WO2017169247A1 - 蛍光x線分析装置および蛍光x線分析方法 - Google Patents

蛍光x線分析装置および蛍光x線分析方法 Download PDF

Info

Publication number
WO2017169247A1
WO2017169247A1 PCT/JP2017/005679 JP2017005679W WO2017169247A1 WO 2017169247 A1 WO2017169247 A1 WO 2017169247A1 JP 2017005679 W JP2017005679 W JP 2017005679W WO 2017169247 A1 WO2017169247 A1 WO 2017169247A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
rays
fluorescent
continuous
ray tube
Prior art date
Application number
PCT/JP2017/005679
Other languages
English (en)
French (fr)
Inventor
表 和彦
和明 奥田
山田 隆
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Publication of WO2017169247A1 publication Critical patent/WO2017169247A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence

Definitions

  • the present invention relates to a fluorescent X-ray analysis apparatus and a fluorescent X-ray analysis method using an internal standard method using continuous X-rays from an X-ray tube as primary X-rays.
  • a fluorescent X-ray analyzer that includes an X-ray tube adjusting unit that adjusts the tube position and a spectroscopic element position adjusting unit that adjusts the position of the spectroscopic element, and can perform highly sensitive and highly accurate analysis over a wide range of wavelengths.
  • a fluorescent X-ray of a measurement target element with respect to the intensity of the fluorescent X-ray of the internal standard element is used using a calibration curve sample containing the internal standard element.
  • X-rays emitted from the X-ray tube are dispersed to reflect predetermined characteristic X-rays to form primary X-rays, only elements that can be excited with energy lower than the energy of the primary X-rays are contained. It could not be selected as a standard element.
  • An X-ray tube selecting unit that selects one X-ray tube from a plurality of X-ray tubes, an X-ray tube position adjusting unit that adjusts the position of the X-ray tube, Without a spectroscopic element position adjusting means for adjusting the position of the spectroscopic element, it is a simple and low-cost configuration, and in addition to the characteristic X-ray from the X-ray tube, continuous X-rays with higher energy than the characteristic X-ray.
  • Measurement is possible over a wide range of energies that can be excited, and is specified from the elements contained in the target material of the X-ray tube that cannot be excited by characteristic X-rays from the X-ray tube and cannot be made the measurement target element or internal standard element. It is an object of the present invention to provide a fluorescent X-ray analysis apparatus and a fluorescent X-ray analysis method that can perform high-sensitivity and high-accuracy analysis quickly using an element as an internal standard element.
  • an X-ray fluorescence analyzer of the present invention is an X-ray tube and a spectroscopic element that separates X-rays emitted from the X-ray tube, and has a predetermined characteristic X-ray, and 2 generated from a spectroscopic element that reflects continuous X-rays having higher energy than the predetermined characteristic X-ray and a sample irradiated with the primary X-ray including the predetermined characteristic X-ray and the high-energy continuous X-ray.
  • a detector for measuring the intensity of the secondary X-ray, and the fluorescence X having higher energy than the predetermined characteristic X-ray generated from an internal standard element designated from the elements contained in the target material of the X-ray tube The measurement target element is quantified based on the ratio of the measurement intensity of the fluorescent X-rays generated from the measurement target element to the measurement intensity of the line.
  • the element contained in the target material of the X-ray tube is an element contained in the target material at a content rate that generates characteristic X-rays as a main component or with sufficient intensity as primary X-rays, and as impurities It is not an included element.
  • a spectroscopic element that separates X-rays emitted from an X-ray tube, and has a predetermined characteristic X-ray and higher energy than the predetermined characteristic X-ray.
  • X-ray tube selection means for selecting one X-ray tube from a plurality of X-ray tubes since the measurement target element is quantified based on the ratio of the measurement intensity of fluorescent X-rays generated from the measurement target element to the measurement intensity, X
  • the X-ray tube position adjusting means for adjusting the position of the X-ray tube, the spectral element position adjusting means for adjusting the position of the spectral element, etc. are provided, and the configuration is low in cost and simple.
  • the spectroscopic element reflects the predetermined continuous X-ray that excites the K ⁇ ray of the fluorescent X-ray of at least one of the elements having atomic numbers 42 to 52. Is preferred.
  • the elements of atomic numbers 42 to 52 have many overlapping spectra. Since measurement was possible only with the L line, the analysis accuracy was not good.
  • predetermined continuous X-rays reflected by the spectroscopic element with respect to an element to be measured which is at least one element among the elements having atomic numbers 42 to 52 are obstructed by overlapping spectra. Since K ⁇ rays that do not become excited are excited, highly sensitive and highly accurate analysis can be performed.
  • the X-ray tube is a molybdenum X-ray tube having a target material containing molybdenum
  • the predetermined characteristic X-ray is Mo-K ⁇ ray
  • the element to be measured is cadmium
  • the internal standard element is molybdenum
  • the ratio of the measured intensity of Cd-K ⁇ ray to the measured intensity of Mo-K ⁇ ray It is preferred to quantify cadmium based on In this case, continuous X-rays having twice the energy of Mo-K ⁇ rays reflected by the spectroscopic element excite Cd-K ⁇ rays that do not interfere with spectral overlap and Mo-K ⁇ rays as internal standard lines.
  • the fluorescent X-ray analysis method of the present invention is an X-ray tube and a spectroscopic element that separates X-rays emitted from the X-ray tube, and has a predetermined characteristic X-ray and more than the predetermined characteristic X-ray.
  • the measurement target element based on the ratio of the measurement intensity of the fluorescent X-ray generated from the measurement target element to the measurement intensity of the fluorescent X-ray having higher energy than the predetermined characteristic X-ray generated from the internal standard element designated from the element Quantify.
  • a spectroscopic element that splits X-rays emitted from an X-ray tube, and has a predetermined characteristic X-ray and higher energy than the predetermined characteristic X-ray.
  • a fluorescent X-ray analyzer equipped with a spectroscopic element that reflects predetermined continuous X-rays, a target material of the X-ray tube is added to a sample to which an internal standard element designated from elements included in the target material of the X-ray tube is added.
  • the spectroscopic element reflects the predetermined continuous X-ray that excites the K ⁇ ray of the fluorescent X-ray of at least one of the elements having atomic numbers 42 to 52.
  • an X-ray fluorescence analyzer at least one of the elements having atomic numbers 42 to 52 is designated as a measurement target element, and the intensity of the fluorescent X-ray K ⁇ ray of the designated measurement target element is measured.
  • a predetermined continuous X-ray reflected by the spectroscopic element with respect to a measurement target element that is at least one element among the elements having atomic numbers 42 to 52 is a K ⁇ ray that does not interfere with the overlap of the spectrum. Since excitation is performed, high-sensitivity and high-accuracy analysis can be performed for the specified measurement target element.
  • the X-ray tube is a molybdenum X-ray tube having a target material containing molybdenum
  • the predetermined characteristic X-ray is a Mo-K ⁇ ray
  • the predetermined continuous X-ray is Is continuous X-ray having twice the energy of Mo-K ⁇ ray
  • the element to be measured is cadmium
  • the internal standard element is molybdenum
  • the ratio of the measured intensity of Cd-K ⁇ ray to the measured intensity of Mo-K ⁇ ray It is preferred to quantify cadmium based on In this case, continuous X-rays having twice the energy of Mo-K ⁇ rays reflected by the spectroscopic element excite Cd-K ⁇ rays that do not interfere with spectral overlap and Mo-K ⁇ rays as internal standard lines. Therefore, it is possible to analyze cadmium with high sensitivity and high accuracy.
  • FIG. 1 is a schematic view of a fluorescent X-ray analyzer according to first to third embodiments of the present invention.
  • FIG. It is the schematic of the spectroscopic element with which the apparatus is equipped. It is a figure which shows the relationship between the ratio of the thickness of a spacer layer with respect to the thickness of a reflective layer, and the reflectance of a secondary line.
  • Fig. 7 is a spectrum obtained by enlarging the vicinity of the Cd-L ⁇ line in Fig. 6.
  • the X-ray fluorescence spectrometer 1 is a spectroscopic element that splits an X-ray tube 2 and an X-ray 3 emitted from the X-ray tube 2, and has a predetermined characteristic X-ray and A spectroscopic element 43a that reflects a predetermined continuous X-ray having higher energy than the predetermined characteristic X-ray and a sample irradiated with the primary X-ray 7 including the predetermined characteristic X-ray and the predetermined continuous X-ray
