WO2017168498A1 - Component supply apparatus, mounting apparatus, and component supply method - Google Patents

Component supply apparatus, mounting apparatus, and component supply method Download PDF

Info

Publication number
WO2017168498A1
WO2017168498A1 PCT/JP2016/059840 JP2016059840W WO2017168498A1 WO 2017168498 A1 WO2017168498 A1 WO 2017168498A1 JP 2016059840 W JP2016059840 W JP 2016059840W WO 2017168498 A1 WO2017168498 A1 WO 2017168498A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
load
push
unit
sampling
Prior art date
Application number
PCT/JP2016/059840
Other languages
French (fr)
Japanese (ja)
Inventor
繁人 市川
山▲崎▼ 敏彦
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to JP2018507825A priority Critical patent/JP6634149B2/en
Priority to PCT/JP2016/059840 priority patent/WO2017168498A1/en
Publication of WO2017168498A1 publication Critical patent/WO2017168498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present invention relates to a component supply device, a mounting device, and a component supply method.
  • a die is collected from a sheet on which a wafer divided into a plurality of dies is attached.
  • An apparatus has been proposed in which the height at which the die can be collected by the suction nozzle is determined as an appropriate push-up height (for example, see Patent Document 1).
  • the height of the upper end of the push-up pin during the push-up operation is automatically determined when a die is collected from a sheet on which a wafer divided into a plurality of dies is attached. What is measured automatically has been proposed (see, for example, Patent Document 2).
  • the present invention has been made in view of such a problem, and a main object of the present invention is to provide a component supply device, a mounting device, and a component supply method capable of collecting the attached components more reliably.
  • the present invention adopts the following means in order to achieve the main object described above.
  • the component supply apparatus of the present invention is A component supply device used in a mounting apparatus that performs a mounting process of collecting a component by a collecting unit and arranging the collected component on a base material, A push-up unit that pushes up the component when the component is collected from a wafer that is divided into a plurality of components and attached; A load measuring unit that is disposed on the push-up unit and measures a load when pushing up the component; A control unit configured to set an amount of movement of the push-up portion based on the measured load; It is equipped with.
  • a part (die) obtained by dividing a wafer is attached to a sheet, and sampling is performed by pushing up from below. At this time, when a sufficient load is not applied by pushing up from below, it is possible that the stuck parts are not peeled off and cannot be collected.
  • the part when picking up a part from a wafer that has been divided into a plurality of parts and stuck, the part is pushed up by the push-up part, and the load when the part is pushed up is measured by a load measuring unit arranged on the push-up part. Based on the measured load, the execution amount of the push-up unit is set. In this apparatus, since a sufficient load can be applied by the measurement of the load measuring unit, the attached parts can be collected more reliably.
  • FIG. 4 is a schematic explanatory diagram illustrating an example of a schematic configuration of the mounting apparatus 11.
  • 4 is an explanatory diagram illustrating an example of a sheet database 44 stored in a storage unit.
  • FIG. The flowchart showing an example of a condition setting process routine. Explanatory drawing which represents the outline of a condition setting process typically.
  • Explanatory drawing which represents typically the process which changes the operation amount at the time of components supply.
  • FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of the mounting apparatus 11 of the mounting system 10.
  • FIG. 2 is an explanatory diagram illustrating an example of the sheet database 44 stored in the storage unit 42 of the control unit 40.
  • the mounting system 10 is a system that executes a mounting process in which a component P, which is a die obtained by dividing a wafer W, is arranged on a base material (substrate S, other components, etc.).
  • the mounting system 10 includes a mounting device 11 and a management computer (PC) 50.
  • PC management computer
  • the mounting system 10 a plurality of mounting apparatuses 11 that perform a mounting process for mounting the component P on the substrate S are arranged from upstream to downstream.
  • the management PC 50 manages mounting job information including processing conditions in the mounting apparatus 11.
  • the mounting job information includes, for example, information such as the mounting order of the components P, the type and size of the components P to be mounted, the unit to be used, the size of the board S, and the number of produced products.
  • the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
  • the mounting apparatus 11 includes a substrate transfer unit 12, a mounting unit 13, a component supply unit 14, a parts camera 15, a wafer supply unit 30, and a control unit 40.
  • the substrate transport unit 12 is a unit that carries in, transports, fixes and unloads the substrate S at the mounting position.
  • the substrate transport unit 12 has a pair of conveyor belts provided in the front-rear direction of FIG. The board
  • substrate S is conveyed by this conveyor belt.
  • the mounting unit 13 is a sampling unit that samples components from the component supply unit 14 or the wafer supply unit 30 and places them on the substrate S fixed to the substrate transfer unit 12.
  • the mounting unit 13 includes a head moving unit 20, a mounting head 22, and a suction nozzle 24.
  • the head moving unit 20 includes a slider that is guided by the guide rail and moves in the XY directions, and a motor that drives the slider.
  • the mounting head 22 is detachably mounted on the slider and is moved in the XY direction by the head moving unit 20.
  • One or more suction nozzles 24 are detachably mounted on the lower surface of the mounting head 22.
  • the suction nozzle 24 is a collection member that collects the component P using pressure, and is detachably attached to the mounting head 22.
  • the mounting head 22 incorporates a Z-axis motor, and the height of the suction nozzle 24 is adjusted along the Z-axis by the Z-axis motor.
  • the mounting head 22 includes a rotating device that rotates (spins) the suction nozzle 24 by a drive motor (not shown), and can adjust the angle of the component P sucked by the suction nozzle 24.
  • the mounting head 22 is equipped with one or more suction nozzles 24.
  • the component supply unit 14 has a plurality of feeders provided with reels, and supplies electronic components other than the die to the mounting unit 13.
  • the parts camera 15 is disposed between the board transfer unit 12 and the component supply unit 14.
  • the imaging range of the parts camera 15 is above the parts camera 15.
  • the wafer supply unit 30 is a device that supplies a part P (die) obtained by dividing the wafer W to the sampling position of the mounting head 22, and includes a wafer pallet 31, a magazine portion 32, a push-up pin 34 (push-up portion), a pot 35 and a load cell 36 (load measuring unit).
  • the wafer pallet 31 is a member that fixes a die sheet 38 that is an attaching member to which the component P is attached. A plurality of wafer pallets 31 are accommodated in the magazine section 32. The wafer pallet 31 is pulled out from the magazine portion 32 when the mounting head 22 collects the component P.
  • the push-up pin 34 is a push-up portion that pushes up the component P from below when the component P is collected from the wafer W divided into a plurality of pieces and attached to the die sheet 38.
  • the push-up pin 34 is accommodated in a pot 35 disposed below the pulled-out wafer pallet 31.
  • the wafer supply unit 30 includes five pots 35 having different types of push-up pins 34, and one of the pots 35 is selected according to the component P and used for component supply.
  • the pot 35 is provided with a suction port on the upper surface thereof.
  • the pot 35 sucks and supports the die sheet 38 from the lower surface side, and pushes up the push-up pin 34 at that time, whereby only the part P to be collected is peeled from the die sheet 38.
  • the load cell 36 is disposed on the push-up pin 34 and is a load measuring unit that measures a load when the component P is pushed up.
  • the load cell 36 is attached to the pot 35 so as to be replaceable.
  • the control unit 40 is configured as a microprocessor centered on the CPU 41, and includes a storage unit 42 that stores a processing program.
  • the control unit 40 outputs control signals to the substrate transport unit 12, the mounting unit 13, the component supply unit 14, the parts camera 15, and the wafer supply unit 30, and the mounting unit 13, the component supply unit 14, the parts camera 15, and the wafer supply.
  • a signal from the unit 30 is input.
  • the storage unit 42 stores a sheet database (DB) 44 and a setting program 46. As shown in FIG. 2, the sheet DB 44 associates the type of the die sheet 38, the size of the part P, the type of the push-up pin 34, and a predetermined sampling load for separating the part P from the die sheet 38 so that the part P can be collected.
  • DB sheet database
  • the correspondence information 45 is included in a plurality according to the type of the die sheet 38.
  • the sampling load is included in the correspondence information 45 as a range of an upper limit value (for example, 15N) and a lower limit value (for example, 10N).
  • the relationship between the movement amount (movement amount, movement speed, etc.) of the push-up pin 34 and the load is obtained empirically, and at least a part of the part is peeled off from the die sheet 38 without causing any abnormality such as breakage. Alternatively, it may be determined within a range of loads that can be collected by the suction nozzle 24.
  • the setting program 46 sets the operation amount of the push-up pin 34 based on the sheet DB 44, as will be described in detail later.
  • the control unit 40 executes the setting program 46 using the sheet DB 44 to set the amount of movement (movement amount, movement speed, etc.) of the push-up pin 34 based on the load measured by the load cell 36.
  • FIG. 3 is a flowchart illustrating an example of a condition setting process routine executed by the CPU 41 of the control unit 40.
  • FIG. 4 is an explanatory diagram showing an outline of the condition setting process. The condition setting processing routine is executed in response to an instruction to start the setting program 46 by the operator.
  • the CPU 41 of the control unit 40 first acquires the mounting conditions (step S100).
  • the mounting condition may be two or more of the type of the die sheet 38, the type of the push-up pin 34 used for the mounting process, and the size of the component P.
  • the acquisition of the mounting conditions may be acquired, for example, by an operator input, or may be obtained from mounting job information.
  • the CPU 41 selects correspondence information 45 used for condition setting from the sheet DB 44 stored in the storage unit 42 (step S110).
  • a plurality of types of die sheets 38 having different thicknesses and adhesive forces are used.
  • the sheet DB 44 includes a range of sampling loads according to the types of the die sheet 38 and the push-up pins 34.
  • the CPU 41 selects the correspondence information 45 corresponding to the die sheet 38 and the push-up pins 34 used in the mounting process based on the information acquired in step S100.
  • the CPU 41 can determine the range of the sampling load based on the selected correspondence information 45.
  • the CPU 41 may select the correspondence information 45 input by the worker, or may adopt the sampling load input by the worker.
  • the CPU 41 sets the component P to be pushed up in the wafer W, and moves the relative position of the wafer pallet 31 and the push-up pin 34 so that the push-up pin 34 is arranged below the part P (step S120).
  • the setting of the component P may be determined in order from the upper left to the right of the wafer W, from the upper stage to the lower stage, and finally to the lower right.
  • the CPU 41 sets a movement amount as an operation amount for pushing up the push-up pin 34 (step S130). This amount of movement may be set to a predetermined initial value or may be set to an input value of the operator. In the initial setting of the movement amount, the lower limit value of the processing operation range in which the operation is permitted when the push-up pin 34 is pushed up may be set.
  • step S140 it is determined whether or not the set movement amount of the push-up pin 34 is within the processing operation range.
  • the CPU 41 sets A process of pushing up the push-up pin 34 by the amount of movement is executed, and the push-up load is measured by the load cell 36 (step S150). Note that the CPU 41 uses a predetermined initial value empirically determined in advance so that the production cycle of the mounting process does not decrease as the moving speed of the push-up pin 34 here. Subsequently, the CPU 41 determines whether or not the measured load is within a predetermined sampling load range corresponding to the correspondence information 45 selected in step S110 (step S160).
  • step S120 the CPU 41 sets the next part and moves the push-up pin 34 downward, sets a larger movement amount in step S130, and pushes up in step S150 to measure the load.
  • step S130 for example, the CPU 41 is assumed to increase by a predetermined amount that is a length obtained by dividing the processing operation range into a large number. This process is repeated until the measured load reaches the sampling load within a range not exceeding the processing operation range in the determination in step S140.
