WO2017166577A1 - 聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法 - Google Patents

聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法 Download PDF

Info

Publication number
WO2017166577A1
WO2017166577A1 PCT/CN2016/095376 CN2016095376W WO2017166577A1 WO 2017166577 A1 WO2017166577 A1 WO 2017166577A1 CN 2016095376 W CN2016095376 W CN 2016095376W WO 2017166577 A1 WO2017166577 A1 WO 2017166577A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastomer
dicyclopentadiene
ipn
polydicyclopentadiene
alloy material
Prior art date
Application number
PCT/CN2016/095376
Other languages
English (en)
French (fr)
Inventor
刘东立
Original Assignee
上海东杰高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海东杰高分子材料有限公司 filed Critical 上海东杰高分子材料有限公司
Publication of WO2017166577A1 publication Critical patent/WO2017166577A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F132/00Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F132/08Homopolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/04Polymer mixtures characterised by other features containing interpenetrating networks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Definitions

  • the invention relates to an IPN polymer alloy material of polybiscyclopentadiene/polymer elastomer, and belongs to the technical field of catalysts.
  • the existing toughened modified polydicyclopentadiene material, the elastomer used for toughening in the preparation process is not completely dissolved, that is, in a semi-dissolved state, so that when the product is prepared, precipitation and delamination are easily generated.
  • the elastomer forms an island shape in the grid of the molecular chain network of polydicyclopentadiene.
  • IPN Interpenetrating Polymer Network: an interpenetrating polymer network structure, which is a network of two or more polymer blends with molecular chains interpenetrating and at least one polymer molecular chain interlinked by chemical bonds. structure.
  • IPN Interpenetrating Polymer Network
  • the resulting IPN may be either a reinforced rubber or an impact resistant plastic, depending on the mutual ratio of the two. And preparation conditions.
  • the results of electron microscopy studies show that IPN has two consecutive phases that form a complex "cell” structure.
  • the "cell” wall and the “cell” interior are each composed of two polymers.
  • the size of such "cells” is approximately in the range of 50 to 100 nanometers.
  • the size of the formed microdomains is much smaller than the wavelength of visible light, so a typical IPN is a transparent material.
  • IPN has also been shown to have two phases in the dynamic mechanical spectrum, but the two-phase glass transition region is shifted and significantly broadened, accompanied by an increase in damping (especially between the two glass transition regions). More), so the IPN has the function of muffling or damping in a wide temperature range. IPN, like other thermoset materials, cannot be reshaped after cross-linking cure, which is its disadvantage.
  • the most important feature of the IPN structure is that it can mix thermodynamically incompatible polymers to form at least kinetically stable alloy properties.
  • the various polymers constituting the polymer alloy state of the IPN structure are continuous. Phase, the phase region is generally l0-l00nm, far less than the wavelength of visible light, so it is colorless and transparent. This phase structure causes the two-phase glass transition region to shift and widen. This structural feature determines that it may have both good static and dynamic mechanical properties, as well as a wide temperature range of use.
  • IPN differs from a simple blend, block or graft polymer in that there are two distinct differences in performance between IPN and the above three. One is that IPN swells in the solvent but does not dissolve. Second, IPN does not creep and flow.
  • Tg glass transition temperature
  • IPN contains an interpenetrating network that can act as a "forced compatible", different polymer molecules entangle each other to form a whole and cannot be released.
  • different polymers have their own phases and no chemical bonding. Therefore, IPN is different from graft or block copolymers, and is different from general polymer blends or polymer composites.