  • a detector 10 for measuring the intensity of secondary X-rays 9 generated from S, and the predetermined characteristic X-rays generated from an internal standard element designated from elements contained in a target material of the X-ray tube 2
  • the measurement target element is quantified based on the ratio of the measurement intensity of the fluorescent X-ray 9 generated from the measurement target element to the measurement intensity of the fluorescent X
  • the X-ray tube 2 is a molybdenum X-ray tube 2 having a target material containing, for example, molybdenum.
  • the detector 10 is a semiconductor detector such as an SDD or an SSD, and an SDD that can count up to a high count is preferable.
  • the spectroscopic element 43a includes a reflective layer 4a and a spacer layer 4b including an element having an atomic number smaller than that of the element forming the reflective layer 4a. It is composed of a multi-layer film laminated on top.
  • the substrate 4c is curved so as to reflect and collect the X-rays 3 emitted from the X-ray tube 2, and is, for example, a silicon substrate or a germanium substrate that is a single crystal substrate.
  • the ratio of the thickness of the reflective layer 4a to the spacer layer 4b is 1: 2, and the period length d of the layer pair is 40.7 mm.
  • the spectroscopic element 43a is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG. 2), and the X-ray 3 radiated from the molybdenum X-ray tube 2 is dispersed to obtain a 17.4 keV Mo. It strongly reflects 34.8 keV continuous X-rays, which are twice the energy of -K ⁇ and Mo-K ⁇ rays.
  • the ratio of the thickness of the reflective layer 4a and the spacer layer 4b that strongly reflects the secondary line is 1
  • the pair of 1.4 to 1: 4 is preferable, and the ratio of 1: 1.8 to 1: 3 is more preferable.
  • FIG. 3 shows the relationship between the ratio of the thickness of the spacer layer 4b to the thickness of the reflective layer 4a and the reflectance of the secondary line.
  • the calibration curve sample S and the unknown sample S are dropped on a different sample substrate 11, for example, a glass substrate (FIG. 1) for each sample, and dried. Place on a sample holder (not shown).
  • a sample holder not shown.
  • the X-ray fluorescence analyzer 1 When the X-ray fluorescence analyzer 1 is operated, the X-ray 3 radiated from the molybdenum X-ray tube 2 is reflected by the spectroscopic element 43a, which is twice as much as 17.4 keV Mo-K ⁇ ray and Mo-K ⁇ ray.
  • the primary X-ray 7 including continuous X-rays of 34.8 keV as energy is moved to the sample measurement position (not shown) by the sample holder, and irradiates the sample substrate 11 on which the calibration curve sample S is dropped and dried. Is done.
  • a calibration curve is created.
  • the vertical axis of the prepared calibration curve is the ratio of the measured intensity of the Cd-K ⁇ ray to the measured intensity of the Mo-K ⁇ ray, and the horizontal axis is the cadmium concentration of the sample S for the calibration curve.
  • the unknown sample S is measured in the same manner as the calibration curve sample S, and is generated from cadmium as the measurement target element with respect to the measured intensity of the Mo-K ⁇ ray generated from molybdenum as the internal standard element. Based on the ratio of measured intensities of Cd-K ⁇ rays, cadmium in the unknown sample S is quantified from the calibration curve.
  • a 17.4 keV Mo—K ⁇ ray from the molybdenum X-ray tube 2 can be obtained with a simple configuration at a low cost.
  • molybdenum specified from the elements contained in the target material of the molybdenum X-ray tube 2 that cannot be used as a measurement target element or an internal standard element can be quickly and highly sensitively and accurately analyzed using the molybdenum as the internal standard element.
  • a 34.8 keV continuous X-ray having twice the energy of the Mo-K ⁇ ray reflected by the spectroscopic element 43a is composed of a Cd-K ⁇ ray whose spectral overlap is not an obstacle and a Mo-K ⁇ ray as an internal standard line. Therefore, cadmium can be analyzed with high sensitivity and high accuracy.
  • Cd-L ⁇ rays were used for cadmium measurement, but Ar generated from Ar in the air, K, Ca, etc. in the glass substrate as the sample substrate 11. Since -K ⁇ ray, K-K ⁇ ray, Ca-K ⁇ ray and the like overlap with Cd-L ⁇ ray, cadmium could not be analyzed with high sensitivity and high accuracy.
  • the spectroscopic element 44a is formed by laminating a plurality of layer pairs each having a predetermined period length composed of the reflective layer and the spacer layer on the substrate 4c. It is composed of a multilayer film 4e.
  • the multilayer film 4e is composed of two stages of a multilayer film 4e1 and a multilayer film 4e2, and the multilayer film 4e1 is stacked on the curved substrate 4c as described above via the multilayer film 4e2.
  • the multilayer film 4e2 closer to the substrate 4c is set to have a predetermined cycle length of the layer pair smaller than that of the multilayer film 4e1.
  • the ratio of the thickness of the reflective layer to the spacer layer is 1: 1, and the period length of the layer pair is 40.7 mm.
  • the thickness of the reflective layer and the spacer layer is The ratio is 1: 1 and the period length of the layer pair is 23.7 cm. Since the multilayer film closer to the substrate 4c is set to have a smaller period length of the layer pair, X-rays with lower energy and easier absorption are reflected at a shallower position from the incident surface, and the overall reflection efficiency. Also good.
  • the number of multilayer film stages may be 3 or more.
  • the spectroscopic element 44a is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG.
  • the multilayer film 4e 2 strongly reflects 30 keV continuous X-rays having higher energy than Mo—K ⁇ rays.
  • a spectroscopic element 44b (FIG. 4) described below may be used.
  • the thickness ratio between the reflective layer and the spacer layer is 1: 2, and the period length of the layer pair is 40.7 mm.
  • the reflective layer and the spacer are The ratio of thickness to layer is 1: 1, and the period length of the layer pair is 23.7 mm.
  • the spectroscopic element 44b is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG.
  • FIG. 6 shows a spectrum obtained by measuring. In this spectrum, neither Cd—K ⁇ ray nor Mo—K ⁇ ray is generated. This is because in the conventional X-ray fluorescence analyzer, continuous X-rays that excite Cd—K ⁇ rays and Mo—K ⁇ rays are not reflected by the spectroscopic element. In the spectrum shown in FIG.
  • the Mo—K ⁇ ray which is a fluorescent X-ray
  • the Mo—K ⁇ ray overlaps with the scattered ray of the Mo—K ⁇ ray, which is a primary X-ray, and cannot be used for analysis.
  • fluorescent X-rays including Mo-K ⁇ rays and having energy higher than that of Mo-K ⁇ rays.
  • FIG. 7 shows a spectrum obtained by enlarging the vicinity of the Cd-L ⁇ line shown in FIG. 6 in the energy direction.
  • Cd-L ⁇ rays are generated from Ar in the air, K, Ca, etc. in the glass substrate for dropping the sample. It overlaps with K ⁇ ray and Ca-K ⁇ ray. For this reason, even if cadmium was measured using a Cd-L ⁇ ray with a conventional fluorescent X-ray analyzer, it could not be analyzed with high sensitivity and high accuracy.
  • the energy of the Cd—K ⁇ line (23.1 keV) generated from cadmium and the Mo—K ⁇ line (19.6 keV) generated from molybdenum are close to each other. Since the X-ray characteristics are similar, the influence of absorption and excitation by coexisting elements in the sample S can be corrected with high accuracy. In particular, when the sample S is measured by being dropped and dried on the sample substrate 11, the dropping position and the shape of the drying mark slightly change every time the sample S is dropped. Variations in the measurement intensity of the secondary X-ray 9 due to changes in the shape of the drying marks can be corrected. As described above, when the internal standard measurement is performed using the fluorescent X-ray analysis apparatus 1 including the spectroscopic element 44b according to the first embodiment, both sensitivity and SN ratio are significantly improved as compared with the conventional fluorescent X-ray analysis apparatus. .
  • a filter that is a 2 mm thick aluminum plate can be moved forward and backward (not shown) by the spectroscopic element 43a, The sample S may be measured by being inserted between the samples 44a and 44b and the sample S.
  • This filter rarely reduces the intensity of Mo-K ⁇ rays, Cd-K ⁇ rays, 30 keV and 34.8 keV continuous X-rays, but reduces the intensity of Mo-K ⁇ rays to 1/10.
  • the measurement intensity of the X-rays on the low energy side excited by -K ⁇ rays becomes weak, and the influence of the interference lines on the low energy side can be reduced.
  • the measurement target element is on the high energy side, the signal of the fluorescent X-ray 9 other than the measurement target element is removed, and the dead time of the so-called detector 10 can be shortened.
  • the X-ray fluorescence analyzer 1 of the second embodiment is a rhodium X-ray tube 2 in which the X-ray tube 2 has a target material containing rhodium, as compared with the X-ray fluorescence analyzer 1 of the first embodiment, and a spectroscopic element
  • the only difference is that it is a spectroscopic element 43b (FIG. 2) in which the thickness ratio of the reflective layer 4a and the spacer layer 4b is 1: 2, and the period length d of the layer pair is 35.1 mm.
