WO2017162080A1 - 转子的不平衡量的获取方法 - Google Patents

转子的不平衡量的获取方法 Download PDF

Info

Publication number
WO2017162080A1
WO2017162080A1 PCT/CN2017/076803 CN2017076803W WO2017162080A1 WO 2017162080 A1 WO2017162080 A1 WO 2017162080A1 CN 2017076803 W CN2017076803 W CN 2017076803W WO 2017162080 A1 WO2017162080 A1 WO 2017162080A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
unbalance
amount
reference point
angle
Prior art date
Application number
PCT/CN2017/076803
Other languages
English (en)
French (fr)
Inventor
郭卫建
姜芳
Original Assignee
郭卫建
姜芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭卫建, 姜芳 filed Critical 郭卫建
Priority to US16/087,569 priority Critical patent/US20190113413A1/en
Publication of WO2017162080A1 publication Critical patent/WO2017162080A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/14Determining unbalance
    • G01M1/16Determining unbalance by oscillating or rotating the body to be tested
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/16Centering rotors within the stator; Balancing rotors
    • H02K15/165Balancing the rotor

Definitions

  • the present invention relates to a method of acquiring an unbalanced amount of a rotor.
  • the balance machine measures the unbalance of the rotor.
  • the driving method it is mainly divided into belt drive and end drive.
  • the belt driving method is to drive the rotor through a belt, and the driving device has no rigid mechanical parts that are in contact with the tested rotor and rotate at the same speed.
  • the rotor is driven by the support roller, and the rotor is rotated by air, and the effect is the same as that of the belt drive.
  • the present invention is applicable to such a driving method, and is simply referred to as "free angle driving mode" in the following description.
  • the end drive mode is to drive the rotor to rotate by the drive device through the drive shaft or other connecting members. In this manner, the rigid mechanical member is in contact with the rotor and rotates at the same speed as the tested rotor.
  • Belt drive mode (free angle drive mode) or end drive mode balance machine measures the imbalance of the rotor, which is the vector sum of the unbalanced amount of the balancer itself and the unbalance of the rotor. It is necessary to invent a method to balance the unbalance of the rotor with the balancing machine. The amount of imbalance itself is decomposed to obtain the imbalance of the rotor.
  • the present invention relates to a method of measuring the amount of unbalance of a rotor in a free angle driving manner.
  • the direction (or angle) of the unbalance of the rotor is directly related to the change of the angle zero reference point on the rotor.
  • the magnitude of the unbalance of the measuring system itself of any other mechanical parts, driving devices and balancing machines is The direction has nothing to do with the change of the angle zero reference point on the rotor; by setting different angle zero degree reference points method, the unbalance amount of the rotor is measured separately, and the unbalance amount of the rotor itself is obtained by vector operation.
  • an object of the present invention is to provide a method of obtaining an unbalance amount of a rotor, which does not require a relative rotation angle of the rotor and the balancer. It is also an object of the present invention to provide a method for obtaining an unbalance amount of a rotor, which can avoid affecting the unbalance amount of the rotor by changing the angle zero reference point.
  • the method for acquiring the unbalance amount of the rotor of the present invention is used to decompose the unbalance amount of the rotor and the unbalance amount of the balancer itself, and set an unbalanced angle zero-degree reference point on the rotor to The reference point is used as an angle reference to measure the amount of imbalance of the rotor.
  • the unbalanced angle zero-degree reference point is removed, and at an angular position different from the angular zero-degree reference point, a new angle zero-degree reference point is newly measured, and the unbalance amount of the rotor is measured; this step is performed at least once.
  • the amount of unbalance of the rotor is obtained by performing vector calculation on the unbalanced amount corresponding to the two optional reference points.
  • At least two unbalanced angular zero-degree reference points are disposed on the rotor, and a projection of each of the reference points and a projection of the rotary axis is connected on a plane perpendicular to a rotary axis of the rotor There is an angle between them; the unbalance amount of the rotor is measured in turn with each of the reference points as an angle reference; and the unbalance amount of the rotor is obtained by performing vector calculation on the unbalance amount corresponding to the two optional reference points.
  • This technique is especially suitable for making unbalanced standard rotors.
  • the technical solution 3 is based on the above technical solution 2, and uses two reference points.
  • Embodiment 4 provides a method for acquiring a rotor imbalance amount, which is set on an same plane perpendicular to the rotary axis, on which the distance from the reference point to the rotary axis is different .
  • an angular zero reference point can be provided on the same end face of, for example, the rotor for easy viewing.
  • the unbalance amount angle reference point is set on a different plane perpendicular to the rotary axis.
  • This can be adapted to a rotor that is more convenient to set a reference point in the axial direction.
  • the sixth aspect of the invention provides a rotor having at least two unbalanced angular zero-degree reference points disposed on the rotor, the projection of each of the reference points and the projection of the rotary axis on a plane perpendicular to the rotary axis There is an angle between the lines.
  • At least two unbalanced angular zero-degree reference points are provided on the rotor before measurement, which can avoid affecting the unbalance of the rotor due to the change of the angular zero reference point during measurement.
  • the seventh aspect of the invention provides a rotor according to the sixth aspect, the unbalanced angle zero-degree reference point is set on a same plane perpendicular to the rotary axis, on the plane, the distance of the reference point to the rotary axis different.
  • Such a rotor can provide an angular zero reference point on, for example, the same end face, facilitating viewing of the angular zero reference point.
  • the technical solution 8 gives a rotor according to the sixth aspect, the unbalance amount angle zero degree reference point is set on different planes perpendicular to the rotary axis.
