WO2017166956A1 - 单相交错式pfc电路和具有其的车载充电器及电动汽车 - Google Patents

单相交错式pfc电路和具有其的车载充电器及电动汽车 Download PDF

Info

Publication number
WO2017166956A1
WO2017166956A1 PCT/CN2017/074445 CN2017074445W WO2017166956A1 WO 2017166956 A1 WO2017166956 A1 WO 2017166956A1 CN 2017074445 W CN2017074445 W CN 2017074445W WO 2017166956 A1 WO2017166956 A1 WO 2017166956A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
pfc circuit
phase interleaved
interleaved pfc
node
Prior art date
Application number
PCT/CN2017/074445
Other languages
English (en)
French (fr)
Inventor
杨仕青
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017166956A1 publication Critical patent/WO2017166956A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • H02J7/022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to the field of PFC (Power Factor Correction) circuit technology, and in particular to a single-phase interleaved PFC circuit, an on-board charger having the same, and an electric vehicle having the same.
  • PFC Power Factor Correction
  • the interleaved PFC circuit mainly places two smaller PFC circuits in parallel where the single higher power PFC circuit is placed. These two less power PFC circuits work alternately with a phase shift of 180° at the input end. When the output is accumulated, the main part of the current ripple per phase will cancel. Interleaved PFC circuits are widely used because of their many advantages.
  • the electric energy of the interleaved PFC circuit can only flow in one direction, and the DC side electric energy cannot be inverted into the AC electric output.
  • the present invention aims to solve at least one of the technical problems in the related art to some extent.
  • the first aspect of the present invention provides a single-phase interleaved PFC circuit, including: a rectifier bridge, where the first input end and the second input end of the rectifier bridge are correspondingly connected to the first switch One end and a second end, the third end and the fourth end of the first switch are correspondingly connected to two ends of an alternating current power source; a PFC unit, the PFC unit includes first to fourth switch tubes, a first inductor, and a first a second inductor, the first switch tube and the second switch tube form a first bridge arm, the third switch tube and the fourth switch tube form a second bridge arm, the first bridge arm has a first node, and the second bridge arm Having a second node, a third node between the first switch tube and the third switch tube, and a fourth node between the second switch tube and the fourth switch tube, the first node Connected to one end of the alternating current power source through the first inductor, the second node is connected to one end of the second
  • the first input end and the second input end of the rectifier bridge are correspondingly connected to the first end and the second end of the first switch, and the third end and the fourth end of the first switch
  • the end corresponds to the two ends of the AC power supply.
  • the first node in the PFC unit is connected to one end of the AC power source through a first inductor
  • the second node is connected to one end of the second inductor
  • the third node is connected to the first output end of the rectifier bridge
  • the fourth node is connected to the first node of the rectifier bridge.
  • the second output end is connected, the first end of the switch is connected to one end of the AC power source, the second end of the switch is connected to the other end of the AC power source, the third end of the switch is connected to the other end of the second inductor, and the control unit passes Controlling the switch, the first switch, and the first to fourth switch tubes to switch the single-phase interleaved PFC circuit between the power factor correction mode and the inverter mode, thereby making the single-phase interleaved PFC circuit not only It has the function of converting AC power into DC power, and can invert DC power into AC power output, and the structure change is simple.
  • control unit is in communication with the first end of the switch that controls the third end of the switch, and controls the first switch to connect the rectifier bridge to the AC power source And controlling the first to fourth switch tubes to cause the single-phase interleaved PFC circuit to be in a power factor correction mode of operation; the control unit is controlling the third end of the switch and the The second end of the switch is connected, and the first switch is controlled to disconnect the rectifier bridge from the alternating current power source, and the first to fourth switch tubes are controlled to interleave the single phase The PFC circuit is in the inverter mode of operation.
  • the switch can be a single pole double throw switch, a relay, or a semiconductor switch.
  • the first switch can be a relay or be comprised of a semiconductor switch.
  • the single-phase interleaved PFC circuit further includes: a first sampling circuit for sampling voltage and current on the alternating current side; a second sampling circuit, the second sampling circuit a voltage for sampling the DC side, wherein the control unit controls the voltage of the AC side by controlling the first to fourth switching tubes when the single-phase interleaved PFC circuit is in a power factor correction operation mode It is synchronized with the current and makes the voltage on the DC side constant.
  • the control unit when the single-phase interleaved PFC circuit is in an inverter mode of operation, the control unit outputs an SPWM (Sinusoidal Pulse Width Modulation) signal to control the first to fourth The switch tube is turned on or off to cause the single-phase interleaved PFC circuit to invert the DC current on the DC side to AC power.
  • SPWM Seusoidal Pulse Width Modulation
  • each of the first to fourth switching transistors includes a MOS transistor, a diode, and a PFC capacitor, and a drain of the MOS transistor is connected to a cathode of the diode, the MOS transistor A source is coupled to the anode of the diode, a gate of the MOS transistor is coupled to the control unit, and the PFC capacitor is coupled in parallel with the diode.