  • the configuration is the same.
  • a calibration curve sample S and an unknown sample S in which rhodium specified from the elements contained in the target material of the rhodium X-ray tube 2 is added as an internal standard element, for example, by 2 ppm. prepare.
  • the calibration curve sample S and the unknown sample S are dropped onto the sample substrate 11 (FIG. 1) and dried. These sample substrates 11 are placed on the sample holder.
  • the fluorescent X-ray analyzer 1 When the fluorescent X-ray analyzer 1 is operated, the X-ray 3 radiated from the rhodium X-ray tube 2 is reflected by the spectroscopic element 43b, which is twice the 20.2 keV Rh-K ⁇ ray and Rh-K ⁇ ray.
  • Primary X-rays 7 including continuous X-rays of 40.4 keV as energy are irradiated onto the sample substrate 11 on which the calibration curve sample S has been dropped and dried, which has been moved to the sample measurement position by the sample holder.
  • a calibration curve is created.
  • the vertical axis of the prepared calibration curve is the ratio of the measured intensity of the Sn-K ⁇ ray to the measured intensity of the Rh-K ⁇ ray
  • the horizontal axis is the concentration of tin in the sample S for the calibration curve.
  • the unknown sample S is measured in the same manner as the calibration curve sample S, and is generated from the measurement target element tin with respect to the measured intensity of the Rh-K ⁇ ray generated from the internal standard element rhodium. Based on the ratio of measured intensities of Sn-K ⁇ rays, tin in the unknown sample S is quantified from the calibration curve.
  • the 20.2 keV Rh-K ⁇ ray from the rhodium X-ray tube 2 with a simple and low-cost configuration.
  • the rhodium specified from the elements contained in the target material of the rhodium X-ray tube 2 that cannot be used as the measurement target element or the internal standard element can be used as the internal standard element for rapid and sensitive and accurate analysis.
  • a continuous X-ray of 40.4 keV having energy twice that of the Rh-K ⁇ ray reflected by the spectroscopic element 43b includes an Sn-K ⁇ ray whose spectrum overlap is not an obstacle and an Rh-K ⁇ ray as an internal standard line. Because of the excitation, tin can be analyzed with high sensitivity and high accuracy.
  • the spectroscopic element 44c in the multilayer film 4e1, the thickness ratio between the reflective layer and the spacer layer is 1: 1, and the period length of the layer pair is 35.1 mm.
  • the reflective layer and the spacer The ratio of thickness to layer is 1: 1, and the period length of the layer pair is 23.7 mm.
  • the spectroscopic element 44c is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG.
  • the X-ray 3 radiated from the rhodium X-ray tube 2 is dispersed, and 20 in the multilayer film 4e1.
  • .2 keV Rh-K ⁇ rays are strongly reflected, while the multilayer film 4e2 strongly reflects 30 keV continuous X-rays having higher energy than the Rh-K ⁇ rays.
  • a spectroscopic element 44d (FIG. 4) described below may be used.
  • the ratio of the thickness of the reflective layer to the spacer layer is 1: 2
  • the period length of the layer pair is 35.1 mm.
  • the reflective layer and the spacer are The ratio of thickness to layer is 1: 1, and the period length of the layer pair is 23.7 mm.
  • the spectroscopic element 44d is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG.
  • the fluorescent X-ray analyzer 1 Compared with the fluorescent X-ray analysis apparatus 1 of the first embodiment, the X-ray fluorescence analysis apparatus 1 of the third embodiment is a tungsten X-ray tube 2 in which the X-ray tube 2 has a target material containing tungsten. However, the only difference is that it is a spectroscopic element 43c (FIG. 2) in which the thickness ratio between the reflective layer 4a and the spacer layer 4b is 1: 1 and the period length d of the layer pair is 73.2 mm. The configuration is the same.
  • the calibration curve sample S and the unknown sample S are dropped on the sample substrate 11 and dried, and these samples are dried.
  • the substrate 11 is placed on the sample holder.
  • the fluorescent X-ray analyzer 1 When the fluorescent X-ray analyzer 1 is operated, the X-ray 3 radiated from the tungsten X-ray tube 2 is reflected by the spectroscopic element 43c, which is three times as large as the 9.7 keV W-L ⁇ 1 line and the W-L ⁇ 1 line.
  • Primary X-rays 7 including continuous X-rays of 29.0 keV as energy are irradiated onto the sample substrate 11 on which the calibration curve sample S has been dropped and dried, moved to the sample measurement position by the sample holder.
  • the vertical axis of the prepared cadmium calibration curve is the ratio of the measured intensity of the Cd-K ⁇ ray to the measured intensity of the W-L ⁇ ray, and the horizontal axis is the concentration of cadmium in the sample S for the calibration curve.
  • the vertical axis of the prepared chromium calibration curve is the ratio of the measured intensity of the Cr—K ⁇ ray to the measured intensity of the W—L ⁇ ray, and the horizontal axis is the chromium concentration of the sample S for the calibration curve.
  • the unknown sample S is measured in the same manner as the calibration curve sample S, and the measurement element cadmium is measured against the measured intensity of the W-L ⁇ ray generated from the internal standard element tungsten.
  • Cadmium in the unknown sample S is quantified from the calibration curve of cadmium based on the ratio of measured intensities of the generated Cd-K ⁇ rays.
  • chromium in the unknown sample S is also quantified from chromium calibration curves.
  • a 9.7 keV WL-L ⁇ 1 line from the tungsten X-ray tube 2 can be obtained with a simple and low-cost configuration.
  • 29.0 keV continuous X-rays having an energy three times that of the WL- ⁇ 1 line reflected by the spectroscopic element 43c is a Cd-K ⁇ line and a Cr-K ⁇ line whose spectral overlap is not an obstacle, and an internal standard line.
  • Exciting the W-L ⁇ rays of the cadmium and chromium, can be analyzed with high sensitivity and high accuracy.
  • the spectroscopic element 44e in the multilayer film 4e1, the ratio of the thickness of the reflective layer to the spacer layer is 1: 1, and the period length of the layer pair is 73.2 mm. In the multilayer film 4e2, the reflective layer and the spacer layer The thickness ratio is 1: 1 and the period length of the layer pair is 23.7 mm.
  • the spectroscopic element 44e is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG.
  • the multilayer film 4e2 strongly reflects 30 keV continuous X-rays having higher energy than the WL-L ⁇ 1 line.
  • a spectroscopic element 44f (FIG. 4) described below may be used.
  • the ratio of the thickness of the reflective layer to the spacer layer is 1: 2
  • the period length of the layer pair is 73.2 mm.
  • the reflective layer and the spacer are The ratio of thickness to layer is 1: 1, and the period length of the layer pair is 23.7 mm.
  • the spectroscopic element 44f is arranged so that the incident angle ⁇ and the outgoing angle ⁇ are 0.5 ° (FIG. 4).
  • the spectroscopic element 44f disperses the X-ray 3 emitted from the tungsten X-ray tube 2 so that it is 9 in the multilayer film 4e1.
  • the continuous X-ray of 29.0 keV which is 3 times the energy of the .7 keV W-L ⁇ 1 line and the W-L ⁇ 1 line, is strongly reflected, while the multilayer film 4e2 has a continuous X of 30 keV that is higher energy than the W-L ⁇ 1 line. Reflects lines strongly.
  • the spectroscopic elements 43a to 43c and 44a to 44f have been described as single curved spectroscopic elements. It may be a spectroscopic element.
  • the spectroscopic elements 43a to 43c and 44a to 44f are arranged so that the incident angle ⁇ of the X-ray 3 becomes 0.5 °, as the incident position of the X-ray 3 moves away from the central portion,
  • the incident angle ⁇ may be continuously changed, and the period length d of the layer pair of the multilayer film may be continuously changed in accordance with the incident angle ⁇ , whereby X reflected from the spectroscopic elements 43a to 43c and 44a to 44f may be changed.
  • the condensing characteristic and monochromaticity of the line can be improved.
  • the measurement target element in the unknown sample S is quantified using a calibration curve.
  • the relative sensitivity which is the relative measurement intensity ratio, is recorded in advance in the fluorescent X-ray analyzer 1, and the measured intensities of the internal standard element and the measurement target element and the stored relative sensitivity are used without using a calibration curve. It may be used to calculate a quantitative value.
  • a conventional X-ray fluorescence analyzer equipped with a tungsten X-ray tube and converting continuous X-rays into primary X-rays without monochromatizing them with a spectroscopic element, and cadmium as an element to be measured.
  • Molybdenum, tungsten, etc. as internal standard elements, and Cd—K ⁇ rays can be analyzed as measurement lines.
  • Cd—K ⁇ rays can be analyzed as measurement lines.
  • continuous X-rays overlap with Cd—K ⁇ rays a large background is obtained. The accuracy cannot be analyzed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明の蛍光X線分析装置(1)は、X線管(2)と、X線管(2)から放射されたX線(3)を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子(43a~c、44a~f)と、所定の特性X線および所定の連続X線を含む1次X線(7)が照射された試料(S)から発生する2次X線(9)の強度を測定する検出器(10)と、を備え、X線管(2)のターゲット材に含まれる元素から指定された内標準元素から発生する、所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線(9)の測定強度の比に基づいて測定対象元素を定量する。