  • the CPU 41 determines that the selection of the sheet DB 44 is not appropriate, and executes the processing after step S110. Specifically, the correspondence information 45 different from the current one is selected in step S110, the next component P is set in step S120, the push-up pin 34 is moved below, and a push-up operation amount is newly set in step S130. , Push up and load measurement repeatedly.
  • the CPU 41 may select, for example, the correspondence information 45 of the die sheet 38 having higher adhesive strength and strength. The CPU 41 may display a message and allow the operator to select new correspondence information 45.
  • the CPU 41 sucks the pushed-up component P with the suction nozzle 24 and images with the parts camera 15 (step S170).
  • the CPU 41 determines whether or not the component P collected based on the captured image is normal, that is, there is no damage (step S180). For example, when the component P is stuck on the die sheet 38 having a strong adhesive force, if the component P is pushed up with a large moving amount and a large moving speed, a part of the component P may be damaged.
  • the CPU 41 determines such breakage by performing matching between the image P of the captured image and the image of the normal component P.
  • the CPU 41 sets the current operation amount (movement amount and movement speed) as the execution operation amount used for the mounting process, and stores it in the execution condition of the execution job information (step S190). End the routine.
  • the CPU 41 sets the obtained movement amount as the execution movement amount, and sets the obtained movement speed as the execution movement speed.
  • step S180 if the component is not normal in step S180, that is, if there is an abnormality in the component, the CPU 41 sets the push-up movement speed by decreasing a predetermined amount (step S200), sets the next component P to be pushed up, and below it.
  • the relative positions of the wafer pallet 31 and the push-up pins 34 are moved so that the push-up pins 34 are arranged (step S210).
  • step S210 The process of step S210 is the same as that of step S120.
  • step S180 the CPU 41 executes processing after step S180. That is, the CPU 41 gradually decreases the push-up movement speed and repeats the process of picking up a new part P and collecting it until it is determined in step S180 that the part P is normal. If it is determined in step S180 that the component P is normal, in step S190, the current operation amount (movement amount and movement speed) is set as the execution operation amount used for the mounting process, and the execution condition of the execution job information is set. This routine is terminated.
  • FIG. 4 is an explanatory diagram schematically showing an outline of the condition setting process.
  • the CPU 41 selects the correspondence information 45 of the sheet DB 44, and acquires the range of the sampling load at which the component P is peeled from the die sheet 38 so as to be sampled.
  • the CPU 41 sets the movement amount of the push-up, pushes up the component P with the push-up pin 34, and measures the load at that time with the load cell 36 (the leftmost side in FIG. 4).
  • a process of setting a larger movement amount and pushing up the next part P is repeated (second and third from the left in FIG. 4).
  • step S180 When the measured load falls within the range of the sampling load, it is determined whether or not the part P is normal (step S180). When the part P is not normal, the moving speed is gradually decreased and the part P is damaged. The moving amount and moving speed of the push-up pin 34 that can be collected in a state where there is no mark are obtained (fourth and fifth from the left in FIG. 4). As described above, in the mounting apparatus 11, the CPU 41 automatically obtains the condition of the execution operation amount of the wafer supply unit 30.
  • FIG. 5 is a flowchart illustrating an example of a component supply processing routine executed by the CPU 41 of the control unit 40.
  • This routine is stored in the storage unit 42 of the control unit 40, and is executed by a start instruction from the operator.
  • the CPU 41 of the control unit 40 first reads and acquires the mounting job information updated in the above-described condition setting process (step S300).
  • the component P used for the mounting process is set, and the relative positions of the wafer pallet 31 and the push-up pin 34 are moved so that the push-up pin 34 is disposed below the component P (step S310).
  • the CPU 41 acquires the set execution operation amount of the push-up pin 34 from the mounting job information (step S320), and executes the push-up process of the push-up pin 34 with the operation amount (step S320). While the push-up process is continuing, the CPU 41 measures the load by the load cell 36 (step S330), and whether the load measured when the push-up pin 34 moves to the set movement amount is within the range of the sampling load. It is determined whether or not (step S340). When the measured load is not within the range of the sampling load, the CPU 41 changes the push-up movement amount, continues the push-up process (step S350), and executes the processes after step S330. That is, the CPU 41 continues such processing until the measured load falls within the range of the sampling load.
  • FIG. 6 is an explanatory diagram schematically showing a process of changing the operation amount at the time of component supply.
  • the die sheet 38 may have different adhesive strength depending on the location.
  • the CPU 41 adds a predetermined movement amount while measuring the load, The push-up pin 34 is further pushed up.
  • the CPU 41 decreases the predetermined movement amount as it is while measuring the load and lowers the push-up pin 34 by a small amount.
  • the CPU 41 continues such a process until the measured load enters the range of the sampling load.
  • the CPU 41 may reflect the result that is specifically outside the sampling load in the subsequent execution amount.
  • the CPU 41 may reflect the contents of the current change in the subsequent execution operation amount when the determination that the load is outside the sampling load is continued a predetermined number of times.
  • the CPU 41 executes the suction process of the suction nozzle 24 so as to collect the pushed-up component P (step S360). Is captured by the parts camera 15, and the captured image is acquired (step S370). Subsequently, the CPU 41 determines whether or not the component P is normal by the same process as step S180 (step S380). When the component P is not normal, the CPU 41 changes the moving speed of pushing up the push-up pin 34 and stores it in the storage unit 42. The CPU 41 may push up the push-up pin 34 at the moving speed changed when the push-up pin 34 is pushed up next time.
  • the push-up pin 34 may be pushed up at the changed moving speed after the state where the component P is not normal continues for a predetermined number of times (for example, three times or five times).
  • step S400 it is determined based on the progress of the mounting process whether the supply process of the component P is completed.
  • the CPU 41 repeatedly executes the processes after step S310.
  • this routine is ended as it is.
  • the push-up pin 34 of the present embodiment corresponds to the push-up portion of the present invention
  • the load cell 36 corresponds to the load measuring unit
  • the control unit 40 corresponds to the control unit
  • the correspondence information 45 corresponds to the correspondence information
  • the mounting unit 13 Corresponds to the collection part.
  • an example of the component supply method of the present invention is also clarified by describing the operation of the wafer supply unit 30.
  • the load cell in which the component P (die) obtained by dividing the wafer W is pushed up by the push-up pin 34 (push-up portion) and the load when the component P is pushed up is disposed on the push-up pin 34.
  • the measurement is performed by 36 (load measurement unit), and the amount of operation of the push-up pin 34 is set based on the measured load.
  • the die obtained by dividing the wafer W is stuck to the die sheet 38, and sampling is performed by pushing up from below. At this time, when a sufficient load is not applied by pushing up from below, it is possible that the stuck component P does not peel off and cannot be collected.
  • a sufficient load can be applied by measurement of the load cell 36, so that the stuck part P can be collected more reliably.
  • control unit 40 sets a larger execution amount of the push-up pin 34 when the load measured by the load cell 36 does not reach a predetermined sampling load required to peel off the component P so that the component P can be extracted.
  • a predetermined sampling load can be reached when pushing up.
  • the sampling load is included in the correspondence information 45 associated with at least one of the type of the push-up pin 34 and the die sheet 38 (sticking member), and the control unit 40 acquires the sampling load from the correspondence information 45. .
  • the control unit 40 sets a smaller execution operation amount of the push-up pin 34. It can be suppressed more.
  • control unit 40 sets a larger operation amount when the measured load does not reach the sampling load in the prior condition setting process performed before the mounting process of the component P, and this setting is performed for the next component P.
  • the process of controlling the push-up pin 34 with the amount of movement performed is repeated, and a series of processes such as measuring the load when the part P is pushed up is repeated, and the amount of movement in which the measured load satisfies the sampling load is set as the execution movement amount. To do.
  • an appropriate execution operation amount can be set before the mounting process, it is possible to prepare in advance conditions for more reliably collecting the component P adhered to the die sheet 38.
  • the control unit 40 uses the measured load as the sampling load.
  • the amount of movement (movement amount) of the push-up pin 34 is further increased until it is satisfied, and the amount of movement in which the measured load satisfies the sampling load is set as the execution amount of parts sampling after the next time.
  • an appropriate amount of execution operation can be set during the mounting process, it is possible to collect the attached components more reliably continuously during the mounting process.
  • control unit 40 sets the execution movement amount of the push-up pin 34 as an execution operation amount based on the measured load, and the state of the component P after being pushed up by the push-up pin 34 and collected by the mounting unit 13 Based on the above, the execution movement speed of the push-up pin 34 as the execution operation amount is set.
  • this apparatus by setting the amount of movement based on the load, it is possible to collect the attached part P more reliably, and by setting the moving speed based on the state of the part P, Damage and the like can be further suppressed.
  • control part 40 is a plurality of the correspondence information 45 in which one or more of the types of the push-up pins 34 and the types of the die sheets 38 (sticking members) to which the parts P are attached are associated with the sampling load. One is selected based on the load measured when the component P is pushed up by the execution motion amount. In this apparatus, since the correspondence information 45 is appropriately selected, the burden on the operator can be further reduced.
  • control unit 40 automatically sets the execution amount of the push-up pin 34, troublesome work such as manual setting by the operator is eliminated, and productivity can be further improved.
  • the pre-condition setting process performed before the mounting process and the execution operation amount of the push-up pin 34 are set during the mounting process, but either one may be omitted.
  • the worker may perform pre-processing, and the control unit 40 may automatically correct during the mounting process.
  • the component P can be more reliably collected during the mounting process.
  • the control unit 40 may perform pre-processing, and when the operation amount of the push-up pin 34 is not appropriate during the mounting process, the operator may adjust the execution operation amount.
  • the stuck part P can be more reliably collected according to conditions set in advance.
  • control unit 40 has been described as setting the movement amount and the movement speed as the execution operation amount of the push-up pin 34.
  • the present invention is not particularly limited to this, and either one is omitted. Also good.
  • the movement amount of the push-up pin 34 is set using a load measured by the load cell 36, parameters other than the movement amount and the movement speed may be set. Also in this apparatus, the stuck part P can be collected more reliably.
  • the control unit 40 selects the correspondence information 45 based on the mounting job information.
  • the present invention is not particularly limited thereto, and selects the correspondence information 45 based on an input from the worker. It may be a thing.
  • the control unit 40 reselects the correspondence information 45 after steps S140 and S160, but may notify the operator of an error.
  • the correspondence information 45 has been described as being included in the sheet DB 44, the present invention is not particularly limited thereto, and the correspondence information 45 may exist without being included in the sheet DB 44.
  • the execution operation amount is set by the control unit 40 included in the mounting apparatus 11, but the embodiment is not particularly limited thereto.
  • the control unit disposed in the wafer supply unit 30 may set the execution operation amount, or the control unit of the management computer 50 may measure the execution operation amount.
  • the present invention has been described as the mounting apparatus 11.
  • the wafer supply unit 30 or a component supply method may be used, or a program that a computer executes the above-described processing may be used.
  • the present invention can be used for an apparatus for performing a mounting process in which components are arranged on a substrate.