  • the structure and properties of IPNS Related to the preparation method, the structure and properties of polymer I/polymer IIIPN (polymer I is the first network, polymer II is the second network) is different from polymer II/polymer IIPN (polymer II is the first network) , Polymer I is the second network).
  • the tensile strength of polyurethane and polyacrylate is 42.07 MPa and 17.73 MPa, respectively, and the elongation is 640% and 15%, respectively; and the tensile strength of polyurethane/polyacrylate IPNS (80/20) is as high as 48.97 MPa.
  • the maximum elongation is 780%.
  • dicyclopentadiene is marketed by tungsten and molybdenum catalyzed products; dicyclopentadiene has no related products through the rhodium catalyzed market; meanwhile, dicyclopentadiene single material polymer is also available in the market, but double ring The alloy of pentadiene and polymeric elastomer is not.
  • US METTON Japan PENTAM/TELENE has related primary products, but all of them are products formed by the oxidation of dicyclopentadiene with tungsten and molybdenum. However, there is no such product in China.
  • the problem to be solved by the present invention is to provide a polymer alloy material excellent in both rigidity and toughness.
  • the present invention provides a polydicyclopentadiene/elastomer IPN polymer alloy material, characterized in that the molecular chain network formed by the polydicyclopentadiene forms an interpenetration with the elastomer. Network structure.
  • the mass percentage of the elastomer to dicyclopentadiene is from 1% to 60%.
  • the elastomer is any one of SBS, SEBS, TPS, TPV, TPEE, TPU, TPE and TPR.
  • the invention also provides a preparation method of the above polydicyclopentadiene/elastomer IPN polymer alloy material, characterized in that the specific steps are as follows:
  • Step 1) dissolving the elastomer in a dicyclopentadiene liquid
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), and then injecting the mixture into a mold to react and solidify.
  • the condition in which the elastomer is dissolved in the step 1) is specifically: the elastomer is placed in dicyclopentadiene and stirred at 80 ° C for 5 hours.
  • the mold temperature in the step 2) is 20 to 90 °C.
  • the solvent of the ruthenium catalyst solution is a solvent oil, and the ruthenium catalyst solution has a mass concentration of 1% to 60%.
  • the mass percentage of the active ingredient of the rhodium catalyst to dicyclopentadiene is 0.02 to 0.1%.
  • tungsten catalyst or a molybdenum catalyst may be used instead of the rhodium catalyst, and the specific steps are as follows:
  • Step 3 Dicyclopentadiene liquid is divided into two parts, one part of which is added or both parts are added to the elastomer to dissolve;
  • Step 4) dividing the raw material containing the tungsten catalyst or the molybdenum-containing catalyst into two parts which do not react, respectively, and adding the raw materials of the two parts of the catalyst to the two parts obtained in step 3) with or without the elastomer.
  • the mixture is poured into a mold and reacted and solidified.
  • the polymer elastomer in the present invention After the polymer elastomer in the present invention is completely dissolved, a uniform continuous phase is formed, and the molecular structure of the dicyclopentadiene forms a network structure, and the elastomer also forms a network structure, thereby forming a dicyclopentadiene and an elastomer.
  • the polymer alloy material Throughout the IPN polymer alloy material, the polymer alloy material has both rigidity and good toughness of dicyclopentadiene.
  • the ruthenium catalysts of Examples 1-11 were Grubbs' I, Grubbs'II or hoveyda; the ruthenium catalyst solvent was a solvent oil.
  • Step 1) SBS resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 h, the mass percentage of SBS resin and dicyclopentadiene is 1%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the active ingredient of the ruthenium catalyst and the mass concentration of the dicyclopentadiene are 0.1%, and then injecting the mixture into the mold to react and solidify. That is, the mold temperature is 60 °C.
  • Step 1) SBS resin is placed in a dicyclopentadiene liquid and stirred at 80 ° C for 5 h, the mass percentage of SBS resin and dicyclopentadiene is 5%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1),