  • Figure 1 shows a rotor R, where (a) is the front view of the rotor and (b) is a side view of the rotor.
  • Figure 2 shows the first nominal unbalance of the rotor R, where (a) is the plane PL1 and (b) is the plane PL2.
  • Figure 3 is a schematic illustration of the conversion of the angular zero reference point on the rotor to a 180 degree position, wherein (a) is the front view of the rotor and (b) is the side view of the rotor.
  • Figure 4 shows the second nominal unbalance of the rotor R, and a vector operation diagram, where (a) is the plane PL1 and (b) is the plane PL2.
  • Fig. 5 is a schematic view showing two angle zero reference points on the end face of the rotor, wherein (a) is a front view of the rotor and (b) is a side view of the rotor.
  • Fig. 6 is a schematic view showing two angle zero reference points in the longitudinal direction of the rotor, wherein (a) is a front view of the rotor, and (b) is a side view of the rotor.
  • Figure 7 is a schematic illustration of the placement of two angular zero degree reference points on a four cylinder crankshaft.
  • Figure 1 shows a rotor R.
  • Figure 1 (a) is a front view of the rotor, and (b) is a side view of the rotor, that is, an end face of the rotor. On both end faces of the rotor, angle graduations such as 0 degrees, 90 degrees, 180 degrees, and 270 degrees are made.
  • the mass distribution of the rotor R that is, the mass axis does not coincide with the rotor R rotation axis A-A
  • the rotor R has an unbalance amount.
  • the rotor referred to in the present invention is a rigid rotor, that is, the mass and mass distribution of the rotor are considered to be fixed, and the amount of unbalance is not changed due to the difference in rotational speed of the rotor during dynamic balance measurement.
  • the amount of imbalance is a vector with size and direction (or angle). It is necessary to make an angular zero reference point on the rotor as the angle reference, and the reference point is used as the direction or angle of the imbalance of the rotor. Starting point. The angle of the reference point made on the rotor is different, and the angle of the imbalance of the rotor changes.
  • the amount of imbalance of a rotor R can be represented by two unbalanced quantities on an arbitrarily selected two planes perpendicular to the axis of revolution, such as plane PL1 and plane PL2 as shown in FIG.
  • the amount of imbalance can be represented by a plane.
  • the present invention is described by way of example in which the rotor is placed on the balancer in a horizontal support manner.
  • the support members Jma and Jmb on the balancing machine support the left and right rotary journals of the rotor to form the rotary axis A-A of the rotor.
  • the support for the rotor on the balancing machine is in the form of a roller, a bearing bush, a V-shaped block or the like.
  • the balancer has axial stops for the rotor, such as Ja and Jb as shown in FIG.
  • the axial stop should act on a smooth surface on the rotor as close as possible to the axis of rotation of the rotor so that the effect of the limit on the amount of unbalance generated by the rotor is negligible.
  • the balancing machine needs to drive the rotor and accelerate to measure the speed to achieve unbalance measurement.
  • the balancing machine has two modes of belt driving (free angle driving) and end driving for the driving of the rotor, and the present invention is only for the free angle driving mode.
  • Figure 1 shows the drive belt and B1 is the belt.
  • the belt drive is characterized in that the drive device has no rigid mechanical parts that are in contact with the tested rotor and rotate at the same speed.
  • the imbalance of the mechanical parts and the unbalance of the drive device are not superimposed with the unbalance of the rotor, that is, the belt drive
  • only the direction (or angle) of the unbalance of the rotor is related to the change of the zero-degree angle reference point on the rotor.
  • the magnitude and direction of the unbalance of the balancing machine measuring system and the mechanical parts other than the rotor are on the rotor.
  • the change in the zero angle reference point does not matter.
  • the driving method that satisfies the above characteristics can be regarded as the belt drive. Support roller drive, air drive, etc. meet the above characteristics, and are driven by the same belt.
  • the above-described types of driving methods are collectively referred to as "free angle driving method".
  • the free angle drive also has a vertical arrangement, such as a vertical structure air bearing balancer for a turbocharger compressor wheel.
  • the rotor is placed vertically, compressed air suspends the rotor, and an air nozzle uses compressed air to drive the rotor to rotate. Therefore, the method of the present invention is not limited to the case where the rotor is placed horizontally.
  • the end drive drive mechanism is driven by the drive shaft.
  • the mechanical connecting member such as a pin drives the rotor, and the unbalanced amount of mechanical connecting members such as the driving device and the transmission shaft is superimposed on the rotor at the same speed. If the angular zero reference point of the unbalance on the rotor is changed, the direction of the unbalance of these mechanical parts also changes. For end drives, it is more accurate to call "fixed angle drive".
  • the balanced rotor is positioned and clamped on the balancing machine by the clamp on the balancing machine.
  • the mechanical parts such as the clamp rotate with the rotor at the same speed.
  • This balanced driving mode is driven at the same end.
  • the present invention acquires the unbalance amount of the rotor by changing the angular zero degree reference point.
  • An angular zero reference point is set on the rotor, as shown by F1 in (a) and (b) of FIG.
  • There are various methods for setting the reference point on the rotor such as marking with a color pen, attaching a reflective tape, and the like.
  • the quality of the reference point itself should be as small as possible to reduce the effect of the reference point mass on the unbalance of the rotor when changing the reference point.
  • An angle sensor is provided on the balancing machine, as shown by RF in (a) of Fig. 1.
  • the angle sensor obtains the direction of the rotor imbalance by detecting the angle zero reference point, that is, the angle of the imbalance relative to the angle zero reference point.
  • the measurement plane is selected. After the angle zero reference point is selected, the magnitude and direction (angle) of the unbalance of the rotor are unique.