Abstract

A wafer supply unit 30 is an apparatus to be used in a mounting apparatus 11 that performs mounting by picking up a component P by means of a mounting unit 13, and disposing the picked up component P on a base material. The wafer supply unit 30 pushes up, by means of a push-up pin 34 (push-up unit), the component P (die) formed by dividing a wafer W, measures a load at the time of pushing up the component P, said load being measured by means of a load cell 36 (load measuring unit) provided to the push-up pin 34, and sets an execution operation amount of the push-up pin 34 on the basis of the load thus measured.

Description

部品供給装置、実装装置及び部品供給方法Component supply apparatus, mounting apparatus, and component supply method
 本発明は、部品供給装置、実装装置及び部品供給方法に関する。 The present invention relates to a component supply device, a mounting device, and a component supply method.
 従来、部品を基板に実装処理する実装装置としては、複数のダイに分割されたウエハが貼着されたシートからダイを採取するものにおいて、採取動作ごとに突き上げピンの突き上げ高さを所定量ずつ高くし、吸着ノズルでダイを採取できたと判定できた高さを適正な突き上げ高さと判定するものが提案されている(例えば、特許文献1参照)。また、部品を基板に実装処理する実装装置としては、複数のダイに分割されたウエハが貼着されたシートからダイを採取するものにおいて、突き上げ動作時の突き上げピンの上端の高さ位置を自動的に計測するものが提案されている(例えば、特許文献2参照)。 Conventionally, as a mounting apparatus for mounting a component on a substrate, a die is collected from a sheet on which a wafer divided into a plurality of dies is attached. An apparatus has been proposed in which the height at which the die can be collected by the suction nozzle is determined as an appropriate push-up height (for example, see Patent Document 1). In addition, as a mounting device that mounts components on a substrate, the height of the upper end of the push-up pin during the push-up operation is automatically determined when a die is collected from a sheet on which a wafer divided into a plurality of dies is attached. What is measured automatically has been proposed (see, for example, Patent Document 2).
特開2012-064752号公報JP 2012-064752 A 特開2013-247314号公報JP 2013-247314 A
 しかしながら、この特許文献1、2に記載された実装装置では、突き上げピンの高さは考慮されているが、部品の採取に関してはまだ十分でなく、貼着された部品を更に確実に採取することが求められていた。 However, in the mounting apparatuses described in Patent Documents 1 and 2, the height of the push-up pin is taken into consideration, but the extraction of the components is not sufficient yet, and the attached components are more reliably collected. Was demanded.
 本発明は、このような課題に鑑みなされたものであり、貼着された部品をより確実に採取することができる部品供給装置、実装装置及び部品供給方法を提供することを主目的とする。 The present invention has been made in view of such a problem, and a main object of the present invention is to provide a component supply device, a mounting device, and a component supply method capable of collecting the attached components more reliably.
 本発明は、上述の主目的を達成するために以下の手段を採った。 The present invention adopts the following means in order to achieve the main object described above.
 本発明の部品供給装置は、
 採取部により部品を採取し該採取された部品を基材に配置する実装処理を行う実装装置に用いられる部品供給装置であって、
 複数の部品に分割され貼着されたウエハから該部品を採取する際に該部品を押し上げる押上部と、
 前記押上部に配設され前記部品を押し上げる際の荷重を計測する荷重計測部と、
 前記計測された荷重に基づいて前記押上部の実行動作量を設定する制御部と、
 を備えたものである。
The component supply apparatus of the present invention is
A component supply device used in a mounting apparatus that performs a mounting process of collecting a component by a collecting unit and arranging the collected component on a base material,
A push-up unit that pushes up the component when the component is collected from a wafer that is divided into a plurality of components and attached;
A load measuring unit that is disposed on the push-up unit and measures a load when pushing up the component;
A control unit configured to set an amount of movement of the push-up portion based on the measured load;
It is equipped with.
 一般的に、ウエハを分割した部品(ダイ)は、シートに貼着されており、下方から押し上げることにより採取を行う。このとき、下方からの押上によって十分な荷重がかからない場合には、貼着された部品が剥がれず、採取できないことが起こりうる。この装置では、複数の部品に分割され貼着されたウエハから部品を採取する際にこの部品を押上部で押し上げ、部品を押し上げる際の荷重を押上部に配設された荷重計測部で計測し、計測された荷重に基づいて押上部の実行動作量を設定する。この装置では、荷重計測部の計測により十分な荷重をかけることができるため、貼着された部品をより確実に採取することができる。 Generally, a part (die) obtained by dividing a wafer is attached to a sheet, and sampling is performed by pushing up from below. At this time, when a sufficient load is not applied by pushing up from below, it is possible that the stuck parts are not peeled off and cannot be collected. In this device, when picking up a part from a wafer that has been divided into a plurality of parts and stuck, the part is pushed up by the push-up part, and the load when the part is pushed up is measured by a load measuring unit arranged on the push-up part. Based on the measured load, the execution amount of the push-up unit is set. In this apparatus, since a sufficient load can be applied by the measurement of the load measuring unit, the attached parts can be collected more reliably.
実装装置11の構成の概略の一例を表す概略説明図。FIG. 4 is a schematic explanatory diagram illustrating an example of a schematic configuration of the mounting apparatus 11. 記憶部42に記憶されたシートデータベース44の一例を表す説明図。4 is an explanatory diagram illustrating an example of a sheet database 44 stored in a storage unit. FIG. 条件設定処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a condition setting process routine. 条件設定処理の概略を模式的に表す説明図。Explanatory drawing which represents the outline of a condition setting process typically. 部品供給処理ルーチンの一例を表すフローチャート。The flowchart showing an example of a component supply process routine. 部品供給時の動作量を変更する処理を模式的に表す説明図。Explanatory drawing which represents typically the process which changes the operation amount at the time of components supply.
 本発明の好適な実施形態を図面を参照しながら以下に説明する。図1は、実装システム10の実装装置11の構成の概略の一例を表す説明図である。図2は、制御部40の記憶部42に記憶されたシートデータベース44の一例を表す説明図である。実装システム10は、例えば、図1に示すように、ウエハWを分割したダイである部品Pなどを基材(基板Sや他の部品など)上に配置する実装処理を実行するシステムである。この実装システム10は、実装装置11と、管理コンピュータ(PC)50とを備えている。実装システム10は、部品Pを基板Sに実装する実装処理を実施する複数の実装装置11が上流から下流に配置されている。図1では、説明の便宜のため実装装置11を1台のみ示している。管理PC50は、実装装置11での処理条件を含む実装ジョブ情報などを管理する。実装ジョブ情報には、例えば、部品Pの実装順、実装する部品Pの種別、サイズ、用いるユニット、基板Sのサイズ、生産枚数などの情報が含まれている。なお、本実施形態において、左右方向(X軸)、前後方向(Y軸)及び上下方向(Z軸)は図1に示した通りとする。 Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram illustrating an example of a schematic configuration of the mounting apparatus 11 of the mounting system 10. FIG. 2 is an explanatory diagram illustrating an example of the sheet database 44 stored in the storage unit 42 of the control unit 40. For example, as shown in FIG. 1, the mounting system 10 is a system that executes a mounting process in which a component P, which is a die obtained by dividing a wafer W, is arranged on a base material (substrate S, other components, etc.). The mounting system 10 includes a mounting device 11 and a management computer (PC) 50. In the mounting system 10, a plurality of mounting apparatuses 11 that perform a mounting process for mounting the component P on the substrate S are arranged from upstream to downstream. In FIG. 1, only one mounting apparatus 11 is shown for convenience of explanation. The management PC 50 manages mounting job information including processing conditions in the mounting apparatus 11. The mounting job information includes, for example, information such as the mounting order of the components P, the type and size of the components P to be mounted, the unit to be used, the size of the board S, and the number of produced products. In the present embodiment, the left-right direction (X-axis), the front-rear direction (Y-axis), and the up-down direction (Z-axis) are as shown in FIG.
 実装装置11は、基板搬送ユニット12と、実装ユニット13と、部品供給ユニット14と、パーツカメラ15と、ウエハ供給ユニット30と、制御部40とを備えている。基板搬送ユニット12は、基板Sの搬入、搬送、実装位置での固定、搬出を行うユニットである。基板搬送ユニット12は図1の前後に間隔を開けて設けられ左右方向に架け渡された1対のコンベアベルトを有している。基板Sはこのコンベアベルトにより搬送される。 The mounting apparatus 11 includes a substrate transfer unit 12, a mounting unit 13, a component supply unit 14, a parts camera 15, a wafer supply unit 30, and a control unit 40. The substrate transport unit 12 is a unit that carries in, transports, fixes and unloads the substrate S at the mounting position. The substrate transport unit 12 has a pair of conveyor belts provided in the front-rear direction of FIG. The board | substrate S is conveyed by this conveyor belt.
 実装ユニット13は、部品を部品供給ユニット14やウエハ供給ユニット30から採取し、基板搬送ユニット12に固定された基板Sへ配置する採取部である。実装ユニット13は、ヘッド移動部20と、実装ヘッド22と、吸着ノズル24とを備えている。ヘッド移動部20は、ガイドレールに導かれてXY方向へ移動するスライダと、スライダを駆動するモータとを備えている。実装ヘッド22は、スライダに取り外し可能に装着されており、ヘッド移動部20によりXY方向へ移動する。実装ヘッド22の下面には、1以上の吸着ノズル24が取り外し可能に装着されている。吸着ノズル24は、圧力を利用して部品Pを採取する採取部材であり、実装ヘッド22に取り外し可能に装着される。実装ヘッド22は、Z軸モータを内蔵しており、このZ軸モータによってZ軸に沿って吸着ノズル24の高さを調整する。また、実装ヘッド22は、図示しない駆動モータによって吸着ノズル24を回転(自転)させる回転装置を備え、吸着ノズル24に吸着された部品Pの角度を調整可能となっている。この実装ヘッド22は、1以上の吸着ノズル24を装着する。部品供給ユニット14は、リールを備えた複数のフィーダを有しており、ダイ以外の電子部品などを実装ユニット13へ供給する。 The mounting unit 13 is a sampling unit that samples components from the component supply unit 14 or the wafer supply unit 30 and places them on the substrate S fixed to the substrate transfer unit 12. The mounting unit 13 includes a head moving unit 20, a mounting head 22, and a suction nozzle 24. The head moving unit 20 includes a slider that is guided by the guide rail and moves in the XY directions, and a motor that drives the slider. The mounting head 22 is detachably mounted on the slider and is moved in the XY direction by the head moving unit 20. One or more suction nozzles 24 are detachably mounted on the lower surface of the mounting head 22. The suction nozzle 24 is a collection member that collects the component P using pressure, and is detachably attached to the mounting head 22. The mounting head 22 incorporates a Z-axis motor, and the height of the suction nozzle 24 is adjusted along the Z-axis by the Z-axis motor. The mounting head 22 includes a rotating device that rotates (spins) the suction nozzle 24 by a drive motor (not shown), and can adjust the angle of the component P sucked by the suction nozzle 24. The mounting head 22 is equipped with one or more suction nozzles 24. The component supply unit 14 has a plurality of feeders provided with reels, and supplies electronic components other than the die to the mounting unit 13.
 パーツカメラ15は、基板搬送ユニット12と部品供給ユニット14との間に配設されている。このパーツカメラ15の撮像範囲はパーツカメラ15の上方である。パーツカメラ15は、部品Pを吸着した吸着ノズル24がパーツカメラ15の上方を通過する際、吸着ノズル24に吸着された部品Pを下方から撮像し、その画像を制御部40へ出力する。 The parts camera 15 is disposed between the board transfer unit 12 and the component supply unit 14. The imaging range of the parts camera 15 is above the parts camera 15. When the suction nozzle 24 that sucks the part P passes above the part camera 15, the parts camera 15 captures the part P sucked by the suction nozzle 24 from below and outputs the image to the control unit 40.