  • the mass concentration of the active ingredient of the rhodium catalyst and the dicyclopentadiene is 0.1%, and then the mixture is poured into a mold to be reacted and solidified, and the mold temperature is 60 °C.
  • Step 1) SBS resin is placed in a dicyclopentadiene liquid and stirred at 80 ° C for 5 h, the mass percentage of SBS resin and dicyclopentadiene is 35%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the active ingredient of the ruthenium catalyst and the mass concentration of the dicyclopentadiene are 0.1%, and then injecting the mixture into the mold to react and solidify. That is, the mold temperature is 60 °C.
  • Step 1) SBS resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 h, the mass percentage of SBS resin and dicyclopentadiene is 60%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the active ingredient of the ruthenium catalyst and the mass concentration of the dicyclopentadiene are 0.1%, and then injecting the mixture into the mold to react and solidify. That is, the mold temperature is 60 °C.
  • Step 1) The TPS resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 hours, and the mass percentage of TPS resin to dicyclopentadiene is 1%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the concentration of the active ingredient of the ruthenium catalyst and the concentration of the dicyclopentadiene is 0.02%, and then injecting the mixture into the mold to form a reaction. That is, the mold temperature is 80 °C.
  • Step 1) The TPV resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 hours, and the mass percentage of TPV resin to dicyclopentadiene is 15%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the concentration of the active ingredient of the ruthenium catalyst and the concentration of the dicyclopentadiene is 0.02%, and then injecting the mixture into the mold to form a reaction. That is, the mold temperature is 90 °C.
  • Step 1) The TPE resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 hours, and the mass percentage of the TPE resin to the dicyclopentadiene is 30%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the concentration of the active ingredient of the ruthenium catalyst and the concentration of the dicyclopentadiene is 0.02%, and then injecting the mixture into the mold to form a reaction. That is, the mold temperature is 20 °C.
  • Step 1) The SEBS resin is dissolved in a dicyclopentadiene liquid at 80 ° C for 5 hours, and the mass percentage of SEBS resin and dicyclopentadiene is 45%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the concentration of the active ingredient of the ruthenium catalyst and the concentration of the dicyclopentadiene is 0.02%, and then injecting the mixture into the mold to form a reaction. That is, the mold temperature is 40 °C.
  • Step 1) the TPEE resin is placed in a dicyclopentadiene liquid and stirred at 80 ° C for 5 hours, and the mass percentage of the TPEE resin and the dicyclopentadiene is 60%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the concentration of the active ingredient of the ruthenium catalyst and the concentration of the dicyclopentadiene is 0.02%, and then injecting the mixture into the mold to form a reaction. That is, the mold temperature is 70 °C.
  • Step 1) The TPU resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 hours, and the mass percentage of the TPU resin to the dicyclopentadiene is 20%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the mass concentration of the active component of the ruthenium catalyst and the dicyclopentadiene is 0.06%, and then injecting the mixture into the mold to cure That is, the mold temperature is 30 °C.
  • Step 1) The TPR resin is placed in a dicyclopentadiene liquid and dissolved at 80 ° C for 5 hours, and the mass percentage of SBS resin to dicyclopentadiene is 20%;
  • Step 2) adding a ruthenium catalyst solution to the dicyclopentadiene solution of the elastomer obtained in the step 1), the mass concentration of the active component of the ruthenium catalyst and the dicyclopentadiene is 0.08%, and then injecting the mixture into the mold to react and solidify. That is, the mold temperature is 50 °C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

