WO2017168686A1 - 建設機械の駆動制御装置 - Google Patents

建設機械の駆動制御装置 Download PDF

Info

Publication number
WO2017168686A1
WO2017168686A1 PCT/JP2016/060688 JP2016060688W WO2017168686A1 WO 2017168686 A1 WO2017168686 A1 WO 2017168686A1 JP 2016060688 W JP2016060688 W JP 2016060688W WO 2017168686 A1 WO2017168686 A1 WO 2017168686A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
pilot pressure
signal
control
upper limit
Prior art date
Application number
PCT/JP2016/060688
Other languages
English (en)
French (fr)
Inventor
守田 雄一朗
枝村 学
石川 広二
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to KR1020187005812A priority Critical patent/KR102061043B1/ko
Priority to EP16896904.6A priority patent/EP3438353B1/en
Priority to PCT/JP2016/060688 priority patent/WO2017168686A1/ja
Priority to JP2018508282A priority patent/JP6523554B2/ja
Priority to CN201680051677.5A priority patent/CN107949676B/zh
Priority to US15/755,103 priority patent/US10760245B2/en
Publication of WO2017168686A1 publication Critical patent/WO2017168686A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • E02F3/437Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like providing automatic sequences of movements, e.g. linear excavation, keeping dipper angle constant
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/24Safety devices, e.g. for preventing overload
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • E02F9/265Sensors and their calibration for indicating the position of the work tool with follow-up actions (e.g. control signals sent to actuate the work tool)
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present invention relates to a drive control device for a construction machine suitable for use in a construction machine such as a hydraulic shovel, for example.
  • a construction machine such as a hydraulic shovel can perform digging with a working device (front) including a boom, an arm, a bucket and the like, travel of the machine with a lower traveling body, and turning of an upper revolving body.
  • the hydraulic shovel includes an operation lever operated by the operator for digging, traveling, turning, etc., a plurality of hydraulic actuators for performing operations such as digging, traveling, turning, etc., and each hydraulic actuator.
  • the main pump that supplies pressure oil for driving, the engine that drives the main pump, a plurality of control valves that distribute the pressure oil to each hydraulic actuator according to the lever operation of the operator, and the control valve And a pilot pump for generating a pilot pressure for operating the opening and closing.
  • the pilot pressure by controlling the pilot pressure according to the operation amount of the control lever, the pressure oil is distributed to each hydraulic actuator according to the lever operation of the operator, and can be operated according to the operator's intention .
  • a pilot pressure is controlled by a hydraulic circuit.
  • the control by the controller is added to the control of the pilot pressure so that the bucket does not collide with the vehicle body including the cab of the hydraulic shovel or the digging beyond the preset target excavating surface. is there.
  • Such a hydraulic shovel has an attitude sensor (for example, an inclination angle sensor, a potentiometer, etc.) that measures the attitude of the vehicle body or the work device, a pressure sensor that measures a pilot pressure according to the operation amount of the operation lever, and the lever operation amount Proportional solenoid valve for reducing the pilot pressure generated according to the operation, another proportional solenoid valve for increasing the pilot pressure in relation to the lever operation, attitude information of the vehicle or work equipment by the attitude sensor, and lever operation information by the pressure sensor And a controller for driving the proportional solenoid valve on the basis of In this case, the controller corrects the operation of the work device by reducing or increasing the pilot pressure so that the work device does not deviate from the predetermined spatial area when the operator operates the work device.
  • an attitude sensor for example, an inclination angle sensor, a potentiometer, etc.
  • Such a hydraulic shovel is based on an electric lever that outputs an electric operation signal according to a lever operation amount, a proportional solenoid valve that controls pilot pressure of a plurality of hydraulic actuators, and an operation signal that the electric lever outputs. And a controller for driving the proportional solenoid valve.
  • the controller operates the machine by controlling each hydraulic pilot pressure according to the lever operation amount.
  • an attitude sensor that measures the attitude of the vehicle body and the working device.
  • the pilot pressure of each hydraulic actuator can be controlled by the controller to operate the working device so that the working device does not deviate from the predetermined spatial area.
  • Patent Document 1 discloses an electric lever that outputs a lever operation amount signal according to an operation amount, and a neutral position signal output unit that outputs a neutral position signal when the electric lever is at a neutral position.
  • a controller that drives a proportional solenoid valve that controls a pilot pressure of each actuator based on a lever operation amount signal, and a blocking device that turns on / off a drive signal between the controller and the proportional solenoid valve based on a neutral position signal
  • the shut-off device shuts off the drive signal of the proportional solenoid valve of the corresponding actuator when the control lever of each actuator is in the neutral position.
  • the drive control device can drive an actuator whose lever operation has been performed by the operator.
  • the actuator whose control lever is in the neutral position can not be driven since the drive signal of the proportional solenoid valve is cut off.
  • the drive control device can not control the working device so that the working device does not deviate from a predetermined spatial area.
  • applying the technique of patent document 1 to the hydraulic shovel which controls pilot pressure according to lever operation with a hydraulic circuit is also considered.
  • the proportional solenoid valve that increases the pilot pressure can not be controlled by the controller regardless of the lever operation so that the working device does not deviate from the predetermined spatial area, and the same problem occurs.
  • the object of the present invention is to allow the machine to be stopped by setting the control lever to the neutral position regardless of whether the controller (control means) is normal, and the working device has a predetermined spatial area. Providing a drive control device for a construction machine that can be controlled so as not to deviate from the above.
  • a drive control device for a construction machine comprises a plurality of operating levers for operating a plurality of hydraulic actuators provided in the machine, and an operation amount measuring means for outputting an operation signal corresponding to the operation amount of each operating lever.
  • Attitude measurement means for outputting an attitude signal according to the attitude of the machine, a plurality of control valves for controlling the drive of each hydraulic actuator, and a drive for driving each control valve based on the operation signal and the attitude signal
  • And control means for outputting a signal.
  • the feature of the configuration adopted by the invention of claim 1 is a drive permission judging means for judging whether or not the driving of each hydraulic actuator is permitted based on the operation signal, and The control signal is driven by the drive signal for the hydraulic actuator whose drive is permitted by the drive permission determination unit, and the control valve is driven for the hydraulic actuator whose drive is not permitted by the drive permission determination unit.
  • drive signal selection means for selecting the drive signal is provided.
  • the feature of the configuration adopted by the invention of claim 4 is the drive signal upper limit determination means for determining the upper limit value of the drive signal for driving the control valve of each hydraulic actuator based on the operation signal; For the hydraulic actuator whose signal is equal to or less than the upper limit value determined by the drive signal upper limit determination means, the control signal is driven by the drive signal, and the drive signal is the upper limit determined by the drive signal upper limit determination means A drive signal selection means is provided for selecting the drive signal so as to drive the control valve at the upper limit value for the hydraulic actuator exceeding the value.
  • the drive control device for a construction machine can stop the machine by setting the control lever to the neutral position regardless of whether the control means is normal, and the space defined by the work device is predetermined. It is possible to control so as not to deviate from the target area.
  • FIG. 2 is a block diagram schematically showing a hydraulic system (hydraulic circuit) and an electrical system (control circuit) of the hydraulic shovel. It is a block diagram which shows the drive permission control part in FIG. It is the figure seen from the same direction of FIG. 1 which shows an example of operation
  • a hydraulic shovel 1 which is a typical example of a construction machine, includes a crawlable lower traveling unit 2 and an upper revolving unit pivotally mounted on the lower traveling unit 2 via a turning device 3. 4 and a working device 5 mounted on the front side of the upper swing body 4 in the front and rear direction so as to be movable up and down.
  • the lower traveling body 2, the turning device 3 and the upper swinging body 4 constitute the vehicle body of the hydraulic shovel 1, and the lower traveling body 2, the swinging device 3, the upper swinging body 4 and the working device 5 are machines (construction machines) Are configured.
  • the undercarriage 2 includes a track frame 2A, drive wheels 2B provided on both left and right sides of the track frame 2A, and front and rear with respect to the drive wheels 2B on both left and right sides of the track frame 2A.
  • An idler wheel 2C provided on the opposite side of the direction, and a crawler belt 2D (only the left side is shown) wound around the drive wheel 2B and the idler wheel 2C.
  • the left and right driving wheels 2B are connected to the left and right traveling hydraulic motors 2E (only the left side is shown) via a reduction mechanism. That is, the driving wheel 2B is rotationally driven by the traveling hydraulic motor 2E.
  • the traveling hydraulic motor 2E constitutes a hydraulic actuator that causes the hydraulic excavator 1 as a vehicle to travel.
  • the turning device 3 is provided on the lower traveling body 2.
  • the turning device 3 is configured to include, for example, a turning bearing, a reduction mechanism (none of which is shown), and a turning hydraulic motor 3A.
  • the turning device 3 turns the upper swing body 4 with respect to the lower traveling body 2.
  • the swing hydraulic motor 3A constitutes a hydraulic actuator that causes the upper swing body 4 to swing together with the work device 5.
  • the work device 5 constitutes a shovel mechanism that is the front of the hydraulic shovel 1.
  • the work device 5 includes, for example, a boom 5A, an arm 5B, a bucket 5C as a work tool (attachment), a boom cylinder 5D for driving them, an arm cylinder 5E, and a bucket cylinder 5F as the work tool cylinder.
  • the boom 5A, the arm 5B, and the bucket 5C are pin-connected to each other.
  • the work device 5 can perform the digging operation by extending or contracting the cylinders 5D, 5E, 5F.
  • each of the cylinders 5D, 5E, 5F constitutes a hydraulic actuator that causes the working device 5 to perform the digging operation.
  • the boom cylinder 5D consisting of hydraulic cylinders
  • the arm cylinder 5E the bucket cylinder 5F
  • the left and right traveling hydraulic motors 2E consisting of hydraulic motors and the swing hydraulic motor 3A are driven based on the supply of pressure oil.
  • the plurality of hydraulic actuators 5D, 5E, 5F, 2E, 3A are provided in a machine (construction machine) configured to include the lower traveling body 2, the swing device 3, the upper swing body 4 and the work device 5. .
  • the upper swing body 4 is a support structure, a swing frame 6 to which the working device 5 is attached on the front side in the front and rear direction, an engine 10 provided on the swing frame 6, a main pump 11, a pilot pump 12, and control
  • a building cover 7 for accommodating the valve device 14 and the like, a counterweight 8 for balancing the weight with the working device 5, and a cab 9 on which an operator gets on are provided.
  • the engine 10 is configured using an internal combustion engine such as a diesel engine, for example.
  • a main pump 11 which is a hydraulic pump and a pilot pump 12 which is another hydraulic pump are mechanically connected.
  • the engine 10 is controlled by a fuel injection amount controlled by an engine controller 10A also called an ECU, whereby the rotational speed (rotational speed) and driving force are controlled.
  • the engine controller 10A is connected to a main controller 32 described later.
  • the driving force of the engine 10 is transmitted to the main pump 11 and the pilot pump 12.
  • the engine 10 constitutes a motor (rotation source, drive source) for rotationally driving the main pump 11 and the pilot pump 12.
  • the prime mover for driving the main pump 11 and the pilot pump 12 can be composed of only an engine serving as an internal combustion engine, and may be composed of, for example, an engine and an electric motor, or an electric motor alone.
  • the main pump 11 is rotationally driven by the engine 10.
  • the main pump 11 constitutes a main hydraulic pressure source together with a hydraulic oil tank 13 (see FIG. 2) for storing hydraulic oil.
  • the main pump 11 is formed of, for example, a variable displacement swash plate type hydraulic pump or the like, and has a regulator (a variable displacement portion, tilting actuator) 11A (see FIG. 2) for adjusting the pump displacement.
  • the regulator 11A is connected to (the vehicle body control unit 36 of) the main controller 32 and variably controlled by (the vehicle body control unit 36 of) the main controller 32. That is, the pump displacement of the main pump 11 is adjusted by the main controller 32.
  • the main pump 11 is rotationally driven by the engine 10 to supply pressure oil to the hydraulic actuators 5D, 5E, 5F, 2E, 3A via the control valve device 14.
  • the pilot pump 12 is rotationally driven by the engine 10 in the same manner as the main pump 11.
  • the pilot pump 12 is configured, for example, as a fixed displacement hydraulic pump, and configures a pilot hydraulic pressure source together with the hydraulic oil tank 13.
  • the pilot pump 12 supplies a pilot pressure to the control valve device 14 via the control lever device 15 provided in the cab 9.
  • the control valve device 14 distributes the pressure oil generated by the main pump 11 to the actuators 5D, 5E, 5F, 2E, 3A.
  • the control valve device 14 is provided between the main pump 11 and each hydraulic actuator 5D, 5E, 5F, 2E, 3A.
  • the control valve device 14 is a control valve group constituted by a plurality of control valves 14A (see FIG. 2).
  • Each control valve 14A is formed of, for example, a directional control valve with six ports and three positions, and switches and controls the pressure oil supplied from the main pump 11 to each hydraulic actuator 5D, 5E, 5F, 2E, 3A.
  • each control valve 14A is operated (switched) by the operation lever device 15.
  • each control valve 14A of the control valve device 14 is provided with a pair of hydraulic pilot parts (not shown).
  • a pilot pressure (switching signal) based on the operation of the control lever device 15 is supplied to the hydraulic pressure pilot portion of the control valve 14A.
  • each control valve 14A controls the drive of each hydraulic actuator 5D, 5E, 5F, 2E, 3A.
  • a driver's seat (not shown) on which the operator is seated, a plurality of control lever devices 15 operated by the operator, and various information of the machine to the operator as well as monitor / operation to set the operation mode etc.
  • a panel device 16 or the like is provided.
  • a main controller 32 which controls the main pump 11 and the control valve device 14 and which gives an instruction to the engine controller 10A is provided.
  • the main controller 32 is provided in the cab 9 of the upper swing body 4 in FIG. 1, for example, the main controller 32 may be provided outside the cab 9 of the upper swing body 4.
  • the plurality of control lever devices 15 are configured by a control lever and pedal device for traveling, a control lever device for work, and the like. That is, each control lever device 15 is configured as a pilot control valve (hydraulic lever device) including, for example, a pressure reducing valve type pilot valve, and has a control lever 15A operated by the operator.
  • the control lever device 15 including the control lever 15A operates the respective hydraulic actuators 5D, 5E, 5F, 2E, 3A.
  • each control valve 14A constituting the control valve device 14 It is supplied to (hydraulic pilot part).
  • the position of the spool of each control valve 14A is displaced, and the direction and flow rate of the pressure oil supplied to and discharged from each hydraulic actuator 5D, 5E, 5F, 2E, 3A are controlled.
  • the traveling of the body 2 and the turning of the upper swing body 4 can be performed.
  • the monitor / operation panel device 16 is for notifying the operator of the state of the machine such as the remaining amount of fuel and the temperature of the engine cooling water, and selecting and setting the operation mode of the hydraulic shovel 1 and the like.
  • the monitor / operation panel device 16 is configured to include, for example, a liquid crystal monitor as a display screen, an acoustic device for outputting a sound, and an operation panel as an input interface of an operator.
  • the monitor screen displays an indication that there is an abnormality or details of the abnormality on the display screen, and / or sounds such as alarm sounds and sounds from the sound device. Output.
  • FIG. 2 in order to avoid that a drawing becomes complicated, several hydraulic equipment is represented with one hydraulic equipment typically.
  • the plurality of control valves 14A constituting the control valve device 14 are represented by one control valve 14A, and the plurality of hydraulic actuators 5D, 5E, 5F, 2E, 3A are one hydraulic actuator.
  • a plurality of control lever devices 15 are represented by a single control lever device 15
  • a plurality of pressure reduction proportional solenoid valves 23 are represented by a single pressure reduction proportional solenoid valve 23
  • the pressure boosting proportional solenoid valve 25 is represented by a single pressure boosting proportional solenoid valve 25.
  • the hydraulic circuit 21 of the actual hydraulic shovel for example, six hydraulic actuators 22, six control valves 14A, and four operating lever devices 15 (for example, two corresponding to operations in four directions in total)
  • a working control lever device, two traveling levers and pedal devices) four or six pressure reducing proportional solenoid valves 23, and four or six pressure increasing proportional solenoid valves 25 are provided.
  • a plurality of pressure sensors 28 and a plurality of other pressure sensors 29 described later are also typically represented by one.
  • the hydraulic circuit 21 of the actual hydraulic shovel 1 includes, for example, four or six pressure sensors 28 and another pressure sensor 29.
  • the hydraulic circuit 21 of the hydraulic shovel 1 includes an engine 10, a main pump 11, a plurality of control valves 14 A, a plurality of hydraulic actuators 22, a pilot pump 12, and a plurality of operation lever devices 15. , A plurality of pressure reducing proportional solenoid valves 23, a plurality of pressure increasing proportional solenoid valves 25, a plurality of pressure sensors 28, a plurality of other pressure sensors 29, a blocking solenoid valve 30, an attitude sensor 31, and a main controller 32 and a monitor / operation panel device 16.
  • the pressure reducing proportional solenoid valve 23 is provided between the control lever device 15 and (the pilot portion of) the control valve 14A. That is, the pressure reducing proportional solenoid valve 23 is provided in the middle of the pilot pipeline 24 connecting the operation lever device 15 and the control valve 14A.
  • the pressure reducing proportional solenoid valve 23 is, for example, a normally open proportional solenoid valve, and is connected to (the area limiting control unit 40 of) the main controller 32.
  • the pressure reducing proportional solenoid valve 23 reduces the pilot pressure supplied to (the pilot portion of) the control valve 14A based on the command (drive signal) of the main controller 32.
  • the pressure intensifying proportional solenoid valve 25 is provided between the pilot pump 12 and (the pilot portion of) the control valve 14A. That is, the pressure-increasing proportional solenoid valve 25 branches from the pilot discharge pipeline 26 connecting the pilot pump 12 and the control lever device 15, and the pressure-reducing proportional solenoid valve 23 and the control valve 14A in the pilot pipeline 24. And a pilot branch line 27 connected therebetween.
  • the pressure-increasing proportional solenoid valve 25 is, for example, a normally-closed proportional solenoid valve, and is connected to (the drive allowance control unit 44 of) the main controller 32.
  • the pressure increase proportional solenoid valve 25 increases the pilot pressure supplied to (the pilot portion of) the control valve 14A based on the command (drive signal) of the main controller 32.
  • the pressure sensor 28 is provided between the control lever device 15 and the pressure reducing proportional solenoid valve 23 in the pilot line 24.
  • the pressure sensor 28 is connected to the main controller 32 (the vehicle body control unit 36, the area limit control unit 40, and the drive allowance control unit 44).
  • the pressure sensor 28 detects a pilot pressure 37 output from the control lever device 15, and outputs a detection signal corresponding to the pilot pressure 37 to the main controller 32. That is, the pressure sensor 28 constitutes operation amount measuring means for outputting an operation signal corresponding to the operation amount of each operation lever 15A.
  • Another pressure sensor 29 is provided in the pilot line 24 between the connection with the pilot branch line 27 and (the pilot part of) the control valve 14A. Another pressure sensor 29 is connected to (the drive allowance control unit 44 of) the main controller 32. Another pressure sensor 29 detects a pilot pressure 35 supplied to the pilot portion of the control valve 14A, and outputs a detection signal corresponding to the pilot pressure 35 to the main controller 32.
  • the shutoff solenoid valve 30 is provided between the pilot pump 12 and the control lever device 15 in the pilot discharge line 26, more specifically, between the branch portion of the pilot branch line 27 and the pilot pump 12. ing.
  • the shutoff solenoid valve 30 is constituted of, for example, a normally open solenoid switching valve, and is connected to (the drive allowance control unit 44 of) the main controller 32.
  • the shutoff solenoid valve 30 shuts off the original pressure 34 of the pilot pressure supplied from the pilot pump 12 to the control lever device 15 and the pressure-increasing proportional solenoid valve 25 based on the command of the main controller 32.
  • the posture sensor 31 is a sensor (a sensor group including a plurality of sensors) that detects (measures) the posture of the hydraulic shovel 1. That is, the posture sensor 31 is provided in a machine including the working device 5 and the upper swing body 4 and detects (measures) various state quantities for estimating the posture of the machine.
  • the attitude sensor 31 detects, for example, an inclination angle sensor that measures the inclination of the upper swing body 4, an angle sensor that detects an angle (for example, a swing angle) of the upper swing body 4, and a rotation angle of the boom 5A of the work device 5.
  • attitude sensor 31 constitutes attitude measurement means for outputting an attitude signal (detection signal) according to the attitude of the machine.
  • the rotation angle sensor of the working device 5 can be configured by, for example, a potentiometer, an inclination angle sensor, a cylinder stroke sensor, and / or a combination thereof.
  • the angle sensor of the upper revolving superstructure 4 is configured by measuring the angle on the earth coordinates using the Global Positioning Navigation Satellite System (GNSS). It is also good.
  • GNSS Global Positioning Navigation Satellite System
  • Such an attitude sensor 31 is connected to (the area restriction control unit 40 of) the main controller 32.
  • the main controller 32 (area restriction control unit 40) has a function of controlling the work device 5 so that the work device 5 does not exceed a preset space area, that is, measurement data (detection signal) of the attitude sensor 31 and the operator
  • An area limit control function of controlling the work device 5 based on lever operation for example, a detection signal of the pressure sensor 28.
  • Applications of the area limitation control function include the avoidance of a collision of the working device 5 with the cab 9, the prevention of over digging in a digging operation, the avoidance of a collision with a facility above a machine at a work site, and the like.
  • the driving force of the engine 10 is transmitted to the main pump 11 and the pilot pump 12.
  • the main pump 11 generates pressure oil 33 that drives (actuates) each hydraulic actuator 22.
  • the pilot pump 12 generates a source pressure 34 of a pilot pressure which allows the operator to control the control valve 14A through the control lever 15A of the control lever device 15.
  • the control valve 14A controls the discharge amount and the discharge direction of the hydraulic fluid to the hydraulic actuator 22 according to the pilot pressure 35 (at the control valve 14A side) determined by the operation amount of each of the control lever 15A.
  • the main controller 32 includes, for example, a microcomputer provided with a memory, a UPU (calculation device), and the like.
  • the main controller 32 is configured to include a vehicle body control unit 36, an area limit control unit 40, and a drive allowance control unit 44.
  • the vehicle body control unit 36 is mounted on the main controller 32