Description

蛍光X線分析装置および蛍光X線分析方法 関連出願
 本出願は、2016年3月30日出願の特願2016-068998の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。
 本発明は、X線管からの連続X線をも1次X線として利用し、内標準法を用いる蛍光X線分析装置および蛍光X線分析方法に関する。
 従来、試料から発生する蛍光X線の強度を最大にするために、複数のX線管と、複数のX線管の中から1つのX線管を選択するX線管選択手段と、X線管位置を調整するX線管調整手段と、分光素子位置を調整する分光素子位置調整手段と、を備え、広い範囲の波長にわたって高感度、高精度の分析が行える蛍光X線分析装置がある(特許文献1)。また、蛍光X線分析装置を用いた高精度の定量分析法としては、内標準元素を含む検量線用試料を用いて、内標準元素の蛍光X線の強度に対する、測定対象元素の蛍光X線の強度との比を測定し、その比と検量線用試料の濃度との関係から検量線を作成しておいて、未知試料中の測定対象元素を定量する内標準法がある。
特開2008-32703号公報
 しかし、特許文献1に記載の蛍光X線分析装置は、X線管から放射されたX線から所定の特性X線を分光して1次X線とするため、この1次X線が有するエネルギーよりも低いエネルギー範囲でしか測定できない。そのため、広いエネルギー範囲を測定するためには、複数のX線管から1つのX線管を選択するX線管選択手段、X線管の位置を調整するX線管位置調整手段、分光素子の位置を調整する分光素子位置調整手段など多くの手段が必要であり、装置の構成が複雑になり、コストアップになっていた。また、X線管から放射されたX線を分光して所定の特性X線を反射して1次X線とするため、この1次X線が有するエネルギーよりも低いエネルギーで励起できる元素しか内標準元素として選択できなかった。X線管から放射されたX線を分光せずに、1次X線として連続X線を用いて広いエネルギー範囲を測定する装置もあるが、SN比が悪く微量分析には利用できない。
 本発明は前記従来の問題に鑑みてなされたもので、複数のX線管から1つのX線管を選択するX線管選択手段、X線管の位置を調整するX線管位置調整手段、分光素子の位置を調整する分光素子位置調整手段などを備えることなく、低コストの簡易な構成で、X線管からの特性X線に加えてその特性X線よりも高エネルギーの連続X線で励起できる広いエネルギー範囲にわたって測定が可能であり、X線管からの特性X線では励起できない元素であって、測定対象元素や内標準元素にできないX線管のターゲット材に含まれる元素から指定された元素を内標準元素として、迅速に高感度、高精度の分析ができる蛍光X線分析装置および蛍光X線分析方法を提供することを目的とする。
 前記目的を達成するために、本発明の蛍光X線分析装置は、X線管と、前記X線管から放射されたX線を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーの連続X線を反射する分光素子と、前記所定の特性X線および前記高エネルギーの連続X線を含む1次X線が照射された試料から発生する2次X線の強度を測定する検出器と、を備え、前記X線管のターゲット材に含まれる元素から指定された内標準元素から発生する、前記所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線の測定強度の比に基づいて測定対象元素を定量する。
 X線管のターゲット材に含まれる元素とは、ターゲット材に、主成分として、または、1次X線として十分な強度で特性X線を発生させる含有率で、含まれる元素であり、不純物として含まれる元素ではない。
 本発明の蛍光X線分析装置によれば、X線管から放射されたX線を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子を備え、前記X線管のターゲット材に含まれる元素から指定された内標準元素から発生する、前記所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線の測定強度の比に基づいて測定対象元素を定量するので、複数のX線管から1つのX線管を選択するX線管選択手段、X線管の位置を調整するX線管位置調整手段、分光素子の位置を調整する分光素子位置調整手段などを備えることなく、低コストの簡易な構成で、X線管からの特性X線に加えてその特性X線よりも高エネルギーの連続X線で励起できる広いエネルギー範囲にわたって測定が可能であり、X線管からの特性X線では励起できない元素であって、測定対象元素や内標準元素にできないX線管のターゲット材に含まれる元素から指定された元素を内標準元素として、迅速に高感度、高精度の分析ができる。
 本発明の蛍光X線分析装置においては、前記分光素子が、原子番号42から52までの元素のうち少なくとも1つの元素の蛍光X線のKα線を励起する、前記所定の連続X線を反射するのが好ましい。蛍光X線分析で一般的に用いられるモリブデンやロジウムなどをターゲット材とするX線管を使用する場合、従来の蛍光X線分析装置では、原子番号42から52までの元素はスペクトルに重なりが多いL線でしか測定できなかったので、分析精度が良くなかった。本発明におけるこの好ましい構成によれば、原子番号42から52までの元素のうち少なくとも1つの元素である測定対象元素に対して、分光素子が反射する所定の連続X線が、スペクトルの重なりが障害にならないKα線を励起するので、高感度、高精度の分析ができる。
 本発明の蛍光X線分析装置においては、前記X線管が、モリブデンを含むターゲット材を有するモリブデンX線管であり、前記所定の特性X線がMo-Kα線で、前記所定の連続X線がMo-Kα線の2倍のエネルギーを有する連続X線であり、測定対象元素がカドミウムで、内標準元素がモリブデンであり、Mo-Kβ線の測定強度に対するCd-Kα線の測定強度の比に基づいてカドミウムを定量するのが好ましい。この場合には、分光素子が反射するMo-Kα線の2倍のエネルギーを有する連続X線が、スペクトルの重なりが障害にならないCd-Kα線と、内標準線としてのMo-Kβ線を励起するので、カドミウムについて高感度、高精度の分析ができる。これに対し、従来の蛍光X線分析装置では、カドミウムの測定にCd-Lα線を用いていたが、空気中のAr、液体試料滴下用のガラス基板中のK、Caなどから発生する、Ar-Kα線、K-Kα線、Ca-Kα線などがCd-Lα線に重なるため、カドミウムについて高感度、高精度の分析ができなかった。
 本発明の蛍光X線分析方法は、X線管と、前記X線管から放射されたX線を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子と、前記所定の特性X線および前記所定の連続X線を含む1次X線が照射された試料から発生する2次X線の強度を測定する検出器と、を備える蛍光X線分析装置を用いて、前記X線管のターゲット材に含まれる元素から指定した内標準元素を添加した試料について、前記X線管のターゲット材に含まれる元素から指定した内標準元素から発生する、前記所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線の測定強度の比に基づいて測定対象元素を定量する。
 本発明の蛍光X線分析方法によれば、X線管から放射されたX線を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子を備える蛍光X線分析装置を用いて、X線管のターゲット材に含まれる元素から指定した内標準元素を添加した試料について、前記X線管のターゲット材に含まれる元素から指定した内標準元素から発生する、所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線の測定強度の比に基づいて測定対象元素を定量するので、低コストの簡易な装置を用いて、X線管からの特性X線に加えてその特性X線よりも高エネルギーの連続X線で励起できる広いエネルギー範囲にわたって測定が可能であり、X線管からの特性X線では励起できない元素であって、測定対象元素や内標準元素にできないX線管のターゲット材に含まれる元素から指定された元素を内標準元素として、迅速に高感度、高精度の分析ができる。
