WO2017162217A1 - 一种电子设备中框配件及其制造方法 - Google Patents

一种电子设备中框配件及其制造方法 Download PDF

Info

Publication number
WO2017162217A1
WO2017162217A1 PCT/CN2017/080774 CN2017080774W WO2017162217A1 WO 2017162217 A1 WO2017162217 A1 WO 2017162217A1 CN 2017080774 W CN2017080774 W CN 2017080774W WO 2017162217 A1 WO2017162217 A1 WO 2017162217A1
Authority
WO
WIPO (PCT)
Prior art keywords
firmware
thermal conductivity
mid
support
supporting
Prior art date
Application number
PCT/CN2017/080774
Other languages
English (en)
French (fr)
Other versions
WO2017162217A8 (zh
Inventor
蔡明�
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017162217A1 publication Critical patent/WO2017162217A1/zh
Publication of WO2017162217A8 publication Critical patent/WO2017162217A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the field of electronic device component manufacturing, and in particular to a frame accessory for an electronic device and a method of manufacturing the same.
  • the middle frame In the overall architecture of the electronic device, including the middle frame.
  • One side of the middle frame has a battery compartment area, a camera area, a PCB board placement area, and the like, and the other side is a contact area between the entire surface and the mobile phone display screen.
  • applications such as large games are becoming more and more power hungry.
  • the main Soc area of electronic equipment various types of chips emit more heat during operation, and the space is relatively narrow, which makes it difficult to effectively dissipate heat.
  • the working temperature of the chip area is as high as 50 ° C or more, which is the main heating zone. From the chip area or the camera area to other areas, the temperature is gradually reduced.
  • the process of temperature conduction from the high heat zone to the low heat zone is closely related to the thermal conductivity of the middle frame material.
  • the current middle frame materials of electronic equipment include AZ91D magnesium alloy, ADC12 aluminum alloy, DX19 high thermal conductivity die-casting aluminum alloy material. However, these materials still can not meet the divergent heat dissipation requirements.
  • the middle frame accessories with higher thermal conductivity are needed to help the heat from the chip area and the camera area to dissipate, so as to avoid the local temperature being too high and affecting the consumer experience.
  • Copper alloys are currently able to find alloy systems with higher thermal conductivity, and copper alloys can be processed by stamping processes at a lower cost.
  • the stamped copper alloy cannot make complex three-dimensional structural parts of the middle frame of the mobile phone, and it is difficult to meet the functional application of the middle frame of the mobile phone.
  • the cost of pure machining such as CNC machining is too high and does not have economic benefits.
  • Embodiments of the present invention provide a frame accessory in an electronic device and a manufacturing method thereof, which achieve good heat dissipation of the electronic device by using the middle frame accessory.
  • an embodiment of the present invention provides a frame accessory for an electronic device, the middle frame assembly including at least one first support firmware and at least one second support firmware, the first support firmware and the second support firmware Connected; the first support member is made of a material having a thermal conductivity greater than 150 watts/meter ⁇ open; and the second support member is made of a material having a thermal conductivity of no more than 150 watts/meter.
  • the first support firmware includes support firmware for at least one of a processor chip area and a camera area of the electronic device.
  • the first support firmware is made of a high thermal conductivity copper alloy or a high thermal conductivity aluminum alloy.
  • the first support firmware is made of a copper alloy containing 97% copper, 1% iron, and 0.5% phosphorus.
  • the first support firmware has a thermal conductivity of 250 watts/(m ⁇ on).
  • the first support firmware is made of a copper alloy containing 94% copper, 3% nickel, and 1% silicon.
  • the first support firmware has a thermal conductivity of 230 watts/(m ⁇ on).
  • the first support firmware is made of a copper alloy containing 99% copper and 0.5% chromium.
  • the first supporting firmware has a thermal conductivity of 350 watts/(m ⁇ on).
  • the first support firmware is made of a 6063 deformed aluminum alloy.
  • the second support firmware is made of any of die cast aluminum alloy, die cast zinc alloy, die cast magnesium alloy, or die cast amorphous alloy.
  • the portion of the first support firmware that is coupled to the second support firmware has a connection.
  • the connecting portion By providing the connecting portion, the contact area of the first supporting firmware and the second supporting firmware is increased, and the connection capability between the supporting firmware is increased.
  • the connecting portion is one of a "W" shape, a concavo-convex structure or a snap-fit structure.
  • the surface of the joint includes a hole, the size of which includes one of millimeters, micrometers, or nanometers.
  • the hole structure also increases the contact area of the first support firmware with the second support firmware, increasing the connection capability between the support firmware.
  • the first support firmware is formed by at least one of powder injection molding, forging, or computer numerically controlled machine tool processing. Therefore, according to different high heat support firmware, the high heat support firmware is processed by different processing methods, thereby providing production efficiency and saving production cost.
  • the middle frame fitting is adjacent to the display screen, wherein the flatness of the middle frame fitting adjacent to the surface of the display screen is less than or equal to 0.2 mm.
  • an embodiment of the present invention provides a method of manufacturing a frame accessory in an electronic device, including: manufacturing a first support firmware, wherein the first support firmware is made of a material having a thermal conductivity greater than 150 watts/meter. Manufacturing a second support firmware based on the first support firmware, the second support firmware being made of a material having a thermal conductivity of no more than 150 watts/meter; in the manufacturing of the second support firmware
  • the first supporting firmware and the second supporting firmware form a connection to constitute the middle frame fitting.
  • the first support firmware includes support firmware for at least one of a processor chip area and a camera area of the electronic device.
  • the portion where the first support firmware forms a connection with the second support firmware has a connection portion.
  • the connecting portion is one of a "W" shape, a concavo-convex structure or a snap-fit structure.
  • the surface of the joint includes a hole, the size of which includes one of millimeters, micrometers, or nanometers.
  • the hole structure also increases the contact of the first support firmware with the second support firmware
  • the area increases the connection capacity between the support firmware.
  • the first support firmware is formed by at least one of powder injection molding, forging, or computer numerically controlled machine tool processing. Therefore, according to different high heat support firmware, the high heat support firmware is processed by different processing methods, thereby providing production efficiency and saving production cost.
  • the middle frame fitting is adjacent to the display screen, wherein the flatness of the middle frame fitting adjacent to the surface of the display screen is less than or equal to 0.2 mm.
  • the manufacturing the second support firmware based on the first support firmware comprises placing the first support firmware in a corresponding area in a die casting mold of the middle frame fitting to the die casting mold The metal liquid is injected and die-cast.
  • the second support firmware is die-cast by die casting, and at the same time, the second support firmware is connected to the first support firmware, and the two processing steps are combined into one processing step, which improves the stability of the connection and improves the production. effectiveness.
  • the first support firmware is made of a high thermal conductivity copper alloy or a high thermal conductivity aluminum alloy.
  • the heat dissipation capability of the first support firmware is provided by using a highly thermally conductive material.
  • a frame accessory in an electronic device and a method of manufacturing the same according to an embodiment of the invention.
  • the first support firmware and the second support firmware of the center frame fitting are separately manufactured by determining that the first support member made of a high thermal conductivity material is required in the middle frame assembly to be manufactured. This reduces the processing difficulty, while reducing production costs and improving efficiency.
  • FIG. 1 is a block diagram of an electronic device in an embodiment of the present invention.
  • FIG. 3 is a high heat-supporting support firmware using a multi-block structure according to an embodiment of the present invention