  • the area restriction control unit 40 and the drive allowance control unit 44 may be mounted on the main controller 32, respectively, or a controller different from the main controller 32. May be implemented on
  • the vehicle body control unit 36 operates the operation amount of the operation lever 15A calculated from the measurement data 38 of the pilot pressure 37 (on the operation lever 15A side) measured by each pressure sensor 28, the operating state of the engine 10 (operating state), the main pump 11
  • the rotational speed of the engine 10, the flow rate (discharge amount) of the main pump 11, and the like are controlled based on the discharge pressure, the load pressure of each hydraulic actuator 22, and the like.
  • the vehicle body control unit 36 includes the pressure sensors 28, the engine 10 (the engine controller 10A), the main pump 11 (the regulator 11A), and the hydraulic actuators 22 (the pressure sensors (not shown)). And connected.
  • the vehicle body control unit 36 may output a required pressure reduction pilot pressure 39 with respect to the pilot pressure 35 in order to control pressure oil distribution from the main pump 11 to the respective hydraulic actuators 22.
  • the vehicle body control unit 36 is connected to the area limitation control unit 40.
  • the required pressure reducing pilot pressure 39 is output corresponding to each hydraulic actuator 22.
  • the pressure reduction proportional solenoid valve 23 is a solenoid valve (decelerating proportional solenoid valve) that reduces the pilot pressure 35 to reduce or stop the hydraulic actuator 22.
  • the pressure boosting proportional solenoid valve 25 is a solenoid valve (boost proportional solenoid valve) that boosts the pilot pressure 35 to activate or accelerate the hydraulic actuator 22.
  • the shutoff solenoid valve 30 is a solenoid valve that shuts off the source pressure 34 of the pilot pressure.
  • the pressure sensor 29 measures a pilot pressure 35 that controls the control valve 14A.
  • the area limit control unit 40 is connected on the input side to the attitude sensor 31, each pressure sensor 28 and the vehicle control unit 36, and on the output side to each pressure reduction proportional solenoid valve 23 and the drive allowance control unit 44.
  • Region restriction control unit 40 controls control valve 14A based on the operation signal (signal of pilot pressure 37) according to the operation amount of each operation lever 15A and the attitude signal of attitude sensor 31 (detection signal of state quantity related to attitude).
  • Control means area limit control means for outputting a drive signal (a drive current 42 and a required pressure increase pilot pressure 43) for driving the drive signal.
  • the area restriction control unit 40 estimates the attitude of the machine based on the measurement data 41 of the attitude sensor 31 of the hydraulic shovel 1, and the operation lever by the operator based on the measurement data 38 of the pilot pressure 37 of each pressure sensor 28. Calculate the operation amount of 15A.
  • the area restriction control unit 40 controls the pressure reduction proportional electromagnetic in accordance with the posture of the machine, the operation of the operator, the required pressure reduction pilot pressure 39 output by the vehicle body control unit 36 and the like so that the machine does not deviate from the preset space area.
  • the driving current 42 of the valve 23 is output to the pressure reducing proportional solenoid valve 23, and the desired hydraulic actuator 22 is decelerated or stopped.
  • the area restriction control unit 40 drives the pressure-increasing proportional solenoid valve 25 according to the machine posture, the operator's operation, the required pressure reduction pilot pressure 39, etc., so that the machine does not deviate from the preset space area.
  • the required boosted pilot pressure 43 is output to the drive allowance control unit 44.
  • the drive current 42 and the required boosted pilot pressure 43 are output corresponding to each hydraulic actuator 22.
  • the drive allowance control unit (operation allowance control unit) 44 has the input side connected to each pressure sensor 28, the area limit control unit 40, and each pressure sensor 29, and the output side monitors and operates each pressure increasing proportional solenoid valve 25
  • the panel unit 16 and the shutoff solenoid valve 30 are connected.
  • the drive allowance control unit 44 determines the presence or absence of the operation of the control lever 15A by the operator based on the measurement data 38 of the pilot pressure 37, and determines whether to permit the drive (operation) of each hydraulic actuator 22 according to the operation situation. Determine Then, the drive allowance control unit 44 drives the driving current 45 of the pressure-increasing proportional solenoid valve 25 in accordance with the required pressure-increasing pilot pressure 43 output from the region restriction control unit 40 for the hydraulic actuator 22 which permits driving. Is output to the pressure intensifying proportional solenoid valve 25. Thereby, the desired hydraulic actuator 22 is activated or accelerated.
  • the drive current 45 is output corresponding to each hydraulic actuator 22.
  • the drive allowance control unit 44 does not output the drive current 45 to the hydraulic actuator 22 which does not permit the drive, regardless of the value of the required pressure increase pilot pressure 43.
  • the drive allowance control unit 44 does not drive the pressure increase proportional solenoid valve 25 of the hydraulic actuator 22 not permitting the drive.
  • the drive allowance control unit 44 can prevent the driving of all the hydraulic actuators 22 when the control lever 15A is in the neutral position. As a result, the operator can not drive all the pressure-increasing proportional solenoid valves 25 by returning the control lever 15A to the neutral position, and the illegal operation of the hydraulic actuator 22 can be stopped.
  • the drive allowance control unit 44 monitors the abnormality information 46 indicating that the required pressure increase pilot pressure 43 is abnormal. It can be output to the operation panel device 16. Thereby, the abnormality can be notified to the operator. Further, the drive allowance control unit 44 can determine the abnormality of the pilot pressure 35 by comparing the pilot pressure 35 detected by another pressure sensor 29 with the boosted pilot pressure 51 described later. When it is determined that there is an abnormality, the drive allowance control unit 44 outputs a drive current 47 for driving (closing the valve) the shutoff solenoid valve 30 to the shutoff solenoid valve 30. As a result, the base pressure 34 of the pilot pressure is shut off and the machine can be stopped.
  • the drive allowance control unit 44 includes a drive permission determination unit 48, a pilot pressure selection unit 50, an electromagnetic valve drive unit 53, a pilot pressure abnormality detection unit 54, and an abnormality notification unit 58. ing.
  • the drive permission determination unit 48 has an input side connected to each pressure sensor 28 and an output side connected to the pilot pressure selection unit 50.
  • the drive permission determination unit 48 is configured to determine (determine) whether to permit the drive of each hydraulic actuator 22 based on the operation signal corresponding to the operation amount of each operation lever 15A and to output the drive permission determination means. doing.
  • the drive permission determination unit 48 determines whether the hydraulic actuator to drive according to the operation situation of each control lever 15A by the operator. Determine 22. Then, the drive permission determination unit 48 outputs a drive permission signal 49 corresponding to the determination result (permission or non-permission of the drive of the hydraulic actuator 22) to the pilot pressure selection unit 50.
  • the pilot pressure selection unit 50 is connected to the region limit control unit 40 and the drive permission determination unit 48 on the input side, and is connected to the solenoid valve drive unit 53, the pilot pressure abnormality detection unit 54, and the abnormality notification unit 58 on the output side.
  • the pilot pressure selection unit 50 drives the control valve 14A with the drive signal (the required pressure increase pilot pressure 43) for the hydraulic actuator 22 whose drive is permitted by the drive permission determination unit 48, and the hydraulic actuator 22 whose drive is not permitted.
  • the drive signal selection means is configured to select the drive signal (the required pressure increase pilot pressure 43 from the area limitation control unit 40).
  • the pilot pressure selection portion 50 generates the required pressure increase pilot pressure 43 corresponding to the drive permission signal 49 output from the drive permission determination portion 48, ie, The required intensifying pilot pressure 43 of the hydraulic actuator 22 whose driving is permitted is selected as the intensifying pilot pressure 51. Then, the pilot pressure selection unit 50 outputs the intensified pilot pressure 51 to the solenoid valve drive unit 53 and the pilot pressure abnormality detection unit 54.
  • the pilot pressure selection unit 50 generates the required pressure increase pilot pressure abnormality information 52 indicating that the required pressure increase pilot pressure 43 is abnormal when the required pressure increase pilot pressure 43 of the hydraulic actuator 22 whose driving is not permitted is not zero. , And output to the abnormality notification unit 58. That is, the pilot pressure selection unit 50 detects abnormality in control based on the drive signal (required pressure increase pilot pressure 43) of each hydraulic actuator 22 and the drive permission signal 49 determined by the drive permission determination unit 48. (Required pressure increase pilot pressure abnormality detection means) is also configured. The process of FIG. 10 performed by the pilot pressure selection unit 50 will be described later.
  • the solenoid valve drive unit 53 has an input side connected to the pilot pressure selection unit 50 and an output side connected to the pressure-increasing proportional solenoid valve 25.
  • the solenoid valve drive unit 53 outputs the drive current 45 of the pressure increase proportional solenoid valve 25 to the pressure increase proportional solenoid valve 25 based on the pressure increase pilot pressure 51 from the pilot pressure selection unit 50.
  • the pressure-increasing proportional solenoid valve 25 is opened in response to the drive current 45, and a pilot pressure corresponding to the pressure-increasing pilot pressure 51 is supplied to the pilot portion of the control valve 14A of the hydraulic actuator 22 permitted to be driven. .
  • the pilot pressure abnormality detection unit 54 has an input side connected to the pilot pressure selection unit 50 and each pressure sensor 29, and an output side connected to the abnormality notification unit 58 and the shutoff solenoid valve 30.
  • the pilot pressure abnormality detection unit 54 compares the measurement data of the pilot pressure 35 which is the pilot pressure sensor information 55 of each of the pressure sensors 29 with the intensified pilot pressure 51 from the pilot pressure selection unit 50 to obtain the pilot pressure 35.
  • the pilot pressure abnormality detection unit 54 outputs pilot pressure abnormality information 56 indicating that the pilot pressure 35 is abnormal to the abnormality notification unit 58.
  • the pilot pressure abnormality detection unit 54 outputs a pilot pressure cutoff request 57 serving as a command signal (drive current 47) for blocking the pilot pressure (the source pressure 34) to the cutoff solenoid valve 30. That is, the pilot pressure abnormality detection unit 54 performs control based on the drive signal (boost pilot pressure 51) selected by the pilot pressure selection unit 50 and the actual drive signal (pilot pressure 35) supplied to the control valve 14A.
  • Another abnormality detection means for detecting an abnormality and a drive signal stop means for cutting off a drive signal (pilot pressure) to the control valve 14A when an abnormality is detected are configured. The process of FIG. 11 performed by the pilot pressure abnormality detection unit 54 will be described later.
  • the abnormality notification unit 58 has an input side connected to the pilot pressure selection unit 50 and the pilot pressure abnormality detection unit 54 and an output side connected to the monitor and operation panel device 16.
  • the abnormality notifying unit 58 constitutes an abnormality notifying unit that notifies an abnormality when the control pressure is detected by the pilot pressure selecting unit 50 and / or the pilot pressure abnormality detecting unit 54. That is, the abnormality notification unit 58 indicates that there is an abnormality based on the required pressure increase pilot pressure abnormality information 52 from the pilot pressure selection unit 50 and / or the pilot pressure abnormality information 56 from the pilot pressure abnormality detection unit 54 and The abnormality information 46 corresponding to the content of the abnormality is output to the monitor and operation panel device 16.
  • the drive permission determination unit 48 can set in advance the hydraulic actuator 22 that permits the drive for each lever operation of the operator.
  • FIGS. 5 and 8 are drive permission setting tables 60 and 62 showing in matrix the setting examples of the operation of the hydraulic actuator 22 permitted when the levers are operated.
  • drive permission determination unit 48 determines whether operation of each hydraulic actuator 22 is permitted by any lever operation based on drive permission setting tables 60 and 62. .
  • no lever operation that is, when the control lever 15A is in the neutral position
  • the drive permission determination unit 48 determines that the operation of all the hydraulic actuators 22 is not permitted, and corresponds to the determination result.
  • the drive permission signal 49 is output as the drive permission signal En.
  • the arm 5B or the bucket 5C is operated so that the bucket 5C does not dig below the target surface 61 too much in the digging operation or the leveling operation.
  • the boom 5A is operated by the area restriction control unit 40 in the raising direction.
  • the drive permission determination unit 48 also permits boom raising in addition to arm pulling and bucket digging. As a result, even if the operator does not perform the boom raising operation, the region restriction control unit 40 can perform the boom raising operation.
  • an interference prevention area 63 is provided to prevent the bucket 5C from colliding with the upper swing body 4 and the lower traveling body 2, boom 5A, arm 5B, while operating the bucket 5C, the area limitation control unit 40 causes the arm 5B to operate in the pushing direction.
  • the drive permission determination unit 48 also permits arm pushing in addition to boom raising and bucket digging. Thereby, even if there is no arm pushing operation by the operator, the arm pushing operation by the area limitation control unit 40 becomes possible.
  • the drive permission determination unit 48 includes the drive permission setting table 60 shown in FIG. 5 and / or the drive permission setting table 62 shown in FIG.
  • the drive permission setting tables 60 and 62 show the correspondence between the lever operation performed by the operator and the lever operation corresponding to the lever operation.
  • the drive permission setting table 60 of FIG. 5 and / or the drive permission setting table 62 of FIG. 8 are used to set one or more lever operations for permitting driving of each hydraulic actuator 22. Make up the means.
  • the drive permission setting means may be any one as long as the correspondence between the lever operation performed by the operator and the lever operation for permitting the drive corresponding to the operation is set, and the table as shown in FIG. 5 and FIG. Not limited to).
  • the drive permission setting tables 60 and 62 are not limited to those shown in FIGS. 5 and 8.
  • Various drive permission setting tables (lever operation performed by the operator and the like according to restriction control of the area restriction control unit 40 Correspondingly, the corresponding relationship with the lever operation for permitting driving can be set.
  • FIG. 10 shows a control process performed by the pilot pressure selection unit 50.
  • the control process of FIG. 10 is repeatedly performed in a predetermined control cycle, for example, while the main controller 32 (the pilot pressure selection unit 50) is energized.
  • the pilot pressure selection unit 50 acquires the required pressure increase pilot pressure 43 output from the region limitation control unit 40, that is, the required pressure increase pilot pressure Pcr in S1. Subsequently, in S2, the drive permission signal 49 corresponding to the drive permission determination result output from the drive permission determination unit 48, that is, the drive permission signal En is acquired. Then, in S3, it is determined whether or not the drive permission signal En is "drive permission".
  • the process proceeds to S4.
  • FIG. 11 shows the control processing performed by the pilot pressure abnormality detection unit 54.
  • the control process of FIG. 11 is repeatedly performed in a predetermined control cycle, for example, while the main controller 32 (the pilot pressure abnormality detection unit 54) is energized.
  • the pilot pressure abnormality detection unit 54 stores the pressure increase pilot pressure 51 output from the pilot pressure selection unit 50, that is, the pressure increase pilot pressure Pc in S11, Return (return to start through return and repeat the process of S11). Further, in parallel with the process of S11, the processes after S21 are also performed.
  • the intensified pilot pressure Pcd stored in the past by the time Td from the present time is read out.
  • the time Td is the time from when the intensified pilot pressure Pc is determined to when the corresponding pilot pressure 35 is generated, and after the measured pilot pressure 35 is measured by another pressure sensor 29, the measurement results (
  • the pilot pressure Pr which is the pilot pressure sensor information 55) is the sum of the times until the pilot pressure abnormality detection unit 54 acquires it. That is, the intensified pilot pressure Pcd corresponds to the past intensified pilot pressure Pc corresponding to the pilot pressure Pr acquired by the pilot pressure abnormality detection unit 54.
  • the pilot pressure abnormality detection unit 54 acquires an actual pilot pressure Pr from another pressure sensor 29, and compares it with the intensified pilot pressure Pcd read out in S1. That is, at S23, it is determined whether the difference between the actual pilot pressure Pr and the pressure-increasing pilot pressure Pcd is less than dPce which is a predetermined abnormality determination difference threshold. If "YES" is determined in S23, that is, it is determined that the difference between the actual pilot pressure Pr and the intensified pilot pressure Pcd is less than dPce, it can be determined that the pilot pressure 35 is correct. Therefore, the process proceeds to S24, the error counter EC is cleared, and the process returns (returns to the start via the return and repeats the processes after S21).
  • the threshold value dPce can be set, for example, as a value that can be determined that the possibility of occurrence of an abnormality in the pilot pressure 35 is high if the threshold value dPce or more.
  • the threshold value dPce is obtained in advance by, for example, experiment, calculation, simulation, or the like so that the abnormality can be accurately determined.
  • the abnormality notification unit 58 can output abnormality information 46 corresponding to the abnormality and the content of the abnormality to the monitor / operation panel device 16 to notify the operator of the abnormality.
  • the threshold value RC can be set, for example, as a value that can be determined to be preferable to stop the machine when the threshold value RC becomes equal to or higher than that value.
  • the threshold value RC is determined in advance, for example, by experiment, calculation, simulation, etc., so that the machine can be stopped properly.
  • the hydraulic shovel 1 according to the present embodiment has the above-described configuration, and the operation thereof will be described next.
  • the main pump 11 and the pilot pump 12 are driven by the engine 10.
  • the pressure oil discharged from the main pump 11 is operated by operating the operation lever 15A of the operation lever device 15 provided in the cab 9 (for example, lever operation of the operation lever for operation, operation lever and pedal for traveling)
  • the hydraulic actuators 22 ie, left and right traveling hydraulic motors 2E, swing hydraulic motors 3A, boom cylinders 5D of the working device 5, arm cylinders 5E, and bucket cylinders 5F
  • the hydraulic shovel 1 can perform the traveling operation by the lower traveling body 2, the turning operation of the upper swing body 4, the digging operation by the work device 5, and the like.
  • FIG. 12 shows a basic operation by the drive permission control unit 44 when the operation lever 15A is operated.
  • the operation of the operator's control lever 15A is started, and this operation generates a pilot pressure 37.
  • the drive permission determination unit 48 of the drive permission control unit 44 determines each of the operations according to the operation situation of each operation lever 15A by the operator based on the pilot pressure sensor information (measurement data 38 of the pilot pressure 37).
  • a drive permission signal En of the hydraulic actuator 22 is output.
  • the pilot pressure selection unit 50 of the drive permission control unit 44 sets the required pressure increase pilot pressure Pcr from the area limitation control unit 40 because the drive permission signal En is “drive permission”. Is output as the intensified pilot pressure Pc.
  • the solenoid valve drive unit 53 of the drive allowance control unit 44 outputs the drive current 45 to the pressure increase proportional solenoid valve 25 based on the pressure increase pilot pressure Pc. Thereby, the operation of the hydraulic actuator by the region limitation control unit 40 is enabled.
  • the drive permission determination unit 48 of the drive permission control unit 44 sets the drive permission signal EN of all the hydraulic actuators 22 as "drive non-permission".
  • the solenoid valve drive unit 53 of the drive allowance control unit 44 drives the pressure increase proportional solenoid valve 25. Stop. Thus, the operation of the hydraulic actuator 22 can be stopped.
  • the drive permission determination unit 48 determines whether to permit the drive of each hydraulic actuator 22 according to the operation state of the control lever 15A. Then, when the driving is permitted, the pilot pressure selecting unit 50 drives the control valve 14A by the driving signal (the required pressure increasing pilot pressure 43) output from the region limitation control unit 40. On the other hand, when the driving is not permitted, pilot pressure selecting unit 50 selects the driving signal so as not to drive control valve 14A even if the driving signal (request pressure increasing pilot pressure 43) is output from region limitation control unit 40. . Therefore, when the operator operates the operation lever 15A, the machine is operated not to drive the hydraulic actuator 22 corresponding to the operation lever 15A, and to prevent the working device 5 from deviating from the predetermined spatial area.
  • one or more of the hydraulic actuators 22 are permitted to be driven by the drive permission setting table 60 of FIG. 5 and the drive permission setting table 62 of FIG. 8 corresponding to the drive permission setting means.
  • the lever operation can be set arbitrarily. Therefore, it is possible to set the drive permission suitable for the configuration of the work device 5 and the drive permission suitable for the spatial area for preventing the deviation of the work device 5.
  • the pilot pressure abnormality detection unit 54 and the abnormality notification unit 58 are provided as the required pressure increase pilot pressure abnormality detection means. Therefore, the control abnormality can be detected and notified based on the drive signal (required pressure increase pilot pressure 43) of each hydraulic actuator 22 and the drive permission signal 49 output by the drive permission determination unit 48. This can prompt the operator to repair the machine.
  • FIGS. 13 to 19 show a second embodiment of the present invention.
  • the control lever device is configured by the electric lever device and is configured to include a pilot pressure upper limit determination unit.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof will be omitted.
  • Each of the plurality of control lever devices 71 is configured as an electric control lever device, and includes a control lever 71A operated by the operator.
  • the operation lever device 71 constitutes operation amount measuring means for outputting an operation signal (lever operation amount 72) corresponding to the operation amount of each operation lever 71A.
  • the output side of the operation lever device 71 is connected to the vehicle control unit 73 and the drive allowance control unit 77 of the main controller 32.
  • an electric signal (operation signal) corresponding to the lever operation amount 72 causes the vehicle control of the main controller 32 from the operation lever device 71. It is output to the unit 73 and the drive allowance control unit 77.
  • control lever device 71 is an electric control lever device, in the middle of the pilot pipeline 92 connecting between the pilot pump 12 and the control valve 14A, shut off sequentially from the pilot pump 12 side A solenoid valve 30, a proportional solenoid valve 25 and another pressure sensor 29 are provided.
  • the vehicle control unit 73 controls the rotational speed of the engine 10 based on the lever operation amount 72 of the control lever 15A, the operating state of the engine 10 (operating state), the discharge pressure of the main pump 11, the load pressure of each hydraulic actuator 22, The flow rate (discharge amount) and the like of the main pump 11 are controlled.
  • the vehicle body control unit 73 is connected to the operation lever device 71, the engine 10, the main pump 11, and the hydraulic actuators 22. Further, the output side of the vehicle control unit 73 is connected to the region limitation control unit 75.
  • the vehicle body control unit 73 outputs a target pilot pressure 74 corresponding to the pilot pressure 35 for operating each hydraulic actuator 22 to the region limitation control unit 75.
  • the target pilot pressure 74 is output corresponding to each hydraulic actuator 22.