一种聚双环戊二烯/弹性体的IPN高分子合金材料及其制备方法。所述高分子合金材料为所述聚双环戊二烯形成的分子链网络与所述弹性体形成的互穿网络结构。制备方法为:将弹性体放入双环戊二烯液体中溶解;在弹性体的双环戊二烯溶液中加入催化剂,然后将混合液注入模具中反应固化即可。高分子弹性体完全溶解后,形成均一的连续相,在双环戊二烯的分子链形成网络结构的同时,使弹性体也形成网络结构,从而形成双环戊二烯和弹性体相互贯穿的IPN高分子合金材料,该高分子合金材料既具有双环戊二烯的刚性,又具有良好的韧性。

Description

[根据细则37.2由ISA制定的发明名称] 聚双环戊二烯/高分子弹性体的IPN高分子合金材料及其制备方法 技术领域
本发明涉及一种聚双环戊二烯/高分子弹性体的IPN高分子合金材料,属于催化剂技术领域。
背景技术
现有增韧改性聚双环戊二烯材料,制备过程中用于增韧的弹性体因其不能完全溶解,即半溶解状态,使其在制备产品时,容易产生析出分层的现象。弹性体在聚双环戊二烯的分子链网络的网格中形成孤岛状。
IPN(Interpenetrating Polymer Network):互穿聚合物网络结构,是两种或两种以上的共混聚合物,分子链相互贯穿,并至少一种聚合物分子链以化学键的方式交链而形成的网络结构。1914年Aylsworth首先在天然橡胶、硫和部分反应的苯酚甲醛树脂制成IPN结构聚合物。1941年J.J.P.Staudinger申请了第一个IPN专利,在10年后合成了以甲基丙烯酸甲酯为基材的半-IPN表面光滑,透明塑料。1960年Miller首先使用IPN这名词。1970年起Sperling小组与Frisch兄弟小组,进行了大量研究,IPN已被广泛用作抗冲击材料。离子交换树脂、阻尼材料、热塑料弹性体等等的生产。我国国内,化工系统也已使用,但应用于印染助剂特别是印花粘合剂的,尚属空白。
其性状很难一概而论。如果在室温条件下两种聚合物中有一种表现为高弹体,另一种表现为硬塑料,那么所形成的IPN既可能是增强橡胶,也可能是耐冲击塑料,视两者的相互比例和制备条件而定。
电子显微镜研究的结果表明,IPN具有两个连续的相,形成复杂的“细胞”结构。“细胞”壁和“细胞”内部分别由两种聚合物构成。这种“细胞“的尺寸大致在50~100纳米范围内。在许多情况下,“细胞”壁和“细胞”内部还存在更小的微细结构,其尺寸为10~20纳米,这种微细结构显然是由网络的互相穿插所造成的,但由于这些结构所形成的微区尺寸远比可见光的波长为小,因此典型的IPN是透明材料。
IPN在动态力学谱上也已证明存在两相,但两相的玻璃化转变区发生偏移并明显变宽,同时还伴随阻尼作用的增大(尤其在两个玻璃化转变区之间增大较多),因而IPN在较宽的温度范围内具有消声或减振的功能。IPN也同其他热固性材料一样,交联固化后不能再次成型,这是它的缺点。
IPN结构的最大特点是可以将热力学不相容的聚合物相混而形成至少在动力学上可以稳定的合金性质的物质,构成IPN结构的聚合物合金状态物质的各种聚合物本身均为连续相,相区一般为l0-l00nm,远远小于可见光的波长,故呈无色透明状。这种相结构使得两相的玻璃化转变区发生偏移并变宽,这种结构特征决定了它可能兼具良好的静态和动态的力学性能,以及较宽的使用温度范围。IPN不同于简单的共混,嵌段或接枝聚合物,在性能上IPN与上面三者的明显差异有两点。一是IPN在溶剂中溶胀但不能溶解。二是IPN不发生蠕变和流动。
由于存在着化学交联点,IPN在任何溶剂中都只能溶胀,不能溶解,IPN也不会发生蠕变和流动,从而使得IPN具有更好的粘接力,因此得到较高的色牢度。由于IPN的各种聚合物的Tg(玻璃化转变温度)是可选择的,我们可以选择其中一相有较低的Tg,从而使得粘合剂具有较好的弹性和柔软性,另一相的Tg较高,用以防止粘合剂发粘。
IPN由于含有能起到“强迫相容”作用的互穿网络,不同聚合物分子相互缠结形成一个整体,不能解脱。在IPN中不同聚合物存在各自的相,亦未发生化学结合,因此,IPN不同于接枝或嵌段共聚物,亦不同于一般高分子共混物或高分子复合材料,IPNS的结构和性能与制备方法有关,聚合物Ⅰ/聚合物ⅡIPN(聚合物Ⅰ为第一网络,聚合物Ⅱ为第二网络)的结构和性能不同于聚合物Ⅱ/聚合物ⅠIPN(聚合物Ⅱ为第一网络,聚合物Ⅰ为第二网络)。值得注意的是,在IPN内如存有永久性不能解脱的缠结,则IPN的某些力学性能有可能超越所含各组分聚合物的相应值。例如,聚氨酯和聚丙烯酸酯的抗张强度分别为42.07MPa、17.73MPa,伸长率分别为640%、15%;而聚氨酯/聚丙烯酸酯IPNS(80/20)的抗张强度高达48.97MPa,最大伸长率为780%。