  • FIG. 5 is a high heat-supporting support firmware of a snap-type connecting portion according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a method for manufacturing a frame accessory in an electronic device according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for manufacturing a frame accessory in a mobile phone according to an embodiment of the present invention.
  • Embodiments of the present invention provide a frame accessory in an electronic device and a method of manufacturing the same.
  • the first support firmware and the second support firmware of the center frame fitting are separately manufactured by determining that the first support member made of a high thermal conductivity material is required in the middle frame assembly to be manufactured.
  • a plurality of support firmwares are then joined by a manufacturing method to form a complete mid-frame assembly. Therefore, the structure of the supporting firmware in each area of the middle frame fitting is simplified, and the heat dissipation requirement is adopted according to each area. Different processes and materials are processed to meet the heat dissipation requirements of this part.
  • the middle frame assembly includes at least one first support firmware and at least one second support firmware, the first support firmware being coupled to the second support firmware; the first support firmware having a thermal conductivity greater than 150 watts / ( ⁇ ) (also can be written as "Watt / (MK Kelvin)" or "W / mk”) material; the second support firmware by thermal conductivity is not more than 150 W / (m ⁇ Made of open material.
  • the first supporting firmware made of a material having a thermal conductivity greater than 150 watts/meter is simply referred to as a high heat-supporting firmware; the thermal conductivity is not more than 150 watts/
  • the second support firmware made of the material of (m.) is referred to as non-high heat support firmware.
  • high-heating support firmware use high thermal conductivity copper alloy or high thermal conductivity aluminum alloy with good thermal conductivity.
  • non-high heat support firmware such as die-cast aluminum alloy, die-cast zinc alloy, die-cast magnesium alloy or die-cast amorphous alloy. Any of them. Thereby reducing the processing difficulty, saving manufacturing costs, and at the same time improving the heat dissipation capability of the middle frame fitting in a certain area.
  • the electronic device comprises a mobile phone, a tablet, a laptop, and the like.
  • FIG. 1 is a schematic structural diagram of a mobile phone according to an embodiment of the present invention. As shown in FIG. 1, a display screen 101, a middle frame assembly 102, a battery 103, a main board 104, an antenna holder 105, and a battery cover assembly 106 are included. A display screen 101 is disposed on one side of the illustrated middle frame assembly 102, and a battery 103 and a main board 104 are disposed on the other side, and the battery 103 is fixed by the battery cover assembly 106.
  • the middle frame fitting 102 is composed of a plurality of different supporting firmwares, so that different portions of the middle frame fitting 102 have different heat dissipation capabilities. Thereby, the heat dissipation capability of the camera assembly and the processor chip included in the main board 104 that is in contact with the middle frame assembly 102 is improved.
  • the middle frame accessory in the embodiment of the present invention can also be used in an electronic device such as a tablet computer or a laptop computer.
  • FIG. 2 is a schematic diagram of a frame accessory in a mobile phone according to an embodiment of the present invention.
  • the mobile phone middle frame assembly 102 to be manufactured includes a first supporting firmware 201 and a second supporting firmware 202, and the first supporting firmware is connected to the second supporting firmware; the first supporting firmware Made of a material having a thermal conductivity greater than 150 watts per meter.
  • the second support is made of a material having a thermal conductivity of no greater than 150 watts per meter.
  • the first supporting firmware 201 is used to support a processor chip area and a camera area of the electronic device.
  • the second supporting firmware 202 is used to support other areas of the mobile phone middle frame accessory except the processor chip area and the camera area.
  • FIG. 3 shows a first support firmware integrally formed by the embodiment of the present invention.
  • the first supporting firmware 201 including the processor chip area and the camera area 302 is only an example of an embodiment of the present invention.
  • the first supporting firmware 201 may also be a first supporting firmware composed of a multi-block structure according to an embodiment of the present invention.
  • a processor chip area 402 or a camera area 403 and other chip areas 404 are included.
  • the range of the first support firmware described above is only an example of the present invention, and may include only the processor chip area 402 and the camera area 403.
  • a connecting portion 202 is further disposed on the first supporting firmware at a portion connected to the second supporting firmware.
  • the connecting portion 301 is used to increase the joint portion between the first supporting member 201 and the second supporting member 202, thereby increasing the bonding force between the two.
  • the connection between the first support firmware and the second support firmware is made closer.
  • the connecting portion 301 may be a "W" type as shown in the connecting portion of FIG. 3 or FIG. 4, and the connecting portion 302 may also be a connecting portion 501 having a concave-convex structure as shown in FIG. 5.
  • the first supporting firmware may also be the first supporting firmware of the connecting portion 601 of the snap structure shown in FIG. 6.
  • the surface of each shape of the connecting portion 301 further includes a hole, and the size of the hole may be any one or more of a micron-sized hole, a millimeter-level hole or a nano-scale hole.
  • the pores are naturally formed during the powder injection process and subsequent sintering.
  • the shape of the connecting portion 301 is not limited to the contents listed in the specific embodiments of the present invention, as long as the connecting portion 301 between the plurality of different members of the frame fitting in the mobile phone is increased, thereby It is within the scope of the present invention to form a complete mobile phone middle frame component and to form a complete mobile phone middle frame component with stronger bonding force.
  • the material of the first support member shown may be any one of a high thermal conductivity copper alloy or a high thermal conductivity aluminum alloy having a thermal conductivity greater than 150 W/m.k.
  • the material of the first support firmware may be: Cu 97%, Fe 1%, P 0.5%, and other copper alloys having an elemental content of less than 0.1%.
  • the material is processed by powder injection to form the high heat support firmware shown in FIG.
  • the sintering temperature is 950 °C.
  • heat-treating the first support firmware after sintering to improve the performance of the material by heat treatment includes solution treatment and aging treatment.
  • the sintered first support member is subjected to a solution treatment, the solution treatment temperature is 1000 ° C, and the solution treatment time is 2 hours.
  • the first support firmware was also subjected to aging treatment, the aging treatment temperature was 500 ° C, and the aging treatment time was 1.5 hours. Therefore, the processed first support firmware substantially reaches a thermal conductivity of 250 W/m.k, so that the material has good thermal conductivity.
  • the material ratio of the first supporting firmware may also be: Cu 94%, Ni 3%, Si 1%, and other copper alloys having an element content of less than 0.1%.
  • the sintering temperature was 950 °C.
  • heat-treating the first support firmware after sintering to improve the performance of the material by heat treatment includes solution treatment and aging treatment.
  • the sintered first support member is subjected to solution treatment, the solution treatment temperature is 1000 ° C, and the solution treatment time is 1.5 hours.
  • the first support firmware was also subjected to aging treatment, the aging treatment temperature was 500 ° C, and the aging treatment time was 1 hour. Therefore, the processed first support firmware substantially reaches a thermal conductivity of 230 W/m.k, so that the material has good thermal conductivity.
  • the first supporting fastener material may also be: Cu99%, Cr0.5%, and other copper alloys having an elemental content of less than 0.05%. Therefore, the processed first support firmware substantially reaches a thermal conductivity of 350 W/m.k, so that the material has good thermal conductivity.
  • the first support firmware material can also be a 6063 deformed aluminum alloy.
  • the solution treatment and the aging treatment are only an example of a specific heat treatment method of the present invention, and are not intended to limit the present invention.
  • any heat treatment or non-heat treatment process may be employed to achieve the desired properties of the material.
  • the first support firmware is further shaped to achieve design accuracy.