 ウエハ供給ユニット30は、ウエハWを分割した部品P(ダイ)を実装ヘッド22の採取位置に供給する装置であり、ウエハパレット31と、マガジン部32と、押上ピン34(押上部)と、ポット35とロードセル36(荷重計測部)とを備えている。ウエハパレット31は、部品Pを貼着した貼着部材であるダイシート38を固定する部材である。ウエハパレット31は、マガジン部32に複数収容されている。このウエハパレット31は、実装ヘッド22が部品Pを採取する際にマガジン部32から引き出される。押上ピン34は、複数に分割されダイシート38に貼着されたウエハWから部品Pを採取する際に部品Pを下方から押し上げる押上部である。押上ピン34は、引き出されたウエハパレット31の下方に配置されたポット35の内部に収容されている。この押上ピン34は、その太さなど先端の形状が異なるものが複数種類あり、部品Pのサイズなどに応じて使い分けられる。このウエハ供給ユニット30では、種類の異なる押上ピン34を有するポット35を5つ備えており、部品Pに応じていずれかのポット35が選択され、部品供給に用いられる。ポット35は、その上面に吸引口が設けられている。ポット35は、ダイシート38を下面側から吸引支持し、その際に押上ピン34を突き上げることにより、採取する部品Pだけをダイシート38から剥離させる。ロードセル36は、押上ピン34に配設されており、部品Pを押し上げる際の荷重を計測する荷重計測部である。このロードセル36は、交換可能にポット35に装着されている。 The wafer supply unit 30 is a device that supplies a part P (die) obtained by dividing the wafer W to the sampling position of the mounting head 22, and includes a wafer pallet 31, a magazine portion 32, a push-up pin 34 (push-up portion), a pot 35 and a load cell 36 (load measuring unit). The wafer pallet 31 is a member that fixes a die sheet 38 that is an attaching member to which the component P is attached. A plurality of wafer pallets 31 are accommodated in the magazine section 32. The wafer pallet 31 is pulled out from the magazine portion 32 when the mounting head 22 collects the component P. The push-up pin 34 is a push-up portion that pushes up the component P from below when the component P is collected from the wafer W divided into a plurality of pieces and attached to the die sheet 38. The push-up pin 34 is accommodated in a pot 35 disposed below the pulled-out wafer pallet 31. There are a plurality of types of the push-up pins 34 having different tip shapes such as the thickness thereof, and the push-up pins 34 are selectively used according to the size of the component P. The wafer supply unit 30 includes five pots 35 having different types of push-up pins 34, and one of the pots 35 is selected according to the component P and used for component supply. The pot 35 is provided with a suction port on the upper surface thereof. The pot 35 sucks and supports the die sheet 38 from the lower surface side, and pushes up the push-up pin 34 at that time, whereby only the part P to be collected is peeled from the die sheet 38. The load cell 36 is disposed on the push-up pin 34 and is a load measuring unit that measures a load when the component P is pushed up. The load cell 36 is attached to the pot 35 so as to be replaceable.
 制御部40は、CPU41を中心とするマイクロプロセッサとして構成されており、処理プログラムを記憶する記憶部42などを備えている。この制御部40は、基板搬送ユニット12や実装ユニット13、部品供給ユニット14、パーツカメラ15、ウエハ供給ユニット30へ制御信号を出力し、実装ユニット13や部品供給ユニット14、パーツカメラ15、ウエハ供給ユニット30からの信号を入力する。記憶部42には、シートデータベース(DB)44と、設定プログラム46とが記憶されている。シートDB44は、図2に示すように、ダイシート38の種別と、部品Pのサイズと、押上ピン34の種別と、そのダイシート38から部品Pを採取可能に剥離させる所定の採取荷重とを対応づけた対応情報45をダイシート38の種別に応じて複数含んでいる。採取荷重は、上限値(例えば、15Nなど)及び下限値(例えば10Nなど)の範囲として対応情報45に含まれている。この採取荷重は、例えば、押上ピン34の動作量(移動量や移動速度など)と荷重との関係を経験的に求め、破損などの異常を生じずに部品の少なくとも一部がダイシート38から剥離し、吸着ノズル24により採取可能になる荷重の範囲に定められるものとしてもよい。設定プログラム46は、詳しくは後述するが、シートDB44に基づいて、押上ピン34の動作量を設定するものである。制御部40は、シートDB44を用い設定プログラム46を実行することによって、ロードセル36で計測された荷重に基づいて押上ピン34の実行動作量(移動量や移動速度など)を設定する。 The control unit 40 is configured as a microprocessor centered on the CPU 41, and includes a storage unit 42 that stores a processing program. The control unit 40 outputs control signals to the substrate transport unit 12, the mounting unit 13, the component supply unit 14, the parts camera 15, and the wafer supply unit 30, and the mounting unit 13, the component supply unit 14, the parts camera 15, and the wafer supply. A signal from the unit 30 is input. The storage unit 42 stores a sheet database (DB) 44 and a setting program 46. As shown in FIG. 2, the sheet DB 44 associates the type of the die sheet 38, the size of the part P, the type of the push-up pin 34, and a predetermined sampling load for separating the part P from the die sheet 38 so that the part P can be collected. The correspondence information 45 is included in a plurality according to the type of the die sheet 38. The sampling load is included in the correspondence information 45 as a range of an upper limit value (for example, 15N) and a lower limit value (for example, 10N). For this sampling load, for example, the relationship between the movement amount (movement amount, movement speed, etc.) of the push-up pin 34 and the load is obtained empirically, and at least a part of the part is peeled off from the die sheet 38 without causing any abnormality such as breakage. Alternatively, it may be determined within a range of loads that can be collected by the suction nozzle 24. The setting program 46 sets the operation amount of the push-up pin 34 based on the sheet DB 44, as will be described in detail later. The control unit 40 executes the setting program 46 using the sheet DB 44 to set the amount of movement (movement amount, movement speed, etc.) of the push-up pin 34 based on the load measured by the load cell 36.
 次に、こうして構成された本実施形態の実装システム10の動作、まず、部品Pの実装処理前に事前にウエハ供給ユニット30の動作条件を設定する処理を説明する。図3は、制御部40のCPU41が実行する条件設定処理ルーチンの一例を表すフローチャートである。図4は、条件設定処理の概略を表す説明図である。条件設定処理ルーチンは、作業者による設定プログラム46の開始指示により実行される。 Next, the operation of the mounting system 10 of the present embodiment configured as described above, first, the processing for setting the operating condition of the wafer supply unit 30 in advance before the mounting processing of the component P will be described. FIG. 3 is a flowchart illustrating an example of a condition setting process routine executed by the CPU 41 of the control unit 40. FIG. 4 is an explanatory diagram showing an outline of the condition setting process. The condition setting processing routine is executed in response to an instruction to start the setting program 46 by the operator.
 このルーチンを開始すると、制御部40のCPU41は、まず、実装条件を取得する(ステップS100)。この実装条件には、ダイシート38の種別、実装処理に用いる押上ピン34の種別、部品Pのサイズのうち2以上としてもよい。この実装条件の取得は、例えば、作業者の入力により取得してもよいし、実装ジョブ情報から所得するものとしてもよい。次に、CPU41は、記憶部42に記憶されているシートDB44から、条件設定に用いる対応情報45を選択する(ステップS110)。ウエハ供給ユニット30では、その厚さや粘着力が異なる複数種類のダイシート38が利用される。シートDB44には、ダイシート38及び押上ピン34の種別に応じて採取荷重の範囲が含まれている。ここでは、ステップS100で取得した情報に基づいて、実装処理で用いるダイシート38及び押上ピン34に応じた対応情報45をCPU41が選択する。CPU41は、選択した対応情報45によって、採取荷重の範囲を定めることができる。なお、CPU41は、作業者の入力した対応情報45を選択するものとしてもよいし、作業者が入力した採取荷重を採用してもよい。 When this routine is started, the CPU 41 of the control unit 40 first acquires the mounting conditions (step S100). The mounting condition may be two or more of the type of the die sheet 38, the type of the push-up pin 34 used for the mounting process, and the size of the component P. The acquisition of the mounting conditions may be acquired, for example, by an operator input, or may be obtained from mounting job information. Next, the CPU 41 selects correspondence information 45 used for condition setting from the sheet DB 44 stored in the storage unit 42 (step S110). In the wafer supply unit 30, a plurality of types of die sheets 38 having different thicknesses and adhesive forces are used. The sheet DB 44 includes a range of sampling loads according to the types of the die sheet 38 and the push-up pins 34. Here, the CPU 41 selects the correspondence information 45 corresponding to the die sheet 38 and the push-up pins 34 used in the mounting process based on the information acquired in step S100. The CPU 41 can determine the range of the sampling load based on the selected correspondence information 45. The CPU 41 may select the correspondence information 45 input by the worker, or may adopt the sampling load input by the worker.
 次に、CPU41は、ウエハWの中で押し上げる部品Pを設定し、その下方に押上ピン34が配置されるように、ウエハパレット31及び押上ピン34の相対位置を移動させる(ステップS120)。部品Pの設定は、例えば、ウエハWの左上から右方向、上段から下段へ、最後の右下に向かって順番に定めるものとしてもよい。次に、CPU41は、押上ピン34の押上の動作量として移動量を設定する(ステップS130)。この移動量の設定は、予め定められた初期値に設定してもよいし、作業者の入力値に設定するものとしてもよい。この最初の移動量の設定では、押上ピン34の突き上げにおいて動作が許容される処理動作範囲の下限値に設定するものとしてもよい。 Next, the CPU 41 sets the component P to be pushed up in the wafer W, and moves the relative position of the wafer pallet 31 and the push-up pin 34 so that the push-up pin 34 is arranged below the part P (step S120). For example, the setting of the component P may be determined in order from the upper left to the right of the wafer W, from the upper stage to the lower stage, and finally to the lower right. Next, the CPU 41 sets a movement amount as an operation amount for pushing up the push-up pin 34 (step S130). This amount of movement may be set to a predetermined initial value or may be set to an input value of the operator. In the initial setting of the movement amount, the lower limit value of the processing operation range in which the operation is permitted when the push-up pin 34 is pushed up may be set.
 次に、設定された押上ピン34の移動量は、処理動作範囲内であるか否かを判定し(ステップS140)、押上ピン34の移動量が処理動作範囲内であるときには、CPU41は、設定された移動量で押上ピン34を押し上げる処理を実行させると共に、ロードセル36により押上荷重を計測する(ステップS150)。なお、CPU41は、ここでの押上ピン34の移動速度として、実装処理の生産サイクルが低下しないよう予め経験的に定められた所定の初期値を用いる。続いて、CPU41は、計測された荷重がステップS110で選択した対応情報45に対応する所定の採取荷重の範囲内であるか否かを判定する(ステップS160)。計測された荷重が採取荷重に至らないとき(未満であるとき)には、CPU41は、ステップS120以降の処理を行う。即ち、CPU41は、ステップS120で、次の部品を設定してその下方に押上ピン34を移動し、ステップS130でより大きな移動量を設定し、ステップS150で押し上げを行い荷重を計測する。ここで、ステップS130では、例えば、CPU41は、処理動作範囲を多数に分割した長さである所定量だけ増加するものとする。この処理は、ステップS140の判定で処理動作範囲を超えない範囲内で、計測された荷重が採取荷重に至るまで繰り返される。 Next, it is determined whether or not the set movement amount of the push-up pin 34 is within the processing operation range (step S140). When the movement amount of the push-up pin 34 is within the processing operation range, the CPU 41 sets A process of pushing up the push-up pin 34 by the amount of movement is executed, and the push-up load is measured by the load cell 36 (step S150). Note that the CPU 41 uses a predetermined initial value empirically determined in advance so that the production cycle of the mounting process does not decrease as the moving speed of the push-up pin 34 here. Subsequently, the CPU 41 determines whether or not the measured load is within a predetermined sampling load range corresponding to the correspondence information 45 selected in step S110 (step S160). When the measured load does not reach the collection load (when it is less), the CPU 41 performs the processing after step S120. That is, in step S120, the CPU 41 sets the next part and moves the push-up pin 34 downward, sets a larger movement amount in step S130, and pushes up in step S150 to measure the load. Here, in step S130, for example, the CPU 41 is assumed to increase by a predetermined amount that is a length obtained by dividing the processing operation range into a large number. This process is repeated until the measured load reaches the sampling load within a range not exceeding the processing operation range in the determination in step S140.
 一方、ステップS160で、計測された荷重が採取荷重を超えてしまったとき(初回で採取荷重を超えたとき)、あるいはステップS140で、設定した動作量が処理動作範囲を超えたとき(最大に動作させても採取荷重に届かなかったとき)には、CPU41は、シートDB44の選択が適正でなかったものとして、ステップS110以降の処理を実行する。具体的には、ステップS110で現在と異なる対応情報45を選択し、ステップS120で次の部品Pを設定し押上ピン34をその下に移動させ、ステップS130で押し上げの動作量を新たに設定し、押し上げ、荷重計測を繰り返し行う。ステップS110でのシートDB44での再選択では、CPU41は、例えば、粘着力や強度がより強いダイシート38の対応情報45を選択するものとしてもよい。なお、CPU41は、メッセージを表示して作業者に新たな対応情報45を選択させてもよい。 On the other hand, when the measured load exceeds the sampling load at step S160 (when it exceeds the sampling load at the first time), or when the set operation amount exceeds the processing operation range at step S140 (maximum). If the sampling load has not been reached even when the operation is performed, the CPU 41 determines that the selection of the sheet DB 44 is not appropriate, and executes the processing after step S110. Specifically, the correspondence information 45 different from the current one is selected in step S110, the next component P is set in step S120, the push-up pin 34 is moved below, and a push-up operation amount is newly set in step S130. , Push up and load measurement repeatedly. In the reselection in the sheet DB 44 in step S110, the CPU 41 may select, for example, the correspondence information 45 of the die sheet 38 having higher adhesive strength and strength. The CPU 41 may display a message and allow the operator to select new correspondence information 45.