  • the amount of unbalance of the rotor R in Fig. 1 was measured with a balancing machine.
  • the rotor R may be repeatedly measured at each step, and the average value of the multiple measurements is recorded as the unbalance amount measurement value.
  • the resulting unbalance amount is measured to measure the unbalance amount U11 (first nominal unbalance amount, including size and direction) of the first plane PL1 and measure the unbalance amount U21 (first nominal unbalance amount, including size and direction) of the second plane PL2. Said.
  • the first nominal unbalance amount is plotted onto the plane coordinates.
  • the origin of the coordinates is the zero point of the measured imbalance, and the 0 degree of the coordinate is the angular zero reference point on the rotor, as shown in Figure 2.
  • the measured first nominal unbalance amounts U11 and U21 are the vector sum of the imbalance amount of the balancer itself and the rotor imbalance amount.
  • the unbalanced amount of the balancing machine itself includes the amount of imbalance of other mechanical parts other than the rotor and the amount of imbalance in the measuring system.
  • the angle of the reference point change is not particularly limited.
  • the reference point of the rotor is changed by 180 degrees, that is, the original angle zero degree reference point F1 is removed, and at the 180 degree position of the rotor, the reference point F2 is newly made, as shown in the figure. 3 is shown.
  • the amount of imbalance of the rotor R is measured again.
  • the resulting imbalance amount is measured to measure the unbalance amount U12 (second nominal unbalance amount, including size and direction) of the first plane PL1 and the unbalance amount U22 (second nominal imbalance amount, including size and direction) of the second plane PL2. Said.
  • the second nominal unbalance amount is plotted onto the plane coordinates as shown in FIG.
  • the rotor is corrected so that the unbalance amount of the rotor is smaller than the set value.
  • the present invention further preferably sets the unbalanced zero degree angle reference point by the following method to eliminate the influence of the quality of the reference point on the amount of rotor imbalance.
  • two reference points F3 and F4 are made on the end face of the rotor R side.
  • the two reference points are 180 degrees apart, F3 is located at the radial position, and F4 is located at a half of the radial position as an example.
  • the amount of imbalance of the rotor R is measured and recorded as the second nominal unbalance amount.
  • the unbalance amount of the rotor is obtained by vector operation.
  • the angle sensor RF can only detect one reference point in one position.
  • the two angular zero degree reference points are different in position in the radial direction.
  • More angular zero-degree reference points can be placed on the rotor with a certain angular difference between each other, and only one reference point can be detected when the angle sensor RF is in one position. Preferably, they are spaced apart from each other by a certain distance in the radial direction.
  • the position of the angle sensor should be set so that the following two perpendicular lines are zero when viewed along the axis of rotation, the two The vertical line is the vertical line made by the angle position of the new zero-degree angle reference point detected by the angle sensor to the axis of rotation of the rotor, and the spatial position of the previous zero-degree angle reference point detected by the angle sensor.
  • the perpendicular to the axis of rotation of the rotor A simple method is to move the angular sensor along a fixed radial direction of the end face of the rotor as shown in Figure 5.
  • Two different reference point combinations can be selected in sequence, and at least one reference point in each combination is different from other combinations. Multiple measurements and calculations are performed to obtain multiple unbalance amounts of the rotor, and the average value of the rotor is the final unbalance amount of the rotor. .
  • the standard rotor used for the calibration balancer is made with multiple angle zero reference points, which ensures that the standard rotor has an accurate imbalance and is convenient for the user to check the unbalance of the standard rotor.
  • FIG. 6 shows another method of setting multiple angle zero reference points.
  • the amount of imbalance of the rotor R is measured and recorded as the second nominal unbalance amount.
  • the unbalance amount of the rotor is obtained by vector operation.
  • the position of the zero angle reference point of the above two angles there is no special requirement for the position of the zero angle reference point of the above two angles, as long as the angles of F5 and F6 are different by a certain angle, and only one reference point can be checked when the angle sensor RF is in one position.
  • the positions in the axial direction are different.
  • More angular zero-degree reference points can be placed on the rotor, with a certain angular difference between each other, and the angle sensor RF can only detect one reference point in one position. Preferably, they are spaced apart from each other by a certain distance in the axial direction.
  • the position of the angle sensor should be set so that the following two perpendicular lines are zero when viewed along the axis of rotation, the two The vertical line is the vertical line made by the angle position of the new zero-degree angle reference point detected by the angle sensor to the axis of rotation of the rotor, and the spatial position of the previous zero-degree angle reference point detected by the angle sensor.
  • the perpendicular to the axis of rotation of the rotor is A simple solution is to move the angular sensor along a fixed line parallel to the axis of the rotor as shown in Figure 6.
  • Figure 7 shows the crankshaft of a passenger car four-cylinder engine.
  • the angle sensor in the first measurement, is set at the position of Po5, and the unbalance amount of the crankshaft rotor is measured by using the connecting rod neck Pin1 as a reference point, and is recorded as the first nominal unbalance amount.
  • the angle zero reference point has a certain degree of difference in angle.
  • the angle sensor can only detect one reference point when it is set in one position, and the unbalance amount of the rotor can be measured by the method of the invention and calculated by vector.
  • the distance between the rotor in the radial direction or the axial direction is a certain distance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Of Balance (AREA)