  • the shape deviation, deformation, and the like which occur in the first support firmware in the steps of powder injection, heat treatment, and the like are corrected.
  • the heat-treated first support member is placed in a proprietary mold (for example, a shaping mold) in which the first support member is adapted, and pressure-shaping is performed by applying a certain pressure to bring it closer to the display screen.
  • One plane is less than or equal to 0.2 mm.
  • the first support firmware may comprise one or more.
  • each of the first supporting firmwares is separately subjected to the above processing, thereby obtaining a plurality of different first supporting firmwares.
  • the above-described formation of the first supporting firmware by powder injection is only one specific implementation method of the embodiment of the present invention.
  • the first supporting firmware in the specific embodiment of the present invention may also be formed in other manners.
  • the first support firmware is formed by a method of forging or computer numerical control (CNC) processing. Therefore, different processing methods are adopted according to different shapes of the first supporting firmware, thereby improving production efficiency and saving production cost.
  • the second support firmware is die cast.
  • the material of the second supporting reinforcement may be any one of die-cast aluminum alloy, die-cast magnesium alloy or die-cast zinc alloy, die-cast amorphous alloy, and the like.
  • the second support firmware is die cast and the first support firmware is coupled to the second support firmware by placing a finished first support firmware on the middle frame assembly through a particular middle frame accessory mold. In the corresponding position in the die casting mold. Casting a metal liquid into the die-casting mold of the middle frame fitting to form a second supporting firmware in the die-casting mold of the middle frame fitting, and in the process of forming the second supporting firmware, simultaneously completing the first supporting firmware and the first The two support firmware connections form a complete mid-frame assembly.
  • FIG. 7 is a flowchart of a method for manufacturing a frame accessory in a mobile phone according to an embodiment of the present invention. As shown in Figure 7. The method includes:
  • the first support firmware is used to support a processor chip area and a camera area.
  • the second supporting firmware is used to support other areas of the mobile phone middle frame accessory except the processor chip area and the camera area.
  • the first supporting firmware may be used only to support the processor chip area or the camera area, and may also be used to support the processor chip area and the camera area and other areas.
  • a connecting portion is further disposed on the first supporting firmware at a portion connected to the second supporting firmware.
  • the connecting portion is for increasing the joint area between the first supporting piece and the second supporting piece, thereby increasing the bonding force between the two.
  • the connecting portion may be a "W" type as shown in the connecting portion in FIG. 3 or FIG. 4, and the connecting portion may also be the first supporting firmware using the concave-convex connecting portion shown in FIG. 5.
  • the connecting portion may also be the first supporting firmware of the snap-type connecting portion shown in FIG. 6.
  • the surface of the connecting portion further includes a hole, and the hole may be sized to include at least one of a micron-sized hole, a millimeter-sized hole, or a nano-scale hole.
  • the pores are naturally formed during the powder injection process and subsequent sintering.
  • the material of the first support stiffener shown may be any one of a copper alloy or an aluminum alloy having a thermal conductivity greater than 150 W/m.k.
  • the invention does not limit the specific material of the first supporting firmware.
  • the material of the first support firmware may be: Cu 97%, Fe 1%, P 0.5%, and other copper alloys having an elemental content of less than 0.1%.
  • the material is processed by powder injection to form the first support firmware shown in FIG.
  • processing the first support firmware by powder injection further comprises subjecting the injected powder to high temperature burning.
  • the sintering temperature was 950 °C.
  • the step of heat treatment includes solution treatment and aging treatment.
  • the sintered first support member is subjected to a solution treatment, the solution treatment temperature is 1000 ° C, and the solution treatment time is 2 hours.
  • the first support firmware was also subjected to aging treatment, the aging treatment temperature was 500 ° C, and the aging treatment time was 1.5 hours. Therefore, the processed first support firmware substantially reaches a thermal conductivity of 250 W/m.k, so that the material has good thermal conductivity.
  • the material ratio through the first support firmware is Cu94%, Ni3%, Si1%, and the other alloys are all less than 0.1% copper alloy.
  • the injected powder was subjected to high temperature sintering at a sintering temperature of 950 °C. And heat-treating the first support firmware after sintering to improve the performance of the material by heat treatment.
  • the step of heat treatment includes solution treatment and aging treatment.
  • the sintered first support member is subjected to solution treatment, the solution treatment temperature is 1000 ° C, and the solution treatment time is 1.5 hours.
  • the first support firmware was also subjected to aging treatment, the aging treatment temperature was 500 ° C, and the aging treatment time was 1 hour. Therefore, the processed first support firmware substantially reaches a thermal conductivity of 230 W/m.k, so that the material has good thermal conductivity.
  • the first support firmware material may also be a copper alloy with Cu 99%, Cr 0.5%, and other elemental contents less than 0.05%. Therefore, the processed first support firmware substantially reaches a thermal conductivity of 350 W/m.k, so that the material has good thermal conductivity.
  • the first support firmware material can also be a 6063 deformed aluminum alloy.
  • the solution treatment and the aging treatment are only an example of a specific heat treatment method of the present invention, and are not intended to limit the present invention.
  • any heat treatment or non-heat treatment process may be employed to achieve the desired properties of the material.
  • the first support firmware is also refurbished to achieve design accuracy.
  • the shape deviation, deformation, and the like which occur in the first support firmware in the steps of powder injection, heat treatment, and the like are corrected.
  • the heat-treated first supporting firmware is placed in a proprietary mold adapted to the first supporting firmware, and the flatness of the first supporting firmware on the side of the first supporting firmware is lower than that of the display screen. 0.2mm.
  • the first support firmware may comprise one or more.
  • FIG. 3 is a first supporting firmware according to an embodiment of the present invention. As shown in FIG. 3, the first supporting firmware may be formed integrally with a plurality of structural support regions, including, for example, a camera region, a processor chip region, and other chip regions.
  • FIG. 4 is a first supporting firmware composed of a multi-block structure according to an embodiment of the present invention. As shown in FIG. 4, for a mobile phone middle frame accessory, a plurality of first supporting firmwares are included. Each of the first support firmwares is separately subjected to the above processing, thereby obtaining a plurality of different first support firmware.
  • the above-described formation of the first supporting firmware by powder injection is only one specific implementation method of the embodiment of the present invention.
  • the first supporting firmware in the specific embodiment of the present invention may also be formed in other manners.
  • the first support firmware is formed by forging or computer numerically controlling the machine tool.
  • the holes in the joint may be automatically formed during the sintering process.
  • the second support firmware is manufactured.
  • the second support member is made of any one of a die cast aluminum alloy, a die cast zinc alloy, a die cast magnesium alloy, or a die cast amorphous alloy.
  • the first support firmware and the second support firmware form a complete unit by connecting the first support firmware to the second support firmware.
  • the second support firmware is die cast.
  • the second support firmware is die cast and the first support firmware is coupled to the second support firmware through a particular mid-frame accessory mold.
  • the manufactured first support fastener is fixed to a corresponding area of the middle frame fitting mold. Casting into the frame accessory mold of the mobile phone to form the second support firmware and connect the second support firmware to the first support firmware. Thereby forming a complete middle frame fitting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种电子设备中框配件,涉及电子设备零部件制造领域,解决的是电子设备局部区域温度过高影响消费者使用体验的技术问题。中框配件(102)包括至少一个第一支撑固件(201)和至少一个第二支撑固件(202),所述第一支撑固件(201)和所述第二支撑固件(202)相连;所述第一支撑固件(201)由导热系数大于150瓦/(米·开)的材料制成;所述第二支撑固件(202)由导热系数不大于150瓦/(米·开)的材料制成。通过将中框配件划分为多个固件分别进行制造,对不同的固件采用不同散热能力的材料制成,从而既提高了中框配件的散热能力,又降低了生产成本。