 一方、ステップS160で、計測された荷重が採取荷重の範囲内であるときには、CPU41は、押し上げた部品Pを吸着ノズル24で吸着させ、パーツカメラ15で撮像する(ステップS170)。次に、CPU41は、撮像画像に基づいて採取した部品Pが正常であるか、即ち、破損などはないかを判定する(ステップS180)。例えば、粘着力の強いダイシート38に部品Pが貼着されている場合、大きな移動量で且つ大きな移動速度で部品Pを突き上げると、部品Pの一部に破損が生じる場合がある。ここでは、CPU41は、例えば、撮像画像の部品Pと正常な部品Pの画像とのマッチングなどを行うことにより、このような破損を判定するのである。部品Pが正常であるときには、CPU41は、現在の動作量(移動量及び移動速度)を実装処理に用いる実行動作量に設定し、実行ジョブ情報の実行条件に記憶させて(ステップS190)、このルーチンを終了する。CPU41は、上記求めた移動量を実行移動量に設定し、上記求めた移動速度を実行移動速度に設定する。 On the other hand, when the measured load is within the range of the sampling load in step S160, the CPU 41 sucks the pushed-up component P with the suction nozzle 24 and images with the parts camera 15 (step S170). Next, the CPU 41 determines whether or not the component P collected based on the captured image is normal, that is, there is no damage (step S180). For example, when the component P is stuck on the die sheet 38 having a strong adhesive force, if the component P is pushed up with a large moving amount and a large moving speed, a part of the component P may be damaged. Here, for example, the CPU 41 determines such breakage by performing matching between the image P of the captured image and the image of the normal component P. When the component P is normal, the CPU 41 sets the current operation amount (movement amount and movement speed) as the execution operation amount used for the mounting process, and stores it in the execution condition of the execution job information (step S190). End the routine. The CPU 41 sets the obtained movement amount as the execution movement amount, and sets the obtained movement speed as the execution movement speed.
 一方、ステップS180で部品が正常でない、即ち部品に異常があるときには、CPU41は、押し上げの移動速度を所定量減少させて設定し(ステップS200)、押し上げる次の部品Pを設定し、その下方に押上ピン34が配置されるように、ウエハパレット31及び押上ピン34の相対位置を移動させる(ステップS210)。ステップS210の処理は、ステップS120と同様である。続いて、CPU41は、ステップS180以降の処理を実行する。即ち、CPU41は、ステップS180で部品Pが正常であると判定されるまで、押し上げの移動速度を徐々に減少させ、新たな部品Pを押し上げて採取する処理を繰り返す。そして、ステップS180で部品Pが正常であると判定されると、ステップS190で、現在の動作量(移動量及び移動速度)を実装処理に用いる実行動作量に設定し、実行ジョブ情報の実行条件に記憶させて、このルーチンを終了する。 On the other hand, if the component is not normal in step S180, that is, if there is an abnormality in the component, the CPU 41 sets the push-up movement speed by decreasing a predetermined amount (step S200), sets the next component P to be pushed up, and below it. The relative positions of the wafer pallet 31 and the push-up pins 34 are moved so that the push-up pins 34 are arranged (step S210). The process of step S210 is the same as that of step S120. Subsequently, the CPU 41 executes processing after step S180. That is, the CPU 41 gradually decreases the push-up movement speed and repeats the process of picking up a new part P and collecting it until it is determined in step S180 that the part P is normal. If it is determined in step S180 that the component P is normal, in step S190, the current operation amount (movement amount and movement speed) is set as the execution operation amount used for the mounting process, and the execution condition of the execution job information is set. This routine is terminated.
 図4は、条件設定処理の概略を模式的に表す説明図である。CPU41は、ステップS100、110で、シートDB44の対応情報45を選択し、ダイシート38から部品Pが採取可能に剥離される採取荷重の範囲を取得する。次に、CPU41は、押し上げの移動量を設定し、部品Pを押上ピン34により押し上げ、そのときの荷重をロードセル36により計測する(図4の一番左側)。計測された荷重が採取荷重に至らないときには、より大きな移動量を設定し、次の部品Pを押し上げるという処理を繰り返す(図4の左から2、3番目)。計測された荷重が採取荷重の範囲内になると、部品Pが正常であるか否かを判定し(ステップS180)、部品Pが正常でないときには、移動速度を徐々に減少し、部品Pに破損などのない状態で採取できる押上ピン34の押し上げの移動量及び移動速度を求める(図4の左から4、5番目)。このように、実装装置11では、CPU41が、自動でウエハ供給ユニット30の実行動作量の条件を求めるのである。 FIG. 4 is an explanatory diagram schematically showing an outline of the condition setting process. In steps S100 and S110, the CPU 41 selects the correspondence information 45 of the sheet DB 44, and acquires the range of the sampling load at which the component P is peeled from the die sheet 38 so as to be sampled. Next, the CPU 41 sets the movement amount of the push-up, pushes up the component P with the push-up pin 34, and measures the load at that time with the load cell 36 (the leftmost side in FIG. 4). When the measured load does not reach the sampling load, a process of setting a larger movement amount and pushing up the next part P is repeated (second and third from the left in FIG. 4). When the measured load falls within the range of the sampling load, it is determined whether or not the part P is normal (step S180). When the part P is not normal, the moving speed is gradually decreased and the part P is damaged. The moving amount and moving speed of the push-up pin 34 that can be collected in a state where there is no mark are obtained (fourth and fifth from the left in FIG. 4). As described above, in the mounting apparatus 11, the CPU 41 automatically obtains the condition of the execution operation amount of the wafer supply unit 30.
 次に、こうして設定されたウエハ供給ユニット30の実行条件を用いて部品Pを供給する処理について説明する。図5は、制御部40のCPU41により実行される部品供給処理ルーチンの一例を表すフローチャートである。このルーチンは、制御部40の記憶部42に記憶され、作業者による開始指示により実行される。このルーチンを開始すると、制御部40のCPU41は、まず、上述した条件設定処理で更新された実装ジョブ情報を読み出して取得する(ステップS300)。次に、実装処理に用いる部品Pを設定し、その部品Pの下方に押上ピン34が配置されるように、ウエハパレット31及び押上ピン34の相対位置を移動させる(ステップS310)。 Next, processing for supplying the component P using the execution conditions of the wafer supply unit 30 set in this way will be described. FIG. 5 is a flowchart illustrating an example of a component supply processing routine executed by the CPU 41 of the control unit 40. This routine is stored in the storage unit 42 of the control unit 40, and is executed by a start instruction from the operator. When this routine is started, the CPU 41 of the control unit 40 first reads and acquires the mounting job information updated in the above-described condition setting process (step S300). Next, the component P used for the mounting process is set, and the relative positions of the wafer pallet 31 and the push-up pin 34 are moved so that the push-up pin 34 is disposed below the component P (step S310).
 次に、CPU41は、設定されている押上ピン34の実行動作量を実装ジョブ情報から取得し(ステップS320)、その動作量で押上ピン34の押し上げ処理を実行する(ステップS320)。この押し上げ処理の継続中に、CPU41は、ロードセル36によって荷重を計測し(ステップS330)、設定された移動量まで押上ピン34が移動したときに計測された荷重が採取荷重の範囲内であるか否かを判定する(ステップS340)。計測された荷重が採取荷重の範囲内でないときには、CPU41は、押し上げの移動量を変更して、押し上げ処理を継続し(ステップS350)、ステップS330以降の処理を実行する。即ち、CPU41は、計測された荷重が採取荷重の範囲内に入るまで、このような処理を継続する。 Next, the CPU 41 acquires the set execution operation amount of the push-up pin 34 from the mounting job information (step S320), and executes the push-up process of the push-up pin 34 with the operation amount (step S320). While the push-up process is continuing, the CPU 41 measures the load by the load cell 36 (step S330), and whether the load measured when the push-up pin 34 moves to the set movement amount is within the range of the sampling load. It is determined whether or not (step S340). When the measured load is not within the range of the sampling load, the CPU 41 changes the push-up movement amount, continues the push-up process (step S350), and executes the processes after step S330. That is, the CPU 41 continues such processing until the measured load falls within the range of the sampling load.
 図6は、部品供給時の動作量を変更する処理を模式的に表す説明図である。ダイシート38では、その粘着力などが場所によって異なることがある。図6に示すように、CPU41は、実行動作量で押上ピン34を押し上げた際に、計測された荷重が採取荷重に満たないときには、荷重を計測しながら、そのまま所定の移動量を追加し、押上ピン34を更に押し上げる。あるいは、CPU41は、計測された荷重が採取荷重の上限を超えたときには、荷重を計測しながら、そのまま所定の移動量を減少させ、押上ピン34を微量下げる。CPU41は、計測された荷重が採取荷重の範囲に入るまで、このような処理を継続する。なお、CPU41は、この特異的に採取荷重外である結果を次回以降の実行動作量に反映させてもよい。事前の条件設定処理により、計測された荷重が採取荷重の範囲内に入る条件であるはずなので、今回の計測荷重は、特異的なものである可能性がある。このため、CPU41は、所定回数このような採取荷重外である判定が継続した際に、その後の実行動作量に今回の変更内容を反映させるものとしてもよい。 FIG. 6 is an explanatory diagram schematically showing a process of changing the operation amount at the time of component supply. The die sheet 38 may have different adhesive strength depending on the location. As shown in FIG. 6, when the measured load is less than the sampling load when the push-up pin 34 is pushed up by the execution operation amount, the CPU 41 adds a predetermined movement amount while measuring the load, The push-up pin 34 is further pushed up. Alternatively, when the measured load exceeds the upper limit of the sampling load, the CPU 41 decreases the predetermined movement amount as it is while measuring the load and lowers the push-up pin 34 by a small amount. The CPU 41 continues such a process until the measured load enters the range of the sampling load. The CPU 41 may reflect the result that is specifically outside the sampling load in the subsequent execution amount. Since the measured load should be within the range of the sampling load by the condition setting process in advance, the current measured load may be unique. For this reason, the CPU 41 may reflect the contents of the current change in the subsequent execution operation amount when the determination that the load is outside the sampling load is continued a predetermined number of times.
 一方、ステップS340で、計測された荷重が採取荷重の範囲内であるときには、CPU41は、押し上げた部品Pを採取するよう吸着ノズル24の吸着処理を実行し(ステップS360)、吸着された部品Pをパーツカメラ15により撮像し、撮像した画像を取得する(ステップS370)。続いて、CPU41は、ステップS180と同様の処理により、部品Pが正常であるか否かを判定する(ステップS380)。部品Pが正常でないときには、CPU41は、押上ピン34の押し上げの移動速度を変更して記憶部42に記憶する。CPU41は、次回の押上ピン34の押し上げの際に変更した移動速度で押上ピン34を押し上げるものとしてもよい。事前の条件設定処理により、部品Pが破損しない条件であるはずなので、今回の部品Pの破損は、特異的なものである可能性がある。したがって、部品Pが正常でない状態が所定回数(例えば3回や5回など)継続したあとに変更した移動速度で押上ピン34を押し上げるものとしてもよい。 On the other hand, when the measured load is within the sampling load range in step S340, the CPU 41 executes the suction process of the suction nozzle 24 so as to collect the pushed-up component P (step S360). Is captured by the parts camera 15, and the captured image is acquired (step S370). Subsequently, the CPU 41 determines whether or not the component P is normal by the same process as step S180 (step S380). When the component P is not normal, the CPU 41 changes the moving speed of pushing up the push-up pin 34 and stores it in the storage unit 42. The CPU 41 may push up the push-up pin 34 at the moving speed changed when the push-up pin 34 is pushed up next time. Since the condition of the part P should not be damaged by the condition setting process in advance, the damage of the part P this time may be specific. Therefore, the push-up pin 34 may be pushed up at the changed moving speed after the state where the component P is not normal continues for a predetermined number of times (for example, three times or five times).
 一方、ステップS380で部品Pが正常であるときには、部品Pの供給処理が終了したか否かを実装処理の進捗状況に基づいて判定する(ステップS400)。部品Pの供給処理が終了していないときには、CPU41は、ステップS310以降の処理を繰り返し実行する一方、部品Pの供給処理が終了したときには、そのままこのルーチンを終了する。 On the other hand, when the component P is normal in step S380, it is determined based on the progress of the mounting process whether the supply process of the component P is completed (step S400). When the supply process of the component P is not completed, the CPU 41 repeatedly executes the processes after step S310. On the other hand, when the supply process of the component P is completed, this routine is ended as it is.
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態の押上ピン34が本発明の押上部に相当し、ロードセル36が荷重計測部に相当し、制御部40が制御部に相当し、対応情報45が対応情報に相当し、実装ユニット13が採取部に相当する。なお、本実施形態では、ウエハ供給ユニット30の動作を説明することにより本発明の部品供給方法の一例も明らかにしている。 Here, the correspondence between the components of the present embodiment and the components of the present invention will be clarified. The push-up pin 34 of the present embodiment corresponds to the push-up portion of the present invention, the load cell 36 corresponds to the load measuring unit, the control unit 40 corresponds to the control unit, the correspondence information 45 corresponds to the correspondence information, and the mounting unit 13 Corresponds to the collection part. In the present embodiment, an example of the component supply method of the present invention is also clarified by describing the operation of the wafer supply unit 30.