Abstract

一种转子(R)的不平衡量的获取方法。用于将转子(R)的不平衡量与平衡机本身的不平衡量分解开,其包括以下步骤:在转子(R)上设置至少两个不平衡量角度零度参考点(F3,F4),在垂直于转子(R)的回转轴的平面上,各参考点(F3,F4)的投影和回转轴的投影的连线之间具有夹角;依次以各参考点(F3,F4)作为角度基准测量转子(R)的不平衡量;通过对任选的两个参考点(F3,F4)对应的不平衡量进行矢量计算,得到转子(R)的不平衡量。能避免因在测量过程中改变角度零度参考点而影响转子的不平衡量。

Description

转子的不平衡量的获取方法 技术领域
本发明涉及一种转子的不平衡量的获取方法。
背景技术
平衡机测量转子的不平衡量,按驱动方式,主要分为皮带驱动和端驱动。
皮带驱动方式,是通过皮带对转子进行驱动,驱动装置没有与被测转子接触且同转速回转的刚性机械件。在实际平衡工艺中,用支撑滚轮驱动转子回转、用空气驱动转子回转等方式,效果与皮带驱动相同。本发明适用于这类驱动方式,在下面的叙述中简称为“自由角度驱动方式”。
端驱动方式为通过传动轴或是其它的连接件,由驱动装置驱动转子回转,在这种方式下,有刚性机械件与转子接触并与被测转子同转速回转。
皮带驱动方式(自由角度驱动方式)或端驱动方式平衡机测量转子所得不平衡量,是平衡机本身的不平衡量与转子不平衡量的矢量和,需要发明一种方法,将转子的不平衡量与平衡机本身的不平衡量分解开,以获取转子的不平衡量。
本发明涉及以自由角度驱动方式测量转子的不平衡量的方法。例如皮带驱动时,转子的不平衡量的方向(或称角度)与转子上角度零度参考点的变化有直接关系,其它任何的机械件、驱动装置及平衡机的测量系统本身的不平衡量的大小和方向与转子上角度零度参考点的变化没有关系;利用设置不同的角度零度参考点方法,分别测量转子的不平衡量,并通过矢量运算获取转子本身的不平衡量。
现有获取转子的不平衡量的技术,在设置不同的角度零度参考点 时,把转子相对于平衡机旋转一定角度,把转子上的角度零度参考点沿转子旋转的反方向移动相同的角度。其技术问题在于,为了改变转子上的角度零度参考点,需要把转子与平衡机相对转动,工序较为复杂。另外,做参考点的材料,总有一定的质量,改变参考点会影响转子的不平衡量;而且因为需要在测量现场不同的测量过程之间改变参考点,角度不容易做精确,改动起来也不方便。
发明内容
鉴于上述技术问题,本发明的目的是提供一种转子的不平衡量的获取方法,不必将转子与平衡机相对转动角度。本发明的目的还在于,提供一种转子的不平衡量的获取方法,能避免因改变角度零度参考点而影响转子的不平衡量。
在技术方案1中,本发明的转子的不平衡量的获取方法,用于将转子的不平衡量与平衡机本身的不平衡量分解开,在转子上设置一个不平衡量角度零度参考点,以所述参考点作为角度基准,测量所述转子的不平衡量。
去除所述不平衡量角度零度参考点,在不同于所述角度零度参考点的角度位置,新作角度零度参考点,测量所述转子的不平衡量;此步骤至少进行一次。
通过对任选的两个参考点对应的不平衡量进行矢量计算,得到所述转子的不平衡量。
通过采用上述技术方案,不必将转子与平衡机相对转动一定角度,而直接在转子上改变角度零度参考点,获取转子的不平衡量,工序简单。
在技术方案2中,在转子上设置至少两个不平衡量角度零度参考点,在垂直于所述转子的回转轴的平面上,各所述参考点的投影和所述回转轴的投影的连线之间具有夹角;依次以各所述参考点作为角度基准测量所述转子的不平衡量;通过对任选的两个参考点对应的不平衡量进行矢量计算,得到所述转子的不平衡量。
通过在测量前在转子上设置至少两个不平衡量角度零度参考点,能避免因在测量过程中改变角度零度参考点而影响转子的不平衡量。
该技术尤其适合于制作不平衡量标准转子。
技术方案3是基于上述技术方案2,采用两个参考点。
这样,以两个点的不平衡量进行矢量计算,获取到转子的不平衡量,简单方便。
技术方案4给出一种获取转子不平衡量的方法,将角度零度参考点设置在垂直于所述回转轴的同一平面上,在所述平面上,所述参考点到所述回转轴的距离不同。
这样,可以在例如转子的同一端面上设置角度零度参考点,便于观察。
技术方案5中,设置不平衡量角度参考点在垂直于回转轴的不同平面上。
这样能适应于在轴向方向上设置参考点较为方便的转子。
技术方案6给出一种转子,在转子上至少设置有两个不平衡量角度零度参考点,在垂直于所述回转轴的平面上,各所述参考点的投影和所述回转轴的投影的连线之间具有夹角。
通过采用这样的转子,在测量前在转子上设置至少两个不平衡量角度零度参考点,能避免因在测量时改变角度零度参考点而影响转子的不平衡量。
技术方案7给出一种转子,基于技术方案6,不平衡量角度零度参考点设置在垂直于所述回转轴的同一平面上,在所述平面上,所述参考点到所述回转轴的距离不同。
这样的转子可以在例如同一端面上设置角度零度参考点,便于对角度零度参考点进行观察。
技术方案8给出一种转子,基于技术方案6,不平衡量角度零度参考点设置在垂直于所述回转轴的不同平面上。
这样,能适应在轴向方向上设置参考点较为方便的转子。
附图说明
图1所示为转子R,其中(a)为转子的主视图,(b)为转子的侧视图。
图2所示为转子R的第一名义不平衡量,其中(a)为平面PL1,(b)为平面PL2。
图3为将转子上的角度零度参考点转换到180度位置的示意图,其中(a)为转子的主视图,(b)为转子的侧视图。
图4所示为转子R的第二名义不平衡量,及矢量运算示意图,其中(a)为平面PL1,(b)为平面PL2。