Description

一种电子设备中框配件及其制造方法
本申请要求于2016年3月25日提交中国专利局、申请号为201610178151.5、发明名称为“一种电子设备中框配件及其制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子设备零部件制造领域,尤其涉及一种电子设备中框配件及其制造方法。
背景技术
在电子设备的整机架构中,包括中框。中框的一面有电池仓区、摄像头区、PCB板放置区等,在另外一面为整个面和手机显示屏相接触区。随着电子设备电池功耗越来越高,各类应用如大型游戏等越来越耗电。在电子设备主要Soc区有各类芯片在工作时发出较多热量、而空间较为狭小,难以有效散热。电子设备中,芯片区域工作时温度高达50℃以上,为主要发热区,从芯片区域或摄像头区域再到其它区域,温度逐步传导降低。
温度从高热量区到低热量区传导快慢的过程,与中框材料的导热系数密切相关。当前电子设备的中框材料有AZ91D镁合金、ADC12铝合金、DX19高导热压铸铝合金材料等。但这些材料依然不能满足日异严峻的散热需求,需要更高导热系数的中框配件来帮助来自芯片区及摄像头区的热量散去,以避免局部区域温度过高影响消费者使用体验。
铜合金是目前能够找到较高导热系数的合金体系,可以通过冲压工艺进行铜合金加工,成本也较低。但是,冲压铜合金无法做出手机中框的复杂三维结构件,难以满足手机中框功能性应用。同时,纯机械加工如数控加工机床加工的成本又太高,不具有经济效益。
发明内容
本发明实施例提供了一种电子设备中框配件及其制造方法,通过使用所述中框配件,实现电子设备的良好散热。
一方面,本发明实施例提供了一种电子设备中框配件,所述中框配件包括至少一个第一支撑固件和至少一个第二支撑固件,所述第一支撑固件和所述第二支撑固件相连;所述第一支撑固件由导热系数大于150瓦/(米·开)的材料制成;所述第二支撑固件由导热系数不大于150瓦/(米·开)的材料制成。通过将中框配件划分为多个固件分别进行制造,对不同的固件采用不同散热能力的材料制成,从而既提高了中框配件的散热能力,又降低了生产成本。
在一个可能的设计中,所述第一支撑固件包括所述电子设备的处理器芯片区域和摄像头区域中至少一个区域的支撑固件。通过将高发热支撑固件分为多个或作为一个整体制造,从而满足不同中框配件的结构需求。
在一个可能的设计中,所述第一支撑固件由高导热铜合金或高导热铝合金制成。
在一个可能的设计中,所述第一支撑固件由含铜97%、含铁1%、含磷0.5%的铜合金制成。所述第一支撑固件的导热系数为250瓦/(米·开)。
在一个可能的设计中,所述第一支撑固件由含铜94%、含镍3%、含硅1%的铜合金制成。所述第一支撑固件的导热系数为230瓦/(米·开)。
在一个可能的设计中,所述第一支撑固件由含铜99%、含铬0.5%的铜合金制成。所述第一支撑固件的导热系数为350瓦/(米·开)。
在一个可能的设计中,所述第一支撑固件由6063变形铝合金制成。
在一个可能的设计中,所述第二支撑固件由压铸铝合金、压铸锌合金、压铸镁合金或压铸非晶合金中的任意一种制成。
在一个可能的设计中,所述第一支撑固件与所述第二支撑固件相连的部位具有连接部。通过设置连接部,从而增大了所述第一支撑固件与所述第二支撑固件的接触面积,增大了支撑固件间的连接能力。
在一个可能的设计中,所述连接部为“W”形状,凹凸形结构或卡扣结构中的一种。
在一个可能的设计中,所述连接部的表面包括孔洞,所述孔洞的大小包括毫米级、微米级或纳米级中的一种。孔洞结构也增大了所述第一支撑固件与所述第二支撑固件的接触面积,增大了支撑固件间的连接能力。
在一个可能的设计中,所述第一支撑固件采用粉末注射成型、锻压或计算机数字控制机床加工中的至少一种方式加工成型。从而根据不同的高发热支撑固件,采用不同的加工方式对高发热支撑固件进行加工,从而提供了生产效率,节约了生产成本。
在一个可能的设计中,所述中框配件与所述显示屏相邻,其特征在于,所述中框配件邻近所述显示屏的表面的平面度小于或等于0.2毫米。从而提高中框配件的形状精度,使中框配件与显示屏的连接更加紧密。
另一方面,本发明实施例提供了一种电子设备中框配件的制造方法,包括:制造第一支撑固件,所述第一支撑固件由导热系数大于150瓦/(米·开)的材料制成;基于所述第一支撑固件制造第二支撑固件,所述第二支撑固件由导热系数不大于150瓦/(米·开)的材料制成;在所述制造所述第二支撑固件中,所述第一支撑固件和所述第二支撑固件形成连接,构成所述中框配件。通过对采用不同散热能力的材料制造中框配件的不同部分,既提高了中框配件的散热能力,又降低了生产成本。
在一个可能的设计中,所述第一支撑固件包括所述电子设备的处理器芯片区域和摄像头区域中至少一个区域的支撑固件。通过将高发热支撑固件分为多个或作为一个整体制造,从而满足不同中框配件的结构需求。
在一个可能的设计中,所述第一支撑固件与所述第二支撑固件形成连接的部位具有连接部。通过设置连接部,从而增大了所述第一支撑固件与所述第二支撑固件的接触面积,增大了支撑固件间的连接能力。
在一个可能的设计中,所述连接部为“W”形状,凹凸形结构或卡扣结构中的一种。
在一个可能的设计中,所述连接部的表面包括孔洞,所述孔洞的大小包括毫米级、微米级或纳米级中的一种。孔洞结构也增大了所述第一支撑固件与所述第二支撑固件的接触 面积,增大了支撑固件间的连接能力。
在一个可能的设计中,所述第一支撑固件采用粉末注射成型、锻压或计算机数字控制机床加工中的至少一种方式加工成型。从而根据不同的高发热支撑固件,采用不同的加工方式对高发热支撑固件进行加工,从而提供了生产效率,节约了生产成本。
在一个可能的设计中,所述中框配件与所述显示屏相邻,其特征在于,所述中框配件邻近所述显示屏的表面的平面度小于或等于0.2毫米。从而提高中框配件的形状精度,使中框配件与显示屏的连接更加紧密。
在一个可能的设计中,所述基于所述第一支撑固件制造第二支撑固件,包括将所述第一支撑固件置于所述中框配件的压铸模具中的对应区域,向所述压铸模具中注射金属液体并压铸成型。通过压铸的方式对第二支撑固件压铸成型,与此同时完成第二支撑固件与第一支撑固件连接,将两个加工步骤合并为一个加工步骤,既提高了连接的稳定性,又提高了生产效率。