  • the area limit control unit 75 is connected to the posture sensor 31 and the vehicle control unit 73 on the input side, and is connected to the drive allowance control unit 77 on the output side.
  • Control means area limit control means
  • the area limitation control unit 75 estimates the posture of the machine based on the measurement data 41 of the posture sensor 31 of the hydraulic shovel 1, and changes the posture of the machine based on the target pilot pressure 74 output by the vehicle control unit 73. Anticipate.
  • the area limit control unit 75 outputs the target pilot pressure 74 as the required pilot pressure 76 to the drive allowance control unit 77 when there is no risk that the machine deviates from the preset space area.
  • the area limit control unit 75 adjusts the target pilot pressure 74 so as not to deviate and uses the adjusted target pilot pressure 74 as the required pilot pressure 76. It is output to the drive allowance control unit 77.
  • the required pilot pressure 76 is output corresponding to each hydraulic actuator 22.
  • the drive permission control unit (operation permission control unit) 77 has an input side connected to the control lever device 71, the area limit control unit 75, and each pressure sensor 29, and an output side is each proportional solenoid valve 25 and a monitor and operation panel device 16 and the shutoff solenoid valve 30 are connected.
  • the drive allowance control unit 77 recognizes the operation amount of each operation lever 71A by the operator based on the lever operation amount 72 of the operation lever 71A, and the upper limit of the pilot pressure 35 for operating each hydraulic actuator 22 according to the lever operation amount 72.
  • the pilot pressure upper limit value to be a value is determined (judged).
  • the drive allowance control unit 77 drives the drive current 45 for driving the proportional solenoid valve 25 according to the required pilot pressure 76. Output to the proportional solenoid valve 25.
  • the drive allowance control unit 77 outputs the drive current 45 for driving the proportional solenoid valve 25 to the proportional solenoid valve 25 according to the pilot pressure upper limit value.
  • the operation of each hydraulic actuator 22 corresponds to the lever operation amount 72 of the operator.
  • the speed is suppressed according to the pilot pressure upper limit value that is determined.
  • the drive allowance control unit 77 can set the pilot pressure upper limit value to 0 so as not to permit the drive of all the hydraulic actuators 22 when the control lever 71A is in the neutral position.
  • the pilot pressure upper limit value becomes zero, and the operator can stop the improper operation of the hydraulic actuator 22.
  • the drive allowance control unit 77 monitors the abnormality information 46 indicating that the request pilot pressure 76 is abnormal, It can be output to the operation panel device 16. Thereby, the abnormality can be notified to the operator. Further, the drive allowance control unit 77 can determine the abnormality of the pilot pressure 35 by comparing the pilot pressure 35 detected by another pressure sensor 29 with the pilot pressure 81 described later. When it is determined that there is an abnormality, the drive allowance control unit 77 can output a drive current 47 for driving (closing the shutoff solenoid valve) 30 to the shutoff solenoid valve 30. As a result, the base pressure 34 of the pilot pressure is shut off and the machine can be stopped.
  • the drive allowance control unit 77 includes a pilot pressure upper limit determination unit 78, a pilot pressure selection unit 80, an electromagnetic valve drive unit 83, a pilot pressure abnormality detection unit 84, and an abnormality notification unit 88.
  • the pilot pressure upper limit determination unit 78 is connected to the control lever device 71 on the input side and is connected to the pilot pressure selection unit 80 on the output side.
  • the pilot pressure upper limit determination unit 78 sets the upper limit of the drive signal (request pilot pressure 76) for driving the control valve 14A of each hydraulic actuator 22 based on the operation signal (lever operation amount 72) corresponding to the operation amount of each operation lever 71A.
  • a drive signal upper limit determination means configured to determine (determine) a value (a pilot pressure upper limit value) and output the value is configured. That is, the pilot pressure upper limit determination unit 78 determines the pilot pressure upper limit value of each hydraulic actuator 22 according to the operation situation of each control lever 71A by the operator based on the lever operation amount 72. Then, the pilot pressure upper limit determination unit 78 outputs the pilot pressure upper limit value 79 of each hydraulic actuator 22 to the pilot pressure selection unit 50.
  • the pilot pressure selection unit 80 is connected to the region limit control unit 75 and the pilot pressure upper limit determination unit 78 at the input side, and is connected to the solenoid valve drive unit 83, the pilot pressure abnormality detection unit 84 and the abnormality notification unit 88 at the output side. .
  • the pilot pressure selection unit 80 drives the hydraulic actuator 22 whose drive signal (the required pilot pressure 76 from the area limitation control unit 75) is equal to or less than the pilot pressure upper limit 79 determined by the pilot pressure upper limit determination unit 78.
  • the control valve 14A is driven by a signal (request pilot pressure 76), and the pilot pressure is applied to the hydraulic actuator 22 whose drive signal (request pilot pressure 76) exceeds the pilot pressure upper limit 79 determined by the pilot pressure upper limit determination unit 78.
  • the drive signal selection means is configured to select the drive signal (request pilot pressure 76) so as to drive the control valve 14A at the upper limit value 79.
  • the pilot pressure selection unit 80 selects either the required pilot pressure 76 or the pilot pressure upper limit value 79 of each hydraulic actuator 22 as the pilot pressure 81 according to the pilot pressure upper limit value 79. Then, the pilot pressure selector 80 outputs the pilot pressure 81 to the solenoid valve driver 83 and the pilot pressure abnormality detector 84.
  • the pilot pressure selection unit 80 outputs, to the abnormality notification unit 88, required pilot pressure abnormality information 82 indicating that the required pilot pressure 76 is abnormal. That is, the pilot pressure selection unit 80 performs control based on the drive signal (required pilot pressure 76) of each hydraulic actuator 22 and the upper limit value (pilot pressure upper limit value 79) of the drive signal determined by the pilot pressure upper limit determination unit 78.
  • An abnormality detection means (required pilot pressure abnormality detection means) for detecting an abnormality is configured. The process of FIG. 18 performed by the pilot pressure selection unit 80 will be described later.
  • the solenoid valve drive unit 83 has an input side connected to the pilot pressure selection unit 80 and an output side connected to the proportional solenoid valve 25.
  • the solenoid valve drive unit 83 outputs the drive current 45 of the proportional solenoid valve 25 to the proportional solenoid valve 25 based on the pilot pressure 81 from the pilot pressure selection unit 80.
  • the proportional solenoid valve 25 opens in response to the drive current 45, and the pilot pressure 35 corresponding to the pilot pressure 81 is supplied to the pilot portion of the control valve 14A.
  • the pilot pressure abnormality detection unit 84 has an input side connected to the pilot pressure selection unit 80 and each pressure sensor 29, and an output side connected to the abnormality notification unit 88 and the shutoff solenoid valve 30.
  • the pilot pressure abnormality detection unit 84 compares the measurement data of the pilot pressure 35, which is pilot pressure sensor information 85 of each pressure sensor 29, with the pilot pressure 81 from the pilot pressure selection unit 80, To detect When the pilot pressure abnormality detection unit 84 detects an abnormality in the pilot pressure 35, the pilot pressure abnormality detection unit 84 outputs, to the abnormality notification unit 88, pilot pressure abnormality information 86 indicating that the pilot pressure 35 is abnormal.
  • the pilot pressure abnormality detection unit 84 outputs a pilot pressure cutoff request 87 serving as a command signal for blocking the pilot pressure (the source pressure 34 thereof) to the cutoff solenoid valve 30. That is, the pilot pressure abnormality detection unit 84 controls the control abnormality based on the drive signal (pilot pressure 81) selected by the pilot pressure selection unit 80 and the actual drive signal (pilot pressure 35) supplied to the control valve 14A. Another abnormality detection means (pilot pressure abnormality detection means) to detect and a drive signal stop means to shut off the drive signal (pilot pressure) to the control valve 14A when an abnormality is detected are configured.
  • the process performed by the pilot pressure abnormality detection unit 84 is the same as the process of FIG. 11 performed by the pilot pressure abnormality detection unit 54 according to the first embodiment, and the “boost pilot pressure Pc” is “pilot pressure Pc”. Except that they differ in that
  • the abnormality notification unit 88 has an input side connected to the pilot pressure selection unit 80 and the pilot pressure abnormality detection unit 84 and an output side connected to the monitor and operation panel device 16.
  • the abnormality notifying unit 88 constitutes an abnormality notifying unit that notifies an abnormality when the control pressure is detected by the pilot pressure selecting unit 80 and / or the pilot pressure abnormality detecting unit 84. That is, based on the required pilot pressure abnormality information 82 from the pilot pressure selection unit 80 and / or the pilot pressure abnormality information 86 from the pilot pressure abnormality detection unit 84, the abnormality notification unit 88 indicates that there is an abnormality and the abnormality The abnormality information 46 corresponding to the content is output to the monitor / operation panel device 16.
  • FIG. 15 is a pilot pressure upper limit value setting table 90 showing, in a matrix, an example of pilot pressure upper limit values that allow the operation of each hydraulic actuator 22 for each lever operation.
  • “0” in FIG. 15 indicates that the pilot pressure upper limit value is 0, and the hydraulic actuator 22 is not operated.
  • “Ca” and “Cb” in FIG. 15 respectively change the upper limit value of the pilot pressure according to the lever operation amount. As shown in FIG. 17, when the lever operation amount is from 0 to v1, both Ca and Cb are in a dead zone.
  • both of Ca and Cb increase (e.g., increase proportionally) the pilot pressure upper limit value according to the increase of the lever operation amount. Then, at v2, the maximum pilot pressure upper limit value, that is, Ca reaches Ppa2, and Cb reaches Ppb2.
  • the pilot pressure upper limit determination unit 78 selects one of the pilot pressure upper limit values corresponding to the lever operation for each operation of each hydraulic actuator 22 based on the pilot pressure upper limit setting table 90 when one or more lever operations are performed. The largest value is output as the pilot pressure upper limit value 79.
  • the pilot pressure upper limit determining unit 78 determines the pilot pressure upper limit of each hydraulic actuator according to the lever operation amount of each of the arm pulling and bucket digging. Determine the value 79. Specifically, assuming that the amount of arm pulling operation is V3 and the amount of bucket digging operation is v4, the pilot pressure upper limit value for arm pulling is from “Ca” to Ppa3 in FIG. 17, and the pilot pressure upper limit value for bucket digging is From 17 “Ca” to Ppa4. On the other hand, the pilot pressure upper limit value for boom raising is Ppa3 which is the largest value among Ppa3 and Ppb4 from “Ca” and "Cb” in FIG. Furthermore, the pilot pressure upper limit value of other operations is zero.
  • the operation of the hydraulic actuator 22 corresponding to the boom raising by the area limitation control unit 75 is enabled.
  • the region limitation control unit 75 outputs an incorrect required pilot pressure 76 due to a failure, it is possible to suppress an unreasonable boom raising operation to a speed according to the lever operation amount of the operator.
  • the operator can stop the improper boom raising operation by returning the control lever 71A to the neutral position.
  • the pilot pressure upper limit determination unit 78 includes a pilot pressure upper limit setting table 90 shown in FIG. 15 and a characteristic diagram 91 of the lever operation amount and the pilot pressure upper limit shown in FIG.
  • the pilot pressure upper limit value setting table 90 shows the correspondence between the lever operation performed by the operator and the pilot pressure upper limit value of each lever operation corresponding thereto.
  • a characteristic diagram 91 of the lever operation amount and the pilot pressure upper limit value represents the correspondence between the lever operation amount and the pilot pressure upper limit value.
  • the pilot pressure upper limit value setting table 90 of FIG. 15 is a drive signal upper limit value setting means for determining the upper limit value of the drive signal (pilot pressure) according to the operation amount of each lever operation for each hydraulic actuator 22. Are configured.
  • the drive signal upper limit value setting means may be any one as long as the correspondence between the lever operation performed by the operator and the pilot pressure upper limit value of each lever operation corresponding to the lever operation is set. Not limited to). Further, pilot pressure upper limit value setting table 90 and characteristic diagram 91 of the lever operation amount and the pilot pressure upper limit value are not limited to FIGS. Corresponding to various drive signal upper limit value setting tables (correspondence between the lever operation performed by the operator and the pilot pressure upper limit value of each lever operation corresponding to it) and characteristic diagram (correspondence between the lever operation amount and the pilot pressure upper limit value) Relationship) can be set.
  • FIG. 18 shows a control process performed by the pilot pressure selection unit 80.
  • the control process of FIG. 18 is repeatedly performed at a predetermined control cycle, for example, while the main controller 32 (the pilot pressure selection unit 80) is energized.
  • the pilot pressure selection unit 80 acquires the required pilot pressure 76 output from the region limitation control unit 75, that is, the required pilot pressure Pcr in S31. Subsequently, in S32, the pilot pressure upper limit value 79 corresponding to the upper limit value determination result output from the pilot pressure upper limit determination unit 78, that is, the pilot pressure upper limit value Pp is acquired. Then, in S33, it is determined whether the required pilot pressure Pcr is equal to or less than the pilot pressure upper limit Pp.
  • the process proceeds to S34.
  • the process proceeds to S35.
  • the required pilot pressure abnormality information 82 which is abnormality information indicating that the required pilot pressure Pcr is abnormal, is output to the abnormality notification unit 88, and the process returns.
  • FIG. 19 shows a basic operation by the drive permission control unit 77 when the operation lever 71A is operated.
  • the operation of the control lever 71A of the operator is started.
  • the pilot pressure upper limit Pp output from the pilot pressure upper limit determination unit 78 of the drive allowance control unit 77 increases with an increase in the operation amount of the control lever 71A.
  • the required pilot pressure Pcr from the area restriction control unit 75 is equal to or less than the pilot pressure upper limit Pp. Therefore, the pilot pressure selection unit 80 of the drive allowance control unit 77
  • the required pilot pressure Pcr from 75 is output as a pilot pressure pc.
  • the solenoid valve drive unit 83 of the drive allowance control unit 77 outputs the drive current 45 to the proportional solenoid valve 25 based on the pilot pressure Pc.
  • the operation of the hydraulic actuator 22 can be performed by the vehicle body control unit 73 and the area limitation control unit 75.
  • an incorrect request pilot pressure Pcr is output at time T4 due to a failure of the vehicle control unit 73 or the area limitation control unit 75, and drive permission is permitted when the request pilot pressure Pcr becomes larger than the pilot pressure upper limit Pp from time T5.
  • the pilot pressure selection unit 80 of the control unit 77 outputs the pilot pressure upper limit value Pp as a pilot pressure pc.
  • the pilot pressure upper limit Pp of the pilot pressure upper limit determination unit 78 of the drive allowance control unit 77 becomes zero at time T7.
  • the pilot pressure upper limit determination unit 78 as described above restricts the pilot pressure pc to the pilot pressure upper limit Pp or less, and the basic operation thereof is the same as the first embodiment described above. There is no special difference from
  • the pilot pressure upper limit determination unit 78 sets the upper limit value of the drive signal (request pilot pressure 76) for driving the control valve 14A of each hydraulic actuator 22 according to the operation amount of the operation lever 71A. decide.
  • the pilot pressure selector 80 controls the hydraulic actuator 22 whose drive signal (request pilot pressure 76) is less than or equal to the upper limit value with the drive signal (request pilot pressure 76) output from the area limitation control unit 75.
  • the valve 14A is driven.
  • the pilot pressure selection unit 80 drives the control valve 14A to drive the control valve 14A at the upper limit value (pilot pressure upper limit value 79) for the hydraulic actuator 22 where the drive signal (request pilot pressure 76) exceeds the upper limit value.
  • the drive signal can be suppressed to 0 of the pilot pressure upper limit value 79 even if an erroneous drive signal (request pilot pressure 76) is output from the area limit control unit 75. .
  • an erroneous drive signal (request pilot pressure 76) is output from the area limit control unit 75. .
  • the driving of the hydraulic actuator 22 is not permitted, and the machine can be stopped.
  • pilot pressure upper limit value setting table 90 of FIG. 15 corresponding to the drive signal upper limit setting means, the upper limit value of the drive signal according to the operation amount of each lever operation for each hydraulic actuator 22. (Pilot pressure upper limit 79) can be set. Therefore, it is possible to set the upper limit value of the drive signal suitable for the configuration of the work device 5 and the upper limit value of the drive signal suitable for the spatial area for preventing the deviation of the work device 5.
  • a pilot pressure selection unit 80 and an abnormality notification unit 88 as required pilot pressure abnormality detection means are provided. Therefore, based on the drive signal (required pilot pressure 76) of each hydraulic actuator 22 and the upper limit value (pilot pressure upper limit value 79) of the drive signal output by the pilot pressure upper limit determination unit 78, control abnormality detection and notification are performed. It can be carried out. This can prompt the operator to repair the machine.
  • the present invention is not limited to this.
  • the area limit control unit 40 and the drive allowance control unit 44 may be mounted on a controller different from the main controller 32 on which the vehicle control unit 36 is mounted.
  • the vehicle body control unit 36, the area limit control unit 40, and the drive allowance control unit 44 may be mounted on different controllers. The same applies to the second embodiment.
  • the boom 5A is operated in the upward direction so as not to dig below the target surface 61 too much, and the interference prevention area 63
  • the control means area restriction control means
  • the control means deviates from the space area previously set by the machine, for example, avoiding collision with the facility above the machine at the work site. It can be set as the structure which performs various control for not being carried out. The same applies to the second embodiment.
  • the hydraulic actuator 22 is operated using the operation lever 15A
  • the present invention is not limited to this.
  • the hydraulic actuator can be operated by various operation tools such as an operation pedal and an operation stick. That is, the operating lever includes various operating tools. The same applies to the second embodiment.
  • the drive signal for driving the control valve 14A is the pilot pressure (hydraulic pressure)
  • the present invention is not limited to this.
  • various control signals can be used other than oil pressure, such as using a control valve as a solenoid valve and using a drive signal as an electrical signal. The same applies to the second embodiment.
  • the drive source of the turning device 3 is configured by the turning hydraulic motor 3A
  • the present invention is not limited to this.
  • the drive source of the turning device may be configured by a hydraulic motor (turning hydraulic motor) and an electric motor (turning electric motor).
  • the drive source of the turning device may be configured only by the electric motor (turning electric motor). The same applies to the second embodiment.
  • the hydraulic shovel 1 has been described as an example of the construction machine.
  • this invention is not limited to this,
  • it can be widely applied to various construction machines, such as a wheel loader.
  • each embodiment is an exemplification, and partial replacement or combination of the configurations shown in the different embodiments is possible.
  • the machine can be stopped by setting the control lever to the neutral position, and the working device has a predetermined spatial area. It can control so that it does not deviate from.
  • the drive permission determination unit and the drive signal selection unit are provided.
  • the drive signal selection means selects the drive signal so as not to drive the control valve for the hydraulic actuator whose drive is not permitted by the drive permission determination means.
  • the drive permission determination means can prohibit the drive of all the hydraulic actuators when the control lever is in the neutral position.
  • the drive signal selection means selects the drive signal so as not to drive the control valve even if there is an abnormal drive signal.
  • the machine can be stopped by setting the control lever to the neutral position even if there is an abnormal drive signal as well as when there is no abnormal drive signal.
  • the drive permission determination means controls the operation device so as not to deviate from the predetermined spatial area in response to the lever operation. It is possible to allow driving.
  • the drive signal selection means generates an abnormal drive signal.
  • the drive permission determination means selects a drive signal for the hydraulic actuator for which the drive is permitted. As a result, it is possible to control the working device so as not to deviate from a predetermined spatial area even if there is an abnormal drive signal as well as when there is no abnormal drive signal.
  • the drive permission determination unit is configured to include the drive permission setting unit.
  • the drive permission setting means can be set as the correspondence between the lever operation and the operation of the actuator for permitting the lever operation. That is, the drive permission setting means can set the drive permission suitable for the configuration of the work device and / or the drive permission suitable for the spatial area for preventing the deviation of the work device. As a result, the drive permission determination means can properly and stably determine whether to permit the drive of each hydraulic actuator.
  • the configuration further includes an abnormality detection unit and an abnormality notification unit. This makes it possible to notify the operator of the abnormality and to automatically stop the machine. As a result, the operator can be urged to repair the machine.
  • the drive signal upper limit determination means and the drive signal selection means are provided. Then, the drive signal selection means selects the drive signal such that the control valve is driven at the upper limit value for the hydraulic actuator whose drive signal exceeds the upper limit value determined by the drive signal upper limit determination means.
  • the drive signal upper limit determination means can set the upper limit value of the drive signal for all the hydraulic actuators to 0 when the control lever is in the neutral position.
  • the drive signal selection means selects the drive signal at 0, which is the upper limit value, even if there is an abnormal drive signal.
  • the machine can be stopped by setting the operation lever to the neutral position even when there is an abnormal drive signal as well as when there is no abnormal drive signal.
  • the drive signal upper limit determining means is a hydraulic actuator necessary to control the working device not to deviate from a predetermined spatial area for the lever operation.
  • the upper limit value of the drive signal can be determined so as to drive the
  • the drive signal selection means The upper limit value of the drive signal determined by the signal upper limit determination means is selected.
  • the drive signal upper limit determination unit is configured to include the drive signal upper limit value setting unit.
  • the drive signal upper limit value setting means can be set as the correspondence between the lever operation and the upper limit value of the drive signal for the actuator for which the lever operation is permitted. That is, the drive signal upper limit determination means can set the upper limit value of the drive signal suitable for the configuration of the work device and / or the upper limit value of the drive signal suitable for the spatial region preventing deviation of the work device . As a result, the drive signal upper limit determination means can properly and stably determine the upper limit value for each hydraulic actuator.
  • the configuration further includes an abnormality detection unit and an abnormality notification unit. This makes it possible to notify the operator of the abnormality and to automatically stop the machine. As a result, the operator can be urged to repair the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