目前,双环戊二烯通过钨、钼催化形成的产品市场上有销售;双环戊二烯通过钌催化的市场没有相关产品;同时,双环戊二烯单一材料聚合物市面上也有相关销售,但双环戊二烯与高分子弹性体的合金没有。美国METTON、日本 PENTAM/TELENE公司拥有相关初级产品,但都是通过双环戊二烯与钨、钼催化形成的产物,而国内目前还没有这方面产品。
发明内容
本发明所要解决的问题是提供一种刚性性能、韧性性能均优良的高分子合金材料。
为了解决上述问题,本发明提供了一种聚双环戊二烯/弹性体的IPN高分子合金材料,其特征在于,所述聚双环戊二烯形成的分子链网络与所述弹性体形成互穿网络结构。
优选地,所述弹性体与双环戊二烯的质量百分比为1%~60%。
优选地,所述弹性体为SBS、SEBS、TPS、TPV、TPEE、TPU、TPE和TPR中的任意一种。
本发明还提供了上述聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,具体步骤如下:
步骤1):将弹性体放入双环戊二烯液体中溶解;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,然后将混合液注入模具中反应固化即可。
优选地,所述步骤1)中弹性体溶解的条件具体为:将弹性体放入双环戊二烯中在80℃下搅拌5小时。
优选地,所述步骤2)中的模具温度为20~90℃。
优选地,所述钌催化剂溶液的溶剂采用溶剂油,钌催化剂溶液的质量浓度为1%~60%。
,所述钌催化剂的有效成分与双环戊二烯的质量百分比为0.02~0.1%。
本发明的制备方法中还可以采用钨催化剂或钼催化剂替代钌催化剂,具体步骤如下:
步骤3):将双环戊二烯液体分为两部分,其中一部分加入或两部分均加入弹性体溶解;
步骤4):将含钨催化剂或含钼催化剂的原料分为各自不产生反应的两部分,将两部分催化剂的原料分别加入到步骤3)得到的两部分溶有或不溶有弹性体的 双环戊二烯中,然后将混合液注入模具中反应固化即可。
本发明中的高分子弹性体完全溶解后,形成均一的连续相,在双环戊二烯的分子链形成网络结构的同时,使弹性体也形成网络结构,从而形成双环戊二烯和弹性体相互贯穿的IPN高分子合金材料,该高分子合金材料既具有双环戊二烯的刚性,又具有良好的韧性。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,作详细说明如下。
实施例1-11中钌催化剂采用Grubbs’Ⅰ代、Grubbs’Ⅱ代或hoveyda;钌催化剂溶剂采用溶剂油。
实施例1
一种PDCPD/SBS的IPN高分子合金材料
一、原料
DCPD、SBS树脂、Grubbs’Ⅰ代钌催化剂溶液(质量浓度为30%)
二、制备方法:
步骤1):将SBS树脂放入双环戊二烯液体中80℃搅拌5h溶解,SBS树脂与双环戊二烯的质量百分比为1%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.1%,然后将混合液注入模具中反应固化即可,模具温度为60℃。
实施例2
一种PDCPD/SBS的IPN高分子合金材料
一、原料
DCPD、SBS树脂、Grubbs’Ⅰ代钌催化剂溶液(质量浓度为40%)
二、制备方法:
步骤1):将SBS树脂放入双环戊二烯液体中80℃搅拌5h溶解,SBS树脂与双环戊二烯的质量百分比为5%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液, 钌催化剂的有效成分与双环戊二烯的质量浓度为0.1%,然后将混合液注入模具中反应固化即可,模具温度为60℃。
实施例3
一种PDCPD/SBS的IPN高分子合金材料
一、原料
DCPD、SBS树脂、Grubbs’Ⅰ代钌催化剂溶液(质量浓度为50%)
二、制备方法:
步骤1):将SBS树脂放入双环戊二烯液体中80℃搅拌5h溶解,SBS树脂与双环戊二烯的质量百分比为35%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.1%,然后将混合液注入模具中反应固化即可,模具温度为60℃。