在一个可能的设计中,所述第一支撑固件由高导热铜合金或高导热铝合金制成。通过采用高导热材料,提供第一支撑固件的散热能力。
本发明实施例的一种电子设备中框配件及其制造方法。通过确定待制造的中框配件中需要由高导热系数材料制成的第一支撑固件,对中框配件的第一支撑固件和第二支撑固件分别制造。由此降低了加工难度,同时降低了生产成本,提高了效益。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电子设备中框配件图;
图2为本发明实施例提供的采用一体成型的一种高发热支撑固件;
图3为本发明实施例提供的采用多块结构组成的一种高发热支撑固件;
图4为本发明实施例提供的采用凹凸型连接部的一种高发热支撑固件;
图5为本发明实施例提供的卡扣型连接部的一种高发热支撑固件;
图6为本发明实施例提供的一种电子设备中框配件制造方法流程图;
图7为本发明实施例提供的一种手机中框配件制造方法流程图。
具体实施方式
下面通过附图和实施例,对本发明实施例的技术方案做进一步的详细描述。
本发明实施例提供一种电子设备中框配件及其制造方法。通过确定待制造的中框配件中需要由高导热系数材料制成的第一支撑固件,对中框配件的第一支撑固件和第二支撑固件分别制造。再通过一种制造方法将多个支撑固件进行连接,形成一个完整的中框配件。从而使中框配件每个区域的支撑固件的结构变得简单,根据每个区域不同的散热需求采用 不同的工艺和材料进行加工,达到该部分需要的散热需求。
在一个例子中,中框配件包括至少一个第一支撑固件和至少一个第二支撑固件,所述第一支撑固件和所述第二支撑固件相连;所述第一支撑固件由导热系数大于150瓦/(米·开)(也可记做,“瓦/(米·开尔文)”或“W/m.k”)的材料制成;所述第二支撑固件由导热系数不大于150瓦/(米·开)的材料制成。应理解,在本发明实施例中,由导热系数大于150瓦/(米·开)的材料制成的所述第一支撑固件,被简称为高发热支撑固件;由导热系数不大于150瓦/(米·开)的材料制成的所述第二支撑固件,被简称为非高发热支撑固件。对高发热支撑固件选用导热效果好的高导热铜合金或高导热铝合金等材料,对非高发热支撑固件选用其它材料,例如压铸铝合金、压铸锌合金、压铸镁合金或压铸非晶合金中的任意一种。从而降低加工难度,节约制造成本,同时又能提高中框配件在某一区域的散热能力。
在本发明的实施例中,所述电子设备包括手机、平板电脑、手提电脑等。图1为本发明实施例提供的一种手机整体架构图。如图1所示,包括显示屏101、中框配件102、电池103、主板104、天线支架105和电池盖组件106。所示中框配件102的一侧设置了显示屏101,另一侧设置了电池103和主板104,通过所述电池盖组件106将所述电池103固定。所述中框配件102由多种不同支撑固件组成,使中框配件102的不同部分有不同的散热能力。从而提高中框配件102对与中框配件102相接触的主板104中包括的摄像头组件、处理器芯片的散热能力。
在本发明的实施例中,为了描述的方便,仅以手机为例进行说明。本发明实施例中的中框配件也可以用于平板电脑或手提电脑等电子设备中。
图2为本发明实施例提供的一种手机中框配件图。如图2所示,待制造的手机中框配件102包括一个第一支撑固件201和一个第二支撑固件202,所述第一支撑固件和所述第二支撑固件相连;所述第一支撑固件由导热系数大于150瓦/(米·开)的材料制成;所述第二支撑固件由导热系数不大于150瓦/(米·开)的材料制成。所述第一支撑固件201用于支撑所述电子设备的处理器芯片区域和摄像头区域。所述第二支撑固件202用于支撑手机中框配件中除处理器芯片区域和摄像头区域外的其它区域。
图3位本发明实施例提供的采用一体成型的一种第一支撑固件。如图3所示,所述第一支撑固件201包括处理器芯片区域和摄像头区域302只是本发明实施例的一种举例。在本发明的实施例中,所述第一支撑固件201还可以是图4为本发明实施例提供的采用多块结构组成的一种第一支撑固件。如图4所示,包括处理器芯片区域402或摄像头区域403以及其它芯片区域404。上述第一支撑固件所包括的范围仅为本发明的一种举例,也可以是只包括处理器芯片区域402和摄像头区域403。
所述第一支撑固件上,与第二支撑固件连接的部位还设置了连接部202。所述连接部301用于增加第一支撑固件201与第二支撑固件202之间的连接部积,从而增大两者之间的结合力。使第一支撑固件与第二支撑固件的连接更加紧密。
在一个例子中,所述连接部301可以是如图3或图4中连接部所示的“W”型,所述连接部302还可以是图5所示的采用凹凸结构的连接部501的第一支撑固件,也可以是图6所示的卡扣结构的连接部601的第一支撑固件。
在本发明的具体实施例中,所述连接部301各种形状的表面还包括孔洞,孔洞的大小可以是微米级孔洞、毫米级孔洞或者是纳米级孔洞中的任意一种或多种。在一个例子中,所述孔洞在粉末注射过程及后续的烧结过程中自然形成。
在本发明的实施例中,所述连接部301的形状不限于本发明具体实施例中所列举的内容,只要是增大手机中框配件多个不同构件之间的连接部301,从而使多个构件形成的一个完整的手机中框配件并使形成的一个完整的手机中框配件结合力更强,都在本发明的保护范围内。
在本发明的实施例中,所示第一支撑固件的材料可以是导热系数大于150W/m.k的高导热铜合金或高导热铝合金中的任意一种。
在一个例子中,所述第一支撑固件的材料可以是:Cu 97%、Fe 1%、P 0.5%,其它元素含量皆小于0.1%的铜合金。对所述材料采用粉末注射的方式加工,从而形成图3所示的高发热支撑固件。
在一个例子中,通过粉末注射的方式高温烧结时,烧结温度为950℃。以及对烧结后的第一支撑固件进行热处理,通过热处理提高材料的性能。所述热处理的步骤包括固溶处理和时效处理。例如,对烧结完成的第一支撑固件进行固溶处理,固溶处理的温度为1000℃,固溶处理的时间为2小时。固溶处理后,还对第一支撑固件进行时效处理,时效处理的温度为500℃,时效处理的时间为1.5小时。从而使处理后的第一支撑固件基本达到250W/m.k的导热系数,使材料具有良好的导热性能。