制御手段となる領域制限制御部(40)は、操作レバー(15A)の操作量に対応するパイロット圧(37)および姿勢センサ(31)の姿勢信号に基づいて、制御弁(14A)を駆動するための要求増圧パイロット圧(43)を出力する。駆動許可判定部(48)は、操作レバー(15A)の操作量に対応するパイロット圧(37)に基づいて、油圧アクチュエータ(22)の駆動を許可するか否かを判定する。パイロット圧選択部(50)は、駆動が許可された油圧アクチュエータ(22)に対しては要求増圧パイロット圧(43)で制御弁(14A)を駆動し、駆動が許可されない油圧アクチュエータ(22)に対しては制御弁(14A)を駆動しないように、領域制限制御部(40)からの要求増圧パイロット圧(43)を選択する。

Description

建設機械の駆動制御装置
 本発明は、例えば油圧ショベル等の建設機械に用いて好適な建設機械の駆動制御装置に関する。
 例えば、油圧ショベルのような建設機械は、ブーム、アーム、バケット等からなる作業装置(フロント)による掘削、下部走行体による機械の走行、上部旋回体の旋回等を行うことができる。このために、油圧ショベルは、オペレータが掘削、走行、旋回等を行うために操作する操作レバーと、これらの掘削、走行、旋回等の動作を行うための複数の油圧アクチュエータと、各油圧アクチュエータを駆動するための圧油を供給するメインポンプと、メインポンプを駆動するエンジンと、オペレータのレバー操作に応じて各油圧アクチュエータに圧油を分配する複数の制御弁と、エンジンで駆動され制御弁の開閉を操作するパイロット圧を発生するパイロットポンプとを備えている。このような建設機械は、操作レバーの操作量に応じてパイロット圧を制御することにより、オペレータのレバー操作に応じて各油圧アクチュエータに圧油が分配され、オペレータの意図通りに動作させることができる。
 ここで、一般的な油圧ショベルでは、油圧回路によってパイロット圧を制御する。この場合に、パイロット圧の制御にコントローラによる制御を加えることにより、予め設定した目標掘削面よりも掘り過ぎないように、または、油圧ショベルのキャブを含む車体にバケットが衝突しないようにするものがある。このような油圧ショベルは、車体や作業装置の姿勢を計測する姿勢センサ(例えば、傾斜角センサやポテンショメータ等)と、操作レバーの操作量に応じたパイロット圧を計測する圧力センサと、レバー操作量に応じて発生したパイロット圧を減圧する比例電磁弁と、レバー操作に拘わらすパイロット圧を増圧する別の比例電磁弁と、姿勢センサによる車体や作業装置の姿勢情報と圧力センサによるレバー操作情報とに基づいて比例電磁弁を駆動するコントローラとを備えている。この場合、コントローラは、オペレータが作業装置を操作しているときに、作業装置が予め定めた空間的領域から逸脱しないように、パイロット圧を減圧または増圧して作業装置の動作を補正する。
 一方、操作レバーとして電気レバーを採用すると共に、パイロット圧を制御する油圧回路を設けずに、コントローラのみでパイロット圧を制御するものがある。このような油圧ショベルは、レバー操作量に応じて電気的な操作信号を出力する電気レバーと、複数の油圧アクチュエータのパイロット圧を制御する比例電磁弁と、電気レバーが出力する操作信号に基づいて比例電磁弁を駆動するコントローラとを備えている。この場合、コントローラは、レバー操作量に応じて各油圧パイロット圧を制御して機械を操作する。さらに、車体や作業装置の姿勢を計測する姿勢センサを備えたものもある。この場合は、作業装置が予め定めた空間的領域から逸脱しないように、各油圧アクチュエータのパイロット圧をコントローラで制御して、作業装置を操作することができる。
 これらの油圧ショベルでは、コントローラに何らかの故障やノイズ混入が生じた場合に、コントローラが比例電磁弁を誤って駆動する可能性がある。この場合に、操作レバーを中立位置に戻しても、機械が停止しないおそれがある。これに対して、例えば、特許文献1には、操作量に応じてレバー操作量信号を出力する電気レバーと、電気レバーが中立位置のときに中立位置信号を出力する中立位置信号出力手段と、各アクチュエータのパイロット圧を制御する比例電磁弁をレバー操作量信号に基づいて駆動するコントローラと、中立位置信号に基づいてコントローラと比例電磁弁との間の駆動信号をON/OFFする遮断装置とを備えた油圧機械の駆動制御装置が記載されている。遮断装置は、各アクチュエータの操作レバーが中立位置にあるときには、該当するアクチュエータの比例電磁弁の駆動信号を遮断する。これにより、コントローラの異常が生じても、操作レバーを中立位置に戻すことで、機械を停止させることができる。
特開平01-97729号公報
 特許文献1による駆動制御装置は、オペレータによってレバー操作がなされたアクチュエータを駆動させることができる。しかし、操作レバーが中立位置にあるアクチュエータは、比例電磁弁の駆動信号が遮断されるため、駆動させることができない。一方、作業装置が予め定めた空間的領域から逸脱しないように作業装置を制御する場合は、オペレータが操作していない中立位置にあるレバーに対応するアクチュエータを、コントローラで制御することが求められる。
 このため、特許文献1による駆動制御装置では、作業装置が予め定めた空間的領域から逸脱しないように作業装置を制御することができない。なお、油圧回路でレバー操作に応じてパイロット圧を制御する油圧ショベルに、特許文献1の技術を適用することも考えられる。しかし、この場合も、作業装置が予め定めた空間的領域から逸脱しないように、レバー操作に拘わらずパイロット圧を増圧する比例電磁弁をコントローラで制御することができず、同様の不都合が生じる。
 本発明の目的は、コントローラ(制御手段)が正常であるか否かに拘わらず、操作レバーを中立位置にすることで機械を停止することができ、かつ、作業装置が予め定めた空間的領域から逸脱しないように制御することができる建設機械の駆動制御装置を提供することにある。
 本発明の建設機械の駆動制御装置は、機械に備えられた複数の油圧アクチュエータを操作する複数の操作レバーと、前記各操作レバーの操作量に応じた操作信号を出力する操作量計測手段と、前記機械の姿勢に応じた姿勢信号を出力する姿勢計測手段と、前記各油圧アクチュエータの駆動を制御する複数の制御弁と、前記操作信号および前記姿勢信号に基づいて前記各制御弁を駆動する駆動信号を出力する制御手段とを備えている。
 上述した課題を解決するために、請求項1の発明が採用する構成の特徴は、前記操作信号に基づいて前記各油圧アクチュエータの駆動を許可するか否かを判定する駆動許可判定手段と、前記駆動許可判定手段により駆動が許可された前記油圧アクチュエータに対しては前記駆動信号で前記制御弁を駆動し、前記駆動許可判定手段により駆動が許可されない前記油圧アクチュエータに対しては前記制御弁を駆動しないように、前記駆動信号を選択する駆動信号選択手段とを備える構成としたことにある。
 一方、請求項4の発明が採用する構成の特徴は、前記操作信号に基づいて前記各油圧アクチュエータの前記制御弁を駆動する前記駆動信号の上限値を決定する駆動信号上限決定手段と、前記駆動信号が前記駆動信号上限決定手段で決定された上限値以下である前記油圧アクチュエータに対しては当該駆動信号で前記制御弁を駆動し、前記駆動信号が前記駆動信号上限決定手段で決定された上限値を超える前記油圧アクチュエータに対しては前記上限値で前記制御弁を駆動するように、前記駆動信号を選択する駆動信号選択手段とを備える構成としたことにある。
 本発明の建設機械の駆動制御装置は、制御手段が正常であるか否かに拘わらず、操作レバーを中立位置にすることで機械を停止することができ、かつ、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
第1の実施の形態による油圧ショベルを示す正面図である。 油圧ショベルの油圧系統(油圧回路)と電気系統(制御回路)を概略的に示すブロック図である。 図2中の駆動許容制御部を示すブロック図である。 油圧ショベルの動作の一例を簡略的に示す図1と同方向からみた図である。 レバー操作と駆動許可対象との関係の一例を示す駆動許可設定表の説明図である。 図5中の駆動許可設定表の使用例(判定例)を示す説明図である。 油圧ショベルの動作の別例を簡略的に示す図1と同方向からみた図である。 レバー操作と駆動許可対象との関係の別例を示す駆動許可設定表の説明図である。 図8中の駆動許可設定表の使用例(判定例)を示す説明図である。 図3中のパイロット圧選択部で行われる処理を示す流れ図である。 図3中のパイロット圧異常検出部で行われる処理を示す流れ図である。 パイロット圧センサ情報、駆動許可信号、要求増圧パイロット圧および増圧パイロット圧の時間変化の一例を示す特性線図である。 第2の実施の形態による油圧ショベルの油圧系統(油圧回路)と電気系統(制御回路)を概略的に示すブロック図である。 図13中の駆動許容制御部を示すブロック図である。 レバー操作と各アクチュエータ駆動のパイロット圧上限値との関係の一例を示す駆動上限値設定表の説明図である。 図15中の駆動上限値設定表の使用例(決定例)を示す説明図である。 レバー操作量とパイロット圧上限値との関係を示す特性線図である。 図14中のパイロット圧選択部で行われる処理を示す流れ図である。 レバー操作量、パイロット圧上限値、要求パイロット圧およびパイロット圧の時間変化の一例を示す特性線図である。
 以下、本発明に係る建設機械の駆動制御装置の実施の形態を、油圧ショベルに適用した場合を例に挙げ、添付図面を参照しつつ詳細に説明する。
 図1ないし図12は、第1の実施の形態を示している。図1において、建設機械の代表例である油圧ショベル1は、走行可能なクローラ式の下部走行体2と、該下部走行体2上に旋回装置3を介して旋回可能に搭載された上部旋回体4と、該上部旋回体4の前,後方向の前側に俯仰動可能に取付けられた作業装置5とを含んで構成されている。下部走行体2、旋回装置3および上部旋回体4は、油圧ショベル1の車体を構成しており、下部走行体2、旋回装置3、上部旋回体4および作業装置5は、機械(建設機械)を構成している。
 ここで、下部走行体2は、トラックフレーム2Aと、該トラックフレーム2Aの左,右両側に設けられた駆動輪2Bと、トラックフレーム2Aの左,右両側で駆動輪2Bに対して前,後方向の反対側に設けられた遊動輪2Cと、駆動輪2Bと遊動輪2Cとに巻回された履帯2D(いずれも左側のみ図示)とを含んで構成されている。左,右の駆動輪2Bは、それぞれ減速機構を介して左,右の走行油圧モータ2E(左側のみ図示)と接続されている。即ち、駆動輪2Bは、走行油圧モータ2Eによって回転駆動される。このとき、走行油圧モータ2Eは、車両となる油圧ショベル1を走行動作させる油圧アクチュエータを構成している。
 旋回装置3は、下部走行体2上に設けられている。旋回装置3は、例えば、旋回軸受と、減速機構(いずれも図示せず)と、旋回油圧モータ3Aとを含んで構成されている。旋回装置3は、上部旋回体4を下部走行体2に対して旋回させる。このとき、旋回油圧モータ3Aは、上部旋回体4を作業装置5と共に旋回動作させる油圧アクチュエータを構成している。
 作業装置5は、油圧ショベル1のフロントとなるショベル機構を構成している。作業装置5は、例えばブーム5A、アーム5B、作業具(アタッチメント)としてのバケット5Cと、これらを駆動するブームシリンダ5D、アームシリンダ5E、作業具シリンダとしてのバケットシリンダ5Fとを備えている。ブーム5A、アーム5B、バケット5Cは、互いにピン結合されている。作業装置5は、各シリンダ5D,5E,5Fを伸長または縮小することによって掘削作業を行うことができる。このとき、各シリンダ5D,5E,5Fは、作業装置5を掘削動作させる油圧アクチュエータを構成している。
 即ち、油圧シリンダからなるブームシリンダ5D、アームシリンダ5E、バケットシリンダ5F、および、油圧モータからなる左,右の走行油圧モータ2E、旋回油圧モータ3Aは、それぞれ圧油の供給に基づいて駆動(作動)する油圧アクチュエータ(油圧機器、油圧装置)となるものである。これら、複数の油圧アクチュエータ5D,5E,5F,2E,3Aは、下部走行体2、旋回装置3、上部旋回体4および作業装置5を含んで構成される機械(建設機械)に備えられている。
 上部旋回体4は、支持構造体をなし前,後方向の前側に作業装置5が取付けられた旋回フレーム6と、旋回フレーム6上に設けられたエンジン10、メインポンプ11、パイロットポンプ12、制御弁装置14等を収容する建屋カバー7と、作業装置5との重量バランスをとるカウンタウエイト8と、オペレータが搭乗するキャブ9とを備えている。
 ここで、エンジン10は、例えばディーゼルエンジン等の内燃機関を用いて構成されている。エンジン10の出力側には、油圧ポンプであるメインポンプ11および別の油圧ポンプであるパイロットポンプ12が機械的に接続されている。エンジン10は、ECUとも呼ばれるエンジンコントローラ10Aによって、燃料噴射量が制御されることにより、回転数(回転速度)および駆動力が制御される。エンジンコントローラ10Aは、後述するメインコントローラ32に接続されている。
 エンジン10の駆動力は、メインポンプ11およびパイロットポンプ12に伝達される。これにより、エンジン10は、メインポンプ11およびパイロットポンプ12を回転駆動するための原動機(回転源、駆動源)を構成している。なお、メインポンプ11およびパイロットポンプ12を駆動する原動機は、内燃機関となるエンジン単体で構成できる他、例えば、エンジンと電動モータ、または、電動モータ単体により構成してもよい。
 メインポンプ11は、エンジン10によって回転駆動される。メインポンプ11は、作動油を貯溜する作動油タンク13(図2参照)と共にメインの油圧源を構成している。メインポンプ11は、例えば可変容量型の斜板式油圧ポンプ等により構成され、ポンプ容量を調整するレギュレータ(容量可変部、傾転アクチュエータ)11A(図2参照)を有している。レギュレータ11Aは、メインコントローラ32(の車体制御部36)に接続されており、メインコントローラ32(の車体制御部36)により可変に制御される。即ち、メインポンプ11は、メインコントローラ32によってポンプ容量が調整される。メインポンプ11は、エンジン10によって回転駆動されることにより、制御弁装置14を介して各油圧アクチュエータ5D,5E,5F,2E,3Aに圧油を供給する。
 パイロットポンプ12は、メインポンプ11と同様に、エンジン10によって回転駆動される。パイロットポンプ12は、例えば、固定容量型油圧ポンプとして構成され、作動油タンク13と共にパイロット油圧源を構成している。パイロットポンプ12は、キャブ9内に設けられた操作レバー装置15を介して、制御弁装置14にパイロット圧を供給する。
 制御弁装置14は、メインポンプ11が発生した圧油を各アクチュエータ5D,5E,5F,2E,3Aに分配する。このために、制御弁装置14は、メインポンプ11と各油圧アクチュエータ5D,5E,5F,2E,3Aとの間に設けられている。制御弁装置14は、複数の制御弁14A(図2参照)により構成された制御弁群である。各制御弁14Aは、例えば6ポート3位置の方向制御弁により構成され、メインポンプ11から各油圧アクチュエータ5D,5E,5F,2E,3Aに供給する圧油を切換え制御する。
 この場合、制御弁装置14(各制御弁14A)は、操作レバー装置15により操作(切換え操作)される。このために、制御弁装置14の各制御弁14Aには、それぞれ一対の油圧パイロット部(図示せず)が設けられている。制御弁14Aの油圧パイロット部には、操作レバー装置15の操作に基づくパイロット圧(切換信号)が供給される。これにより、各制御弁14Aは、各油圧アクチュエータ5D,5E,5F,2E,3Aの駆動を制御する。
 キャブ9内には、オペレータが着席する運転席(図示せず)、オペレータが操作する複数の操作レバー装置15、オペレータに対して機械の各種情報を報知すると共に運転モード等を設定するモニタ・操作パネル装置16等が設けられている。また、キャブ9内には、メインポンプ11および制御弁装置14を制御すると共にエンジンコントローラ10Aに指令を与えるメインコントローラ32が設けられている。なお、図1では、メインコントローラ32を上部旋回体4のキャブ9内に設ける構成としたが、例えば、メインコントローラ32を上部旋回体4のキャブ9外に設ける構成としてもよい。
 複数の操作レバー装置15は、走行用の操作レバー・ペダル装置や作業用の操作レバー装置等により構成されている。即ち、各操作レバー装置15は、例えば減圧弁型パイロット弁からなるパイロット操作弁(油圧式レバー装置)として構成され、オペレータによって操作される操作レバー15Aをそれぞれ有している。操作レバー15Aを含む操作レバー装置15は、各油圧アクチュエータ5D,5E,5F,2E,3Aを操作するものである。
 即ち、オペレータが操作レバー15Aを手動で傾転操作(レバー操作)すると、その操作量に比例したパイロット圧(切換油圧信号)が、操作レバー装置15から制御弁装置14を構成する各制御弁14A(の油圧パイロット部)に供給される。これにより、各制御弁14Aのスプールの位置が変位し、各油圧アクチュエータ5D,5E,5F,2E,3Aに供給・排出する圧油の方向および流量が制御され、作業装置5による掘削、下部走行体2の走行、上部旋回体4の旋回等を行うことができる。
 モニタ・操作パネル装置16は、オペレータに対して燃料残量、エンジン冷却水温度等の機械の状態を報知すると共に、油圧ショベル1の運転モード等の選択、設定等を行うためのものである。このために、モニタ・操作パネル装置16は、例えば、表示画面となる液晶モニタと、音を出力する音響装置と、オペレータの入力インターフェースとなる操作パネルとを含んで構成されている。モニタ・操作パネル装置16は、オペレータに対して異常を報知するときに、表示画面に異常がある旨や異常の内容等を表示し、および/または、音響装置から警報音、音声等の音を出力する。
 次に、油圧ショベル1を駆動する油圧回路21について、図1に加え図2も参照しつつ説明する。なお、図2では、図面が複雑になることを避けるために、複数の油圧機器を代表的に1個の油圧機器で表している。具体的には、図2では、制御弁装置14を構成する複数の制御弁14Aを1個の制御弁14Aで表し、複数の油圧アクチュエータ5D,5E,5F,2E,3Aを1個の油圧アクチュエータ(以下、油圧アクチュエータ22とする)で表し、複数の操作レバー装置15を1個の操作レバー装置15で表し、複数の減圧比例電磁弁23を1個の減圧比例電磁弁23で表し、複数の増圧比例電磁弁25を1個の増圧比例電磁弁25で表している。
 実際の油圧ショベル1の油圧回路21では、例えば、6個の油圧アクチュエータ22と、6個の制御弁14Aと、4個の操作レバー装置15(例えば、2個で合計4方向の操作に対応する作業用操作レバー装置と2個の走行用レバー・ペダル装置)と、4個または6個の減圧比例電磁弁23と、4個または6個の増圧比例電磁弁25とを備えている。また、図2では、後述する複数の圧力センサ28および複数の別の圧力センサ29も、代表的にそれぞれ1個で表している。実際の油圧ショベル1の油圧回路21では、例えば、それぞれ4個または6個の圧力センサ28および別の圧力センサ29を備えている。
 図2に示すように、油圧ショベル1の油圧回路21は、エンジン10と、メインポンプ11と、複数の制御弁14Aと、複数の油圧アクチュエータ22と、パイロットポンプ12と、複数の操作レバー装置15と、複数の減圧比例電磁弁23と、複数の増圧比例電磁弁25と、複数の圧力センサ28と、複数の別の圧力センサ29と、遮断電磁弁30と、姿勢センサ31と、メインコントローラ32と、モニタ・操作パネル装置16とを備えている。
 減圧比例電磁弁23は、操作レバー装置15と制御弁14A(のパイロット部)との間に設けられている。即ち、減圧比例電磁弁23は、操作レバー装置15と制御弁14Aとの間を接続するパイロット管路24の途中に設けられている。減圧比例電磁弁23は、例えば、常開の比例電磁弁により構成され、メインコントローラ32(の領域制限制御部40)と接続されている。減圧比例電磁弁23は、メインコントローラ32の指令(駆動信号)に基づいて、制御弁14A(のパイロット部)に供給されるパイロット圧を減圧する。