  • a first filter capacitor is connected between the first input end and the second input end of the rectifier bridge, and a second filter capacitor is connected between the third node and the fourth node.
  • an embodiment of the second aspect of the present invention provides an in-vehicle charger including a single according to the above Interleaved PFC circuit.
  • the vehicle charger of the embodiment of the present invention can not only convert the alternating current into the direct current to charge the power battery, but also invert the direct current outputted by the power battery into the alternating current output through the single-phase interleaved PFC circuit, and the structure change is simple. It has the advantages of the original interleaved PFC circuit.
  • an embodiment of the third aspect of the present invention provides an electric vehicle including the above-described single-phase interleaved PFC circuit.
  • the vehicle charger of the embodiment of the present invention can not only convert the alternating current into the direct current to charge the power battery, but also invert the direct current outputted by the power battery into the alternating current output through the single-phase interleaved PFC circuit, and the structure change is simple. It has the advantages of the original interleaved PFC circuit.
  • FIG. 1 is a topological diagram of a single phase interleaved PFC circuit in accordance with one embodiment of the present invention.
  • FIG. 2 is a circuit schematic diagram of a single phase interleaved PFC circuit in a power factor correction mode of operation in accordance with one embodiment of the present invention.
  • FIG. 3 is a circuit schematic diagram of a single phase interleaved PFC circuit in an inverter mode of operation, in accordance with one embodiment of the present invention.
  • FIG. 4 is a topological diagram of a single phase interleaved PFC circuit in accordance with another embodiment of the present invention.
  • the single-phase interleaved PFC circuit includes a rectifier bridge 10, a PFC unit, a changeover switch 30, a first switch 40, and a control unit (not specifically shown).
  • the first input end and the second input end of the rectifier bridge 10 are correspondingly connected to the first end and the second end of the first switch 40, and the third end and the fourth end of the first switch 40 are correspondingly connected to the AC power source AC. Both ends.
  • the PFC unit includes first to fourth switching tubes, a first inductor L1 and a second inductor L2, and the first switching transistor Q1 and the second switching transistor Q2 form a first bridge arm, and the third switching transistor Q3 and the fourth switching transistor Q4 are formed.
  • the first bridge arm has a first node J1
  • the second bridge arm has a second node J2
  • the first switch tube Q1 and the third switch tube Q3 have a third node J3, and the second switch tube Q2 and Fourth
  • the switch node Q4 has a fourth node J4.
  • the first node J1 is connected to one end of the AC power source AC through the first inductor L1
  • the second node J2 is connected to one end of the second inductor L2
  • the third node J3 and the rectifier bridge 10 are connected.
  • the first output is connected
  • the fourth node J4 is connected to the second output of the rectifier bridge 10.
  • the first end of the switch 30 is connected to one end of the AC power source AC, the second end of the switch 30 is connected to the other end of the AC power source AC, and the third end of the switch 30 is connected to the other end of the second inductor L2.
  • the control unit controls the single-phase interleaved PFC circuit to switch between the power factor correction operation mode and the inverter operation mode by controlling the changeover switch 30, the first switch 40, and the first to fourth switch tubes.
  • the single-phase interleaved PFC circuit can be operated in two different operation modes, thereby making the single phase
  • the interleaved PFC circuit not only has the function of alternating current to direct current, but also can invert the direct current side energy into an alternating current output, and the structure is changed simply.
  • the switch 30 can be a single-pole double-throw switch, a relay or a semiconductor switch.
  • the first switch 40 can be a relay or a semiconductor switch, that is, as long as the operation mode of the single-phase interleaved PFC circuit can be accurately switched. Specifically, it can be selected according to the actual situation.
  • the control unit communicates with the first end of the changeover switch 30 at the third end of the control switch 30, and controls the first switch 40 to connect the rectifier bridge 10 with the AC power source AC. And controlling the first to fourth switching tubes to make the single-phase interleaved PFC circuit in the power factor correction working mode; the control unit is connected to the second end of the switching switch 30 at the third end of the control switching switch 30, And controlling the first switch 40 to disconnect the rectifier bridge 10 from the AC power source AC, and controlling the first to fourth switching tubes to bring the single-phase interleaved PFC circuit into the inverter operating mode.
  • a first filter capacitor C1 is connected between the first input end and the second input end of the rectifier bridge 10, and a second filter capacitor C2 is connected between the third node J3 and the fourth node J4.
  • the rectifier bridge 10, the first to fourth switching tubes, the first inductor L1, the second inductor L2, the first capacitor C1, and the second capacitor C2 constitute An interleaved power factor correction circuit, that is, a single-phase interleaved PFC circuit is in a power factor correction mode, and the control unit controls the first to fourth switch tubes to implement a power factor correction function for the single-phase interleaved PFC circuit;