 以上説明した実施形態のウエハ供給ユニット30は、ウエハWを分割した部品P(ダイ)を押上ピン34(押上部)で押し上げ、部品Pを押し上げる際の荷重を押上ピン34に配設されたロードセル36(荷重計測部)で計測し、計測された荷重に基づいて押上ピン34の実行動作量を設定する。一般的に、ウエハWを分割したダイは、ダイシート38に貼着されており、下方から押し上げることにより採取を行う。このとき、下方からの押し上げによって十分な荷重がかからない場合には、貼着された部品Pが剥がれず、採取できないことが起こりうる。このウエハ供給ユニット30では、ロードセル36の計測により十分な荷重をかけることができるため、貼着された部品Pをより確実に採取することができる。 In the wafer supply unit 30 of the embodiment described above, the load cell in which the component P (die) obtained by dividing the wafer W is pushed up by the push-up pin 34 (push-up portion) and the load when the component P is pushed up is disposed on the push-up pin 34. The measurement is performed by 36 (load measurement unit), and the amount of operation of the push-up pin 34 is set based on the measured load. Generally, the die obtained by dividing the wafer W is stuck to the die sheet 38, and sampling is performed by pushing up from below. At this time, when a sufficient load is not applied by pushing up from below, it is possible that the stuck component P does not peel off and cannot be collected. In this wafer supply unit 30, a sufficient load can be applied by measurement of the load cell 36, so that the stuck part P can be collected more reliably.
 また、制御部40は、ロードセル36によって計測された荷重が部品Pを採取可能に引き剥がすのに要する所定の採取荷重に至らないときにはより大きな押上ピン34の実行動作量を設定するため、部品Pを押し上げる際に所定の採取荷重に至ることができる。なお、採取荷重は、押上ピン34の種別及びダイシート38(貼着部材)の少なくとも一方と対応づけられた対応情報45に含まれており、制御部40は、対応情報45から採取荷重を取得する。更に、制御部40は、ロードセル36によって計測された荷重が採取荷重の上限を超えたときには、より小さな押上ピン34の実行動作量を設定するため、部品Pを押し上げる際に部品Pの破損などをより抑制することができる。 Further, the control unit 40 sets a larger execution amount of the push-up pin 34 when the load measured by the load cell 36 does not reach a predetermined sampling load required to peel off the component P so that the component P can be extracted. A predetermined sampling load can be reached when pushing up. The sampling load is included in the correspondence information 45 associated with at least one of the type of the push-up pin 34 and the die sheet 38 (sticking member), and the control unit 40 acquires the sampling load from the correspondence information 45. . Furthermore, when the load measured by the load cell 36 exceeds the upper limit of the sampling load, the control unit 40 sets a smaller execution operation amount of the push-up pin 34. It can be suppressed more.
 更に、制御部40は、部品Pの実装処理前に行われる事前の条件設定処理において、計測された荷重が採取荷重に至らないときにはより大きな動作量を設定し、次の部品Pにおいて、この設定した動作量で押上ピン34を制御する処理を行い、部品Pを押し上げる際の荷重を計測する、との一連の処理を繰り返し、計測された荷重が採取荷重を満たす動作量を実行動作量に設定する。この装置では、実装処理前に適正な実行動作量を設定することができるため、ダイシート38に貼着された部品Pをより確実に採取する条件を予め準備することができる。更にまた、制御部40は、部品Pの実装処理において、設定されている実行動作量で部品Pを押し上げた際に、計測された荷重が採取荷重に至らないときには計測された荷重が採取荷重を満たすまで押上ピン34の動作量(移動量)をより大きくし、計測された荷重が採取荷重を満たした動作量を次回以降の部品採取の実行動作量に設定する。この装置では、実装処理中に適正な実行動作量を設定することができるため、実装処理中に継続して、貼着された部品をより確実に採取することができる。 Furthermore, the control unit 40 sets a larger operation amount when the measured load does not reach the sampling load in the prior condition setting process performed before the mounting process of the component P, and this setting is performed for the next component P. The process of controlling the push-up pin 34 with the amount of movement performed is repeated, and a series of processes such as measuring the load when the part P is pushed up is repeated, and the amount of movement in which the measured load satisfies the sampling load is set as the execution movement amount. To do. In this apparatus, since an appropriate execution operation amount can be set before the mounting process, it is possible to prepare in advance conditions for more reliably collecting the component P adhered to the die sheet 38. Furthermore, in the mounting process of the component P, when the component P is pushed up by the set execution operation amount and the measured load does not reach the sampling load, the control unit 40 uses the measured load as the sampling load. The amount of movement (movement amount) of the push-up pin 34 is further increased until it is satisfied, and the amount of movement in which the measured load satisfies the sampling load is set as the execution amount of parts sampling after the next time. In this apparatus, since an appropriate amount of execution operation can be set during the mounting process, it is possible to collect the attached components more reliably continuously during the mounting process.
 更にまた、制御部40は、計測された荷重に基づいて実行動作量としての押上ピン34の実行移動量を設定し、押上ピン34により押し上げられ実装ユニット13により採取されたあとの部品Pの状態に基づいて実行動作量としての押上ピン34の実行移動速度を設定する。この装置では、荷重に基づいて移動量を設定することによって、貼着された部品Pをより確実に採取することができると共に、部品Pの状態に基づいて移動速度を設定することによって、部品の破損などをより抑制することができる。そして、制御部40は、押上ピン34の種別及び部品Pを貼着するダイシート38(貼着部材)の種別のうち1以上と、採取荷重と、を対応付けた対応情報45の複数のうちの1つを、実行動作量で部品Pを押し上げたときに計測された荷重に基づいて選択する。この装置では、対応情報45が適切に選択されるため、作業者の負担をより低減することができる。 Furthermore, the control unit 40 sets the execution movement amount of the push-up pin 34 as an execution operation amount based on the measured load, and the state of the component P after being pushed up by the push-up pin 34 and collected by the mounting unit 13 Based on the above, the execution movement speed of the push-up pin 34 as the execution operation amount is set. In this apparatus, by setting the amount of movement based on the load, it is possible to collect the attached part P more reliably, and by setting the moving speed based on the state of the part P, Damage and the like can be further suppressed. And the control part 40 is a plurality of the correspondence information 45 in which one or more of the types of the push-up pins 34 and the types of the die sheets 38 (sticking members) to which the parts P are attached are associated with the sampling load. One is selected based on the load measured when the component P is pushed up by the execution motion amount. In this apparatus, since the correspondence information 45 is appropriately selected, the burden on the operator can be further reduced.
 また、実装装置11では、押上ピン34の実行動作量の設定を自動で制御部40が行うため、作業者が手動で設定するなどの煩わしい作業がなくなり、生産性をより向上することができる。 Moreover, in the mounting apparatus 11, since the control unit 40 automatically sets the execution amount of the push-up pin 34, troublesome work such as manual setting by the operator is eliminated, and productivity can be further improved.
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.
 例えば、上述した実施形態では、実装処理前に行う事前の条件設定処理と、実装処理中とにおいて押上ピン34の実行動作量の設定を行うものとしたが、いずれか一方を省略するものとしてもよい。例えば、作業者が事前処理を行い、実装処理中に制御部40が自動で修正するものとしてもよい。この装置では、実装処理中に部品Pをより確実に採取することができる。一方、制御部40が事前処理を行い、実装処理中に押上ピン34の動作量が適正でないときには作業者がその実行動作量を調整するものとしてもよい。この装置では、基本的には、事前に設定した条件により、貼着された部品Pをより確実に採取することができる。 For example, in the above-described embodiment, the pre-condition setting process performed before the mounting process and the execution operation amount of the push-up pin 34 are set during the mounting process, but either one may be omitted. Good. For example, the worker may perform pre-processing, and the control unit 40 may automatically correct during the mounting process. In this apparatus, the component P can be more reliably collected during the mounting process. On the other hand, the control unit 40 may perform pre-processing, and when the operation amount of the push-up pin 34 is not appropriate during the mounting process, the operator may adjust the execution operation amount. In this apparatus, basically, the stuck part P can be more reliably collected according to conditions set in advance.
 上述した実施形態では、制御部40は、押上ピン34の実行動作量として、移動量と移動速度とを設定するものとして説明したが、特にこれに限定されず、いずれか一方を省略するものとしてもよい。あるいは、ロードセル36により測定した荷重を用いて押上ピン34の動作量を設定するものとすれば、移動量、移動速度以外のパラメータを設定するものとしてもよい。この装置においても、貼着された部品Pをより確実に採取することができる。 In the above-described embodiment, the control unit 40 has been described as setting the movement amount and the movement speed as the execution operation amount of the push-up pin 34. However, the present invention is not particularly limited to this, and either one is omitted. Also good. Alternatively, if the movement amount of the push-up pin 34 is set using a load measured by the load cell 36, parameters other than the movement amount and the movement speed may be set. Also in this apparatus, the stuck part P can be collected more reliably.
 上述した実施形態では、制御部40は、実装ジョブ情報に基づいて、対応情報45を選択するものとしたが、特にこれに限定されず、作業者からの入力に基づいて対応情報45を選択するものとしてもよい。また、制御部40は、ステップS140やS160のあと、対応情報45を再選択するものとしたが、作業者へエラーを通知するものとしてもよい。また、対応情報45は、シートDB44に含まれているものとして説明したが特にこれに限定されず、対応情報45は、シートDB44に含まれずに存在していてもよい。 In the above-described embodiment, the control unit 40 selects the correspondence information 45 based on the mounting job information. However, the present invention is not particularly limited thereto, and selects the correspondence information 45 based on an input from the worker. It may be a thing. The control unit 40 reselects the correspondence information 45 after steps S140 and S160, but may notify the operator of an error. Although the correspondence information 45 has been described as being included in the sheet DB 44, the present invention is not particularly limited thereto, and the correspondence information 45 may exist without being included in the sheet DB 44.
 上述した実施形態では、実装装置11が備える制御部40により実行動作量を設定するものとして説明したが、特にこれに限定されない。例えば、ウエハ供給ユニット30に配設された制御部が実行動作量を設定するものとしてもよいし、管理コンピュータ50の制御部が実行動作量を測定するものとしてもよい。 In the above-described embodiment, the execution operation amount is set by the control unit 40 included in the mounting apparatus 11, but the embodiment is not particularly limited thereto. For example, the control unit disposed in the wafer supply unit 30 may set the execution operation amount, or the control unit of the management computer 50 may measure the execution operation amount.
 上述した実施形態では、本発明を実装装置11として説明したが、例えば、ウエハ供給ユニット30としてもよいし、部品供給方法としてもよいし、上述した処理をコンピュータが実行するプログラムとしてもよい。 In the above-described embodiment, the present invention has been described as the mounting apparatus 11. However, for example, the wafer supply unit 30 or a component supply method may be used, or a program that a computer executes the above-described processing may be used.
 本発明は、部品を基板上に配置する実装処理を行う装置に利用可能である。 The present invention can be used for an apparatus for performing a mounting process in which components are arranged on a substrate.
10 実装システム、11 実装装置、12 基板搬送ユニット、13 実装ユニット、14 部品供給ユニット、15 パーツカメラ、20 ヘッド移動部、22 実装ヘッド、24 吸着ノズル、30 ウエハ供給ユニット、31 ウエハパレット、32 マガジン部、34 押上ピン(押上部)、35 ポット、36 ロードセル(荷重計測部)、38 ダイシート、40 制御部、41 CPU、42 記憶部、44 シートデータベース(DB)、45 対応情報、46 設定プログラム、50 管理コンピュータ(PC)、P 部品、S 基板、W ウエハ。 10 mounting system, 11 mounting device, 12 substrate transport unit, 13 mounting unit, 14 component supply unit, 15 parts camera, 20 head moving unit, 22 mounting head, 24 suction nozzle, 30 wafer supply unit, 31 wafer pallet, 32 magazine Part, 34 push-up pin (push-up part), 35 pot, 36 load cell (load measurement part), 38 die sheet, 40 control part, 41 CPU, 42 storage part, 44 sheet database (DB), 45 correspondence information, 46 setting program, 50 Management computer (PC), P component, S substrate, W wafer.

