WO2017161940A1 - 抗气蚀降压叠片阀笼 - Google Patents

抗气蚀降压叠片阀笼 Download PDF

Info

Publication number
WO2017161940A1
WO2017161940A1 PCT/CN2016/112268 CN2016112268W WO2017161940A1 WO 2017161940 A1 WO2017161940 A1 WO 2017161940A1 CN 2016112268 W CN2016112268 W CN 2016112268W WO 2017161940 A1 WO2017161940 A1 WO 2017161940A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated
cavitation
hole
groove
pressure
Prior art date
Application number
PCT/CN2016/112268
Other languages
English (en)
French (fr)
Inventor
常占东
赵文宝
李虎生
马秀萍
周永兴
贾华
Original Assignee
吴忠仪表有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴忠仪表有限责任公司 filed Critical 吴忠仪表有限责任公司
Publication of WO2017161940A1 publication Critical patent/WO2017161940A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/02Means in valves for absorbing fluid energy for preventing water-hammer or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths

Definitions

  • the invention relates to the field of fluid control technology, in particular to an anti-cavitation and pressure-relief laminated valve cage.
  • valves are often used to control the flow and pressure of the medium.
  • it is easy to flash, cavitation, easy to damage the valve internals and ultimately affect the use of the product.
  • Lifespan the existing product structure adopts a labyrinth-type meandering flow path to step down the pressure, and the lamination and the lamination are connected by a special welding method. Different pressure differences require different labyrinth structures to meet the requirements of the site. The high processing cost, long processing cycle, easy clogging, and inability to maintain the film ultimately affect the application of such products.
  • an anti-cavitation and pressure-relief laminated valve cage comprising a valve cage body having a central through hole, and an outer surface of the valve cage body is provided with a plurality of inlets, the center The inner surface of the through hole has a plurality of outlets, and a pressure reducing passage is disposed between the inlet and the outlet, and the pressure reducing passage includes a flow dividing portion and a joining portion which are alternately connected in series.
  • the diverter is used to change the flow direction of the fluid
  • the confluence portion is used to merge the fluids, and the fluids collide with each other to form a high turbulence when the flow is merged, between the fluid and the fluid, and between the fluid and the inner wall of the pressure reducing passage.
  • the friction will increase, because each time the fluid merges, it will collide with each other to offset the impact force of the fluid, consume the energy of the fluid, and achieve the purpose of depressurization. Therefore, the shunting and the merging part of the alternating series form a tortuous channel. Forcing the fluid to continuously divert and merge, the velocity and pressure of the fluid are successively decreased, which reduces the propagation sound path, thereby reducing the noise energy level in each of the pressure reduction channels.
  • each layer on the cage body is arranged in a spiral shape.
  • the step-down channel includes two sub-channels and one mother channel, wherein the sub-channel and the parent channel are alternately connected by a shunt portion and a confluence portion, and the head ends of the two sub-channels are respectively connected with two inlets In communication, a tail end of the two sub-channels meets a head end of the mother channel, and a tail end of the mother channel is in communication with the outlet.
  • valve body is formed by stacking a plurality of layers of annular laminations, and the upper surface of the lamination is provided with a plurality of first grooves and second grooves, and the first grooves are provided with a shunt a column, a first groove located between the adjacent two laminations on the lower lamination sheet and the lower surface of the upper lamination sheet forming the diverting portion, and a second groove located between the adjacent two lamination sheets in the lower lamination sheet
  • the merging portion is formed with a lower surface located on the upper laminate sheet.
  • the two ends of the valve body are respectively provided with an upper support plate and a lower support plate, and a mounting hole is formed in the portion of the laminated plate at the splitting column, and the lower support plate is opened and disposed on the laminated plate a blind hole corresponding to the mounting hole, the upper support plate is provided with a socket corresponding to the mounting hole on the lamination, the diverting column is formed by integrating all the laminations through the mounting hole, and the top end of the diverting column is located In the jack, the bottom end of the shunt column is located in the blind hole.