  • the third end of the 30 is in communication with the second end of the changeover switch 30, and the first switch 40 is open (ie, the first end of the first switch 40 is disconnected from the third end, while the second end of the first switch 40 is When the four terminals are disconnected, as shown in FIG.
  • the first to fourth switching tubes, the first inductor L1, the second inductor L2, the first capacitor C1, and the second capacitor C2 constitute an inverter circuit, that is, a single phase.
  • the interleaved PFC circuit is in the inverter working mode, and the control unit controls the first to fourth switches So that the DC to AC inverter output, through the switch, the first switch and the first to fourth control switch to switch operating mode to achieve a single-phase interleaved PFC circuit, and mode switching is simple and reliable.
  • the single-phase interleaved PFC circuit may further include: a first sampling circuit and a second sampling circuit, wherein the first sampling circuit is configured to sample the voltage Vac and the current on the AC side. Iac, the second sampling circuit is for sampling the voltage Vdc on the DC side, wherein when the single-phase interleaved PFC circuit is in the power factor correction working mode, the control unit controls the first to fourth switching tubes to make the voltage Vac of the alternating current side It is synchronized with the current Iac and makes the voltage Vdc on the DC side constant.
  • Switch 30 and first switch 40 are such that the single phase interleaved PFC circuit is in a power factor correction mode of operation.
  • the first to fourth switching tubes can be controlled according to the real-time sampled AC side voltage Vac, the AC side current Iac, and the DC side voltage Vdc, so that The phase of the current Iac on the AC side is synchronized with the phase of the voltage Vac on the AC side to achieve the purpose of power factor correction.
  • the voltage Vdc of the DC side of the sample is used as a feedback amount, and the DC current is controlled by the magnitude of the current Iac on the AC side.
  • the side voltage Vdc is kept constant, making the single-phase interleaved PFC circuit output constant.
  • the circuit not only can output relatively stable direct current, but also has small ripple of voltage and current, and has the advantages of high conversion efficiency, thermal balance of the switch tube, and favorable heat dissipation.
  • the control unit when the single-phase interleaved PFC circuit is in the inverter operating mode, the control unit outputs an SPWM signal to control the turning on or off of the first to fourth switching tubes to make the single-phase interleaved PFC
  • the circuit inverts the DC current on the DC side to AC power.
  • the switch 30 and the first switch 40 can be controlled.
  • the control unit In order to make the PFC circuit in the inverter working mode.
  • the control unit outputs a PWM (Pulse Width Modulation) signal or an SPWM signal to control the turning on or off of the first to fourth switching tubes, thereby realizing The inverter function of the circuit.
  • PWM Pulse Width Modulation
  • each of the first to fourth switching tubes may include a MOS transistor, a diode, and a PFC capacitor, and a drain and a diode of the MOS transistor.
  • the cathode is connected, the source of the MOS transistor is connected to the anode of the diode, the gate of the MOS transistor is connected to the control unit, and the PFC capacitor is connected in parallel with the diode.
  • first to fourth switching tubes can also be composed of other types of switching tubes, for example, an IGBT (Insulated Gate Bipolar Transistor) and a diode connected in parallel, and details are not described herein. .
  • IGBT Insulated Gate Bipolar Transistor
  • the first input end and the second input end of the rectifier bridge are correspondingly connected to the first end and the second end of the first switch, and the first switch
  • the three ends and the fourth end are connected to the alternating current
  • the first node in the PFC unit is connected to one end of the AC power source through the first inductor
  • the second node is connected to one end of the second inductor
  • the third node is connected to the first output end of the rectifier bridge
  • the first end of the switch is connected to one end of the AC power source
  • the second end of the switch is connected to the other end of the AC power source
  • the control unit controls the switch, the first switch, and the first to fourth switch tubes to switch the single-phase interleaved PFC circuit between the power factor correction mode and
  • an embodiment of the second aspect of the present invention provides an in-vehicle charger including a single-phase interleaved PFC circuit according to the above.
  • the vehicle charger of the embodiment of the present invention can not only convert the alternating current into the direct current to charge the power battery, but also invert the direct current outputted by the power battery into the alternating current output through the single-phase interleaved PFC circuit, and the structure change is simple. It has the advantages of the original interleaved PFC circuit.
  • an embodiment of the third aspect of the present invention provides an electric vehicle including the above-described single-phase interleaved PFC circuit.
  • the vehicle charger of the embodiment of the present invention can not only convert the alternating current into the direct current to charge the power battery, but also invert the direct current outputted by the power battery into the alternating current output through the single-phase interleaved PFC circuit, and the structure change is simple. It has the advantages of the original interleaved PFC circuit.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality" is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Abstract