Claims (9)

  1.  採取部により部品を採取し該採取された部品を基材に配置する実装処理を行う実装装置に用いられる部品供給装置であって、
     複数の部品に分割され貼着されたウエハから該部品を採取する際に該部品を押し上げる押上部と、
     前記押上部に配設され前記部品を押し上げる際の荷重を計測する荷重計測部と、
     前記計測された荷重に基づいて前記押上部の実行動作量を設定する制御部と、
     を備えた部品供給装置。
    A component supply device used in a mounting apparatus that performs a mounting process of collecting a component by a collecting unit and arranging the collected component on a base material,
    A push-up unit that pushes up the component when the component is collected from a wafer that has been divided and adhered to a plurality of components;
    A load measuring unit that is disposed on the push-up unit and measures a load when pushing up the component;
    A control unit configured to set an amount of movement of the push-up portion based on the measured load;
    A component supply device comprising:
  2.  前記制御部は、前記計測された荷重が前記部品を採取可能に引き剥がすのに要する所定の採取荷重に至らないときにはより大きな前記押上部の実行動作量を設定する、請求項1に記載の部品供給装置。 2. The component according to claim 1, wherein the control unit sets a larger execution amount of the push-up portion when the measured load does not reach a predetermined sampling load required to peel the component so that the component can be collected. Feeding device.
  3.  前記制御部は、前記計測された荷重が前記部品を採取可能に引き剥がすのに要する所定の採取荷重の上限を超えたときにはより小さな前記押上部の実行動作量を設定する、請求項1又は2に記載の部品供給装置。 The said control part sets the execution operation amount of the said raising part smaller when the said measured load exceeds the upper limit of the predetermined | prescribed sampling load required in order to peel off the said components so that extraction is possible. The component supply apparatus described in 1.
  4.  前記制御部は、前記部品の実装処理前に行われる事前処理において、前記計測された荷重が前記部品を採取可能に引き剥がすのに要する所定の採取荷重に至らないときにはより大きな前記押上部の動作量を設定し次の部品において該設定した動作量で前記押上部を制御する処理を行い前記部品を押し上げる際の荷重を計測するとの一連の処理を繰り返し、前記計測された荷重が前記採取荷重を満たす前記動作量を前記実行動作量に設定する、請求項1~3のいずれか1項に記載の部品供給装置。 In the pre-processing performed before the mounting process of the component, the control unit performs a larger operation of the push-up portion when the measured load does not reach a predetermined sampling load required to peel off the component so that the component can be extracted. A series of processes of setting the amount and controlling the push-up portion with the set operation amount in the next part and measuring the load when pushing up the part is repeated, and the measured load determines the sampling load. The component supply device according to any one of claims 1 to 3, wherein the operation amount to be satisfied is set to the execution operation amount.
  5.  前記制御部は、前記部品の実装処理において、設定されている実行動作量で前記部品を押し上げた際に、前記計測された荷重が前記部品を採取可能に引き剥がす所定の採取荷重に至らないときには前記計測された荷重が前記採取荷重を満たすまで前記押上部の動作量をより大きくし、前記計測された荷重が前記採取荷重を満たした動作量を次回以降の部品採取の実行動作量に設定する、請求項1~4のいずれか1項に記載の部品供給装置。 In the mounting process of the component, when the component is pushed up by a set execution operation amount, the measured load does not reach a predetermined sampling load that allows the component to be extracted. The operation amount of the push-up portion is further increased until the measured load satisfies the sampling load, and the operation amount at which the measured load satisfies the sampling load is set as an execution operation amount for the subsequent part sampling. The component supply device according to any one of claims 1 to 4.
  6.  前記制御部は、前記計測された荷重に基づいて前記実行動作量としての前記押上部の実行移動量を設定し、前記押上部により押し上げられ前記採取部により採取されたあとの部品の状態に基づいて前記実行動作量としての前記押上部の実行移動速度を設定する、請求項1~5のいずれか1項に記載の部品供給装置。 The control unit sets an execution movement amount of the push-up unit as the execution operation amount based on the measured load, and is based on a state of a part after being pushed up by the push-up unit and sampled by the sampling unit 6. The component supply device according to claim 1, wherein an execution movement speed of the push-up unit is set as the execution operation amount.
  7.  前記制御部は、前記押上部の種別及び前記部品を貼着する貼着部材の種別のうち1以上と、前記部品を採取可能に引き剥がすのに要する所定の採取荷重と、を対応付けた対応情報の複数のうちの1つを、前記実行動作量で前記部品を押し上げたときに計測された荷重に基づいて選択する、請求項1~6のいずれか1項に記載の部品供給装置。 The control unit associates one or more of the push-up type and the type of the sticking member for sticking the part with a predetermined sampling load required to peel the part so that the part can be picked up. The component supply apparatus according to any one of claims 1 to 6, wherein one of a plurality of pieces of information is selected based on a load measured when the component is pushed up by the execution operation amount.
  8.  請求項1~7のいずれか1項に記載の部品供給装置と、
     前記部品供給装置から供給された前記部品を採取し該採取した部品を基材に配置する採取部と、
     を備えた実装装置。
    The component supply device according to any one of claims 1 to 7,
    A sampling unit that samples the component supplied from the component supply device and places the sampled component on a substrate;
    Mounting device.
  9.  採取部により部品を採取し該採取された部品を基材に配置する実装処理に用いられる部品供給方法であって、
    (a)複数の部品に分割され貼着されたウエハから該部品を採取する際に該部品を押上部により押し上げるステップと、
    (b)前記部品を押し上げる際の荷重を前記押上部に配設された荷重計測部で計測するステップと、
    (c)前記計測された荷重に基づいて前記押上部の実行動作量を設定するステップと、
     を含む部品供給方法。
    A component supply method used for a mounting process in which a component is sampled by a sampling unit and the collected component is arranged on a substrate.
    (A) a step of pushing up the part by a push-up unit when the part is collected from a wafer divided and stuck into a plurality of parts;
    (B) a step of measuring a load at the time of pushing up the component by a load measuring unit disposed on the push-up portion;
    (C) setting an execution movement amount of the push-up portion based on the measured load;
    A part supply method including:
PCT/JP2016/059840 2016-03-28 2016-03-28 Component supply apparatus, mounting apparatus, and component supply method WO2017168498A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018507825A JP6634149B2 (en) 2016-03-28 2016-03-28 Component supply device, mounting device, and component supply method
PCT/JP2016/059840 WO2017168498A1 (en) 2016-03-28 2016-03-28 Component supply apparatus, mounting apparatus, and component supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/059840 WO2017168498A1 (en) 2016-03-28 2016-03-28 Component supply apparatus, mounting apparatus, and component supply method