 増圧比例電磁弁25は、パイロットポンプ12と制御弁14A(のパイロット部)との間に設けられている。即ち、増圧比例電磁弁25は、パイロットポンプ12と操作レバー装置15との間を接続するパイロット吐出管路26から分岐し、かつ、パイロット管路24のうち減圧比例電磁弁23と制御弁14Aとの間に接続されるパイロット分岐管路27の途中に設けられている。増圧比例電磁弁25は、例えば、常閉の比例電磁弁により構成され、メインコントローラ32(の駆動許容制御部44)と接続されている。増圧比例電磁弁25は、メインコントローラ32の指令(駆動信号)に基づいて、制御弁14A(のパイロット部)に供給されるパイロット圧を増圧する。
 圧力センサ28は、パイロット管路24のうち操作レバー装置15と減圧比例電磁弁23との間に設けられている。圧力センサ28は、メインコントローラ32(の車体制御部36、領域制限制御部40、および、駆動許容制御部44)に接続されている。圧力センサ28は、操作レバー装置15から出力されるパイロット圧37を検出し、そのパイロット圧37に対応する検出信号をメインコントローラ32に出力する。即ち、圧力センサ28は、各操作レバー15Aの操作量に応じた操作信号を出力する操作量計測手段を構成している。
 別の圧力センサ29は、パイロット管路24のうちパイロット分岐管路27との接続部と制御弁14A(のパイロット部)との間に設けられている。別の圧力センサ29は、メインコントローラ32(の駆動許容制御部44)に接続されている。別の圧力センサ29は、制御弁14Aのパイロット部に供給されるパイロット圧35を検出し、そのパイロット圧35に対応する検出信号をメインコントローラ32に出力する。
 遮断電磁弁30は、パイロット吐出管路26のうちパイロットポンプ12と操作レバー装置15との間、より具体的には、パイロット分岐管路27との分岐部とパイロットポンプ12との間に設けられている。遮断電磁弁30は、例えば、常開の電磁切換弁により構成され、メインコントローラ32(の駆動許容制御部44)と接続されている。遮断電磁弁30は、メインコントローラ32の指令に基づいて、パイロットポンプ12から操作レバー装置15および増圧比例電磁弁25に供給されるパイロット圧の元圧34を遮断する。
 姿勢センサ31は、油圧ショベル1の姿勢を検出(計測)するセンサ(複数のセンサからなるセンサ群)である。即ち、姿勢センサ31は、作業装置5および上部旋回体4を含む機械に設けられ、機械の姿勢を推定するための各種の状態量を検出(計測)するものである。姿勢センサ31は、例えば、上部旋回体4の傾斜を測定する傾斜角センサ、上部旋回体4の角度(例えば、旋回角度)を検出する角度センサ、作業装置5のブーム5Aの回転角度を検出するブーム用回転角度センサ、アーム5Bの回転角度を検出するアーム用回転角度センサ、バケット5Cの回転角度を検出するバケット用回転角度センサ等を含んで構成されている。これにより、姿勢センサ31は、機械の姿勢に応じた姿勢信号(検出信号)を出力する姿勢計測手段を構成している。
 なお、作業装置5の回転角度センサは、例えば、ポテンショメータ、傾斜角センサ、シリンダストロークセンサ、および/または、これらの組み合わせにより構成することができる。また、上部旋回体4の角度センサは、下部走行体2との相対角度を計測するものの他、汎地球測位航法衛星システム(GNSS)を用いて地球座標上の角度を計測するものにより構成してもよい。
 このような姿勢センサ31は、メインコントローラ32(の領域制限制御部40)に接続されている。メインコントローラ32(の領域制限制御部40)は、作業装置5が予め設定した空間領域を超えないように作業装置5を制御する機能、即ち、姿勢センサ31の計測データ(検出信号)とオペレータのレバー操作(例えば、圧力センサ28の検出信号)と基づいて、作業装置5を制御する領域制限制御機能を備えている。領域制限制御機能の用途としては、作業装置5のキャブ9への衝突の回避、掘削作業における掘り過ぎの防止、作業現場における機械上方の施設への衝突の回避等が挙げられる。
 次に、油圧ショベル1の領域制限制御機能を実現するためのシステム構成を説明する。
 エンジン10の駆動力は、メインポンプ11とパイロットポンプ12に伝達される。メインポンプ11は、各油圧アクチュエータ22を駆動(作動)する圧油33を発生する。パイロットポンプ12は、オペレータが操作レバー装置15の操作レバー15Aを通じて制御弁14Aを制御するパイロット圧の元圧34を発生させる。制御弁14Aは、操作レバー15Aの各々の操作量等で決まる(制御弁14A側の)パイロット圧35に応じて、油圧アクチュエータ22への圧油の吐出量および吐出方向を制御する。
 メインコントローラ32は、例えば、メモリ、UPU(演算装置)等を備えたマイクロコンピュータを含んで構成されている。メインコントローラ32は、車体制御部36と、領域制限制御部40と、駆動許容制御部44とを含んで構成されている。なお、車体制御部36は、メインコントローラ32に実装されるが、領域制限制御部40と駆動許容制御部44は、それぞれメインコントローラ32に実装してもよいし、メインコントローラ32とは別のコントローラに実装してもよい。
 車体制御部36は、各圧力センサ28で計測した(操作レバー15A側の)パイロット圧37の計測データ38から算出した操作レバー15Aの操作量、エンジン10の稼働状態(運転状態)、メインポンプ11の吐出圧、各油圧アクチュエータ22の負荷圧等に基づいて、エンジン10の回転数、メインポンプ11の流量(吐出量)等を制御する。このために、車体制御部36は、各圧力センサ28と、エンジン10(のエンジンコントローラ10A)と、メインポンプ11(のレギュレータ11A)と、各油圧アクチュエータ22(の圧力センサ(図示せず))とに接続されている。なお、車体制御部36は、メインポンプ11から各油圧アクチュエータ22への圧油分配を制御するために、パイロット圧35に対する要求減圧パイロット圧39を出力することもある。このために、車体制御部36は、領域制限制御部40と接続されている。要求減圧パイロット圧39は、各々の油圧アクチュエータ22に対応して出力される。
 さらに、領域制限制御機能を実現するシステムとして、減圧比例電磁弁23と、増圧比例電磁弁25と、遮断電磁弁30と、圧力センサ29と、領域制限制御部40と、駆動許容制御部44とを備えている。減圧比例電磁弁23は、パイロット圧35を減圧して油圧アクチュエータ22を減速または停止する電磁弁(減速比例電磁弁)である。増圧比例電磁弁25は、パイロット圧35を増圧して油圧アクチュエータ22を起動または増速する電磁弁(増速比例電磁弁)である。遮断電磁弁30は、パイロット圧の元圧34を遮断する電磁弁である。圧力センサ29は、制御弁14Aを制御するパイロット圧35を計測する。
 領域制限制御部40は、入力側が姿勢センサ31と各圧力センサ28と車体制御部36とに接続され、出力側が各減圧比例電磁弁23と駆動許容制御部44とに接続されている。領域制限制御部40は、各操作レバー15Aの操作量に応じた操作信号(パイロット圧37の信号)および姿勢センサ31の姿勢信号(姿勢に関する状態量の検出信号)に基づいて、各制御弁14Aを駆動する駆動信号(駆動電流42および要求増圧パイロット圧43)を出力する制御手段(領域制限制御手段)を構成している。即ち、領域制限制御部40は、油圧ショベル1の姿勢センサ31の計測データ41に基づいて機械の姿勢を推定すると共に、各圧力センサ28のパイロット圧37の計測データ38に基づいてオペレータによる操作レバー15Aの操作量を算出する。
 そして、領域制限制御部40は、機械が予め設定した空間領域から逸脱しないように、機械の姿勢、オペレータの操作、車体制御部36が出力する要求減圧パイロット圧39等に応じて、減圧比例電磁弁23の駆動電流42を減圧比例電磁弁23に出力し、所望の油圧アクチュエータ22を減速または停止する。または、領域制限制御部40は、機械が予め設定した空間領域から逸脱しないように、機械の姿勢、オペレータの操作、要求減圧パイロット圧39等に応じて、増圧比例電磁弁25を駆動して所望の油圧アクチュエータ22を起動または増速するために、要求増圧パイロット圧43を駆動許容制御部44に出力する。駆動電流42、および、要求増圧パイロット圧43は、各々の油圧アクチュエータ22に対応して出力される。
 駆動許容制御部(作動許容制御部)44は、入力側が各圧力センサ28と領域制限制御部40と各別の圧力センサ29とに接続され、出力側が各増圧比例電磁弁25とモニタ・操作パネル装置16と遮断電磁弁30とに接続されている。駆動許容制御部44は、パイロット圧37の計測データ38に基づいてオペレータによる操作レバー15Aの操作の有無を判別し、操作状況に応じて各油圧アクチュエータ22の駆動(作動)を許可するか否かを判定する。そして、駆動許容制御部44は、駆動を許可する油圧アクチュエータ22に対しては、領域制限制御部40から出力された要求増圧パイロット圧43に応じて、増圧比例電磁弁25の駆動電流45を増圧比例電磁弁25に出力する。これにより、所望の油圧アクチュエータ22を起動または増速する。駆動電流45は、各々の油圧アクチュエータ22に対応して出力される。
 一方、駆動許容制御部44は、駆動を許可しない油圧アクチュエータ22に対しては要求増圧パイロット圧43の値に拘わらず、駆動電流45を出力しない。これにより、領域制限制御部40の異常により誤った要求増圧パイロット圧43が出力されても、駆動許容制御部44により、駆動を許可しない油圧アクチュエータ22の増圧比例電磁弁25を駆動しないようにできる。さらに、駆動許容制御部44は、操作レバー15Aが中立位置のときに、全ての油圧アクチュエータ22の駆動を許可しないようにすることができる。これにより、オペレータは、操作レバー15Aを中立位置に戻すことにより、全ての増圧比例電磁弁25を駆動しないようにでき、油圧アクチュエータ22の不当な動作を停止することができる。
 また、駆動許容制御部44は、駆動を許可しない油圧アクチュエータ22に対して要求増圧パイロット圧43が出力された場合に、要求増圧パイロット圧43に異常がある旨の異常情報46を、モニタ・操作パネル装置16に出力することができる。これにより、異常をオペレータに報知することができる。また、駆動許容制御部44は、別の圧力センサ29により検出されるパイロット圧35と後述の増圧パイロット圧51とを比較し、パイロット圧35の異常を判定することができる。異常であると判定された場合に、駆動許容制御部44は、遮断電磁弁30を駆動(閉弁)する駆動電流47を遮断電磁弁30に出力する。これにより、パイロット圧の元圧34が遮断され、機械を停止させることができる。
 次に、駆動許容制御部44について、図3ないし図9を参照しつつ説明する。
 図3に示すように、駆動許容制御部44は、駆動許可判定部48と、パイロット圧選択部50と、電磁弁駆動部53と、パイロット圧異常検出部54と、異常通知部58とを備えている。駆動許可判定部48は、入力側が各圧力センサ28に接続され、出力側がパイロット圧選択部50に接続されている。駆動許可判定部48は、各操作レバー15Aの操作量に応じた操作信号に基づいて、各油圧アクチュエータ22の駆動を許可するか否かを判定(決定)して出力する駆動許可判定手段を構成している。即ち、駆動許可判定部48は、各圧力センサ28のパイロット圧センサ情報、即ち、パイロット圧37の計測データ38に基づいて、オペレータによる各操作レバー15Aの操作状況に応じた駆動を許可する油圧アクチュエータ22を判定する。そして、駆動許可判定部48は、その判定結果(油圧アクチュエータ22の駆動の許可、不許可)に対応する駆動許可信号49を、パイロット圧選択部50に出力する。
 パイロット圧選択部50は、入力側が領域制限制御部40と駆動許可判定部48に接続され、出力側が電磁弁駆動部53とパイロット圧異常検出部54と異常通知部58とに接続されている。パイロット圧選択部50は、駆動許可判定部48により駆動が許可された油圧アクチュエータ22に対しては駆動信号(要求増圧パイロット圧43)で制御弁14Aを駆動し、駆動が許可されない油圧アクチュエータ22に対しては制御弁14Aを駆動しないように、駆動信号(領域制限制御部40からの要求増圧パイロット圧43)を選択する駆動信号選択手段を構成している。
 即ち、パイロット圧選択部50は、領域制限制御部40からの要求増圧パイロット圧43のうち、駆動許可判定部48から出力された駆動許可信号49に応じた要求増圧パイロット圧43、即ち、駆動が許可された油圧アクチュエータ22の要求増圧パイロット圧43を、増圧パイロット圧51として選択する。そして、パイロット圧選択部50は、増圧パイロット圧51を、電磁弁駆動部53とパイロット圧異常検出部54とに出力する。
 さらに、パイロット圧選択部50は、駆動が許可されない油圧アクチュエータ22の要求増圧パイロット圧43が0でない場合に、要求増圧パイロット圧43が異常である旨の要求増圧パイロット圧異常情報52を、異常通知部58に出力する。即ち、パイロット圧選択部50は、各油圧アクチュエータ22の駆動信号(要求増圧パイロット圧43)と駆動許可判定部48で判定された駆動許可信号49とに基づいて制御異常を検出する異常検出手段(要求増圧パイロット圧異常検出手段)も構成している。なお、パイロット圧選択部50で行われる図10の処理については、後で説明する。
 電磁弁駆動部53は、入力側がパイロット圧選択部50に接続され、出力側が増圧比例電磁弁25に接続されている。電磁弁駆動部53は、パイロット圧選択部50からの増圧パイロット圧51に基づいて、増圧比例電磁弁25の駆動電流45を増圧比例電磁弁25に出力する。これにより、増圧比例電磁弁25が駆動電流45に応じて開弁し、駆動が許可された油圧アクチュエータ22の制御弁14Aのパイロット部に増圧パイロット圧51に対応するパイロット圧が供給される。
 パイロット圧異常検出部54は、入力側がパイロット圧選択部50と各別の圧力センサ29とに接続され、出力側が異常通知部58と遮断電磁弁30とに接続されている。パイロット圧異常検出部54は、各別の圧力センサ29のパイロット圧センサ情報55であるパイロット圧35の計測データとパイロット圧選択部50からの増圧パイロット圧51とを比較して、パイロット圧35の異常を検出する。パイロット圧異常検出部54は、パイロット圧35の異常を検出した場合は、パイロット圧35が異常である旨のパイロット圧異常情報56を異常通知部58に出力する。
 これと共に、パイロット圧異常検出部54は、パイロット圧(の元圧34)を遮断する指令信号(駆動電流47)となるパイロット圧遮断要求57を遮断電磁弁30に出力する。即ち、パイロット圧異常検出部54は、パイロット圧選択部50で選択された駆動信号(増圧パイロット圧51)と制御弁14Aに供給される実際の駆動信号(パイロット圧35)とに基づいて制御異常を検出する別の異常検出手段(パイロット圧異常検出手段)、および、異常を検出したときに制御弁14Aに対する駆動信号(パイロット圧)を遮断する駆動信号停止手段を構成している。なお、パイロット圧異常検出部54で行われる図11の処理については、後で説明する。
 異常通知部58は、入力側がパイロット圧選択部50とパイロット圧異常検出部54とに接続され、出力側がモニタ・操作パネル装置16に接続されている。異常通知部58は、パイロット圧選択部50、および/または、パイロット圧異常検出部54により制御異常を検出したときに異常を通知する異常通知手段を構成している。即ち、異常通知部58は、パイロット圧選択部50からの要求増圧パイロット圧異常情報52、および/または、パイロット圧異常検出部54からのパイロット圧異常情報56に基づいて、異常がある旨および異常の内容に対応する異常情報46を、モニタ・操作パネル装置16に出力する。
 ここで、駆動許可判定部48は、オペレータのレバー操作毎に駆動を許可する油圧アクチュエータ22を予め設定することができる。図5および図8は、各々のレバー操作時に許可する油圧アクチュエータ22の動作の設定例をマトリクスで示した駆動許可設定表60,62である。駆動許可判定部48は、1または複数のレバー操作がなされた場合、駆動許可設定表60,62に基づいて、各油圧アクチュエータ22の動作がいずれかのレバー操作で許可されるかどうかを判定する。そして、駆動許可判定部48は、いずれのレバー操作もなされない場合、即ち、操作レバー15Aが中立位置のときは、全ての油圧アクチュエータ22の動作を不許可と判定し、この判定結果に対応する駆動許可信号49を駆動許可信号Enとして出力する。
 図5の駆動許可設定表60の設定は、図4に示すように、掘削作業や均し作業において、バケット5Cが目標面61よりも下を掘り過ぎないように、アーム5Bまたはバケット5Cを操作しているときに、領域制限制御部40によってブーム5Aを上げ方向に動作させるものである。オペレータがアーム引きとバケット掘削の操作を行った場合、図6に示すように、駆動許可判定部48は、アーム引きとバケット掘削に加えてブーム上げも許可する。これにより、オペレータによるブーム上げ操作がなくても、領域制限制御部40によるブーム上げ動作が可能になる。一方、領域制限制御部40が故障により誤った要求増圧パイロット圧43を出力しても、オペレータが操作レバー15Aを中立位置に戻すと、駆動許可判定部48の判定結果は全て不許可となる。これにより、不当な油圧アクチュエータ22の動作を停止することができる。
 一方、図8の駆動許可設定表62の設定は、図7に示すように、バケット5Cが上部旋回体4や下部走行体2に衝突しないように干渉防止領域63を設けて、ブーム5A、アーム5B、バケット5Cを操作しているときに、領域制限制御部40によってアーム5Bを押し方向に動作させるものである。オペレータがブーム上げとバケット掘削の操作を行った場合、図9に示すように、駆動許可判定部48は、ブーム上げとバケット掘削に加えてアーム押しも許可する。これにより、オペレータによるアーム押し操作がなくても、領域制限制御部40によるアーム押し動作が可能になる。一方、領域制限制御部40が故障により誤った要求増圧パイロット圧43を出力しても、オペレータが操作レバー15Aを中立位置に戻すと、駆動許可判定部48の判定結果は全て不許可となる。これにより、不当な油圧アクチュエータ22の動作を停止することができる。
 このように、駆動許可判定部48は、図5に示す駆動許可設定表60、および/または、図8に示す駆動許可設定表62を備えている。駆動許可設定表60,62は、オペレータが行うレバー操作とこれに対応して駆動を許可するレバー操作との対応関係を表したものである。そして、図5の駆動許可設定表60、および/または、図8の駆動許可設定表62は、各油圧アクチュエータ22のそれぞれに対して駆動を許可する1または複数のレバー操作を設定する駆動許可設定手段を構成している。なお、駆動許可設定手段は、オペレータが行うレバー操作とこれに対応して駆動を許可するレバー操作との対応関係が設定されたものであればよく、図5および図8のような表(マトリクス)に限定するものではない。また、駆動許可設定表60,62は、図5および図8に限定されるものではなく、領域制限制御部40の制限制御に応じて各種の駆動許可設定表(オペレータが行うレバー操作とこれに対応して駆動を許可するレバー操作との対応関係)を設定することができる。
 次に、図10は、パイロット圧選択部50で行われる制御処理を示している。図10の制御処理は、例えば、メインコントローラ32(パイロット圧選択部50)に通電している間、所定の制御周期で繰り返し実行される。なお、図10(および、後述する図11、図18)に示す流れ図の各ステップは、それぞれ「S」という表記を用いて示す(例えば、ステップ1=S1)。
 パイロット圧選択部50の制御処理がスタートすると、パイロット圧選択部50は、S1で、領域制限制御部40から出力された要求増圧パイロット圧43、即ち、要求増圧パイロット圧Pcrを取得する。続く、S2では、駆動許可判定部48から出力された駆動許可判定結果に対応する駆動許可信号49、即ち、駆動許可信号Enを取得する。そして、S3では、駆動許可信号Enが「駆動許可」であるか否かを判定する。