实施例4
一种PDCPD/SBS的IPN高分子合金材料
一、原料
DCPD、SBS树脂、Grubbs’Ⅰ代钌催化剂溶液(质量浓度为60%)
二、制备方法:
步骤1):将SBS树脂放入双环戊二烯液体中80℃搅拌5h溶解,SBS树脂与双环戊二烯的质量百分比为60%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.1%,然后将混合液注入模具中反应固化即可,模具温度为60℃。
实施例5
一种PDCPD/TPS的IPN高分子合金材料
一、原料
DCPD、TPS树脂、Grubbs’Ⅱ钌催化剂溶液(质量浓度为5%)
二、制备方法:
步骤1):将TPS树脂放入双环戊二烯液体中80℃搅拌5h溶解,TPS树脂与双环戊二烯的质量百分比为1%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.02%,然后将混合液注入模具中反应固化即可,模具温度为80℃。
实施例6
一种PDCPD/TPV的IPN高分子合金材料
一、原料
DCPD、TPV树脂、Grubbs’Ⅱ钌催化剂溶液(质量浓度为6%)
二、制备方法:
步骤1):将TPV树脂放入放入双环戊二烯液体中80℃搅拌5h溶解,TPV树脂与双环戊二烯的质量百分比为15%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.02%,然后将混合液注入模具中反应固化即可,模具温度为90℃。
实施例7
一种PDCPD/TPE的IPN高分子合金材料
一、原料
DCPD、TPE树脂、Grubbs’Ⅱ钌催化剂溶液(质量浓度为7%)
二、制备方法:
步骤1):将TPE树脂放入双环戊二烯液体中80℃搅拌5h溶解,TPE树脂与双环戊二烯的质量百分比为30%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.02%,然后将混合液注入模具中反应固化即可,模具温度为20℃。
实施例8
一种PDCPD/SEBS的IPN高分子合金材料
一、原料
DCPD、SEBS树脂、Grubbs’Ⅱ钌催化剂溶液(质量浓度为8%)
二、制备方法:
步骤1):将SEBS树脂放入双环戊二烯液体中80℃搅拌5h溶解,SEBS树脂与双环戊二烯的质量百分比为45%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.02%,然后将混合液注入模具中反应固化即可,模具温度为40℃。
实施例9
一种PDCPD/TPEE的IPN高分子合金材料
一、原料
DCPD、TPEE树脂、Grubbs’Ⅱ钌催化剂溶液(质量浓度为10%)
二、制备方法:
步骤1):将TPEE树脂放入双环戊二烯液体中80℃搅拌5h溶解,TPEE树脂与双环戊二烯的质量百分比为60%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.02%,然后将混合液注入模具中反应固化即可,模具温度为70℃。
实施例10
一种PDCPD/TPU的IPN高分子合金材料
一、原料
DCPD、TPU树脂、hoveyda钌催化剂溶液(质量浓度为15%)
二、制备方法:
步骤1):将TPU树脂放入双环戊二烯液体中80℃搅拌5h溶解,TPU树脂与双环戊二烯的质量百分比为20%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.06%,然后将混合液注入模具中反应固化即可,模具温度为30℃。
实施例11
一种PDCPD/TPR的IPN高分子合金材料
一、原料
DCPD、TPR树脂、hoveyda钌催化剂溶液(质量浓度为20%)
二、制备方法:
步骤1):将TPR树脂放入双环戊二烯液体中80℃搅拌5h溶解,SBS树脂与双环戊二烯的质量百分比为20%;
步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,钌催化剂的有效成分与双环戊二烯的质量浓度为0.08%,然后将混合液注入模具中反应固化即可,模具温度为50℃。
将实施例1-11制成的产品(测试部分选取平面中间的部分)进行测试,测试结果如表1所示。
表1
Figure PCTCN2016095376-appb-000001
由表1可见,随着弹性体重量百分比的增加,弯曲强度随之下降,冲击强度随之提高。