Publications (1)

Publication Number Publication Date
WO2017168498A1 true WO2017168498A1 (en) 2017-10-05

Family

ID=59962715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059840 WO2017168498A1 (en) 2016-03-28 2016-03-28 Component supply apparatus, mounting apparatus, and component supply method

Country Status (2)

Country Link
JP (1) JP6634149B2 (en)
WO (1) WO2017168498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033177A (en) * 2018-09-19 2020-03-27 파스포드 테크놀로지 주식회사 Die bonding apparatus and manufacturing method of semiconductor device
JP7417472B2 (en) 2020-05-19 2024-01-18 株式会社Fuji Adsorption condition determination method and adsorption device
JP7421412B2 (en) 2020-05-01 2024-01-24 株式会社Fuji Adsorption device status determination device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745645A (en) * 1993-07-27 1995-02-14 Toshiba Seiki Kk Chip pusher of die bonding device
JPH0936147A (en) * 1995-07-19 1997-02-07 Toshiba Corp Semiconductor manufacturing device
JPH11150133A (en) * 1997-09-04 1999-06-02 Hitachi Ltd Method and system for mounting semiconductor element semiconductor element separator, and production of ic card
JP2012064752A (en) * 2010-09-16 2012-03-29 Fuji Mach Mfg Co Ltd Die feeding device
WO2013073365A1 (en) * 2011-11-18 2013-05-23 富士機械製造株式会社 Wafer-related data management method and wafer-related data creation device
JP2014154826A (en) * 2013-02-13 2014-08-25 Toshiba Corp Semiconductor manufacturing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745645A (en) * 1993-07-27 1995-02-14 Toshiba Seiki Kk Chip pusher of die bonding device
JPH0936147A (en) * 1995-07-19 1997-02-07 Toshiba Corp Semiconductor manufacturing device
JPH11150133A (en) * 1997-09-04 1999-06-02 Hitachi Ltd Method and system for mounting semiconductor element semiconductor element separator, and production of ic card
JP2012064752A (en) * 2010-09-16 2012-03-29 Fuji Mach Mfg Co Ltd Die feeding device
WO2013073365A1 (en) * 2011-11-18 2013-05-23 富士機械製造株式会社 Wafer-related data management method and wafer-related data creation device
JP2014154826A (en) * 2013-02-13 2014-08-25 Toshiba Corp Semiconductor manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033177A (en) * 2018-09-19 2020-03-27 파스포드 테크놀로지 주식회사 Die bonding apparatus and manufacturing method of semiconductor device
KR102297846B1 (en) * 2018-09-19 2021-09-06 파스포드 테크놀로지 주식회사 Die bonding apparatus and manufacturing method of semiconductor device
JP7421412B2 (en) 2020-05-01 2024-01-24 株式会社Fuji Adsorption device status determination device
JP7417472B2 (en) 2020-05-19 2024-01-18 株式会社Fuji Adsorption condition determination method and adsorption device

Also Published As

Publication number Publication date
JP6634149B2 (en) 2020-01-22
JPWO2017168498A1 (en) 2019-01-31

Similar Documents

Publication Publication Date Title
US11835207B2 (en) Mounting device
WO2017168498A1 (en) Component supply apparatus, mounting apparatus, and component supply method
JP6293866B2 (en) Mounting deviation correction device and component mounting system
JP6580854B2 (en) Parts supply device
JP2009255214A (en) Machining apparatus
JPWO2017179146A1 (en) Mounting apparatus and mounting method
JP6840158B2 (en) Die mounting device
EP3522207B1 (en) Wafer feeding apparatus and component mounting apparatus
JP6630726B2 (en) Mounting device and mounting method
JP6826122B2 (en) Mounting device
JP6448766B2 (en) Mounting apparatus and mounting method
JP6526808B2 (en) Mounting management device
JP6886981B2 (en) Parts mounting machine
JP7186519B2 (en) Temporary storage area positioning method and temporary storage area positioning device in backup device
EP3651561A1 (en) Component mounting device
JP5627362B2 (en) Die supply device
JP7431927B2 (en) Component mounting system
JPWO2016020998A1 (en) Board work equipment
JP7319448B2 (en) Mounting machine
JPWO2017037865A1 (en) Required accuracy setting device
JP7417472B2 (en) Adsorption condition determination method and adsorption device
JP7410826B2 (en) Pin misalignment measuring device and die feeding device
JP2021158220A (en) Component mounting line
JP2018022810A (en) Mounting processing unit, mounting device and control method of mounting processing unit
JP2020205301A (en) Component mounting machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018507825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896718

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896718

Country of ref document: EP

Kind code of ref document: A1