 本発明の蛍光X線分析方法においては、前記分光素子が、原子番号42から52までの元素のうち少なくとも1つの元素の蛍光X線のKα線を励起する、前記所定の連続X線を反射する蛍光X線分析装置を用いて、原子番号42から52までの元素のうち少なくとも1つの元素を測定対象元素として指定し、指定した測定対象元素の蛍光X線のKα線の強度を測定するのが好ましい。この場合には、原子番号42から52までの元素のうち少なくとも1つの元素である測定対象元素に対して、分光素子が反射する所定の連続X線が、スペクトルの重なりが障害にならないKα線を励起するので、指定した測定対象元素について高感度、高精度の分析ができる。
 本発明の蛍光X線分析方法においては、前記X線管が、モリブデンを含むターゲット材を有するモリブデンX線管であり、前記所定の特性X線がMo-Kα線で、前記所定の連続X線がMo-Kα線の2倍のエネルギーを有する連続X線であり、測定対象元素がカドミウムで、内標準元素がモリブデンであり、Mo-Kβ線の測定強度に対するCd-Kα線の測定強度の比に基づいてカドミウムを定量するのが好ましい。この場合には、分光素子が反射するMo-Kα線の2倍のエネルギーを有する連続X線が、スペクトルの重なりが障害にならないCd-Kα線と、内標準線としてのMo-Kβ線を励起するので、カドミウムについて高感度、高精度の分析ができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の第1~3実施形態の蛍光X線分析装置の概略図である。 同装置が備える分光素子の概略図である。 反射層の厚さに対するスペーサ層の厚さの比と2次線の反射率との関係を示す図である。 同装置が備える別の分光素子の概略図である。 第1実施形態の蛍光X線分析装置によってカドミウムとモリブデンを含む試料を測定したスペクトルである。 従来の蛍光X線分析装置によってカドミウムとモリブデンを含む試料を測定したスペクトルである。 図6のCd-Lα線の近辺を拡大したスペクトルである。
 以下、本発明の第1実施形態の蛍光X線分析装置1について説明する。図1に示すように、この蛍光X線分析装置1は、X線管2と、X線管2から放射されたX線3を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子43aと、前記所定の特性X線および前記所定の連続X線を含む1次X線7が照射された試料Sから発生する2次X線9の強度を測定する検出器10と、を備え、X線管2のターゲット材に含まれる元素から指定された内標準元素から発生する、前記所定の特性X線よりも高エネルギーの蛍光X線9の測定強度に対する、測定対象元素から発生する蛍光X線9の測定強度の比に基づいて測定対象元素を定量する。
 X線管2は、例えばモリブデンを含むターゲット材を有するモリブデンX線管2である。検出器10は、例えばSDD、SSDなどの半導体検出器であり、高計数まで計数できるSDDが好ましい。
 分光素子43aは、図2に示すように、反射層4aとこの反射層4aを形成する元素よりも原子番号の小さい元素を含むスペーサ層4bからなり所定の周期長dを有する層対を基板4c上に複数積層した多層膜で構成される。基板4cは、X線管2から放射されたX線3を反射して集光するように湾曲されており、例えば単結晶基板であるシリコン基板、ゲルマニウム基板などである。反射層4aとスペーサ層4bとの厚さの比は1対2、層対の周期長dは40.7Åである。分光素子43aは、入射角度θおよび出射角度θが0.5°になるように配置され(図2)、モリブデンX線管2から放射されたX線3を分光して、17.4keVのMo-Kα線、およびMo-Kα線の2倍のエネルギーである34.8keVの連続X線を強く反射する。
 反射層4aとスペーサ層4bとの現実的な厚さは8Å以上であることを考慮すると、2次線を強く反射するような反射層4aとスペーサ層4bとの厚さの比としては、1対1.4ないし1対4が好ましく、1対1.8ないし1対3がより好ましい。参考のために、図3に反射層4aの厚さに対するスペーサ層4bの厚さの比と2次線の反射率との関係を示す。
 第1実施形態の蛍光X線分析装置1の動作とともに、対応する一実施形態の蛍光X線分析方法について説明する。まず、試料S中のカドミウムを定量する分析において、モリブデンX線管2のターゲット材に含まれる元素から指定されたモリブデンを、内標準元素として例えば2ppmだけ添加した、検量線用試料Sおよび未知試料Sを準備する。
 次に、検量線用試料Sおよび未知試料Sを1試料ごとに異なる試料基板11、例えばガラス基板(図1)に滴下して乾燥させて、これらの試料基板11を蛍光X線分析装置1の図示しない試料保持部に載置する。蛍光X線分析装置1を作動させると、モリブデンX線管2から放射されたX線3が分光素子43aで反射されて、17.4keVのMo-Kα線、およびMo-Kα線の2倍のエネルギーである34.8keVの連続X線を含む1次X線7が、試料保持部によって試料測定位置(図示なし)に移動された、検量線用試料Sが滴下乾燥された試料基板11に照射される。そして、内標準元素であるモリブデンから発生するMo-Kβ線(19.6keV)の測定強度に対する、測定対象元素であるカドミウムから発生するCd-Kα線(23.1keV)の測定強度の比に基づいて、検量線が作成される。作成された検量線の縦軸はMo-Kβ線の測定強度に対する、Cd-Kα線の測定強度の比であり、横軸は検量線用試料Sのカドミウムの濃度である。
 検量線が作成されると、検量線用試料Sと同様に未知試料Sについて測定され、内標準元素であるモリブデンから発生するMo-Kβ線の測定強度に対する、測定対象元素であるカドミウムから発生するCd-Kα線の測定強度の比に基づいて、検量線から未知試料S中のカドミウムが定量される。
 第1実施形態の蛍光X線分析装置1または対応する一実施形態の蛍光X線分析方法によれば、低コストの簡易な構成で、モリブデンX線管2からの17.4keVのMo-Kα線に加えてMo-Kα線の2倍のエネルギーである34.8keVの連続X線で励起できる広いエネルギー範囲にわたって測定が可能であり、モリブデンX線管2からのMo-Kα線では励起できない元素であって、測定対象元素や内標準元素にできないモリブデンX線管2のターゲット材に含まれる元素から指定されたモリブデンを内標準元素として、迅速に高感度、高精度の分析ができる。特に、分光素子43aが反射するMo-Kα線の2倍のエネルギーを有する34.8keVの連続X線が、スペクトルの重なりが障害にならないCd-Kα線と、内標準線としてのMo-Kβ線を励起するので、カドミウムについて高感度、高精度の分析ができる。これに対し、従来の蛍光X線分析装置では、カドミウムの測定にCd-Lα線を用いていたが、空気中のAr、試料基板11であるガラス基板中のK、Caなどから発生する、Ar-Kα線、K-Kα線、Ca-Kα線などがCd-Lα線に重なるため、カドミウムについて高感度、高精度の分析ができなかった。
 なお、分光素子43aに代えて、以下に説明する分光素子44a(図4)を用いてもよい。この分光素子44aは、図4(反射層とスペーサ層の符号を省略している)に示すように、反射層とスペーサ層からなり所定の周期長を有する層対を基板4c上に複数積層した多層膜4eで構成される。多層膜4eは、多層膜4e1と多層膜4e2の2段で構成され、多層膜4e1は、前述のように湾曲された基板4c上に多層膜4e2を介して積層されている。そして、基板4cにより近い多層膜4e2の方が多層膜4e1よりも層対の所定の周期長が小さく設定されている。
 多層膜4e1においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は40.7Åであり、多層膜4e2においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は23.7Åである。基板4cに近い多層膜ほど層対の周期長が小さく設定されているので、エネルギーが小さくて吸収されやすいX線ほど、入射面から浅い位置で反射されることになり、全体としての反射の効率もよい。多層膜段数は3以上であってもよい。分光素子44aは、入射角度θおよび出射角度θが0.5°になるように配置され(図4)、モリブデンX線管2から放射されたX線3を分光して、多層膜4e1において17.4keVのMo-Kα線を強く反射する一方、多層膜4e2においてMo-Kα線よりも高エネルギーである30keVの連続X線を強く反射する。
 この分光素子44aを用いる場合には、34.8keVの連続X線に代わり、30keVの連続X線が強く反射され、分光素子43aを用いた場合と同様の効果が得られる。