  • the inner ring wall of the lamination is outwardly provided with an inner ring groove, the inner ring groove is located on the upper surface of the lamination, the inner ring groove between the adjacent two laminations and the current two The outlets of all the buck channels between the laminations are in communication.
  • a bottom surface of the inner ring groove is provided with an annular protrusion, and an outer side surface of the annular protrusion has a gap with an inner side surface of the inner ring groove.
  • outer surfaces of the lamination, the split column, the upper support plate and the lower support plate each have a boronizing layer or a nitrided layer.
  • the first groove has a circular shape perpendicular to a cross section of the central through hole
  • the second groove has a square shape perpendicular to a cross section of the central through hole
  • the cross section of the flow dividing column is circular .
  • FIG. 1 is a three-dimensional schematic view of an anti-cavitation and pressure-relief laminated valve cage of the present invention
  • Figure 2 is a schematic cross-sectional view of the anti-cavitation and pressure-relief laminated valve cage of the present invention
  • Figure 3 is a top plan view of the upper support plate of the anti-cavitation pressure-relief laminated valve cage of the present invention.
  • Figure 4 is a cross-sectional view of the upper support plate of the anti-cavitation pressure-relief laminated valve cage of the present invention.
  • Figure 5 is a top plan view of the lower support plate of the anti-cavitation and pressure reducing laminated valve cage of the present invention.
  • Figure 6 is a corrosion diagram of the lower support plate in the anti-cavitation and pressure-relief laminated valve cage of the present invention.
  • Figure 7 is a schematic view showing the flow direction of the anti-cavitation and pressure-relief laminated valve cage of the present invention.
  • Figure 8 is a schematic view of a laminate in the anti-cavitation and pressure-relief laminated valve cage of the present invention.
  • Figure 9 is a schematic view taken along line B-B of Figure 8.
  • Figure 10 is a partial enlarged view of A in Figure 9;
  • Figure 11 is a schematic view of one type of pressure reducing passage in the anti-cavitation step-down laminated cage of the present invention.
  • Figure 12 is a schematic view of one type of pressure reducing passage in the anti-cavitation and pressure reducing laminated valve cage of the present invention.
  • Figure 13 is a schematic view of one type of pressure reducing passage in the anti-cavitation step-down laminated cage of the present invention.
  • Figure 14 is a schematic illustration of one type of pressure reducing passage in an anti-cavitation step-down laminated cage of the present invention.
  • an anti-cavitation step-down laminated cage comprises a cage body 7 having a central through hole 8.
  • the outer surface of the cage body 7 is provided with a plurality of inlets, and the inner surface of the central through hole 8 is provided.
  • the pressure reducing passage 1 includes a flow dividing portion 101 and a confluence portion 102 which are alternately connected in series, the diverting portion 101 is used to change the flow direction of the fluid, and the confluent portion 102 is used to make the fluid Confluence, the fluid will collide with each other to form a high turbulence during the confluence, and the friction between the fluid and the fluid, between the fluid and the inner wall of the depressurization channel 1 will increase, and each time the fluid merges, it will collide with each other to counteract the fluid.
  • the impact force consumes the energy of the fluid to achieve the purpose of depressurization.
  • the alternatingly connected diverting portion 101 and the confluent portion 102 form a tortuous pressure-reducing passage 1 to force the fluid to be continuously diverted and merged, and the velocity and pressure of the fluid are successively decreased. , the propagation sound path is reduced, so that the noise energy level in each of the pressure reduction channels 1 is lowered.
  • the cage body 7 is divided into several layers along the axial direction of the central through hole 8, each layer is provided with a plurality of pressure reducing passages 1, and the valve cage body 7 is formed by stacking a plurality of layers of annular laminations 2 layers, and the laminated sheets 2 Open on the upper surface a plurality of first grooves 201 and second grooves 202.
  • the first grooves 201 are provided with a dividing column 3, and the first groove 201 between the two adjacent laminations 2 located on the lower lamination sheet 2 and the upper lamination sheet
  • the lower surface of the second surface 2 forms a diverting portion 101