在另一个例子中,所述第一支撑固件的材料比例还可以是:Cu 94%、Ni 3%、Si 1%,其它元素含量皆小于0.1%的铜合金。对注射粉末进行高温烧结时,烧结温度为950℃。以及对烧结后的第一支撑固件进行热处理,通过热处理提高材料的性能。所述热处理的步骤包括固溶处理和时效处理。例如,对烧结完成的第一支撑固件进行固溶处理,固溶处理的温度为1000℃,固溶处理的时间为1.5小时。固溶处理后,还对第一支撑固件进行时效处理,时效处理的温度为500℃,时效处理的时间为1小时。从而使处理后的第一支撑固件基本达到230W/m.k的导热系数,使材料具有良好的导热性能。
在一个例子中,所述第一支撑固件材料的还可以是:Cu99%、Cr0.5%、其它元素含量皆小于0.05%的铜合金。从而使处理后的第一支撑固件基本达到350W/m.k的导热系数,使材料具有良好的导热性能。
在一个例子中,所述第一支撑固件材料还可以是6063变形铝合金。
在本发明的实施例中,固溶处理和时效处理仅为本发明具体热处理方式的一种举例,不用于对本发明的限定。在本发明的实施例中,可以采用任意的热处理或非热处理的工艺,从而使材料达到所需要的性能。
在本发明的具体实施例中,还包括对第一支撑固件进行整形,从而达到设计的精度。使第一支撑固件在粉末注射、热处理等环节中出现的形状偏差、变形等得到修正。例如,将所述热处理后的第一支撑固件放置在于所述第一支撑固件相适应的专有模具中(例如:整形模具),通过施加一定的压力,进行加压整形,使靠近显示屏的一面平面度小于或等于0.2mm。
在本发明的具体实施例中,所述第一支撑固件可以包括一个或多个。对于一个手机中 框配件中,包括多个第一支撑固件的情况,将每个第一支撑固件分别进行上述处理,从而得到多个不同的第一支撑固件。
在本发明的实施例中,上述通过粉末注射从而形成第一支撑固件仅为本发明实施例的一种具体实施方法。在本发明的具体实施例中,还可以通过其它方式形成本发明具体实施例中的第一支撑固件。例如,通过锻压或计算机数字控制机床(CNC,Computer numerical control)加工的方式从而形成第一支撑固件。从而根据第一支撑固件的不同形状采用不同的加工方法,提高了生产效率,节约了生产成本。
在本发明的具体实施例中,还需要制造第二支撑固件,以及将所述第一支撑固件与第二支撑固件连接,使第一支撑固件与第二支撑固件形成一个完整的整体。在本发明的具体实施例中,所述第二支撑固件采用压铸成型。所述第二支撑固件的材料可以是压铸铝合金、压铸镁合金或压铸锌合金、压铸非晶合金等可压铸合金中的任意一种。
在一个例子中,将第二支撑固件压铸成型以及将第一支撑固件与第二支撑固件连接是通过一个特定的中框配件模具,将制造完成的第一支撑固件放置于所述中框配件的压铸模具中的对应位置中。向所述中框配件的压铸模具中浇铸金属液体,从而在中框配件的压铸模具中形成第二支撑固件,在所述第二支撑固件形成的过程中,同时完成了第一支撑固件与第二支撑固件的连接,从而形成完整的中框配件。
图7为本发明实施例提供的一种手机中框配件制造方法流程图。如图7所示。所述方法包括:
S701,在待制造的中框配件中确定第一支撑固件和第二支撑固件的位置。
在一个例子中,所述第一支撑固件用于支撑处理器芯片区域和摄像头区域。所述第二支撑固件用于支撑手机中框配件中除处理器芯片区域和摄像头区域外的其它区域。在本发明的实施例中,所述第一支撑固件可以只用于支撑处理器芯片区域或摄像头区域,也可以用于支撑处理器芯片区域和摄像头区域以及其它区域。
所述第一支撑固件上,与第二支撑固件连接的部位还设置了连接部。所述连接部用于增加第一支撑固件与第二支撑固件之间的连接部面积,从而增大两者之间的结合力。
在一个例子中,所述连接部可以是如图3或图4中连接部所示的“W”型,所述连接部还可以是图5所示的采用凹凸型连接部的第一支撑固件,所述连接部也可以是图6所示的卡扣型连接部的第一支撑固件。
在本发明的具体实施例中,所述连接部的表面还包括孔洞,所述孔洞的大小可以包括微米级孔洞、毫米级孔洞或纳米级孔洞中的至少一种。在一个例子中,所述孔洞在粉末注射过程及后续的烧结过程中自然形成。
S702,加工所述第一支撑固件。
在本发明的实施例中,所示第一支撑固件的材料可以是导热系数大于150W/m.k的铜合金或铝合金中的任意一种。本发明对第一支撑固件具体材料不做限定。
在一个例子中,所述第一支撑固件的材料可以是:Cu 97%、Fe 1%、P 0.5%,其它元素含量皆小于0.1%的铜合金。对所述材料采用粉末注射的方式加工,从而形成图2所示的第一支撑固件。
在一个例子中,通过粉末注射的方式加工第一支撑固件还包括对注射粉末进行高温烧 结,烧结温度为950℃。以及对烧结后的高发热支撑固件进行热处理,通过热处理提高材料的性能。所述热处理的步骤包括固溶处理和时效处理。例如,对烧结完成的第一支撑固件进行固溶处理,固溶处理的温度为1000℃,固溶处理的时间为2小时。固溶处理后,还对第一支撑固件进行时效处理,时效处理的温度为500℃,时效处理的时间为1.5小时。从而使处理后的第一支撑固件基本达到250W/m.k的导热系数,使材料具有良好的导热性能。
在另一个例子中,通过第一支撑固件的材料比例为Cu94%、Ni3%、Si 1%,其它元素含量皆小于0.1%的铜合金。对注射粉末进行高温烧结,烧结温度为950℃。以及对烧结后的第一支撑固件进行热处理,通过热处理提高材料的性能。所述热处理的步骤包括固溶处理和时效处理。例如,对烧结完成的第一支撑固件进行固溶处理,固溶处理的温度为1000℃,固溶处理的时间为1.5小时。固溶处理后,还对第一支撑固件进行时效处理,时效处理的温度为500℃,时效处理的时间为1小时。从而使处理后的第一支撑固件基本达到230W/m.k的导热系数,使材料具有良好的导热性能。
在一个例子中,所述第一支撑固件材料还可以是:Cu 99%、Cr 0.5%、其它元素含量皆小于0.05%的铜合金。从而使处理后的第一支撑固件基本达到350W/m.k的导热系数,使材料具有良好的导热性能。