一种单相交错式功率因数校正(PFC)电路、车载充电器及电动汽车。该电路包括整流桥(10)、PFC单元、切换开关(30)和控制单元。整流桥的输入端与交流电源(AC)之间设置有第一开关(40)。PFC单元中的第一开关管(Q1)和第二开关管(Q2)组成第一桥臂,第三开关管(Q3)和第四开关管(Q4)组成第二桥臂,第一桥臂的第一节点(J1)通过第一电感(L1)与交流电源的一端相连,第二桥臂的第二节点(J2)与第二电感(L2)的一端相连。切换开关的第一端与交流电源的一端相连,切换开关的第二端与交流电源的另一端相连,切换开关的第三端与第二电感的另一端相连。控制单元通过对切换开关、第一开关和第一至第四开关管进行控制,使得PFC电路在PFC工作模式和逆变工作模式之间进行切换。该电路不仅能够将交流电转换为直流电,还能将直流电逆变为交流电输出。

Description

单相交错式PFC电路和具有其的车载充电器及电动汽车 技术领域
本发明涉及PFC(Power Factor Correction,功率因数校正)电路技术领域,特别涉及一种单相交错式PFC电路、一种具有该电路的车载充电器以及一种具有该电路的电动汽车。
背景技术
交错式PFC电路主要是将原本放置单个较大功率PFC电路的地方并行放置两个功率较小的PFC电路,这两个功率较小的PFC电路以180°的相移交替工作,它们在输入端或输出端累加时,每相电流纹波的主要部分将抵消。由于交错式PFC电路具有较多优点,因而被广泛应用。
但是,相关技术中,交错式PFC电路的电能只能单向流动,无法将直流侧电能逆变为交流电输出。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为实现上述目的,本发明第一方面实施例提出了一种单相交错式PFC电路,包括:整流桥,所述整流桥的第一输入端和第二输入端对应连接到第一开关的第一端和第二端,所述第一开关的第三端和第四端对应连接到交流电源的两端;PFC单元,所述PFC单元包括第一至第四开关管、第一电感和第二电感,第一开关管和第二开关管组成第一桥臂,第三开关管和第四开关管组成第二桥臂,所述第一桥臂具有第一节点,所述第二桥臂具有第二节点,所述第一开关管与所述第三开关管之间具有第三节点,所述第二开关管与所述第四开关管之间具有第四节点,所述第一节点通过所述第一电感与所述交流电源的一端相连,所述第二节点与所述第二电感的一端相连,所述第三节点与所述整流桥的第一输出端相连,所述第四节点与所述整流桥的第二输出端相连;切换开关,所述切换开关的第一端与所述交流电源的一端相连,所述切换开关的第二端与所述交流电源的另一端相连,所述切换开关的第三端与所述第二电感的另一端相连;和控制单元,所述控制单元通过对所述切换开关、所述第一开关和所述第一至第四开关管进行控制以使所述单相交错式PFC电路在功率因数校正工作模式和逆变工作模式之间进行切换。
根据本发明实施例的单相交错式PFC电路,整流桥的第一输入端和第二输入端对应连接到第一开关的第一端和第二端,第一开关的第三端和第四端对应连接到交流电源的两端, PFC单元中的第一节点通过第一电感与交流电源的一端相连,第二节点与第二电感的一端相连,第三节点与整流桥的第一输出端相连,第四节点与整流桥的第二输出端相连,切换开关的第一端与交流电源的一端相连,切换开关的第二端与交流电源的另一端相连,切换开关的第三端与第二电感的另一端相连,控制单元通过对切换开关、第一开关和第一至第四开关管进行控制以使单相交错式PFC电路在功率因数校正工作模式和逆变工作模式之间进行切换,从而使得单相交错式PFC电路不仅具有交流电转换为直流电的功能,而且能够将直流电逆变为交流电输出,并且结构变更简单。
在至少一个实施例中,所述控制单元在控制所述切换开关的第三端与所述切换开关的第一端连通,且控制所述第一开关将所述整流桥与所述交流电源连通时,并通过对所述第一至第四开关管进行控制以使所述单相交错式PFC电路处于功率因数校正工作模式;所述控制单元在控制所述切换开关的第三端与所述切换开关的第二端连通,且控制所述第一开关将所述整流桥与所述交流电源断开时,并通过对所述第一至第四开关管进行控制以使所述单相交错式PFC电路处于逆变工作模式。
在至少一个实施例中,所述切换开关可以为单刀双掷开关、继电器或者由半导体开关构成。
在至少一个实施例中,所述第一开关可以为继电器或者由半导体开关构成。
在至少一个实施例中,上述的单相交错式PFC电路还包括:第一采样电路,所述第一采样电路用于采样交流侧的电压和电流;第二采样电路,所述第二采样电路用于采样直流侧的电压,其中,当所述单相交错式PFC电路处于功率因数校正工作模式时,所述控制单元通过控制所述第一至第四开关管以使所述交流侧的电压和电流同步,并使所述直流侧的电压恒定。