 さらに、分光素子44aに代えて、以下に説明する分光素子44b(図4)を用いてもよい。この分光素子44bでは、多層膜4e1においては、反射層とスペーサ層との厚さの比は1対2、層対の周期長は40.7Åであり、多層膜4e2においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は23.7Åである。分光素子44bは、入射角度θおよび出射角度θが0.5°になるように配置され(図4)、モリブデンX線管2から放射されたX線3を分光して、多層膜4e1において17.4keVのMo-Kα線、およびMo-Kα線の2倍のエネルギーである34.8keVの連続X線を強く反射する一方、多層膜4e2においてMo-Kα線よりも高エネルギーである30keVの連続X線を強く反射する。
 この分光素子44bを用いる場合には、34.8keVの連続X線および30keVの連続X線が強く反射され、やはり分光素子43aを用いた場合と同様の効果が得られる。
 ここで、本発明と従来技術との比較のために、第1実施形態の、分光素子44bを備える蛍光X線分析装置1を用いて、1ppmのカドミウムが含有され、2ppmのモリブデンが添加されている試料Sを測定したスペクトルを図5に示す。このスペクトルでは、30keVの連続X線および34.8keVの連続X線によって励起された、Cd-Kα線およびMo-Kβ線が高強度で発生している。
 次に、モリブデンX線管、およびMo-Kα線のみを強く反射する分光素子を備える従来の蛍光X線分析装置を用いて、1ppmのカドミウムが含有され、2ppmのモリブデンが添加されている試料Sを測定したスペクトルを図6に示す。このスペクトルでは、Cd-Kα線およびMo-Kβ線がともに発生していない。これは、従来の蛍光X線分析装置では、Cd-Kα線およびMo-Kβ線を励起する連続X線が分光素子によって反射されないからである。また、図6に示すスペクトルでは、蛍光X線であるMo-Kα線が1次X線であるMo-Kα線の散乱線と重なっており、分析に用いることができない。このように、モリブデンX線管およびMo-Kα線のみを強く反射する分光素子を備える従来の蛍光X線分析装置では、Mo-Kβ線を含め、Mo-Kα線以上のエネルギーを持つ蛍光X線を分析に用いることができなかった。
 図6に示すCd-Lα線の近辺をエネルギー方向に拡大したスペクトルを図7に示す。従来の蛍光X線分析装置では、図7に示すように、Cd-Lα線が、空気中のAr、試料滴下用のガラス基板中のK、Caなどから発生する、Ar-Kα線、K-Kα線、Ca-Kα線などと重なっている。このため、従来の蛍光X線分析装置で、Cd-Lα線を用いてカドミウムを測定しても、高感度、高精度に分析できなかった。また、モリブデンX線管2およびMo-Kα線のみを強く反射する分光素子を備える従来の蛍光X線分析装置では、上述したように、Mo-Kα線およびMoーKβ線を分析に用いることができないので、モリブデンを内標準元素として分析することができなかった。このように、従来の蛍光X線分析装置では、ターゲット材に含まれる元素から指定された元素を内標準元素として分析することができなかった。
 第1実施形態の、分光素子44bを備える蛍光X線分析装置1を用いて、1ppmのカドミウムが含有され、2ppmのモリブデンが添加されている試料Sを測定したスペクトル(図5)では、カドミウムから発生するCd-Kα線が他のX線スペクトルと重なることなく高強度で発生するとともに、モリブデンから発生するMo-Kβ線も他のX線スペクトルと重なることなく高強度で発生する。
 この場合、さらに、カドミウムから発生するCd-Kα線(23.1keV)とモリブデンから発生するMo-Kβ線(19.6keV)とのエネルギーが近接しており、測定対象元素と内標準元素とのX線特性が類似しているので、試料S中の共存元素による吸収や励起の影響を高精度に補正できる。特に、試料Sを試料基板11に滴下乾燥させて測定する場合には、試料Sの滴下ごとに滴下位置や乾燥痕の形状が少し変化するが、内標準測定をすることにより、その滴下位置や乾燥痕の形状の変化による2次X線9の測定強度の変動を補正できる。このように、第1実施形態の、分光素子44bを備える蛍光X線分析装置1を用いて、内標準測定すると、従来の蛍光X線分析装置に比べて、感度、SN比とも大幅に向上する。
 なお、以上に説明した第1実施形態の蛍光X線分析装置1および対応する蛍光X線分析方法において、例えば、2mm厚のアルミニウム板であるフィルターが進退自在手段(図示なし)によって分光素子43a、44a、44bと試料Sとの間に挿入されて、試料Sが測定されてもよい。このフィルターは、Mo-Kβ線、Cd-Kα線、30keVおよび34.8keVの連続X線の強度を低減させることはほとんどないが、Mo-Kα線の強度を1/10に低減するので、Mo-Kα線によって励起されていた低エネルギー側のX線の測定強度が弱くなり、低エネルギー側の妨害線の影響を少なくすることができる。特に、測定対象元素が高エネルギー側の場合には測定対象元素以外の蛍光X線9の信号を除去して、いわゆる検出器10の不感時間を短縮できる。
 次に、第2実施形態の蛍光X線分析装置1について説明する。第2実施形態の蛍光X線分析装置1は、第1実施形態の蛍光X線分析装置1と比べて、X線管2がロジウムを含むターゲット材を有するロジウムX線管2であり、分光素子が、反射層4aとスペーサ層4bとの厚さの比が1対2、層対の周期長dが35.1Åである分光素子43b(図2)である点が異なるだけであり、他の構成は同じである。
 第2実施形態の蛍光X線分析装置1の動作とともに、対応する一実施形態の蛍光X線分析方法について説明する。試料S中のスズを定量する分析において、ロジウムX線管2のターゲット材に含まれる元素から指定されたロジウムを、内標準元素として例えば2ppmだけ添加した、検量線用試料Sおよび未知試料Sを準備する。
 次に、第1実施形態の蛍光X線分析装置1に対応する蛍光X線分析方法と同様にして検量線用試料Sおよび未知試料Sを試料基板11(図1)に滴下して乾燥させて、これらの試料基板11を試料保持部に載置する。蛍光X線分析装置1を作動させると、ロジウムX線管2から放射されたX線3が分光素子43bで反射されて、20.2keVのRh-Kα線、およびRh-Kα線の2倍のエネルギーである40.4keVの連続X線を含む1次X線7が、試料保持部によって試料測定位置に移動された、検量線用試料Sが滴下乾燥された試料基板11に照射される。そして、内標準元素であるロジウムから発生するRh-Kβ線(22.8keV)の測定強度に対する、測定対象元素であるスズから発生するSn-Kα線(25.1keV)の測定強度の比に基づいて、検量線が作成される。作成された検量線の縦軸はRh-Kβ線の測定強度に対する、Sn-Kα線の測定強度の比であり、横軸は検量線用試料Sのスズの濃度である。
 検量線が作成されると、検量線用試料Sと同様に未知試料Sについて測定され、内標準元素であるロジウムから発生するRh-Kβ線の測定強度に対する、測定対象元素であるスズから発生するSn-Kα線の測定強度の比に基づいて、検量線から未知試料S中のスズが定量される。
 第2実施形態の蛍光X線分析装置1または対応する一実施形態の蛍光X線分析方法によれば、低コストの簡易な構成で、ロジウムX線管2からの20.2keVのRh-Kα線に加えてRh-Kα線の2倍のエネルギーである40.4keVの連続X線で励起できる広いエネルギー範囲にわたって測定が可能であり、ロジウムX線管2からのRh-Kα線では励起できない元素であって、測定対象元素や内標準元素にできないロジウムX線管2のターゲット材に含まれる元素から指定されたロジウムを内標準元素として、迅速に高感度、高精度の分析ができる。特に、分光素子43bが反射するRh-Kα線の2倍のエネルギーを有する40.4keVの連続X線が、スペクトルの重なりが障害にならないSn-Kα線と、内標準線としてのRh-Kβ線を励起するので、スズについて高感度、高精度の分析ができる。
 なお、分光素子43bに代えて、以下に説明する分光素子44c(図4)を用いてもよい。この分光素子44cでは、多層膜4e1においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は35.1Åであり、多層膜4e2においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は23.7Åである。分光素子44cは、入射角度θおよび出射角度θが0.5°になるように配置され(図4)、ロジウムX線管2から放射されたX線3を分光して、多層膜4e1において20.2keVのRh-Kα線を強く反射する一方、多層膜4e2においてRh-Kα線よりも高エネルギーである30keVの連続X線を強く反射する。
