repeater span
CN101931471B (zh) * 2009-06-23 2013-08-07 华为海洋网络有限公司 一种监控光纤线路状态的方法、中继器和海缆系统
JP5471670B2 (ja) * 2010-03-19 2014-04-16 富士通株式会社 光ノード、光ネットワークシステムおよび偏波モード分散測定方法
CN102801464B (zh) * 2011-05-27 2015-03-25 华为海洋网络有限公司 检测海底光缆线路的方法、传送装置和系统
TWI514791B (zh) * 2012-09-11 2015-12-21 Ind Tech Res Inst 射頻信號收發裝置及方法,自我監控光學傳輸裝置及方法
WO2014184955A1 (ja) * 2013-05-17 2014-11-20 三菱電機株式会社 光伝送システム
CN104904139B (zh) * 2013-11-13 2017-06-06 华为海洋网络有限公司 一种可重构光分插复用装置
US9960843B2 (en) * 2016-04-21 2018-05-01 Ciena Corporation Nonlinear spatially resolved interferometer (NL-SRI) for characterizing optical properties of deployed telecommunication cables

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05292037A (ja) * 1992-04-07 1993-11-05 Mitsubishi Electric Corp 光中継装置
JPH09247106A (ja) * 1996-03-07 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 波長多重光通信の監視方法
JP2000059306A (ja) * 1998-08-14 2000-02-25 Nec Corp 光増幅中継器
JP2001053685A (ja) * 1999-08-11 2001-02-23 Sumitomo Electric Ind Ltd 光伝送監視装置、光伝送監視方法、光増幅システム、光増幅システムの制御方法及び光伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3439201A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168099A1 (ja) * 2018-03-02 2019-09-06 日本電気株式会社 光中継器、伝送路ファイバの監視方法、及び光伝送システム
CN111788780A (zh) * 2018-03-02 2020-10-16 日本电气株式会社 光中继器、传输路径光纤监测方法以及光传输系统
JPWO2019168099A1 (ja) * 2018-03-02 2021-02-04 日本電気株式会社 光中継器、伝送路ファイバの監視方法、及び光伝送システム
EP3761527A4 (en) * 2018-03-02 2021-05-12 NEC Corporation OPTICAL AMPLIFIER, METHOD FOR MONITORING TRANSMISSION FIBER AND OPTICAL TRANSMISSION SYSTEM
JP7136183B2 (ja) 2018-03-02 2022-09-13 日本電気株式会社 光中継器、伝送路ファイバの監視方法、及び光伝送システム
US11476939B2 (en) 2018-03-02 2022-10-18 Nec Corporation Optical repeater, transmission path fiber monitoring method, and optical transmission system
CN111788780B (zh) * 2018-03-02 2023-12-15 日本电气株式会社 光中继器、传输路径光纤监测方法以及光传输系统

Also Published As

Publication number Publication date
EP3439201A1 (en) 2019-02-06
JP6699721B2 (ja) 2020-05-27
JPWO2017170004A1 (ja) 2019-01-24
CN109075857B (zh) 2021-07-06
US20190097727A1 (en) 2019-03-28
CN109075857A (zh) 2018-12-21
EP3439201A4 (en) 2019-12-11
EP3439201B1 (en) 2022-03-16
US10587343B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
WO2017170004A1 (ja) 信号折返し回路及び信号折返し方法
US8401392B2 (en) Flexible branching unit and system including the same
JP4031853B2 (ja) 双方向光通信用光伝送装置
JP5387311B2 (ja) 波長多重光ネットワークシステム及び波長多重光の送受信方法
US20120248287A1 (en) Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system
JP5887698B2 (ja) 光合分岐装置及び光合分岐方法
US11637646B2 (en) Apparatus and method for coherent optical multiplexing 1+1 protection
EP3614581A1 (en) Bidirectional optical transmission system and bidirectional optical transmission method
US10567081B2 (en) Transmission system and transmission method
JP6455296B2 (ja) 光伝送装置
WO1999049601A1 (fr) Repeteur de transmission a multiplexage par repartition en longueur d&#39;onde, systeme et procede de transmission a multiplexage par repartition en longueur d&#39;onde
CN111837348B (zh) 光学传输设备和光学传输方法
WO2012108549A1 (ja) 光伝送装置
KR100317133B1 (ko) 양방향애드/드롭다중화기를구비한양방향파장분할다중방식자기치유광통신망
JP7380861B2 (ja) バースト光中継装置及びバースト光中継方法
WO2016031185A1 (ja) ノード装置及びノード装置の制御方法
EP0967752A2 (en) WDM transmission system
JP7428234B2 (ja) スペクトラム監視装置、海底機器及び光通信システム
JP3823764B2 (ja) 光直接増幅装置
WO2022137504A1 (ja) バースト光中継装置及びバースト光中継方法
JP3039430B2 (ja) 光分岐挿入回路及び光伝送方法
JPH1022919A (ja) 光分岐装置
JP3591494B2 (ja) 光直接増幅装置
JPH1041887A (ja) 光ネットワーク・システム
JPWO2006006215A1 (ja) 光回路及びそれを用いたリニア系専用のノード装置及びリニア系wdmネットワーク及びツリー系wdmネットワーク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509103

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774545

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774545

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774545

Country of ref document: EP

Kind code of ref document: A1