在至少一个实施例中,当所述单相交错式PFC电路处于逆变工作模式时,所述控制单元输出SPWM(Sinusoidal Pulse Width Modulation,正弦脉冲宽度调制)信号以控制所述第一至第四开关管的导通或关断,以使所述单相交错式PFC电路将直流侧的直流电逆变为交流电。
在至少一个实施例中,所述第一至第四开关管中的每个开关管包括MOS管、二极管和PFC电容,所述MOS管的漏极与所述二极管的阴极相连,所述MOS管的源极与所述二极管的阳极相连,所述MOS管的栅极与所述控制单元相连,所述PFC电容与所述二极管并联。
在至少一个实施例中,所述整流桥的第一输入端与第二输入端之间连接有第一滤波电容,所述第三节点与所述第四节点之间连接有第二滤波电容。
为实现上述目的,本发明第二方面实施例提出了一种车载充电器,其包括根据上述的单 相交错式PFC电路。
本发明实施例的车载充电器,通过上述的单相交错式PFC电路,不仅能够将交流电转换为直流电给动力电池充电,而且能够将动力电池输出的直流电逆变为交流电输出,并且结构变更简单,且具有原有交错式PFC电路所具有的优点。
为实现上述目的,本发明第三方面实施例提出了一种电动汽车,其包括上述的单相交错式PFC电路。
本发明实施例的车载充电器,通过上述的单相交错式PFC电路,不仅能够将交流电转换为直流电给动力电池充电,而且能够将动力电池输出的直流电逆变为交流电输出,并且结构变更简单,且具有原有交错式PFC电路所具有的优点。
附图说明
图1是根据本发明一个实施例的单相交错式PFC电路的拓扑图。
图2是根据本发明一个实施例单相交错式PFC电路处于功率因数校正工作模式的电路原理图。
图3是根据本发明一个实施例的单相交错式PFC电路处于逆变工作模式的电路原理图。
图4是根据本发明另一个实施例的单相交错式PFC电路的拓扑图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图来描述根据本发明实施例提出的单相交错式PFC电路、具有其的车载充电器和电动汽车。
图1是根据本发明一个实施例的单相交错式PFC电路的拓扑图。如图1所示,该单相交错式PFC电路包括:整流桥10、PFC单元、切换开关30、第一开关40和控制单元(图中未具体示出)。
其中,整流桥10的第一输入端和第二输入端对应连接到第一开关40的第一端和第二端,第一开关40的第三端和第四端对应连接到交流电源AC的两端。PFC单元包括第一至第四开关管、第一电感L1和第二电感L2,第一开关管Q1和第二开关管Q2组成第一桥臂,第三开关管Q3和第四开关管Q4组成第二桥臂,第一桥臂具有第一节点J1,第二桥臂具有第二节点J2,第一开关管Q1与第三开关管Q3之间具有第三节点J3,第二开关管Q2与第四 开关管Q4之间具有第四节点J4,第一节点J1通过第一电感L1与交流电源AC的一端相连,第二节点J2与第二电感L2的一端相连,第三节点J3与整流桥10的第一输出端相连,第四节点J4与整流桥10的第二输出端相连。切换开关30的第一端与交流电源AC的一端相连,切换开关30的第二端与交流电源AC的另一端相连,切换开关30的第三端与第二电感L2的另一端相连。控制单元通过对切换开关30、第一开关40和第一至第四开关管进行控制以使单相交错式PFC电路在功率因数校正工作模式和逆变工作模式之间进行切换。
也就是说,在本发明的第一方面实施例中,通过对切换开关30和第一开关40进行控制,可以使单相交错式PFC电路工作在两种不同的工作模式下,从而使得单相交错式PFC电路不仅具有交流电变直流电的功能,而且能够将直流侧电能逆变为交流电输出,且结构变更简单。其中,切换开关30可以为单刀双掷开关、继电器或者由半导体开关构成,第一开关40可以为继电器或者由半导体开关构成,即只要能够实现单相交错式PFC电路工作模式的准确切换即可,具体可以根据实际情况选择。
根据本发明的一个实施例,如图1所示,控制单元在控制切换开关30的第三端与切换开关30的第一端连通,且控制第一开关40将整流桥10与交流电源AC连通时,并通过对第一至第四开关管进行控制以使单相交错式PFC电路处于功率因数校正工作模式;控制单元在控制切换开关30的第三端与切换开关30的第二端连通,且控制第一开关40将整流桥10与交流电源AC断开时,并通过对第一至第四开关管进行控制以使单相交错式PFC电路处于逆变工作模式。
根据本发明的一个实施例,整流桥10的第一输入端与第二输入端之间连接有第一滤波电容C1,第三节点J3与第四节点J4之间连接有第二滤波电容C2。