图5为在转子端面上设置两个角度零度参考点的示意图,其中(a)为转子的主视图,(b)为转子的侧视图。
图6为在转子长度方向上设置两个角度零度参考点的示意图,其中(a)为转子的主视图,(b)为转子的侧视图。
图7为在一个四缸曲轴上设置两个角度零度参考点的示意图。
具体实施方式
下面,参照附图举例说明本发明的实施方式。为了便于说明,下述步骤基本上是按本发明的实施顺序排列的,但也有部分内容没有按顺序记载,如下步骤的顺序也并不是唯一的。而且下述步骤只为举例说明,并不都是必须的,只要能够实施本发明即可。本实施方式并不用于限定本发明的保护范围。
A.图1所示为一个转子R。图1中(a)为转子的主视图,(b)为转子的侧视图,即为转子的端面。在转子的两个端面上,做出角度刻度,如0度、90度、180度、270度。当转子R的质量分布即质量轴线与转子R回转轴线A-A不重合时,转子R即存在不平衡量。本发明中所指的转子是刚性转子,即认为转子的质量和质量分布是固定的,不因转子在动平衡测量时转速不同而不平衡量发生变化。不平衡量是一个矢量,有大小和方向(或称角度)。需要在转子上做角度零度参考点作为角度基准,以此参考点作为转子的不平衡量的方向或者说角度的 起始点。在转子上所做的参考点的角度不同,转子的不平衡量的角度随之变化。一个转子R的不平衡量可以用任意选择的两个垂直于回转轴线的平面上的两个不平衡量表示,如图1中所示的平面PL1和平面PL2。对于一些长度和直径相比较小的转子,不平衡量可以用一个平面来表示。
本发明以转子用卧式支撑的方式放置在平衡机上为例说明。平衡机上的支撑件Jma和Jmb支撑转子的左右两个回转轴颈,形成了转子的回转轴线A-A。平衡机上对于转子的支撑件有滚轮、轴瓦、V形块等形式。
平衡机上对于转子有轴向限位件,如图1中所示的Ja及Jb。轴向限位件应作用在转子上的光滑平面上,且尽可能靠近转子回转轴线的位置,以使限位件对转子产生的不平衡量的影响可以忽略。
平衡机需要将转子驱动,加速到测量转速以实现不平衡量测量。
平衡机对转子的驱动有皮带驱动(自由角度驱动)和端驱动两种方式,本发明只针对自由角度驱动方式。
图1中为驱动皮带示意图,B1为皮带。皮带驱动的特点是,驱动装置没有与被测转子接触且同转速回转的刚性机械件,机械件的不平衡量及驱动装置的不平衡量没有与转子的不平衡量迭加在一起,即,在皮带驱动方式下,只有转子的不平衡量的方向(或称角度)与转子上零度角度参考点的变化有关系,平衡机测量系统及除转子之外的机械件的不平衡量的大小和方向都与转子上零度角度参考点的变化没有关系。只要满足上述特点的驱动方式,都可以视同为皮带驱动。支撑滚轮驱动、空气驱动等方式符合上述的特点,视同皮带驱动。本发明中,把上述一类驱动方式统称为“自由角度驱动方式”。
在实际应用中,自由角度驱动也有立式设置的方式,如涡轮增压器压气轮所用的立式结构空气轴承平衡机。转子为立式放置,压缩空气将转子悬浮,另有空气喷嘴利用压缩空气驱动转子回转。因此,本发明的方法并不限定于转子卧式放置的情况。
与自由角度驱动方式不同,端驱动的驱动机构通过传动轴、驱动 销等机械连接件驱动转子,且同转速回转,驱动装置及传动轴等机械连接件的不平衡量与转子叠加在一起。如果改变转子上的不平衡量角度零度参考点,这些机械件的不平衡量的方向也随之改变。对于端驱动,称作“固定角度驱动”更准确。
对于绝大多数的立式平衡机,被平衡的转子是通过平衡机上的夹具将转子定位和夹紧在平衡机上,夹具等机械件与转子同转速回转,这种平衡驱动方式视同端驱动。
B.对于“自由角度驱动方式”,本发明通过改变角度零度参考点获取转子的不平衡量。
在转子上设置角度零度参考点,如图1中(a)及(b)中的F1所示。在转子上设置参考点有多种方法,如用颜色笔涂出标记、贴反光胶带等。所做参考点本身的质量应尽可能小,以减小改变参考点时,参考点质量对转子的不平衡量的影响。
平衡机上设置有角度传感器,如图1中(a)中的RF所示。角度传感器通过检测角度零度参考点,得到转子不平衡量的方向,即不平衡量相对于角度零度参考点的角度。
当转子的回转轴线确定,选择了测量平面,选择了角度零度参考点后,转子的不平衡量的大小和方向(角度)是唯一的。
用平衡机测量图1中的转子R的不平衡量。在进行不平衡量测量时,为了提高测量准确性,可以在每一步将转子R进行多次重复测量,以多次测量的平均值记为不平衡量测量值。测量得到的不平衡量以测量第一平面PL1的不平衡量U11(第一名义不平衡量,包括大小和方向)和测量第二平面PL2的不平衡量U21(第一名义不平衡量,包括大小和方向)来表示。将第一名义不平衡量做图到平面坐标上。坐标的原点是测量所得不平衡量大小的零点,坐标的0度为转子上的角度零度参考点,如图2所示。测量所得第一名义不平衡量U11和U21是平衡机本身的不平衡量与转子不平衡量的矢量和。平衡机本身的不平衡量包括除转子外的其它机械件的不平衡量及测量系统中的不平衡量。
C.为了将转子本身的不平衡量分离出来,改变转子上的角度零度参考点,即去除角度零度参考点,并在新的角度位置重新做参考点。参考点改变的角度没有特别的限定,本实施例中,将转子的参考点改变了180度,即将原来的角度零度参考点F1去除,在转子的180度位置,新做参考点F2,如图3所示。
再次测量转子R的不平衡量。测量得到的不平衡量以测量第一平面PL1的不平衡量U12(第二名义不平衡量,包括大小和方向)和测量第二平面PL2的不平衡量U22(第二名义不平衡量,包括大小和方向)来表示。将第二名义不平衡量做图到平面坐标上,如图4所示。