 S3で「YES」、即ち、駆動許可信号Enが「駆動許可」であると判定された場合は、S4に進む。S4では、要求増圧パイロット圧Pcrを増圧パイロット圧Pcとする。即ち、電磁弁駆動部53およびパイロット圧異常検出部54に対して増圧パイロット圧51を、増圧パイロット圧Pc(=Pcr)として出力し、リターンする(リターンを介してスタートに戻りS1以降の処理を繰り返す)。
 一方、S3で「NO」、即ち、駆動許可信号Enが「駆動不許可」であると判定された場合は、S5に進む。S5では、要求増圧パイロット圧Pcrを0とする。即ち、電磁弁駆動部53およびパイロット圧異常検出部54に対して増圧パイロット圧51を、増圧パイロット圧Pc(=0)として出力する。続くS6では、S1で取得した要求増圧パイロット圧Pcrが0よりも大きな値であるか否かを判定する。
 S6で「YES」、即ち、S1で取得した要求増圧パイロット圧Pcrが0よりも大きな値であると判定された場合は、S7に進む。S7では、要求増圧パイロット圧Pcrが異常である旨の異常情報である要求増圧パイロット圧異常情報52を異常通知部58に出力し、リターンする。一方、S6で「NO」、即ち、S1で取得した要求増圧パイロット圧Pcrが0よりも大きな値でない(Pcr=0)と判定された場合は、S7を介することなくリターンする。これらの処理、即ち、パイロット圧選択部50で行われる処理は、各々の油圧アクチュエータ22の動作に対して実行される。
 次に、図11は、パイロット圧異常検出部54で行われる制御処理を示している。図11の制御処理も、図10の処理と同様に、例えば、メインコントローラ32(パイロット圧異常検出部54)に通電している間、所定の制御周期で繰り返し実行される。
 パイロット圧異常検出部54の制御処理がスタートすると、パイロット圧異常検出部54は、S11で、パイロット圧選択部50から出力された増圧パイロット圧51、即ち、増圧パイロット圧Pcを記憶し、リターンする(リターンを介してスタートに戻りS11の処理を繰り返す)。また、このS11の処理と並行して、S21以降の処理も行う。
 S21では、現時点よりも時間Tdだけ過去に記憶していた増圧パイロット圧Pcdを読み出す。なお、時間Tdは、増圧パイロット圧Pcが決まってからそれに応じたパイロット圧35が発生するまでの時間と、その発生したパイロット圧35を別の圧力センサ29で計測してからその計測結果(パイロット圧センサ情報55)であるパイロット圧Prを、パイロット圧異常検出部54が取得するまでの時間の和である。即ち、増圧パイロット圧Pcdは、パイロット圧異常検出部54が取得するパイロット圧Prに対応する過去の増圧パイロット圧Pcに相当する。
 S21に続くS22では、パイロット圧異常検出部54は、別の圧力センサ29から実際のパイロット圧Prを取得し、S1で読み出した増圧パイロット圧Pcdと比較する。即ち、続くS23で、実際のパイロット圧Prと増圧パイロット圧Pcdとの差が予め定めた異常判定差閾値となるdPce未満であるか否かを判定する。S23で「YES」、即ち、実際のパイロット圧Prと増圧パイロット圧Pcdとの差がdPce未満であると判定された場合は、パイロット圧35は正しいと判断できる。そこで、S24に進み、エラーカウンタECをクリアし、リターンする(リターンを介してスタートに戻りS21以降の処理を繰り返す)。なお、閾値dPceは、例えば、その値以上となるとパイロット圧35の異常が発生している可能性が高いと判定できる値として設定することができる。閾値dPceは、異常の判定を精度よく行うことができるように、例えば、予め実験、計算、シミュレーション等により求めておく。
 一方、S23で「NO」、即ち、実際のパイロット圧Prと増圧パイロット圧Pcdとの差がdPce以上であると判定された場合は、パイロット圧35は誤っていると判断できる。そこで、S25に進み、エラーカウンタECをインクリメントする。そして、続くS26では、エラーカウンタECが予め定めた異常判定回数閾値となるRC以上であるか否かを判定する。
 S26で「YES」、即ち、エラーカウンタECがRC以上であると判定された場合は、S27に進み、パイロット圧の元圧34を遮断する指令信号となるパイロット圧遮断要求57、即ち、パイロット圧遮断要求DesPiを遮断電磁弁30に出力する。これにより、遮断電磁弁30を閉位置(遮断位置)にし、機械を停止する。続くS28では、パイロット圧35が異常である旨のパイロット圧異常情報56を異常通知部58に出力する。これにより、異常通知部58は、異常がある旨および異常の内容に対応する異常情報46をモニタ・操作パネル装置16に出力し、オペレータに対して異常を報知することができる。S28で、パイロット圧異常情報56を出力したら、リターンする。なお、閾値RCは、例えば、その値以上になると機械を停止した方が好ましいと判定できる値として設定することができる。閾値RCは、機械の停止を適切に行うことができるように、例えば、予め実験、計算、シミュレーション等により求めておく。
 一方、S26で「NO」、即ち、エラーカウンタECがRC未満であると判定された場合は、S27およびS28を介することなくリターンする。これらの処理、即ち、パイロット圧異常検出部54で行われる処理は、各々の油圧アクチュエータ22の動作に対して実行される。即ち、パイロット圧遮断要求DesPiおよび遮断電磁弁30は、各々の油圧アクチュエータ22毎に設けることができる。この場合には、異常に該当する油圧アクチュエータ22の動作のみを停止させることができる。一方、遮断電磁弁30を設けず、かつ、S27を省略する構成としてもよい。この場合は、モニタ・操作パネル装置16による異常の報知に基づいて、オペレータがキーオフすることにより、機械を停止することができる。
 本実施の形態による油圧ショベル1は上述の如き構成を有するもので、次に、その動作について説明する。
 キャブ9に搭乗したオペレータがエンジン10を起動させると、エンジン10によってメインポンプ11およびパイロットポンプ12が駆動される。これにより、メインポンプ11から吐出した圧油は、キャブ9内に設けられた操作レバー装置15の操作レバー15Aの操作(例えば、作業用の操作レバーのレバー操作、走行用の操作レバー・ペダルのレバー操作、ペダル操作)に応じて、各油圧アクチュエータ22(即ち、左,右の走行油圧モータ2E、旋回油圧モータ3A、作業装置5のブームシリンダ5D,アームシリンダ5E,バケットシリンダ5F)に供給される。これにより、油圧ショベル1は、下部走行体2による走行動作、上部旋回体4の旋回動作、作業装置5による掘削動作等を行うことができる。
 ここで、図12は、操作レバー15Aが操作されたときの駆動許容制御部44による基本動作を示している。T1の時点で、オペレータの操作レバー15Aの操作が開始され、この操作によってパイロット圧37が発生する。T2の時点で、駆動許容制御部44の駆動許可判定部48は、パイロット圧センサ情報(であるパイロット圧37の計測データ38)に基づいて、オペレータによる各操作レバー15Aの操作状況に応じた各油圧アクチュエータ22の駆動許可信号Enを出力する。そして、T2の時点からT6の時点まで、駆動許容制御部44のパイロット圧選択部50は、駆動許可信号Enが「駆動許可」であるため、領域制限制御部40からの要求増圧パイロット圧Pcrを、増圧パイロット圧Pcとして出力する。このとき、駆動許容制御部44の電磁弁駆動部53は、増圧パイロット圧Pcに基づいて、増圧比例電磁弁25に駆動電流45を出力する。これにより、領域制限制御部40による油圧アクチュエータの動作が可能になる。
 一方、T4の時点から領域制限制御部40の故障により誤った要求増圧パイロット圧Pcrが出力されると、例えば、この故障による動きに違和感を持ったオペレータが、T5の時点で全ての操作レバー15Aを中立位置に戻し始める。この場合、T6の時点で、駆動許容制御部44の駆動許可判定部48は、全ての油圧アクチュエータ22の駆動許可信号ENを「駆動不許可」とする。この結果、駆動許容制御部44のパイロット圧選択部50は、全ての増圧パイロット圧Pcを0とするので、駆動許容制御部44の電磁弁駆動部53による増圧比例電磁弁25の駆動が停止する。これにより、不当な油圧アクチュエータ22の動作を停止することができる。
 かくして、第1の実施の形態では、駆動許可判定部48は、操作レバー15Aの操作状態に応じて各油圧アクチュエータ22の駆動を許可するか否かを判定する。そして、駆動が許可された場合は、パイロット圧選択部50は、領域制限制御部40が出力した駆動信号(要求増圧パイロット圧43)で制御弁14Aを駆動する。一方、パイロット圧選択部50は、駆動が許可されない場合は、領域制限制御部40から駆動信号(要求増圧パイロット圧43)が出力されても、制御弁14Aを駆動しないよう駆動信号を選択する。このため、オペレータが操作レバー15Aを操作したときに、当該操作レバー15Aに対応する油圧アクチュエータ22の駆動だけでなく、作業装置5が予め定めた空間的領域から逸脱しないように機械を動作させるために必要な油圧アクチュエータ22の駆動も許可することができる。これと共に、オペレータが操作レバー15Aを中立位置にした場合は、領域制限制御部40が誤って駆動信号(要求増圧パイロット圧43)を出力しても、油圧アクチュエータ22の駆動を許可しないので、機械を停止することができる。
 第1の実施の形態では、駆動許可設定手段に対応する図5の駆動許可設定表60および図8の駆動許可設定表62によって、油圧アクチュエータ22のそれぞれに対して駆動を許可する1または複数のレバー操作を任意に設定できる。このため、作業装置5の構成に適した駆動許可、作業装置5の逸脱を防止する空間的領域に適した駆動許可を設定することができる。
 第1の実施の形態では、要求増圧パイロット圧異常検出手段としてのパイロット圧異常検出部54と異常通知部58とを備えている。このため、各油圧アクチュエータ22の駆動信号(要求増圧パイロット圧43)と駆動許可判定部48が出力する駆動許可信号49とに基づいて、制御異常の検出および通知を行うことができる。これにより、オペレータに機械の修理を促すことができる。
 次に、図13ないし図19は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、操作レバー装置を電気レバー装置により構成すると共に、パイロット圧上限決定部を備える構成としたことにある。なお、第2の実施の形態では、上述した第1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 複数の操作レバー装置71は、それぞれ電気式の操作レバー装置として構成され、オペレータによって操作される操作レバー71Aを有している。ここで、操作レバー装置71は、各操作レバー71Aの操作量に応じた操作信号(レバー操作量72)を出力する操作量計測手段を構成している。操作レバー装置71は、出力側がメインコントローラ32の車体制御部73および駆動許容制御部77に接続されている。操作レバー装置71は、オペレータが操作レバー15Aを手動で傾転操作(レバー操作)すると、そのレバー操作量72に対応する電気信号(操作信号)が、操作レバー装置71からメインコントローラ32の車体制御部73および駆動許容制御部77に出力される。
 なお、操作レバー装置71を電気式の操作レバー装置としたことに伴って、パイロットポンプ12と制御弁14Aとの間を接続するパイロット管路92の途中には、パイロットポンプ12側から順に、遮断電磁弁30と比例電磁弁25と別の圧力センサ29とが設けられている。
 車体制御部73は、操作レバー15Aのレバー操作量72、エンジン10の稼働状態(運転状態)、メインポンプ11の吐出圧、各油圧アクチュエータ22の負荷圧等に基づいて、エンジン10の回転数、メインポンプ11の流量(吐出量)等を制御する。このために、車体制御部73は、操作レバー装置71と、エンジン10と、メインポンプ11と、各油圧アクチュエータ22と接続されている。また、車体制御部73の出力側は、領域制限制御部75に接続されている。車体制御部73は、各油圧アクチュエータ22を動作させるパイロット圧35に対応する目標パイロット圧74を領域制限制御部75に出力する。目標パイロット圧74は、各々の油圧アクチュエータ22に対応して出力される。
 領域制限制御部75は、入力側が姿勢センサ31と車体制御部73とに接続され、出力側が駆動許容制御部77に接続されている。領域制限制御部75は、車体制御部73と共に、各操作レバー71Aの操作量に応じた操作信号(レバー操作量72)および姿勢センサ31の姿勢信号(姿勢に関する状態量の検出信号)に基づいて、各制御弁14Aを駆動する駆動信号(要求パイロット圧76)を出力する制御手段(領域制限制御手段)を構成している。即ち、領域制限制御部75は、油圧ショベル1の姿勢センサ31の計測データ41に基づいて機械の姿勢を推定すると共に、車体制御部73が出力する目標パイロット圧74に基づいて機械の姿勢の変化を予想する。
 そして、領域制限制御部75は、機械が予め設定した空間領域から逸脱するおそれがない場合は、目標パイロット圧74を要求パイロット圧76として駆動許容制御部77に出力する。一方、領域制限制御部75は、機械が予め設定した空間領域から逸脱するおそれがある場合は、逸脱しないように目標パイロット圧74を調整してその調整した目標パイロット圧74を要求パイロット圧76として駆動許容制御部77に出力する。要求パイロット圧76は、各々の油圧アクチュエータ22に対応して出力される。
 駆動許容制御部(作動許容制御部)77は、入力側が操作レバー装置71と領域制限制御部75と各別の圧力センサ29とに接続され、出力側が各比例電磁弁25とモニタ・操作パネル装置16と遮断電磁弁30とに接続されている。駆動許容制御部77は、操作レバー71Aのレバー操作量72に基づいてオペレータによる各操作レバー71Aの操作量を認識し、レバー操作量72に応じて各油圧アクチュエータ22を動作させるパイロット圧35の上限値となるパイロット圧上限値を決定(判定)する。そして、駆動許容制御部77は、各油圧アクチュエータ22の動作に対応する要求パイロット圧76がパイロット圧上限値以下の場合は、要求パイロット圧76に応じて比例電磁弁25を駆動する駆動電流45を比例電磁弁25に出力する。一方、駆動許容制御部77は、要求パイロット圧76がパイロット圧上限値よりも高い場合は、パイロット圧上限値に応じて比例電磁弁25を駆動する駆動電流45を比例電磁弁25に出力する。
 これにより、車体制御部73または領域制限制御部75の異常により領域制限制御部75から誤った要求パイロット圧76が出力されても、各油圧アクチュエータ22の動作は、オペレータのレバー操作量72に応じて決定されるパイロット圧上限値に応じた速度に抑えられる。さらに、駆動許容制御部77は、操作レバー71Aが中立位置のときに、全ての油圧アクチュエータ22の駆動を許可しないように、パイロット圧上限値を0にすることができる。これにより、オペレータは、操作レバー71Aを中立位置に戻すとパイロット圧上限値が0になり、油圧アクチュエータ22の不当な動作を停止することができる。
 さらに、駆動許容制御部77は、領域制限制御部75からパイロット圧上限値よりも高い要求パイロット圧76が出力された場合は、要求パイロット圧76に異常がある旨の異常情報46を、モニタ・操作パネル装置16に出力することができる。これにより、異常をオペレータに報知することができる。また、駆動許容制御部77は、別の圧力センサ29により検出されるパイロット圧35と後述のパイロット圧81とを比較し、パイロット圧35の異常を判定することができる。異常であると判定された場合に、駆動許容制御部77は、遮断電磁弁30を駆動(閉弁)する駆動電流47を遮断電磁弁30に出力することができる。これにより、パイロット圧の元圧34が遮断され、機械を停止させることができる。
 次に、駆動許容制御部77について、図14ないし図17を参照しつつ説明する。
 図14に示すように、駆動許容制御部77は、パイロット圧上限決定部78と、パイロット圧選択部80と、電磁弁駆動部83と、パイロット圧異常検出部84と、異常通知部88とを備えている。パイロット圧上限決定部78は、入力側が操作レバー装置71に接続され、出力側がパイロット圧選択部80に接続されている。パイロット圧上限決定部78は、各操作レバー71Aの操作量に応じた操作信号(レバー操作量72)に基づいて各油圧アクチュエータ22の制御弁14Aを駆動する駆動信号(要求パイロット圧76)の上限値(パイロット圧上限値)を決定(判定)して出力する駆動信号上限決定手段を構成している。即ち、パイロット圧上限決定部78は、レバー操作量72に基づいてオペレータによる各操作レバー71Aの操作状況に応じた各油圧アクチュエータ22のパイロット圧上限値を決定する。そして、パイロット圧上限決定部78は、パイロット圧選択部50に各油圧アクチュエータ22のパイロット圧上限値79を出力する。
 パイロット圧選択部80は、入力側が領域制限制御部75とパイロット圧上限決定部78に接続され、出力側が電磁弁駆動部83とパイロット圧異常検出部84と異常通知部88とに接続されている。パイロット圧選択部80は、駆動信号(領域制限制御部75からの要求パイロット圧76)がパイロット圧上限決定部78で決定されたパイロット圧上限値79以下である油圧アクチュエータ22に対しては当該駆動信号(要求パイロット圧76)で制御弁14Aを駆動し、駆動信号(要求パイロット圧76)がパイロット圧上限決定部78で決定されたパイロット圧上限値79を超える油圧アクチュエータ22に対してはパイロット圧上限値79で制御弁14Aを駆動するように、駆動信号(要求パイロット圧76)を選択する駆動信号選択手段を構成している。
 即ち、パイロット圧選択部80は、パイロット圧上限値79に応じて、各油圧アクチュエータ22の要求パイロット圧76またはパイロット圧上限値79のいずれかをパイロット圧81として選択する。そして、パイロット圧選択部80は、パイロット圧81を、電磁弁駆動部83とパイロット圧異常検出部84とに出力する。
 さらに、パイロット圧選択部80は、要求パイロット圧76がパイロット圧上限値79を超える場合に、要求パイロット圧76が異常である旨の要求パイロット圧異常情報82を、異常通知部88に出力する。即ち、パイロット圧選択部80は、各油圧アクチュエータ22の駆動信号(要求パイロット圧76)とパイロット圧上限決定部78で決定された駆動信号の上限値(パイロット圧上限値79)とに基づいて制御異常を検出する異常検出手段(要求パイロット圧異常検出手段)を構成している。なお、パイロット圧選択部80で行われる図18の処理については、後で説明する。
 電磁弁駆動部83は、入力側がパイロット圧選択部80に接続され、出力側が比例電磁弁25に接続されている。電磁弁駆動部83は、パイロット圧選択部80からのパイロット圧81に基づいて、比例電磁弁25の駆動電流45を比例電磁弁25に出力する。これにより、比例電磁弁25が駆動電流45に応じて開弁し、制御弁14Aのパイロット部にパイロット圧81に対応するパイロット圧35が供給される。
 パイロット圧異常検出部84は、入力側がパイロット圧選択部80と各別の圧力センサ29とに接続され、出力側が異常通知部88と遮断電磁弁30とに接続されている。パイロット圧異常検出部84は、各別の圧力センサ29のパイロット圧センサ情報85であるパイロット圧35の計測データとパイロット圧選択部80からのパイロット圧81とを比較して、パイロット圧35の異常を検出する。パイロット圧異常検出部84は、パイロット圧35の異常を検出した場合は、パイロット圧35が異常である旨のパイロット圧異常情報86を異常通知部88に出力する。