具体而言,当切换开关30的第三端与切换开关30的第一端连通,且第一开关40闭合(即第一开关40的第一端与第三端连通,同时第一开关40的第二端与第四端连通)时,如图2所示,整流桥10、第一至第四开关管、第一电感L1、第二电感L2、第一电容C1和第二电容C2构成了一个交错式功率因数校正电路,即单相交错式PFC电路处于功率因数校正工作模式,控制单元通过控制第一至第四开关管以使单相交错式PFC电路实现功率因数校正功能;当切换开关30的第三端与切换开关30的第二端连通,且第一开关40断开(即第一开关40的第一端与第三端断开,同时第一开关40的第二端与第四端断开)时,如图3所示,第一至第四开关管、第一电感L1、第二电感L2、第一电容C1和第二电容C2构成了一个逆变电路,即单相交错式PFC电路处于逆变工作模式,控制单元通过控制第一至第四开关管以使直流电逆变为交流电输出,从而通过对切换开关、第一开关和第一至第四开关管的控制实现了单相交错式PFC电路的工作模式的切换,并且模式切换简单可靠。
根据本发明的一个实施例,如图4所示,上述的单相交错式PFC电路还可以包括:第一采样电路和第二采样电路,第一采样电路用于采样交流侧的电压Vac和电流Iac,第二采样电路用于采样直流侧的电压Vdc,其中,当单相交错式PFC电路处于功率因数校正工作模式时,控制单元通过控制第一至第四开关管以使交流侧的电压Vac和电流Iac同步,并使直流侧的电压Vdc恒定。
具体而言,当需要对交流电进行变换以输出直流电时,例如当给电动汽车的动力电池充电,或者给UPS(Uninterruptible Power System,不间断电源)电源充电以及给通讯电源充电等,可以通过控制切换开关30和第一开关40以使单相交错式PFC电路处于功率因数校正工作模式。当单相交错式PFC电路处于功率因数校正工作模式时,可以根据实时采样的交流侧的电压Vac、交流侧的电流Iac以及直流侧的电压Vdc对第一至第四开关管进行控制,以使交流侧的电流Iac的相位与交流侧的电压Vac的相位同步,从而达到功率因数校正的目的,同时将采样的直流侧的电压Vdc作为反馈量,通过控制交流侧的电流Iac的大小来使直流侧的电压Vdc保持恒定,使单相交错式PFC电路恒定输出。该电路不仅能够输出较为稳定的直流电,而且电压电流的纹波比较小,并且具有转换效率高,开关管热平衡,利于散热等优点。
根据本发明的一个实施例,当单相交错式PFC电路处于逆变工作模式时,控制单元输出SPWM信号以控制第一至第四开关管的导通或关断,以使单相交错式PFC电路将直流侧的直流电逆变为交流电。
具体而言,当需要将直流侧的直流电逆变为交流电时,例如当动力电池给负载供电,或者UPS电源给负载供电以及通讯电源给负载供电等,可以通过控制切换开关30和第一开关40以使PFC电路处于逆变工作模式。当单相交错式PFC电路处于逆变工作模式时,控制单元输出PWM(Pulse Width Modulation,脉冲宽度调制)信号或者SPWM信号等,以控制第一至第四开关管的导通或关断,实现电路的逆变功能。
进一步地,在本发明的一些实施例中,如图1-4所示,第一至第四开关管中的每个开关管可以包括MOS管、二极管和PFC电容,MOS管的漏极与二极管的阴极相连,MOS管的源极与二极管的阳极相连,MOS管的栅极与控制单元相连,PFC电容与二极管并联。
可以理解的是,第一至第四开关管也可以由其他类型的开关管组成,例如可以由IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)和并联的二极管组成,具体这里不再赘述。
综上所述,根据本发明实施例的单相交错式PFC电路,整流桥的第一输入端和第二输入端对应连接到第一开关的第一端和第二端,第一开关的第三端和第四端对应连接到交流电 源的两端,PFC单元中的第一节点通过第一电感与交流电源的一端相连,第二节点与第二电感的一端相连,第三节点与整流桥的第一输出端相连,第四节点与整流桥的第二输出端相连,切换开关的第一端与交流电源的一端相连,切换开关的第二端与交流电源的另一端相连,切换开关的第三端与第二电感的另一端相连,控制单元通过对切换开关、第一开关和第一至第四开关管进行控制以使单相交错式PFC电路在功率因数校正工作模式和逆变工作模式之间进行切换,从而使得单相交错式PFC电路不仅具有交流电转换为直流电的功能,而且能够将直流电逆变为交流电输出,并且结构变更简单,同时保留有原有交错式PFC电路所具有的优点,例如转换效率高,输出直流电压稳定,电压电流纹波小,开关管损坏平衡,利于散热等。
为实现上述目的,本发明第二方面实施例提出了一种车载充电器,其包括根据上述的单相交错式PFC电路。
本发明实施例的车载充电器,通过上述的单相交错式PFC电路,不仅能够将交流电转换为直流电给动力电池充电,而且能够将动力电池输出的直流电逆变为交流电输出,并且结构变更简单,且具有原有交错式PFC电路所具有的优点。