Claims (9)

  1. 一种聚双环戊二烯/弹性体的IPN高分子合金材料,其特征在于,所述聚双环戊二烯形成的分子链网络与所述弹性体形成互穿网络结构。
  2. 如权利要求1所述的聚双环戊二烯/弹性体的IPN高分子合金材料,其特征在于,所述弹性体与双环戊二烯的质量百分比为1%~60%。
  3. 如权利要求1所述的聚双环戊二烯/弹性体的IPN高分子合金材料,其特征在于,所述弹性体为SBS、SEBS、TPS、TPV、TPEE、TPU、TPE和TPR中的任意一种。
  4. 一种权利要求1-3任意一项所述的聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,具体步骤如下:
    步骤1):将弹性体放入双环戊二烯液体中溶解;
    步骤2):在步骤1)得到的弹性体的双环戊二烯溶液中加入钌催化剂溶液,然后将混合液注入模具中反应固化即可。
  5. 如权利要求4所述的聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,所述步骤1)中弹性体溶解的条件具体为:将弹性体放入双环戊二烯中在80℃下搅拌5小时。
  6. 如权利要求4所述的聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,所述步骤2)中的模具温度为20~90℃。
  7. 如权利要求4所述的聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,所述钌催化剂溶液的溶剂采用溶剂油,钌催化剂溶液的的质量浓度为1%~60%。
  8. 如权利要求4所述的聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,所述钌催化剂的有效成分与双环戊二烯的质量百分比为0.02~0.1%。
  9. 权利要求4所述的聚双环戊二烯/弹性体的IPN高分子合金材料的制备方法,其特征在于,将钨催化剂或钼催化剂替代钌催化剂,具体步骤如下:
    步骤3):将双环戊二烯液体分为两部分,其中一部分加入或两部分均加入弹性体溶解;
    步骤4):将含钨催化剂或含钼催化剂的原料分为各自不产生反应的两部分, 将两部分催化剂的原料分别加入到步骤3)得到的两部分溶有或不溶有弹性体的双环戊二烯中,然后将混合液注入模具中反应固化即可。
PCT/CN2016/095376 2016-03-31 2016-08-15 聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法 WO2017166577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610196339.2 2016-03-31
CN201610196339.2A CN105670194B (zh) 2016-03-31 2016-03-31 一种聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017166577A1 true WO2017166577A1 (zh) 2017-10-05

Family

ID=56225711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/095376 WO2017166577A1 (zh) 2016-03-31 2016-08-15 聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法

Country Status (2)

Country Link
CN (1) CN105670194B (zh)
WO (1) WO2017166577A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980129A (zh) * 2021-02-10 2021-06-18 浙江沪通模具有限公司 蒙脱土改性聚三环戊二烯ptcpd复合材料及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670194B (zh) * 2016-03-31 2018-03-23 上海东杰高分子材料有限公司 一种聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法
CN106633800A (zh) * 2016-12-13 2017-05-10 无锡市四方达高分子材料有限公司 环保型高分子材料
CN114311753A (zh) * 2021-12-31 2022-04-12 江苏金风科技有限公司 树脂组合料、制备方法、叶片壳体及风力发电机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423521A1 (en) * 1989-09-29 1991-04-24 Hercules Incorporated Process for producing polymer molded article
US5015710A (en) * 1990-09-27 1991-05-14 Hercules Incorporated Process for producing a blended metathesis/radical polymer composition
CN1187209A (zh) * 1995-05-25 1998-07-08 B·F·谷德里奇公司 多环聚合物的共混物和合金
CN101597351A (zh) * 2009-06-25 2009-12-09 河南科技大学 聚双环戊二烯/橡胶原位聚合共混复合材料制备方法
CN102083882A (zh) * 2007-09-28 2011-06-01 特灵公司 聚环烯烃(pco)热固性网络组合件和其制备方法
JP2011246549A (ja) * 2010-05-25 2011-12-08 Rimtec Kk 触媒液、配合液、ノルボルネン系樹脂成形体およびその成形方法
CN103694500A (zh) * 2013-11-15 2014-04-02 西安汉华橡胶科技有限公司 一种含聚冰片烯的阻尼橡胶的生产方法
CN105670194A (zh) * 2016-03-31 2016-06-15 上海东杰高分子材料有限公司 一种聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400340A (en) * 1982-01-25 1983-08-23 Hercules Incorporated Method for making a dicyclopentadiene thermoset polymer
CN101891931B (zh) * 2010-07-08 2011-12-21 河南科技大学 聚双环戊二烯/乙烯共聚物原位聚合共混复合材料及其制备方法
CN104558049A (zh) * 2014-12-30 2015-04-29 长春工业大学 一种钌卡宾催化剂的制备方法及应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423521A1 (en) * 1989-09-29 1991-04-24 Hercules Incorporated Process for producing polymer molded article
US5015710A (en) * 1990-09-27 1991-05-14 Hercules Incorporated Process for producing a blended metathesis/radical polymer composition
CN1187209A (zh) * 1995-05-25 1998-07-08 B·F·谷德里奇公司 多环聚合物的共混物和合金
CN102083882A (zh) * 2007-09-28 2011-06-01 特灵公司 聚环烯烃(pco)热固性网络组合件和其制备方法
CN101597351A (zh) * 2009-06-25 2009-12-09 河南科技大学 聚双环戊二烯/橡胶原位聚合共混复合材料制备方法
JP2011246549A (ja) * 2010-05-25 2011-12-08 Rimtec Kk 触媒液、配合液、ノルボルネン系樹脂成形体およびその成形方法
CN103694500A (zh) * 2013-11-15 2014-04-02 西安汉华橡胶科技有限公司 一种含聚冰片烯的阻尼橡胶的生产方法
CN105670194A (zh) * 2016-03-31 2016-06-15 上海东杰高分子材料有限公司 一种聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUO, MENG ET AL.: "Polymerization-Blending of Dicyclopentadiene with Ethylene-Vinyl Acetate Copolymer in Situ", POLYMER MATERIALS SCIENCE & ENGINEERING, vol. 31, no. 5, 31 May 2015 (2015-05-31), pages 116, ISSN: 1000-7555 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980129A (zh) * 2021-02-10 2021-06-18 浙江沪通模具有限公司 蒙脱土改性聚三环戊二烯ptcpd复合材料及制备方法