 これと共に、パイロット圧異常検出部84は、パイロット圧(の元圧34)を遮断する指令信号となるパイロット圧遮断要求87を遮断電磁弁30に出力する。即ち、パイロット圧異常検出部84は、パイロット圧選択部80で選択された駆動信号(パイロット圧81)と制御弁14Aに供給される実際の駆動信号(パイロット圧35)とに基づいて制御異常を検出する別の異常検出手段(パイロット圧異常検出手段)、および、異常を検出したときに制御弁14Aに対する駆動信号(パイロット圧)を遮断する駆動信号停止手段を構成している。なお、パイロット圧異常検出部84で行われる処理は、第1の実施の形態のパイロット圧異常検出部54で行われる図11の処理と、「増圧パイロット圧Pc」が「パイロット圧Pc」となる点で相違する以外、同様である。
 異常通知部88は、入力側がパイロット圧選択部80とパイロット圧異常検出部84とに接続され、出力側がモニタ・操作パネル装置16に接続されている。異常通知部88は、パイロット圧選択部80、および/または、パイロット圧異常検出部84により制御異常を検出したときに異常を通知する異常通知手段を構成している。即ち、異常通知部88は、パイロット圧選択部80からの要求パイロット圧異常情報82、および/または、パイロット圧異常検出部84からのパイロット圧異常情報86に基づいて、異常がある旨および異常の内容に対応する異常情報46を、モニタ・操作パネル装置16に出力する。
 ここで、パイロット圧上限決定部78は、オペレータのレバー操作毎に各油圧アクチュエータ22の動作を許容するパイロット圧上限値を予め設定することができる。図15は、各々のレバー操作毎に各油圧アクチュエータ22の動作を許容するパイロット圧上限値の例をマトリクスで示したパイロット圧上限値設定表90である。図15中の「0」は、パイロット圧上限値が0であることを示しており、油圧アクチュエータ22を動作させない。図15中の「Ca」と「Cb」は、図17に示すように、レバー操作量に応じてパイロット圧の上限値がそれぞれ変わる。図17に示すように、レバー操作量が0からv1までは、CaもCbも不感帯となっている。v1からv2までは、CaもCbも、レバー操作量の増加に応じてパイロット圧上限値が増加(例えば、比例増加)する。そして、v2でパイロット圧上限値の最大値、即ち、CaはPpa2に達し、CbはPpb2に達する。
 パイロット圧上限決定部78は、1または複数のレバー操作がなされた場合、パイロット圧上限値設定表90に基づいて、各油圧アクチュエータ22の動作毎のレバー操作に対応するパイロット圧上限値の中から最も大きい値をパイロット圧上限値79として出力する。
 オペレータがアーム引きとバケット掘削の操作を行った場合、図16に示すように、パイロット圧上限決定部78は、アーム引きとバケット掘削のそれぞれのレバー操作量に応じて各油圧アクチュエータのパイロット圧上限値79を決定する。具体的には、アーム引き操作量がV3、バケット掘削操作量がv4とすると、アーム引きのパイロット圧上限値は、図17の「Ca」からPpa3となり、バケット掘削のパイロット圧上限値は、図17の「Ca」からPpa4となる。一方、ブーム上げのパイロット圧上限値は、図17の「Ca」と「Cb」とからPpa3とPpb4のうち最も大きい値であるPpa3となる。さらに、他の操作のパイロット圧上限値は0となる。
 これにより、オペレータによるブーム上げ操作がなくても、領域制限制御部75によるブーム上げに対応する油圧アクチュエータ22の動作が可能になる。また、領域制限制御部75が故障により誤った要求パイロット圧76を出力しても、不当なブーム上げ動作をオペレータのレバー操作量に応じた速度に抑えることができる。さらに、オペレータは、操作レバー71Aを中立位置に戻すことにより、不当なブーム上げ動作を停止することができる。
 このように、パイロット圧上限決定部78は、図15に示すパイロット圧上限値設定表90、および、図17に示すレバー操作量とパイロット圧上限値との特性線図91とを備えている。パイロット圧上限値設定表90は、オペレータが行うレバー操作とこれに対応した各レバー操作のパイロット圧上限値との対応関係を表したものである。レバー操作量とパイロット圧上限値との特性線図91は、レバー操作量とパイロット圧上限値との対応関係を表したものである。そして、図15のパイロット圧上限値設定表90は、各油圧アクチュエータ22のそれぞれに対して各レバー操作の操作量に応じた駆動信号(パイロット圧)の上限値を決定する駆動信号上限値設定手段を構成している。
 なお、駆動信号上限値設定手段は、オペレータが行うレバー操作とこれに対応した各レバー操作のパイロット圧上限値との対応関係が設定されたものであればよく、図15のような表(マトリクス)に限定するものではない。また、パイロット圧上限値設定表90、および、レバー操作量とパイロット圧上限値との特性線図91は、図15および図17に限定されるものではなく、領域制限制御部75の制限制御に応じて各種の駆動信号上限値設定表(オペレータが行うレバー操作とこれに対応した各レバー操作のパイロット圧上限値との対応関係)および特性線図(レバー操作量とパイロット圧上限値との対応関係)を設定することができる。
 次に、図18は、パイロット圧選択部80で行われる制御処理を示している。図18の制御処理は、例えば、メインコントローラ32(パイロット圧選択部80)に通電している間、所定の制御周期で繰り返し実行される。
 パイロット圧選択部80の制御処理がスタートすると、パイロット圧選択部80は、S31で、領域制限制御部75から出力された要求パイロット圧76、即ち、要求パイロット圧Pcrを取得する。続く、S32では、パイロット圧上限決定部78から出力された上限値決定結果に対応するパイロット圧上限値79、即ち、パイロット圧上限値Ppを取得する。そして、S33では、要求パイロット圧Pcrがパイロット圧上限値Pp以下であるか否かを判定する。
 S33で「YES」、即ち、要求パイロット圧Pcrがパイロット圧上限値Pp以下であると判定された場合は、S34に進む。S34では、要求パイロット圧Pcrをパイロット圧Pcとする。即ち、電磁弁駆動部83およびパイロット圧異常検出部84に対してパイロット圧81を、パイロット圧Pc(=Pcr)として出力し、リターンする(リターンを介してスタートに戻りS31以降の処理を繰り返す)。
 一方、S33で「NO」、即ち、要求パイロット圧Pcrがパイロット圧上限値Ppよりも大きいと判定された場合は、S35に進む。S35では、要求パイロット圧Pcrをパイロット圧上限値Ppとする。即ち、電磁弁駆動部83およびパイロット圧異常検出部84に対してパイロット圧81を、パイロット圧Pc(=Pp)として出力する。続くS6では、要求パイロット圧Pcrが異常である旨の異常情報である要求パイロット圧異常情報82を異常通知部88に出力し、リターンする。これらの処理、即ち、パイロット圧選択部80で行われる処理は、各々の油圧アクチュエータ22の動作に対して実行される。
 ここで、図19は、操作レバー71Aが操作されたときの駆動許容制御部77による基本動作を示している。T1の時点で、オペレータの操作レバー71Aの操作が開始される。T2の時点から、駆動許容制御部77のパイロット圧上限決定部78から出力されるパイロット圧上限値Ppが、操作レバー71Aの操作量の増大に伴って増大する。そして、T2の時点からT5の時点では、領域制限制御部75からの要求パイロット圧Pcrがパイロット圧上限値Pp以下であるため、駆動許容制御部77のパイロット圧選択部80は、領域制限制御部75からの要求パイロット圧Pcrを、パイロット圧pcとして出力する。このとき、駆動許容制御部77の電磁弁駆動部83は、パイロット圧Pcに基づいて、比例電磁弁25に駆動電流45を出力する。これにより、車体制御部73や領域制限制御部75による油圧アクチュエータ22の動作が可能になる。
 一方、T4の時点から車体制御部73または領域制限制御部75の故障により誤った要求パイロット圧Pcrが出力され、T5の時点から要求パイロット圧Pcrがパイロット圧上限値Ppよりも大きくなると、駆動許容制御部77のパイロット圧選択部80は、パイロット圧上限値Ppをパイロット圧pcとして出力する。これにより、T5からT6の時点で、レバー操作量に応じたパイロット圧pcに抑えることができる。さらに、オペレータがT6の時点で操作レバー71Aを中立位置に戻し始めると、T7の時点で、駆動許容制御部77のパイロット圧上限決定部78のパイロット圧上限値Ppが0になる。この結果、駆動許容制御部77のパイロット圧選択部50は、パイロット圧Pcを0とするので、駆動許容制御部77の電磁弁駆動部83による比例電磁弁25の駆動が停止する。これにより、不当な油圧アクチュエータ22の動作を減速、停止することができる。
 第2の実施の形態は、上述のようなパイロット圧上限決定部78によりパイロット圧pcをパイロット圧上限値Pp以下に規制するもので、その基本的作用については、上述した第1の実施の形態によるものと格別差異はない。
 特に、第2の実施の形態では、パイロット圧上限決定部78は、操作レバー71Aの操作量に応じて各油圧アクチュエータ22の制御弁14Aを駆動する駆動信号(要求パイロット圧76)の上限値を決定する。そして、パイロット圧選択部80は、駆動信号(要求パイロット圧76)が上限値以下である油圧アクチュエータ22に対しては、領域制限制御部75が出力した当該駆動信号(要求パイロット圧76)で制御弁14Aを駆動する。一方、パイロット圧選択部80は、駆動信号(要求パイロット圧76)が上限値を超える油圧アクチュエータ22に対しては、上限値(パイロット圧上限値79)で制御弁14Aを駆動するように駆動信号(要求パイロット圧76)を選択する。このため、オペレータが操作レバー71Aを操作したときに、当該操作レバー71Aに対応する油圧アクチュエータ22の駆動だけでなく、作業装置5が予め定めた空間的領域から逸脱しないように機械を動作させるために必要な油圧アクチュエータ22の駆動も許可することができる。これと共に、領域制限制御部75から誤った駆動信号(要求パイロット圧76)が出力されても、オペレータによるレバー操作量72に応じた駆動信号、即ち、パイロット圧上限値79に抑えられるため、機械の速度変化を抑えることができる。さらに、オペレータが操作レバー71Aを中立位置にした場合は、領域制限制御部75から誤った駆動信号(要求パイロット圧76)が出力されても、駆動信号がパイロット圧上限値79の0に抑えられる。これにより、油圧アクチュエータ22の駆動が許可されなくなり、機械を停止することができる。
 第2の実施の形態では、駆動信号上限設定手段に対応する図15のパイロット圧上限値設定表90によって、油圧アクチュエータ22のそれぞれに対して各レバー操作の操作量に応じた駆動信号の上限値(パイロット圧上限値79)を設定できる。このため、作業装置5の構成に適した駆動信号の上限値、作業装置5の逸脱を防止する空間的領域に適した駆動信号の上限値を設定することができる。
 第2の実施の形態では、要求パイロット圧異常検出手段としてのパイロット圧選択部80および異常通知部88を備えている。このため、各油圧アクチュエータ22の駆動信号(要求パイロット圧76)とパイロット圧上限決定部78が出力する駆動信号の上限値(パイロット圧上限値79)とに基づいて、制御異常の検出および通知を行うことができる。これにより、オペレータに機械の修理を促すことができる。
 なお、上述した第1の実施の形態では、車体制御部36と領域制限制御部40と駆動許容制御部44とを一つのメインコントローラ32に実装した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、領域制限制御部40と駆動許容制御部44とを、車体制御部36を実装したメインコントローラ32とは別のコントローラに実装する構成としてもよい。また、車体制御部36と領域制限制御部40と駆動許容制御部44とを、それぞれ別のコントローラに実装する構成としてもよい。このことは、第2の実施の形態についても同様である。
 上述した第1の実施の形態では、領域制限制御部40で行われる制御として、目標面61よりも下を掘り過ぎないようにブーム5Aを上げ方向に動作させた場合、および、干渉防止領域63にバケット5Cが入らないようにアーム5Bを押し方向に動作させる場合を例に挙げて説明した。しかし、本発明はこれに限らず、制御手段(領域制限制御手段)は、上記以外にも、例えば、作業現場における機械上方の施設への衝突の回避等、機械が予め設定した空間領域から逸脱しないようにするための各種の制御を行う構成とすることができる。このことは、第2の実施の形態についても同様である。
 上述した第1の実施の形態では、操作レバー15Aを用いて油圧アクチュエータ22を操作する構成とした場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、操作ペダル、操作スティック等の各種の操作具により油圧アクチュエータを操作する構成とすることができる。即ち、操作レバーは、各種の操作具を含むものである。このことは、第2の実施の形態についても同様である。
 上述した第1の実施の形態では、制御弁14Aを駆動する駆動信号をパイロット圧(油圧)とした場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、制御弁を電磁弁とするとともに駆動信号を電気信号とする等、油圧以外にも各種の駆動信号を用いることができる。このことは、第2の実施の形態についても同様である。
 上述した第1の実施の形態では、旋回装置3の駆動源を旋回油圧モータ3Aにより構成した場合を例に挙げて説明した。しかし、本発明はこれに限らず、例えば、旋回装置の駆動源を油圧モータ(旋回油圧モータ)と電動モータ(旋回電動モータ)により構成してもよい。また、旋回装置の駆動源を電動モータ(旋回電動モータ)のみにより構成してもよい。このことは、第2の実施の形態についても同様である。
 上述した各実施の形態では、建設機械として、油圧ショベル1を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば、ホイールローダ等の各種の建設機械に広く適用することができる。さらに、各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
 以上の実施の形態によれば、制御手段が正常であるか否かに拘わらず、操作レバーを中立位置にすることで機械を停止することができ、かつ、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
 (1).即ち、実施の形態によれば、駆動許可判定手段と、駆動信号選択手段とを備える構成としている。そして、駆動信号選択手段は、駆動許可判定手段により駆動が許可されない油圧アクチュエータに対しては制御弁を駆動しないように、駆動信号を選択する。この場合に、駆動許可判定手段は、操作レバーが中立位置のときは、全ての油圧アクチュエータの駆動を許可しないようにできる。これにより、オペレータが操作レバーを中立位置にすると、仮に異常な駆動信号があったとしても、駆動信号選択手段は、制御弁を駆動しないように駆動信号を選択する。この結果、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、操作レバーを中立位置にすることで、機械を停止することができる。
 一方、駆動許可判定手段は、操作レバーが中立位置から操作されているときは、そのレバー操作に対して作業装置が予め定めた空間的領域から逸脱しないように制御するために必要な油圧アクチュエータの駆動を許可するようにできる。これにより、仮に異常な駆動信号(例えば、作業装置が予め定めた空間的領域から逸脱しないように制御する駆動信号以外の駆動信号)があったとしても、駆動信号選択手段は、異常な駆動信号を選択せずに、駆動許可判定手段により駆動が許可された油圧アクチュエータに対する駆動信号を選択する。この結果、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
 (2).実施の形態によれば、駆動許可判定手段は、駆動許可設定手段を備える構成としている。この場合に、駆動許可設定手段は、レバー操作とそのレバー操作に対して駆動を許可するアクチュエータの動作との対応関係として設定することができる。即ち、駆動許可設定手段は、作業装置の構成に適した駆動許可、および/または、作業装置の逸脱を防止する空間的領域に適した駆動許可を設定することができる。これにより、駆動許可判定手段は、各油圧アクチュエータの駆動を許可するか否かの判定を適正に、かつ、安定して行うことができる。
 (3).実施の形態によれば、異常検出手段と、異常通知手段とをさらに備える構成としている。これにより、オペレータに異常を通知すること、さらには、機械を自動的に停止することができる。この結果、オペレータに機械の修理を促すことができる。
 (4).実施の形態によれば、駆動信号上限決定手段と、駆動信号選択手段とを備える構成としている。そして、駆動信号選択手段は、駆動信号が駆動信号上限決定手段で決定された上限値を超える油圧アクチュエータに対しては上限値で制御弁を駆動するように、駆動信号を選択する。この場合に、駆動信号上限決定手段は、操作レバーが中立位置のときは、全ての油圧アクチュエータに対する駆動信号の上限値を0にできる。これにより、オペレータが操作レバーを中立位置にすると、仮に異常な駆動信号があったとしても、駆動信号選択手段は、駆動信号を上限値である0を選択する。これにより、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、操作レバーを中立位置にすることで、機械を停止することができる。
 一方、駆動信号上限決定手段は、操作レバーが中立位置から操作されているときは、そのレバー操作に対して作業装置が予め定めた空間的領域から逸脱しないように制御するために必要な油圧アクチュエータを駆動できるように駆動信号の上限値を決定できる。これにより、仮に異常な駆動信号(例えば、作業装置が予め定めた空間的領域から逸脱しないように制御する駆動信号の上限値を超える駆動信号)があったとしても、駆動信号選択手段は、駆動信号上限決定手段により決定された駆動信号の上限値を選択する。この結果、異常な駆動信号がないときは勿論、仮に異常な駆動信号があったとしても、作業装置が予め定めた空間的領域から逸脱しないように制御することができる。
 (5).実施の形態によれば、駆動信号上限決定手段は、駆動信号上限値設定手段を備える構成としている。この場合に、駆動信号上限値設定手段は、レバー操作とそのレバー操作に対して駆動を許可するアクチュエータに対する駆動信号の上限値との対応関係として設定することができる。即ち、駆動信号上限決定手段は、作業装置の構成に適した駆動信号の上限値、および/または、作業装置の逸脱を防止する空間的領域に適した駆動信号の上限値を設定することができる。これにより、駆動信号上限決定手段は、各油圧アクチュエータに対する上限値の決定を適正に、かつ、安定して行うことができる。
 (6).実施の形態によれば、異常検出手段と、異常通知手段とをさらに備える構成としている。これにより、オペレータに異常を通知すること、さらには、機械を自動的に停止することができる。この結果、オペレータに機械の修理を促すことができる。
 1 油圧ショベル(建設機械)
 2 下部走行体(機械)
 2E 走行油圧モータ(油圧アクチュエータ)
 3 旋回装置(機械)
 3A 旋回油圧モータ(油圧アクチュエータ)
 4 上部旋回体(機械)
 5 作業装置(機械)
 5D ブームシリンダ(油圧アクチュエータ)
 5E アームシリンダ(油圧アクチュエータ)
 5F バケットシリンダ(油圧アクチュエータ)
 14 制御弁装置
 14A 制御弁
 15 操作レバー装置
 15A 操作レバー
 28 圧力センサ(操作量計測手段)
 31 姿勢センサ(姿勢計測手段)
 32 メインコントローラ
 40,75 領域制限制御部(制御手段)
 48 駆動許可判定部(駆動許可判定手段)
 50,80パイロット圧選択部(駆動信号選択手段、異常検出手段)
 58,88 異常通知部(異常通知手段)
 60,62 駆動許可設定表(駆動許可設定手段)
 71 操作レバー装置(操作量計測手段)
 71A 操作レバー
 73 車体制御部(制御手段)
 78 パイロット圧上限決定部(駆動信号上限決定手段)
 90 パイロット圧上限値設定表(駆動信号上限設定手段)