在一个例子中,所述第一支撑固件材料还可以是6063变形铝合金。
在本发明的实施例中,固溶处理和时效处理仅为本发明具体热处理方式的一种举例,不用于对本发明的限定。在本发明的实施例中,可以采用任意的热处理或非热处理的工艺,从而使材料达到所需要的性能。
在本发明的具体实施例中,对成型的高发热支撑固件进行热处理后,还对第一支撑固件进行了整修,从而达到设计的精度。使第一支撑固件在粉末注射、热处理等环节中出现的形状偏差、变形等得到修正。例如,将所述热处理后的第一支撑固件放置在于所述第一支撑固件相适应的专有模具中,通过加压整形,使第一支撑固件上,靠近显示屏的一面实现平面度低于0.2mm。
在本发明的具体实施例中,所述第一支撑固件可以包括一个或多个。图3为本发明实施例提供的采用一体成型的一种第一支撑固件。如图3所示,所述第一支撑固件可以上多个结构的支撑区域形成的一个整体,例如包括摄像头区域、处理器芯片区域和其它芯片区域。图4为本发明实施例提供的采用多块结构组成的一种第一支撑固件。如图4所示,对于一个手机中框配件中,包括多个第一支撑固件的情况。将每个第一支撑固件分别进行上述处理,从而得到多个不同的第一支撑固件。
在本发明的实施例中,上述通过粉末注射从而形成第一支撑固件仅为本发明实施例的一种具体实施方法。在本发明的具体实施例中,还可以通过其它方式形成本发明具体实施例中的第一支撑固件。例如,通过锻压或计算机数字控制机床的方式从而形成第一支撑固件。
在本发明的具体实施例中,当所述第一支撑固件采用粉末注射的方式成型时,所述连接部上的孔洞可以是烧结过程中自动形成。
S703,基于所述第一支撑固件加工所述第二支撑固件,形成所述中框配件。
对第二支撑固件进行制造。在本发明的具体实施例中,所述第二支撑固件由压铸铝合金、压铸锌合金、压铸镁合金或压铸非晶合金中的任意一种制成。
在本发明的具体实施例中,通过将所述第一支撑固件与第二支撑固件连接,使第一支撑固件与第二支撑固件形成一个完整的整体。在本发明的具体实施例中,所述第二支撑固件采用压铸成型。
在一个例子中,将第二支撑固件压铸成型以及将第一支撑固件与第二支撑固件连接是通过一个特定的中框配件模具。将制造完成的第一支撑固件固定在中框配件模具的相应区域。向所述手机中框配件模具中浇铸,从而形成所述第二支撑固件并将所述第二支撑固件与第一支撑固件连接。从而形成完整的中框配件。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种电子设备中框配件,其特征在于,所述中框配件包括至少一个第一支撑固件和至少一个第二支撑固件,所述第一支撑固件和所述第二支撑固件相连;
    所述第一支撑固件由导热系数大于150瓦/(米·开)的材料制成;
    所述第二支撑固件由导热系数不大于150瓦/(米·开)的材料制成。
  2. 根据权利要求1所述的中框配件,其特征在于,所述第一支撑固件包括所述电子设备的处理器芯片区域和摄像头区域中至少一个区域的支撑固件。
  3. 根据权利要求1或2所述的中框配件,其特征在于,所述第一支撑固件由导热系数大于150瓦/(米·开)的材料制成,包括:
    所述第一支撑固件由高导热铜合金或高导热铝合金制成。
  4. 根据权利要求3所述的中框配件,其特征在于,所述第一支撑固件由高导热铜合金或高导热铝合金制成,包括:
    所述第一支撑固件由含铜97%、含铁1%、含磷0.5%的铜合金制成。
  5. 根据权利要求4所述的中框配件,其特征在于,所述第一支撑固件的导热系数为250瓦/(米·开)。
  6. 根据权利要求3所述的中框配件,其特征在于,所述第一支撑固件由高导热铜合金或高导热铝合金制成,包括:
    所述第一支撑固件由含铜94%、含镍3%、含硅1%的铜合金制成。
  7. 根据权利要求6所述的中框配件,其特征在于,所述第一支撑固件的导热系数为230瓦/(米·开)。
  8. 根据权利要求3所述的中框配件,其特征在于,所述第一支撑固件由高导热铜合金或高导热铝合金制成,包括:
    所述第一支撑固件由含铜99%、含铬0.5%的铜合金制成。
  9. 根据权利要求8所述的中框配件,其特征在于,所述第一支撑固件的导热系数为350瓦/(米·开)。
  10. 根据权利要求3所述的中框配件,其特征在于,所述第一支撑固件由高导热铜合金或高导热铝合金制成,包括:
    所述第一支撑固件由6063变形铝合金制成。
  11. 根据权利要求1至10任一项所述的中框配件,其特征在于,所述第二支撑固件由导热系数不大于150瓦/(米·开)的材料制成,包括:
    所述第二支撑固件由压铸铝合金、压铸锌合金、压铸镁合金或压铸非晶合金中的任意一种制成。
  12. 根据权利要求1至11任一项所述的中框配件,其特征在于,所述第一支撑固件与所述第二支撑固件相连的部位具有连接部。
  13. 根据权利要求12所述的中框配件,其特征在于,所述连接部为“W”形状,凹凸形结构或卡扣结构中的一种。
  14. 根据权利要求12或13所述的中框配件,其特征在于,所述连接部的表面包括孔 洞,所述孔洞的大小包括毫米级、微米级或纳米级中的一种。
  15. 根据权利要求1至14任一项所述的中框配件,其特征在于,包括:所述第一支撑固件采用粉末注射成型、锻压或计算机数字控制机床加工中的至少一种方式加工成型。
  16. 根据权利要求1至15任一项所述的中框配件,所述中框配件与所述显示屏相邻,其特征在于,所述中框配件邻近所述显示屏的表面的平面度小于或等于0.2毫米。
PCT/CN2017/080774 2016-03-25 2017-04-17 一种电子设备中框配件及其制造方法 WO2017162217A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610178151.5 2016-03-25
CN201610178151.5A CN105916348A (zh) 2016-03-25 2016-03-25 一种电子设备中框配件及其制造方法