Also Published As

Publication number Publication date
CN105670194B (zh) 2018-03-23
CN105670194A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017166577A1 (zh) 聚双环戊二烯/高分子弹性体的ipn高分子合金材料及其制备方法
Varnava et al. Polymer networks one hundred years after the macromolecular hypothesis: A tutorial review
Yang et al. Spontaneously healable thermoplastic elastomers achieved through one-pot living ring-opening metathesis copolymerization of well-designed bulky monomers
Sheth et al. Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments
TWI308166B (zh)
Maji et al. Styrenic Block copolymer‐based thermoplastic elastomers in smart applications: Advances in synthesis, microstructure, and structure–property relationships—a review
JP5582031B2 (ja) ブロック共重合体組成物、その製造方法及びフィルム
TWI744219B (zh) 聚醚多元醇之製造方法
CA2962665C (en) Polymer network with triple-shape-memory effect and associated programming method
WO2006101069A1 (ja) 熱可塑性樹脂、その製造方法および成形材料
TW201546164A (zh) 環氧樹脂組成物,樹脂硬化物,纖維強化複合材料及預浸體
CN103270109A (zh) 纤维增强复合材料用环氧树脂组合物、预浸料坯及纤维增强复合材料
TW202115142A (zh) 團聯共聚物、組成物及薄膜
Wang et al. Polyurethane as smart biocoatings: Effects of hard segments on phase structures and properties
WO2018137507A1 (zh) 物理分相动态聚合物及其应用
TWI379861B (zh)
Qu et al. High toughness polyurethane toward artificial muscles, tuned by mixing dynamic hard domains
CN107428137A (zh) 光学膜
TW201120127A (en) Elastomeric thermoplastic composition
JP2013124341A (ja) 重合体、成形体及び重合体の製造方法
Shi et al. Micropatterned conductive elastomer patch based on poly (glycerol sebacate)-graphene for cardiac tissue repair
CN110218290A (zh) 一种强韧、透明、荧光、抗菌聚氨酯薄膜的合成方法
Jiang et al. Synergistically tailoring mechanical and optical properties of diblock copolymer thermoplastic elastomers via lanthanide coordination
JP6159054B2 (ja) 重合体、複合体および重合体の製造方法
TW201035186A (en) Heat-responsive polymer gel film

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16896349

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16896349

Country of ref document: EP

Kind code of ref document: A1