为实现上述目的,本发明第三方面实施例提出了一种电动汽车,其包括上述的单相交错式PFC电路。
本发明实施例的车载充电器,通过上述的单相交错式PFC电路,不仅能够将交流电转换为直流电给动力电池充电,而且能够将动力电池输出的直流电逆变为交流电输出,并且结构变更简单,且具有原有交错式PFC电路所具有的优点。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针 对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种单相交错式PFC电路,其特征在于,包括:
    整流桥,所述整流桥的第一输入端和第二输入端对应连接到第一开关的第一端和第二端,所述第一开关的第三端和第四端对应连接到交流电源的两端;
    PFC单元,所述PFC单元包括第一至第四开关管、第一电感和第二电感,第一开关管和第二开关管组成第一桥臂,第三开关管和第四开关管组成第二桥臂,所述第一桥臂具有第一节点,所述第二桥臂具有第二节点,所述第一开关管与所述第三开关管之间具有第三节点,所述第二开关管与所述第四开关管之间具有第四节点,所述第一节点通过所述第一电感与所述交流电源的一端相连,所述第二节点与所述第二电感的一端相连,所述第三节点与所述整流桥的第一输出端相连,所述第四节点与所述整流桥的第二输出端相连;
    切换开关,所述切换开关的第一端与所述交流电源的一端相连,所述切换开关的第二端与所述交流电源的另一端相连,所述切换开关的第三端与所述第二电感的另一端相连;和
    控制单元,所述控制单元通过对所述切换开关、所述第一开关和所述第一至第四开关管进行控制以使所述单相交错式PFC电路在功率因数校正工作模式和逆变工作模式之间进行切换。
  2. 根据权利要求1所述的单相交错式PFC电路,其特征在于,其中,
    所述控制单元在控制所述切换开关的第三端与所述切换开关的第一端连通,且控制所述第一开关将所述整流桥与所述交流电源连通时,并通过对所述第一至第四开关管进行控制以使所述单相交错式PFC电路处于功率因数校正工作模式;以及
    所述控制单元在控制所述切换开关的第三端与所述切换开关的第二端连通,且控制所述第一开关将所述整流桥与所述交流电源断开时,并通过对所述第一至第四开关管进行控制以使所述单相交错式PFC电路处于逆变工作模式。
  3. 根据权利要求1或2所述的单相交错式PFC电路,其特征在于,所述切换开关为单刀双掷开关、继电器或者由半导体开关构成。
  4. 根据权利要求1或2所述的单相交错式PFC电路,其特征在于,所述第一开关为继电器或者由半导体开关构成。
  5. 根据权利要求1至4中任一项所述的单相交错式PFC电路,其特征在于,还包括:
    第一采样电路,所述第一采样电路用于采样交流侧的电压和电流;和
    第二采样电路,所述第二采样电路用于采样直流侧的电压,其中,当所述单相交错式PFC电路处于功率因数校正工作模式时,所述控制单元通过控制所述第一至第四开关管以使 所述交流侧的电压和电流同步,并使所述直流侧的电压恒定。
  6. 根据权利要求1至5中任一项所述的单相交错式PFC电路,其特征在于,当所述单相交错式PFC电路处于逆变工作模式时,所述控制单元输出SPWM信号以控制所述第一至第四开关管的导通或关断,以使所述单相交错式PFC电路将直流侧的直流电逆变为交流电。
  7. 根据权利要求1至6中任一项所述的单相交错式PFC电路,其特征在于,所述第一至第四开关管中的每个开关管包括MOS管、二极管和PFC电容,所述MOS管的漏极与所述二极管的阴极相连,所述MOS管的源极与所述二极管的阳极相连,所述MOS管的栅极与所述控制单元相连,所述PFC电容与所述二极管并联。
  8. 根据权利要求1至7中任一项所述的单相交错式PFC电路,其特征在于,所述整流桥的第一输入端与第二输入端之间连接有第一滤波电容,所述第三节点与所述第四节点之间连接有第二滤波电容。
  9. 一种车载充电器,其特征在于,包括根据权利要求1-8中任一项所述的单相交错式PFC电路。
  10. 一种电动汽车,其特征在于,包括根据权利要求1-8中任一项所述的单相交错式PFC电路。
PCT/CN2017/074445 2016-03-29 2017-02-22 单相交错式pfc电路和具有其的车载充电器及电动汽车 WO2017166956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610188411.7A CN107248814B (zh) 2016-03-29 2016-03-29 单相交错式pfc电路和具有其的车载充电器及电动汽车
CN201610188411.7 2016-03-29