在两次测量中,平衡机本身不平衡量的大小和方向均未发生变化;转子R不平衡量的大小没有变化,但由于角度零度参考点变化了180度,转子R不平衡量的方向变化了180度,如图4所示。根据矢量运算,得到转子R在第一平面PL1和第二平面PL2的不平衡量U1b和U2b,及角度零度参考点反转180度后转子在两个平面的不平衡量-U1b和-U2b。图4中的U1a和U2a是除转子外平衡机本身在测量平面PL1和PL2的不平衡量。
D.根据测量和计算得到的转子R的不平衡量,对转子进行校正,使转子的不平衡量小于设定值。
E.在上面C步骤改变转子R上的角度零度参考点时,参考点总有一定的质量,改变参考点会影响转子的不平衡量。另外,在测量过程的中间,改变参考点,精确性不高,也不方便。因此,本发明更进一步优选采用下面的方法设置不平衡量零度角度参考点,以消除参考点的质量对转子不平衡量的影响。
如图5所示,在转子R一侧的端面上做两处参考点F3和F4。本实施例以两个参考点相差180度,F3位于半径位置,F4位于一半的半径位置为例说明。
将转子R放置到平衡机上,设置角度传感器RF在Po1位置。在此位置传感器RF只能检测到角度零度参考点F3。测量转子R的不平衡量,记为第一名义不平衡量。
将平衡机上的角度传感器RF调整到Po2位置,在此位置传感器RF只能检测到角度零度参考点F4。测量转子R的不平衡量,记为第二名义不平衡量。
在两次测量中,平衡机本身不平衡量的大小和方向未发生变化;转子R不平衡量的大小没有变化,但方向变化了180度。根据两次测量得到的不平衡量,通过矢量运算,得到转子的不平衡量。
上述两个角度零度参考点的设置位置没有特殊的要求,只要F3和F4角度相差一定的角度,并且角度传感器RF在一个位置时只能检查到一个参考点即可。优选两个角度零度参考点在半径方向上的位置不同。
可以在转子上设置更多的角度零度参考点,相互之间有一定的角度差,并且使角度传感器RF在一个位置时只能检查到一个参考点。优选相互之间在半径方向上隔开一定的距离。
角度传感器从一个位置移到一个新位置,用以检测一个新角度零度参考点时,应设置角度传感器的位置,使如下两条垂线在沿回转轴线方向观察时夹角为零,该两条垂线为,新的零度角度参考点被角度传感器检测到时所处的空间位置点向转子的回转轴线所作的垂线,与前一个零度角度参考点被角度传感器检测到时所处的空间位置点向转子的回转轴线所作的垂线。一种简单的办法是,角度传感器移动时,沿转子的端面的一个固定的半径方向移动,如图5所示。
选择任意两个参考点,分别用平衡机测量转子的不平衡量,通过矢量运算获得转子的不平衡量。
可以依次选用不同的两个参考点组合,每个组合中至少有一个参考点与其它组合不同,多次测量和计算,得到转子的多个不平衡量,以其平均值记为转子的最终不平衡量。
将标定平衡机用的标准转子,做成带多个角度零度参考点,即保证了标准转子具有准确的不平衡量,又方便使用者检查标准转子的不平衡量。
F.图6所示是另一种设置多个角度零度参考点的方法。在转子 轴向方向的不同位置,转子外周上0度和90度角度处,各设置一个角度零度参考点F5和F6。
将转子R放置到平衡机上,设置角度传感器RF在Po3位置。在此位置传感器RF只能检测到角度零度参考点F5。用平衡机测量转子R的不平衡量,记为第一名义不平衡量。
将平衡机上的角度传感器RF调整到Po4位置,在此位置传感器RF只能检测到角度零度参考点F6。测量转子R的不平衡量,记为第二名义不平衡量。
在两次测量中,平衡机本身不平衡量的大小和方向未发生变化;转子R不平衡量的大小没有变化,但方向变化了90度。根据两次测量得到的不平衡量,通过矢量运算,得到转子的不平衡量。
上述两个角度零度参考点的位置没有特殊的要求,只要F5和F6角度相差一定的角度,并且使角度传感器RF在一个位置时只能检查到一个参考点即可。优选在轴向方向上的位置不同。
可以在转子上设置更多的角度零度参考点,相互之间有一定的角度差,并使角度传感器RF在一个位置时只能检查到一个参考点。优选相互之间在轴向方向上隔开一定的距离。
角度传感器从一个位置移到一个新位置,用以检测一个新角度零度参考点时,应设置角度传感器的位置,使如下两条垂线在沿回转轴线方向观察时夹角为零,该两条垂线为,新的零度角度参考点被角度传感器检测到时所处的空间位置点向转子的回转轴线所作的垂线,与前一个零度角度参考点被角度传感器检测到时所处的空间位置点向转子的回转轴线所作的垂线。一种简单的办法是,角度传感器移动时,沿平行于转子的轴线的一个固定直线移动,如图6所示。
选择任意两个参考点,分别用平衡机测量转子的不平衡量,通过矢量运算获得转子的不平衡量。
G.图7所示为乘用车四缸发动机曲轴。对发动机曲轴进行不平衡量测量时,利用曲轴上不同的连杆颈Pin1和Pin2(连杆颈径向最外端的点)作为不同的角度零度参考点。
本实施例中,第一次测量时,将角度传感器设置在Po5的位置,利用连杆颈Pin1作为参考点,测量曲轴转子的不平衡量,记为第一名义不平衡量。
将平衡机上的角度传感器RF调整到Po6位置,以连杆颈Pin2作为角度零度参考点。再次测量曲轴的不平衡量,记为第二名义不平衡量。根据两次测量得到的不平衡量,通过矢量运算,得到曲轴的不平衡量。
H.在机械制造工业中,有各种各样的转子需要进行动平衡,如果在需要平衡的零件上,能找到一个以上的不同部位作角度零度参考点,其在角度上相差有一定的度数,并且角度传感器设置在一个位置时只能检测到一个参考点,都可以用本发明的方法测量及用矢量计算得到转子的不平衡量。优选在转子的半径方向或者是轴向方向上相差一定的距离。
以上说明了本发明的特定实施方式,本发明并不局限于上述实施方式。在本发明的技术思想上可以对本发明的实施方式进行任意的变形。