Claims (6)

  1.  機械に備えられた複数の油圧アクチュエータを操作する複数の操作レバーと、
     前記各操作レバーの操作量に応じた操作信号を出力する操作量計測手段と、
     前記機械の姿勢に応じた姿勢信号を出力する姿勢計測手段と、
     前記各油圧アクチュエータの駆動を制御する複数の制御弁と、
     前記操作信号および前記姿勢信号に基づいて前記各制御弁を駆動する駆動信号を出力する制御手段とを備えた建設機械の駆動制御装置において、
     前記操作信号に基づいて前記各油圧アクチュエータの駆動を許可するか否かを判定する駆動許可判定手段と、
     前記駆動許可判定手段により駆動が許可された前記油圧アクチュエータに対しては前記駆動信号で前記制御弁を駆動し、前記駆動許可判定手段により駆動が許可されない前記油圧アクチュエータに対しては前記制御弁を駆動しないように、前記駆動信号を選択する駆動信号選択手段とを備える構成としたことを特徴とする建設機械の駆動制御装置。
  2.  前記駆動許可判定手段は、前記各油圧アクチュエータのそれぞれに対して駆動を許可する1または複数のレバー操作を設定する駆動許可設定手段を備える構成としたことを特徴とする請求項1に記載の建設機械の駆動制御装置。
  3.  前記各油圧アクチュエータの前記駆動信号と前記駆動許可判定手段で判定された駆動許可信号とに基づいて制御異常を検出する異常検出手段と、
     前記異常検出手段により前記制御異常を検出したときに異常を通知する異常通知手段とをさらに備える構成としたことを特徴とする請求項1に記載の建設機械の駆動制御装置。
  4.  機械に備えられた複数の油圧アクチュエータを操作する複数の操作レバーと、
     前記各操作レバーの操作量に応じた操作信号を出力する操作量計測手段と、
     前記機械の姿勢に応じた姿勢信号を出力する姿勢計測手段と、
     前記各油圧アクチュエータの駆動を制御する複数の制御弁と、
     前記操作信号および前記姿勢信号に基づいて前記各制御弁を駆動する駆動信号を出力する制御手段とを備えた建設機械の駆動制御装置において、
     前記操作信号に基づいて前記各油圧アクチュエータの前記制御弁を駆動する前記駆動信号の上限値を決定する駆動信号上限決定手段と、
     前記駆動信号が前記駆動信号上限決定手段で決定された上限値以下である前記油圧アクチュエータに対しては当該駆動信号で前記制御弁を駆動し、前記駆動信号が前記駆動信号上限決定手段で決定された上限値を超える前記油圧アクチュエータに対しては前記上限値で前記制御弁を駆動するように、前記駆動信号を選択する駆動信号選択手段とを備える構成としたことを特徴とする建設機械の駆動制御装置。
  5.  前記駆動信号上限決定手段は、前記各油圧アクチュエータのそれぞれに対して各レバー操作の操作量に応じた前記駆動信号の上限値を決定する駆動信号上限値設定手段を備える構成としたことを特徴とする請求項4に記載の建設機械の駆動制御装置。
  6.  前記各油圧アクチュエータの前記駆動信号と前記駆動信号上限決定手段で決定された前記駆動信号の上限値とに基づいて制御異常を検出する異常検出手段と、
     前記異常検出手段により前記制御異常を検出したときに異常を通知する異常通知手段とをさらに備える構成としたことを特徴とする請求項4に記載の建設機械の駆動制御装置。
PCT/JP2016/060688 2016-03-31 2016-03-31 建設機械の駆動制御装置 WO2017168686A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187005812A KR102061043B1 (ko) 2016-03-31 2016-03-31 건설 기계의 구동 제어 장치
EP16896904.6A EP3438353B1 (en) 2016-03-31 2016-03-31 Drive control device of construction machine
PCT/JP2016/060688 WO2017168686A1 (ja) 2016-03-31 2016-03-31 建設機械の駆動制御装置
JP2018508282A JP6523554B2 (ja) 2016-03-31 2016-03-31 建設機械の駆動制御装置
CN201680051677.5A CN107949676B (zh) 2016-03-31 2016-03-31 工程机械的驱动控制装置
US15/755,103 US10760245B2 (en) 2016-03-31 2016-03-31 Drive control device for construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/060688 WO2017168686A1 (ja) 2016-03-31 2016-03-31 建設機械の駆動制御装置

Publications (1)

Publication Number Publication Date
WO2017168686A1 true WO2017168686A1 (ja) 2017-10-05

Family

ID=59962818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060688 WO2017168686A1 (ja) 2016-03-31 2016-03-31 建設機械の駆動制御装置

Country Status (6)

Country Link
US (1) US10760245B2 (ja)
EP (1) EP3438353B1 (ja)
JP (1) JP6523554B2 (ja)
KR (1) KR102061043B1 (ja)
CN (1) CN107949676B (ja)
WO (1) WO2017168686A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105137A (ja) * 2017-12-14 2019-06-27 日立建機株式会社 作業機械
WO2020255970A1 (ja) * 2019-06-19 2020-12-24 日立建機株式会社 作業機械

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6707047B2 (ja) * 2017-03-17 2020-06-10 日立建機株式会社 建設機械
EP3686354B1 (en) * 2017-09-13 2022-11-30 Hitachi Construction Machinery Co., Ltd. Work machinery
CN110306612B (zh) * 2019-06-28 2024-06-25 三一重机有限公司 一种可伸缩工作装置、闭环同步控制系统及挖掘机
EP3997346A1 (en) * 2019-07-08 2022-05-18 Danfoss Power Solutions II Technology A/S Hydraulic system architectures and bidirectional proportional valves usable in the system architectures
JP7153627B2 (ja) * 2019-10-31 2022-10-14 日立建機株式会社 作業機械および周囲監視システム
WO2022070954A1 (ja) * 2020-09-30 2022-04-07 日立建機株式会社 建設機械
US20220307225A1 (en) * 2021-03-29 2022-09-29 Joy Global Surface Mining Inc Systems and methods for mitigating collisions between a mining machine and an exclusionary zone
US11987961B2 (en) 2021-03-29 2024-05-21 Joy Global Surface Mining Inc Virtual field-based track protection for a mining machine
US11939748B2 (en) 2021-03-29 2024-03-26 Joy Global Surface Mining Inc Virtual track model for a mining machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239303A (ja) * 2003-02-04 2004-08-26 Hitachi Constr Mach Co Ltd 建設機械の油圧シリンダ駆動制御装置
JP2006104836A (ja) * 2004-10-07 2006-04-20 Hitachi Constr Mach Co Ltd 建設機械の動作機能監視装置
JP2012017626A (ja) * 2010-07-09 2012-01-26 Caterpillar Sarl 作業機械の作業範囲制御装置
JP2012172467A (ja) * 2011-02-23 2012-09-10 Hitachi Constr Mach Co Ltd 建設機械制御システム
JP2013147886A (ja) * 2012-01-20 2013-08-01 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP2013163959A (ja) * 2012-01-11 2013-08-22 Kobelco Contstruction Machinery Ltd 油圧制御装置及びこれを備えた建設機械
JP2013167098A (ja) * 2012-02-15 2013-08-29 Hitachi Constr Mach Co Ltd ホイールローダ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999872A (en) * 1996-02-15 1999-12-07 Kabushiki Kaisha Kobe Seiko Sho Control apparatus for hydraulic excavator
US6169948B1 (en) * 1996-06-26 2001-01-02 Hitachi Construction Machinery Co., Ltd. Front control system, area setting method and control panel for construction machine
US6275757B1 (en) * 1997-06-20 2001-08-14 Hitachi Construction Machinery Co. Ltd. Device for controlling limited-area excavation with construction machine
JP4896775B2 (ja) * 2007-02-28 2012-03-14 日立建機株式会社 油圧作業機械の安全装置
KR101768662B1 (ko) * 2011-03-08 2017-08-17 스미토모 겐키 가부시키가이샤 쇼벨 및 쇼벨의 제어방법
EP2626476B2 (en) * 2011-07-25 2022-06-08 Kubota Corporation Working machine with settings change system
JP5878811B2 (ja) * 2012-04-10 2016-03-08 日立建機株式会社 建設機械の油圧駆動装置
JP5851037B2 (ja) * 2012-07-20 2016-02-03 日立建機株式会社 作業機械
JP6324347B2 (ja) * 2015-06-01 2018-05-16 日立建機株式会社 建設機械の油圧制御装置
JP6697361B2 (ja) * 2016-09-21 2020-05-20 川崎重工業株式会社 油圧ショベル駆動システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239303A (ja) * 2003-02-04 2004-08-26 Hitachi Constr Mach Co Ltd 建設機械の油圧シリンダ駆動制御装置
JP2006104836A (ja) * 2004-10-07 2006-04-20 Hitachi Constr Mach Co Ltd 建設機械の動作機能監視装置
JP2012017626A (ja) * 2010-07-09 2012-01-26 Caterpillar Sarl 作業機械の作業範囲制御装置
JP2012172467A (ja) * 2011-02-23 2012-09-10 Hitachi Constr Mach Co Ltd 建設機械制御システム
JP2013163959A (ja) * 2012-01-11 2013-08-22 Kobelco Contstruction Machinery Ltd 油圧制御装置及びこれを備えた建設機械
JP2013147886A (ja) * 2012-01-20 2013-08-01 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
JP2013167098A (ja) * 2012-02-15 2013-08-29 Hitachi Constr Mach Co Ltd ホイールローダ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019105137A (ja) * 2017-12-14 2019-06-27 日立建機株式会社 作業機械
WO2020255970A1 (ja) * 2019-06-19 2020-12-24 日立建機株式会社 作業機械
JP2021001439A (ja) * 2019-06-19 2021-01-07 日立建機株式会社 作業機械
JP7179688B2 (ja) 2019-06-19 2022-11-29 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
EP3438353B1 (en) 2021-01-27
CN107949676A (zh) 2018-04-20
EP3438353A1 (en) 2019-02-06
KR102061043B1 (ko) 2019-12-31
JP6523554B2 (ja) 2019-06-05
US20180266079A1 (en) 2018-09-20
CN107949676B (zh) 2020-10-27
JPWO2017168686A1 (ja) 2018-06-07
US10760245B2 (en) 2020-09-01
KR20180031038A (ko) 2018-03-27
EP3438353A4 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6523554B2 (ja) 建設機械の駆動制御装置
US10920394B2 (en) Construction machine
KR101948465B1 (ko) 건설 기계의 제어 장치
US9951797B2 (en) Work machine
WO2017051483A1 (ja) 作業機械の油圧システム
JP6860329B2 (ja) 作業機械
JP5756890B2 (ja) 作業車両、及び作業車両の制御方法
US20220186459A1 (en) Hydraulic excavator
US11118327B2 (en) Work machine
JP2019052472A (ja) 作業機械
US11821163B2 (en) Shovel
KR102142310B1 (ko) 작업 기계
JP2004116108A (ja) スイング式油圧ショベルのスイング制御装置
KR20180103993A (ko) 작업 기계
JP6615055B2 (ja) 作業機械
JP4486466B2 (ja) 建設機械の動作機能監視装置
JP6511415B2 (ja) 作業機械
KR102543030B1 (ko) 작업 기계
JP6588393B2 (ja) 作業機械
WO2023100689A1 (ja) 建設機械の駆動装置、これを備えた建設機械及び建設機械システム
JP6722627B2 (ja) 油圧ショベル
KR20160069585A (ko) 작업기계

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018508282

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755103

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20187005812

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896904

Country of ref document: EP

Kind code of ref document: A1