Publications (1)

Publication Number Publication Date
WO2017166956A1 true WO2017166956A1 (zh) 2017-10-05

Family

ID=59963391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074445 WO2017166956A1 (zh) 2016-03-29 2017-02-22 单相交错式pfc电路和具有其的车载充电器及电动汽车

Country Status (2)

Country Link
CN (1) CN107248814B (zh)
WO (1) WO2017166956A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667297A (zh) * 2018-07-17 2018-10-16 榆林学院 一种电动车用复合电源装置及其工作方法
CN111212504A (zh) * 2020-03-27 2020-05-29 杰华特微电子(杭州)有限公司 Bifred变换器及其控制方法及应用其的led驱动电路
CN111478573A (zh) * 2020-04-16 2020-07-31 深圳威迈斯新能源股份有限公司 适用于单三相电网的功率因素调整架构及其控制方法
CN112398329A (zh) * 2019-08-14 2021-02-23 台达电子工业股份有限公司 双向功率因数校正模块

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110239351B (zh) * 2018-03-08 2021-11-12 比亚迪股份有限公司 用于轨道交通车辆的充电装置
CN110417268B (zh) * 2018-04-26 2021-07-20 比亚迪股份有限公司 车载充电机和电动车辆
CN111251912B (zh) * 2018-11-30 2022-04-15 比亚迪股份有限公司 电动汽车、车载充电器及其控制方法和控制装置
CN109889077B (zh) * 2019-04-08 2021-01-26 台达电子企业管理(上海)有限公司 单相和三相兼容的ac/dc电路及充放电装置
CN110350796B (zh) * 2019-06-25 2020-11-06 华为技术有限公司 一种功率转换模块、车载充电机和电动汽车
CN117048381A (zh) 2019-09-30 2023-11-14 华为数字能源技术有限公司 一种车载充、放电装置及其充放电系统和新能源汽车
EP3975411B1 (en) * 2019-10-31 2023-10-11 Huawei Digital Power Technologies Co., Ltd. Rectifier, charging system and electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217255A (zh) * 2008-01-16 2008-07-09 艾默生网络能源有限公司 一种具有均流控制模块的pfc电路及其均流控制方法
CN101958657A (zh) * 2009-07-17 2011-01-26 华为技术有限公司 电源转换电路及设备、功率因数矫正电路交错控制方法
US20110110132A1 (en) * 2009-11-12 2011-05-12 Polar Semiconductor, Inc. Time-limiting mode (tlm) for an interleaved power factor correction (pfc) converter
JP2013179805A (ja) * 2012-02-29 2013-09-09 Toyota Industries Corp 双方向電力変換回路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333506C (zh) * 2002-08-14 2007-08-22 艾默生网络能源有限公司 带母线均压功能的不间断电源系统
JP5402268B2 (ja) * 2008-10-16 2014-01-29 富士電機株式会社 インターリーブ制御電源装置、該電源装置の制御回路および制御方法
CN102005772B (zh) * 2009-08-31 2014-05-28 比亚迪股份有限公司 一种并网逆变系统的控制方法
CN101841236A (zh) * 2010-04-22 2010-09-22 华为技术有限公司 一种功率因数矫正变换器及其控制方法
CN102751861A (zh) * 2011-04-21 2012-10-24 艾默生网络能源系统北美公司 一种无桥功率因数校正电路
CN103368371B (zh) * 2012-03-29 2015-11-25 台达电子工业股份有限公司 一种功率因数校正电路
CN102624213B (zh) * 2012-03-29 2014-12-03 台达电子工业股份有限公司 一种功率因数校正电路
CN102856928B (zh) * 2012-09-27 2015-12-02 北京京仪绿能电力系统工程有限公司 一种逆变器
CN103580502A (zh) * 2013-11-15 2014-02-12 华为技术有限公司 电源转换电路及控制直流-交流电路的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217255A (zh) * 2008-01-16 2008-07-09 艾默生网络能源有限公司 一种具有均流控制模块的pfc电路及其均流控制方法
CN101958657A (zh) * 2009-07-17 2011-01-26 华为技术有限公司 电源转换电路及设备、功率因数矫正电路交错控制方法
US20110110132A1 (en) * 2009-11-12 2011-05-12 Polar Semiconductor, Inc. Time-limiting mode (tlm) for an interleaved power factor correction (pfc) converter
JP2013179805A (ja) * 2012-02-29 2013-09-09 Toyota Industries Corp 双方向電力変換回路

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108667297A (zh) * 2018-07-17 2018-10-16 榆林学院 一种电动车用复合电源装置及其工作方法
CN108667297B (zh) * 2018-07-17 2024-03-19 榆林学院 一种电动车用复合电源装置及其工作方法
CN112398329A (zh) * 2019-08-14 2021-02-23 台达电子工业股份有限公司 双向功率因数校正模块
CN112398329B (zh) * 2019-08-14 2021-08-31 台达电子工业股份有限公司 双向功率因数校正模块
CN111212504A (zh) * 2020-03-27 2020-05-29 杰华特微电子(杭州)有限公司 Bifred变换器及其控制方法及应用其的led驱动电路
CN111212504B (zh) * 2020-03-27 2023-10-27 杰华特微电子股份有限公司 Bifred变换器及其控制方法及应用其的led驱动电路
CN111478573A (zh) * 2020-04-16 2020-07-31 深圳威迈斯新能源股份有限公司 适用于单三相电网的功率因素调整架构及其控制方法
CN111478573B (zh) * 2020-04-16 2023-09-12 深圳威迈斯新能源股份有限公司 适用于单三相电网的功率因素调整架构及其控制方法

Also Published As

Publication number Publication date
CN107248814A (zh) 2017-10-13
CN107248814B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2017166956A1 (zh) 单相交错式pfc电路和具有其的车载充电器及电动汽车
EP3886304B1 (en) On-board charger
CN102460932B (zh) 电力变换装置
USRE41965E1 (en) Bi-directional multi-port inverter with high frequency link transformer
JP6103874B2 (ja) 電源装置とその運転方法
TWI436574B (zh) 直流交流轉換器
JP6179054B2 (ja) 双方向dc/dcコンバータ、双方向電力変換器
JP2019525707A (ja) 電気車両、電気車両用多機能型自動車充電器、およびその制御方法
CN113872451B (zh) 谐振型双有源桥式变换电路的控制方法、控制器及变换器
WO2016119736A1 (zh) 五电平拓扑单元及五电平逆变器
TW201639266A (zh) 電力供應系統及電力變換裝置
CN102106069A (zh) 电力变换装置
WO2015000292A1 (zh) 一种不间断电源电路
CN104022675A (zh) 单级双向隔离ac-dc变换器
US20230223861A1 (en) Electrical power converter
WO2022083219A1 (zh) 一种电驱动系统、动力总成以及电动汽车
JP2016007115A (ja) 電力変換装置、およびそれを用いたパワーコンディショナ
JP2015233406A (ja) バイパス運転機能を有する直列型h−ブリッジインバータ
CN103312211A (zh) 一种单相并网逆变器的控制方法
CN114172382A (zh) 输出并联型双有源桥式变流器及热分布优化方法
TW200402928A (en) Power converter
CN112152489B (zh) 一种高低压直流双输出集成型三相pwm整流变换器及控制方法
CN103891123A (zh) 逆变器装置
TW202209800A (zh) 用於裂相供電系統的電源轉換電路及換流器
CN204517697U (zh) 三相双向逆变式变换器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17772987

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17772987

Country of ref document: EP

Kind code of ref document: A1