 この分光素子44cを用いる場合には、40.4keVの連続X線に代わり、30keVの連続X線が強く反射され、分光素子43bを用いた場合と同様の効果が得られる。
 さらに、分光素子44cに代えて、以下に説明する分光素子44d(図4)を用いてもよい。この分光素子44dでは、多層膜4e1においては、反射層とスペーサ層との厚さの比は1対2、層対の周期長は35.1Åであり、多層膜4e2においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は23.7Åである。分光素子44dは、入射角度θおよび出射角度θが0.5°になるように配置され(図4)、ロジウムX線管2から放射されたX線3を分光して、多層膜4e1において20.2keVのRh-Kα線およびRh-Kα線の2倍のエネルギーである40.4keVの連続X線を強く反射する一方、多層膜4e2においてRh-Kα線よりも高エネルギーである30keVの連続X線を強く反射する。
 この分光素子44dを用いる場合には、30keVの連続X線および40.4keVの連続X線が強く反射され、やはり分光素子43bを用いた場合と同様の効果が得られる。
 次に、第3実施形態の蛍光X線分析装置1について説明する。第3実施形態の蛍光X線分析装置1は、第1実施形態の蛍光X線分析装置1と比べて、X線管2がタングステンを含むターゲット材を有するタングステンX線管2であり、分光素子が、反射層4aとスペーサ層4bとの厚さの比が1対1、層対の周期長dが73.2Åである分光素子43c(図2)である点が異なるだけであり、他の構成は同じである。
 第3実施形態の蛍光X線分析装置1の動作とともに、対応する一実施形態の蛍光X線分析方法について説明する。試料S中のカドミウムとクロムを定量する分析において、タングステンX線管2のターゲット材に含まれる元素から指定されたタングステンを、内標準元素として例えば2ppmだけ添加した、検量線用試料Sおよび未知試料Sを準備する。
 次に、第1実施形態の蛍光X線分析装置1に対応する蛍光X線分析方法と同様にして検量線用試料Sおよび未知試料Sを試料基板11に滴下して乾燥させて、これらの試料基板11を試料保持部に載置する。蛍光X線分析装置1を作動させると、タングステンX線管2から放射されたX線3が分光素子43cで反射されて、9.7keVのW-Lβ1線、およびW-Lβ1線の3倍のエネルギーである29.0keVの連続X線を含む1次X線7が、試料保持部によって試料測定位置に移動された、検量線用試料Sが滴下乾燥された試料基板11に照射される。
 そして、内標準元素であるタングステンから発生するW-Lγ線(11.3keV)の測定強度に対する、測定対象元素であるカドミウムから発生するCd-Kα線(23.1keV)の測定強度の比、および、内標準元素であるタングステンから発生するW-Lγ線(11.3keV)の測定強度に対する、測定対象元素であるクロムから発生するCr-Kα線(5.4keV)の測定強度の比に基づいて、カドミウムとクロムの検量線が作成される。作成されたカドミウムの検量線の縦軸はW-Lγ線の測定強度に対する、Cd-Kα線の測定強度の比であり、横軸は検量線用試料Sのカドミウムの濃度である。作成されたクロムの検量線の縦軸はW-Lγ線の測定強度に対する、Cr-Kα線の測定強度の比であり、横軸は検量線用試料Sのクロムの濃度である。
 それぞれの検量線が作成されると、検量線用試料Sと同様に未知試料Sについて測定され、内標準元素であるタングステンから発生するW-Lγ線の測定強度に対する、測定対象元素であるカドミウムから発生するCd-Kα線の測定強度の比に基づいて、カドミウムの検量線から未知試料S中のカドミウムが定量される。カドミウムと同様にクロムについても、クロムの検量線から未知試料S中のクロムが定量される。
 第3実施形態の蛍光X線分析装置1または対応する一実施形態の蛍光X線分析方法によれば、低コストの簡易な構成で、タングステンX線管2からの9.7keVのW-Lβ1線に加えてW-Lβ1線の3倍のエネルギーである29.0keVの連続X線で励起できる広いエネルギー範囲にわたって測定が可能であり、タングステンX線管2からのW-Lβ1線では励起できない元素であって、測定対象元素や内標準元素にできないタングステンX線管2のターゲット材に含まれる元素から指定されたタングステンを内標準元素として、迅速に高感度、高精度の分析ができる。特に、分光素子43cが反射するW-Lβ1線の3倍のエネルギーを有する29.0keVの連続X線が、スペクトルの重なりが障害にならないCd-Kα線およびCr-Kα線と、内標準線としてのW-Lγ線を励起するので、カドミウムとクロムについて高感度、高精度の分析ができる。
 なお、分光素子43cに代えて、以下に説明する分光素子44e(図4)を用いてもよい。分光素子44eでは、多層膜4e1においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は73.2Åであり、多層膜4e2においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は23.7Åである。分光素子44eは、入射角度θおよび出射角度θが0.5°になるように配置され(図4)、タングステンX線管2から放射されたX線3を分光して、多層膜4e1において9.7keVのW-Lβ1線を強く反射する一方、多層膜4e2においてW-Lβ1線よりも高エネルギーである30keVの連続X線を強く反射する。
 この分光素子44eを用いる場合には、29.0keVの連続X線に代わり、30keVの連続X線が強く反射され、分光素子43cを用いた場合と同様の効果が得られる。
 さらに、分光素子44eに代えて、以下に説明する分光素子44f(図4)を用いてもよい。この分光素子44fでは、多層膜4e1においては、反射層とスペーサ層との厚さの比は1対2、層対の周期長は73.2Åであり、多層膜4e2においては、反射層とスペーサ層との厚さの比は1対1、層対の周期長は23.7Åである。分光素子44fは、入射角度θおよび出射角度θが0.5°になるように配置され(図4)、タングステンX線管2から放射されたX線3を分光して、多層膜4e1において9.7keVのW-Lβ1線およびW-Lβ1線の3倍のエネルギーである29.0keVの連続X線を強く反射する一方、多層膜4e2においてW-Lβ1線よりも高エネルギーである30keVの連続X線を強く反射する。
 この分光素子44fを用いる場合には、30keVの連続X線および29.0keVの連続X線が強く反射され、やはり分光素子43cを用いた場合と同様の効果が得られる。
 第1~第3実施形態の蛍光X線分析装置1および対応する各実施形態の蛍光X線分析方法においては、分光素子43a~43c、44a~44fを単湾曲分光素子として説明したが、平らな分光素子であってもよい。さらに、分光素子43a~43c、44a~44fについてX線3の入射角度θが0.5°になるように配置されていると説明したが、X線3の入射位置が中央部から離れるに従い、入射角度θを連続的に変化させて、これに合わせて多層膜の層対の周期長dを連続的に変えてもよく、これにより、分光素子43a~43c、44a~44fから反射されるX線の集光特性と単色性を向上させることができる。
 第1~第3実施形態の蛍光X線分析装置1および対応する各実施形態の蛍光X線分析方法においては、検量線を用いて未知試料S中の測定対象元素を定量したが、分析元素における、相対的な測定強度比である相対感度をあらかじめ蛍光X線分析装置1に記億させておき、検量線を用いず、内標準元素および測定対象元素の測定強度と記憶させた相対感度とを用いて定量値を算出してもよい。
 なお、内標準法としては、タングステンX線管を備え、連続X線を分光素子で単色化せずに1次X線とする従来の蛍光X線分析装置を用いて、カドミウムを測定対象元素とし、モリブデン、タングステンなどを内標準元素として、Cd-Kα線を測定線として分析できるが、Cd-Kα線に連続X線が重なって大きなバックグラウンドとなるため、本発明のような高感度、高精度の分析はできない。
 以上のとおり、図面を参照しながら好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、添付の請求の範囲から定まるこの発明の範囲内のものと解釈される。
1  蛍光X線分析装置
2  X線管
3  X線
7  1次X線
9  2次X線(蛍光X線)
10 検出器
11 試料基板
43a~43c、44a~44f  分光素子
S  試料