Publications (2)

Publication Number Publication Date
WO2017162217A1 true WO2017162217A1 (zh) 2017-09-28
WO2017162217A8 WO2017162217A8 (zh) 2018-01-04

Family

ID=56744548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080774 WO2017162217A1 (zh) 2016-03-25 2017-04-17 一种电子设备中框配件及其制造方法

Country Status (2)

Country Link
CN (1) CN105916348A (zh)
WO (1) WO2017162217A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105916348A (zh) * 2016-03-25 2016-08-31 华为技术有限公司 一种电子设备中框配件及其制造方法
CN111147696A (zh) * 2018-11-02 2020-05-12 广州灵派科技有限公司 一种多平台移动直播设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010043880A1 (en) * 2000-03-20 2001-11-22 Jen-Dong Hwang Aluminum die casting alloy
JP2010067842A (ja) * 2008-09-11 2010-03-25 Am Technology:Kk 黒鉛一金属複合体とアルミニウム押出材の組合せからなる放熱体。
EP2602338A1 (en) * 2011-12-08 2013-06-12 Fair Friend Green Technology Corporation Manufacture method for magnesium alloy product
CN103841784A (zh) * 2014-03-18 2014-06-04 亚超特工业有限公司 电子装置的内部中框板的成型方法及其该内部中框板
CN104015009A (zh) * 2014-06-13 2014-09-03 广东长盈精密技术有限公司 一种手机中框、后盖的制备方法
CN203882256U (zh) * 2014-02-28 2014-10-15 深圳垒石热管理技术有限公司 一种智能手机的石墨散热结构
CN104656807A (zh) * 2015-02-15 2015-05-27 深圳市金立通信设备有限公司 中框、终端及中框制作方法
CN105916348A (zh) * 2016-03-25 2016-08-31 华为技术有限公司 一种电子设备中框配件及其制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245174A (ja) * 2009-04-02 2010-10-28 Denso Corp 電子制御ユニット及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010043880A1 (en) * 2000-03-20 2001-11-22 Jen-Dong Hwang Aluminum die casting alloy
JP2010067842A (ja) * 2008-09-11 2010-03-25 Am Technology:Kk 黒鉛一金属複合体とアルミニウム押出材の組合せからなる放熱体。
EP2602338A1 (en) * 2011-12-08 2013-06-12 Fair Friend Green Technology Corporation Manufacture method for magnesium alloy product
CN203882256U (zh) * 2014-02-28 2014-10-15 深圳垒石热管理技术有限公司 一种智能手机的石墨散热结构
CN103841784A (zh) * 2014-03-18 2014-06-04 亚超特工业有限公司 电子装置的内部中框板的成型方法及其该内部中框板
CN104015009A (zh) * 2014-06-13 2014-09-03 广东长盈精密技术有限公司 一种手机中框、后盖的制备方法
CN104656807A (zh) * 2015-02-15 2015-05-27 深圳市金立通信设备有限公司 中框、终端及中框制作方法
CN105916348A (zh) * 2016-03-25 2016-08-31 华为技术有限公司 一种电子设备中框配件及其制造方法

Also Published As

Publication number Publication date
CN105916348A (zh) 2016-08-31
WO2017162217A8 (zh) 2018-01-04

Similar Documents

Publication Publication Date Title
US8472188B2 (en) Semiconductor power module, inverter, and method of manufacturing a power module
WO2017162217A1 (zh) 一种电子设备中框配件及其制造方法
TW200936024A (en) Heat dissipation module and supporting element thereof
US20190281729A1 (en) Vapor chamber
JP2010129774A (ja) 一体型ピンフィンヒートシンクの製造方法
US10763188B2 (en) Integrated heat spreader having electromagnetically-formed features
TW200300528A (en) High efficiency heat dissipation sheet and manufacturing method of the same
CN107787147A (zh) 一种半固态通讯散热壳体及其生产方法
CN206471326U (zh) 一种液冷式散热装置
WO2021073492A1 (zh) 具有支撑结构的真空均热板及终端
WO2016152824A1 (ja) ヒートシンク及び電子機器
CN206194730U (zh) 一种芯片上表面齐平的功率模块
US10328482B2 (en) Method for manufacturing metal compact and apparatus for manufacturing metal compact
JP2019160852A (ja) ヒートシンクの製造方法
CN203448521U (zh) 一种智能温控冲压模具
TWI687644B (zh) 熱轉移模組及其製造方法
CN101232792A (zh) 散热装置、散热基座及其制造方法
CN104972096B (zh) 铝碳化硅质复合体成型装置及利用其的制造方法
CN102564198B (zh) 金属拉丝型散热复合结构的制造方法及制造系统
CN201569205U (zh) 三层结构冷热控制体
WO2017086911A1 (en) Sintered heat spreaders with inserts
CN107979943B (zh) 可携带电子装置的复合支撑散热结构
CN213583743U (zh) 一种直接水冷的绝缘基板
JP2016187009A (ja) 金属−セラミックス接合基板およびその製造方法
JP5187672B2 (ja) 射出成形用金型および射出成形用金型製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769494

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769494

Country of ref document: EP

Kind code of ref document: A1