Claims (8)

  1. 一种转子的不平衡量的获取方法,用于将转子的不平衡量与平衡机本身的不平衡量分解开,其特征在于,包括以下步骤:
    在转子上设置一个不平衡量角度零度参考点,以所述参考点作为角度基准,测量所述转子的不平衡量;
    去除所述不平衡量角度零度参考点,在不同于所述角度零度参考点的角度位置,新作角度零度参考点,测量所述转子的不平衡量;此步骤至少进行一次;
    通过对任选的两个所述参考点对应的不平衡量进行矢量计算,得到所述转子的不平衡量。
  2. 一种转子的不平衡量的获取方法,用于将转子的不平衡量与平衡机本身的不平衡量分解开,其特征在于,包括以下步骤:
    在转子上设置至少两个不平衡量角度零度参考点,在垂直于所述转子的回转轴的平面上,各所述参考点的投影和所述回转轴的投影的连线之间具有夹角;
    依次以各所述参考点作为角度基准测量所述转子的不平衡量;
    通过对任选的两个所述参考点对应的不平衡量进行矢量计算,得到所述转子的不平衡量。
  3. 根据权利要求2所述的方法,其特征在于,所述参考点为两个。
  4. 根据权利要求2所述的方法,其特征在于,所述参考点设置在垂直于所述回转轴的同一平面上,在所述平面上,所述参考点到所述回转轴的距离不同。
  5. 根据权利要求2所述的方法,其特征在于,所述参考点设置在垂直于所述回转轴的不同平面上。
  6. 一种转子,其特征在于,至少设置有两个不平衡量角度零度参考点,在垂直于所述回转轴的平面上,各所述参考点的投影和所述回转轴的投影的连线之间具有夹角。
  7. 根据权利要求6所述的转子,其特征在于,所述参考点设置 在垂直于所述回转轴的同一平面上,在所述平面上,所述参考点到所述回转轴的距离不同。
  8. 根据权利要求6所述的转子,其特征在于,所述参考点设置在垂直于所述回转轴的不同平面上。
PCT/CN2017/076803 2016-03-22 2017-03-15 转子的不平衡量的获取方法 WO2017162080A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/087,569 US20190113413A1 (en) 2016-03-22 2017-03-15 Method for acquiring amount of unbalance of rotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610166620.1 2016-03-22
CN201610166620.1A CN105738033B (zh) 2016-03-22 2016-03-22 转子的不平衡量的获取方法

Publications (1)

Publication Number Publication Date
WO2017162080A1 true WO2017162080A1 (zh) 2017-09-28

Family

ID=56251843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/076803 WO2017162080A1 (zh) 2016-03-22 2017-03-15 转子的不平衡量的获取方法

Country Status (3)