Claims (6)

  1.  X線管と、
     前記X線管から放射されたX線を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子と、
     前記所定の特性X線および前記所定の連続X線を含む1次X線が照射された試料から発生する2次X線の強度を測定する検出器と、
     を備え、
     前記X線管のターゲット材に含まれる元素から指定された内標準元素から発生する、前記所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線の測定強度の比に基づいて測定対象元素を定量する蛍光X線分析装置。
  2.  請求項1に記載の蛍光X線分析装置において、
     前記分光素子が、原子番号42から52までの元素のうち少なくとも1つの元素の蛍光X線のKα線を励起する、前記所定の連続X線を反射する蛍光X線分析装置。
  3.  請求項1または2に記載の蛍光X線分析装置において、
     前記X線管が、モリブデンを含むターゲット材を有するモリブデンX線管であり、
     前記所定の特性X線がMo-Kα線で、前記所定の連続X線がMo-Kα線の2倍のエネルギーを有する連続X線であり、
     測定対象元素がカドミウムで、内標準元素がモリブデンであり、Mo-Kβ線の測定強度に対するCd-Kα線の測定強度の比に基づいてカドミウムを定量する蛍光X線分析装置。
  4.  X線管と、
     前記X線管から放射されたX線を分光する分光素子であって、所定の特性X線、および、その所定の特性X線よりも高エネルギーである所定の連続X線を反射する分光素子と、
     前記所定の特性X線および前記所定の連続X線を含む1次X線が照射された試料から発生する2次X線の強度を測定する検出器と、
     を備える蛍光X線分析装置を用いて、
     前記X線管のターゲット材に含まれる元素から指定した内標準元素を添加した試料について、前記X線管のターゲット材に含まれる元素から指定した内標準元素から発生する、前記所定の特性X線よりも高エネルギーの蛍光X線の測定強度に対する、測定対象元素から発生する蛍光X線の測定強度の比に基づいて測定対象元素を定量する蛍光X線分析方法。
  5.  請求項4に記載の蛍光X線分析方法において、
     前記分光素子が、原子番号42から52までの元素のうち少なくとも1つの元素の蛍光X線のKα線を励起する、前記所定の連続X線を反射する蛍光X線分析装置を用いて、
     原子番号42から52までの元素のうち少なくとも1つの元素を測定対象元素として指定し、指定した測定対象元素の蛍光X線のKα線の強度を測定する蛍光X線分析方法。
  6.  請求項4または5に記載の蛍光X線分析方法において、
     前記X線管が、モリブデンを含むターゲット材を有するモリブデンX線管であり、
     前記所定の特性X線がMo-Kα線で、前記所定の連続X線がMo-Kα線の2倍のエネルギーを有する連続X線であり、
     測定対象元素がカドミウムで、内標準元素がモリブデンであり、Mo-Kβ線の測定強度に対するCd-Kα線の測定強度の比に基づいてカドミウムを定量する蛍光X線分析方法。
PCT/JP2017/005679 2016-03-30 2017-02-16 蛍光x線分析装置および蛍光x線分析方法 WO2017169247A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-068998 2016-03-30
JP2016068998A JP6709377B2 (ja) 2016-03-30 2016-03-30 蛍光x線分析装置および蛍光x線分析方法

Publications (1)

Publication Number Publication Date
WO2017169247A1 true WO2017169247A1 (ja) 2017-10-05

Family

ID=59963941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005679 WO2017169247A1 (ja) 2016-03-30 2017-02-16 蛍光x線分析装置および蛍光x線分析方法

Country Status (2)

Country Link
JP (1) JP6709377B2 (ja)
WO (1) WO2017169247A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873725A (zh) * 2018-08-30 2020-03-10 株式会社岛津制作所 X射线分析装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028608A (ko) 2018-07-04 2021-03-12 가부시키가이샤 리가쿠 형광 x선 분석 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224545A (ja) * 1988-07-12 1990-01-26 Fujikura Ltd 蛍光x線分析方法
JP2002090320A (ja) * 2000-09-18 2002-03-27 Ours Tex Kk X線照射装置
JP2002350373A (ja) * 2001-05-29 2002-12-04 Seiko Instruments Inc 複合x線分析装置
JP2004150990A (ja) * 2002-10-31 2004-05-27 Ours Tex Kk 蛍光x線分析装置
JP2008058076A (ja) * 2006-08-30 2008-03-13 Rigaku Industrial Co 蛍光x線分析装置および蛍光x線分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224545A (ja) * 1988-07-12 1990-01-26 Fujikura Ltd 蛍光x線分析方法
JP2002090320A (ja) * 2000-09-18 2002-03-27 Ours Tex Kk X線照射装置
JP2002350373A (ja) * 2001-05-29 2002-12-04 Seiko Instruments Inc 複合x線分析装置
JP2004150990A (ja) * 2002-10-31 2004-05-27 Ours Tex Kk 蛍光x線分析装置
JP2008058076A (ja) * 2006-08-30 2008-03-13 Rigaku Industrial Co 蛍光x線分析装置および蛍光x線分析方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110873725A (zh) * 2018-08-30 2020-03-10 株式会社岛津制作所 X射线分析装置

Also Published As

Publication number Publication date
JP6709377B2 (ja) 2020-06-17
JP2017181309A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
CN105937890B (zh) 定量x射线分析-基体厚度校正
Brouwer Theory of XRF
Beckhoff Reference-free X-ray spectrometry based on metrology using synchrotron radiation
JP6874835B2 (ja) X線分光分析装置
JP6142135B2 (ja) 斜入射蛍光x線分析装置および方法
JP7395775B2 (ja) 結晶解析装置及び複数の検出器素子を使用するx線吸収分光法のためのシステム及び方法
JP5990734B2 (ja) 蛍光x線分析装置
JP2013137273A5 (ja)
JP2017223638A (ja) X線分光分析装置及び元素分析方法
WO2005005969A1 (ja) エネルギー分散型エックス線回折・分光装置
RU2623689C2 (ru) Способ и устройство для проведения рентгенофлуоресцентного анализа
JP6026936B2 (ja) 異物検出装置
WO2017169247A1 (ja) 蛍光x線分析装置および蛍光x線分析方法
Thuriot-Roukos et al. Design of a multi-well plate for high-throughput characterization of heterogeneous catalysts by XRD, FT-IR, Raman and XRF spectroscopies
JP2001124711A (ja) 蛍光x線分析方法及び試料構造の評価方法
RU2415406C1 (ru) Рентгенофлуоресцентный спектрометр с полным внешним отражением
US9851313B2 (en) Quantitative X-ray analysis—ratio correction
JP2012108126A (ja) 回折装置
JP6256152B2 (ja) X線測定装置
JP2004333131A (ja) 全反射蛍光xafs測定装置
WO2021059597A1 (ja) 蛍光x線分析装置
JP4473246B2 (ja) 蛍光x線分析装置および蛍光x線分析方法
KR20190027316A (ko) 형광 x 선 분석 장치 및 형광 x 선 분석 방법
SU609080A1 (ru) Устройство дл бездисперсионного рентгенофлуоресцентного анализа
JP2014196925A (ja) 蛍光x線分析装置及びそれに用いられる深さ方向分析方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773795

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773795

Country of ref document: EP

Kind code of ref document: A1