Country Link
US (1) US20190113413A1 (zh)
CN (1) CN105738033B (zh)
WO (1) WO2017162080A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738033B (zh) * 2016-03-22 2019-02-01 郭卫建 转子的不平衡量的获取方法
CN110006590B (zh) 2019-03-12 2020-07-31 北京双元天衡检测科技有限公司 获取转子的不平衡量和平衡机的不平衡量的方法
CN111177943B (zh) * 2020-01-06 2022-03-22 浙江大学 一种转子不平衡系数变角度迭代搜寻的不平衡补偿方法
CN116131559B (zh) * 2022-12-19 2024-01-02 中国航发沈阳发动机研究所 一种转子装配工艺及评价方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247947B (en) * 1990-07-20 1994-08-31 Westinghouse Electric Corp Measuring runout of rotors
CN102072797A (zh) * 2010-12-20 2011-05-25 深圳市元征软件开发有限公司 轮胎动平衡测量中的主轴不平衡量测量方法及轮胎平衡机
CN103776587A (zh) * 2014-01-28 2014-05-07 郭卫建 确定转子的不平衡量的方法
CN105021349A (zh) * 2015-05-19 2015-11-04 郭卫建 一种获取转子的不平衡量的方法
CN204788804U (zh) * 2015-05-19 2015-11-18 郭卫建 一种转子组合件
CN105738033A (zh) * 2016-03-22 2016-07-06 郭卫建 转子的不平衡量的获取方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217264C2 (de) * 1972-04-11 1974-05-16 Carl Schenck Maschinenfabrik Gmbh, 6100 Darmstadt Auswuchtmaschine mit einer Einrichtung zur Bestimmung und optischen Anzeige einer Unwucht
JPS55166022A (en) * 1979-06-13 1980-12-24 Matsushita Electric Ind Co Ltd Digital type dynamic balance measurement device
DE3204016A1 (de) * 1982-02-05 1983-08-18 Wolf-Dieter 6100 Darmstadt Reutlinger Verfahren und vorrichtung zur positionierung von auszuwuchtenden werkstuecken
US4868762A (en) * 1987-09-14 1989-09-19 Balance Technology, Inc. Automatic digital dynamic balancing machine and method
EP0407675A1 (en) * 1989-07-13 1991-01-16 IRD MECHANALYSIS, Inc. Shaft synchronous balancing apparatus
DE4006867A1 (de) * 1990-03-05 1991-09-12 Reutlinger & Soehne Gmbh U Co Vorrichtung zum eindrehen eines wuchtkoerpers in eine bearbeitungsposition
US5277063A (en) * 1991-10-01 1994-01-11 General Electric Company Single plane trim balancing
JP3278452B2 (ja) * 1992-04-01 2002-04-30 株式会社東芝 回転体連結部の調整支援装置
DE4240787C2 (de) * 1992-12-04 1997-09-11 Hofmann Maschinenbau Gmbh Verfahren und Vorrichtung zum dynamischen Auswuchten eines Rotors
US5450337A (en) * 1993-02-16 1995-09-12 Industrial Technology Research Institute Two-dimension unbalance correction device
CN1269504A (zh) * 1999-04-06 2000-10-11 黄震西 转子不平衡量两点测定法
KR100480624B1 (ko) * 2002-10-18 2005-03-31 삼성전자주식회사 디스크의 편중심 량 측정 방법 및 장치
CN101625277B (zh) * 2008-07-07 2011-07-27 西门子公司 不平衡状态定量检测方法和装置及工件装夹状态检测方法
CN201364225Y (zh) * 2008-12-25 2009-12-16 西安迈拓机械制造有限公司 一种管辊三段动平衡装置
CN102042898B (zh) * 2009-10-20 2012-07-04 中国北车集团大同电力机车有限责任公司 动平衡试验工装及其动不平衡的配平方法
CN102175393A (zh) * 2011-01-04 2011-09-07 广东电网公司电力科学研究院 基于进动分解技术的不平衡相位估计方法
CN102778333B (zh) * 2011-12-15 2014-12-17 上海卫星工程研究所 一种在大型转动部件上做动平衡测试的方法
US9983087B2 (en) * 2014-12-10 2018-05-29 General Electric Company Methods and systems to determine rotor imbalance
CN104977126B (zh) * 2015-07-08 2017-07-21 沈阳建筑大学 一种主轴动不平衡检测计算方法及系统
PL413757A1 (pl) * 2015-08-31 2017-03-13 Wiesław Albin Roguski Sposób oraz system optycznego określania płaszczyzn korekcji elementów wirujących

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2247947B (en) * 1990-07-20 1994-08-31 Westinghouse Electric Corp Measuring runout of rotors
CN102072797A (zh) * 2010-12-20 2011-05-25 深圳市元征软件开发有限公司 轮胎动平衡测量中的主轴不平衡量测量方法及轮胎平衡机
CN103776587A (zh) * 2014-01-28 2014-05-07 郭卫建 确定转子的不平衡量的方法
CN105021349A (zh) * 2015-05-19 2015-11-04 郭卫建 一种获取转子的不平衡量的方法
CN204788804U (zh) * 2015-05-19 2015-11-18 郭卫建 一种转子组合件
CN105738033A (zh) * 2016-03-22 2016-07-06 郭卫建 转子的不平衡量的获取方法

Also Published As

Publication number Publication date
US20190113413A1 (en) 2019-04-18
CN105738033B (zh) 2019-02-01
CN105738033A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2017162080A1 (zh) 转子的不平衡量的获取方法
CN105021349B (zh) 一种获取转子的不平衡量的方法
US8347713B2 (en) Apparatus and method for measuring dynamic rigidity of a main shaft of a machine tool
JP6431550B2 (ja) ローターの不釣合い量の決定方法
EP3171128B1 (en) Method for correcting surface shape data of an annular rotating object, and device for inspecting appearance of an annular rotating object
EP3940361A1 (en) Method for acquiring unbalance amount of rotor, and method for acquiring unbalance amount of balancing machine
JP2008292489A (ja) 釣合い試験機などで車両ホイールの偏心を修正する方法
JP2012073137A (ja) 回転体のアンバランス修正方法及びアンバランス修正量演算装置
KR20150088924A (ko) 대형 베어링의 진원도 측정 시스템
CN204788804U (zh) 一种转子组合件
JP5816900B2 (ja) 2軸直交ダブルターンテーブルを用いたジャイロ特性測定方法
CN107228614B (zh) 一种六缸曲轴相位角的检测装置及检测方法
JPWO2016039018A1 (ja) 中空回転シャフト仕上げ方法及び中空回転シャフト
WO2006112409A1 (ja) 回転体表面の凹凸データ補正方法
CN107727023A (zh) 基于三点法的杂交四点法回转误差、圆度误差计算方法
TW200949223A (en) Method for measuring unbalanced vibration of a fan rotor
CN206891357U (zh) 一种六缸曲轴相位角的检测装置
CN216348317U (zh) 一种曲轴飞轮定位销孔角度快检工具
KR100869193B1 (ko) 불균형 측정장치를 교정하기 위한 방법 및 장치
CN111043937A (zh) 用于检测螺旋升角的方法
RU2243499C1 (ru) Способ измерения поверхностей вращения на кругломере
JPH04262219A (ja) ダイナミックバランサーマシンにおけるアンバランス除去方法
JPH0663898B2 (ja) 回転体の精密バランシング方法
CN205670063U (zh) 一种用于内引导面窄小轴承保持架的平衡检测装置
JPH06249644A (ja) 円筒物の直径測定方法及びその装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769357

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769357

Country of ref document: EP

Kind code of ref document: A1