  • the second recess 202 between the adjacent two laminations 2 on the lower lamination sheet 2 forms a confluence portion 102 with the lower surface of the upper lamination sheet 2, and both ends of the cage body 7
  • the upper support plate 4 and the lower support plate 5 are respectively provided, and the mounting hole 203 is defined in the portion of the laminated plate 2 at the branching column 3, and the lower supporting plate 5 is provided with a blind hole corresponding to the mounting hole 203 of the laminated piece 2.
  • the upper support plate 4 is provided with a socket 401 corresponding to the mounting hole 203 of the lamination 2, the jack 401 is a through hole, and the shunt column 3 passes through the mounting hole 203 to form all the laminations 2 into a whole, and the shunt column
  • the top end of the diverging column 3 is located in the blind hole 501
  • the bottom end of the diverting column 3 is located in the blind hole 501
  • the lamination 2 can adopt a circular ring shape
  • the first groove 201 has a circular cross section perpendicular to the central through hole 8, and the second concave portion
  • the groove 202 has a square shape perpendicular to the central through hole 8.
  • the cross section of the branch column 3 is circular, and the diameter of the first groove 201 and the diameter of the branch column 3 are larger than the second groove.
  • the width of 202 is
  • the shunt column 3 is first inserted into the blind hole 501 on the lower support plate 5, and then the lamination 2 is layered on the shunt column 3 through the mounting hole 203, and finally the upper support plate 4 is passed through the jack.
  • the 401 is mounted on the uppermost portion of the cage body 7, the lower surface of the upper support plate 4 is in contact with the upper surface of the topmost laminate 2, and the upper surface of the lower support sheet is in contact with the upper surface of the lowermost laminate 2, the entire assembly process Simple, high assembly results.
  • the laminations 2 stacked in layers form the cage body 7, and all the laminations 2 have the same structure.
  • the processing requires only two steps of drilling and milling. 80% of the steps of the laminate 2 have been completed.
  • Embodiment 2 differs from Embodiment 1 in that the inner ring wall of the lamination 2 is outwardly provided with an inner ring groove 6, and the inner ring groove 6 is located on the upper surface of the lamination 2, adjacent to two Inner ring groove 6 between laminations 2 In communication with the outlets of all of the bucking passages 1 between the two laminations 2, the fluid passes through the bucking passage 1 and is brought together at the inner ring groove 6, ensuring a smooth transition and continuity of fluid regulation.
  • Embodiment 3 the difference between Embodiment 3 and Embodiment 2 is that the bottom surface of the inner ring groove 6 is provided with an annular protrusion 601, and the outer side surface of the annular protrusion 601 has a gap with the inner side surface of the inner ring groove 6.
  • the annular projection 601 can block the flushing force of a portion of the fluid on the lamination 2 and increase the service life of the lamination 2.
  • Embodiment 4 differs from Embodiment 3 in that the outer surfaces of the laminated sheet 2, the splitter column 3, the upper support plate 4 and the lower support plate 5 each have a boronized layer or a nitrided layer, and both the boronized layer and the nitrided layer have Excellent wear resistance, good corrosion resistance and high temperature oxidation resistance, therefore, the outer surfaces of the laminated sheet 2, the split column 3, the upper support plate 4 and the lower support plate 5 are coated with boronizing layer or nitriding.
  • the layer is used to improve the hardness and anti-scour ability of the internal contact surface of the pressure reducing channel 1 and to improve the service life of the cage.
  • Embodiment 5 The difference between Embodiment 5 and Embodiment 4 is that, according to the pressure difference of the fluid passing through the pressure reducing channel 1, it is calculated that several steps of step-down is required to prevent flashing corrosion.
  • the shape of the pressure reducing channel includes the following form:
  • the first type is: the pressure reducing channel 1 of each layer on the cage body 7 is arranged in a spiral shape, and the side wall of the first groove 201 in the flow dividing portion 101 on the pressure reducing channel 1 is changed to the dividing column.
  • the spacing between the three circumferential faces and the width of the second groove 202 in the confluence portion 102 can be applied to the adjustment condition of the high-pressure differential high-temperature gas, the step-down pressure reduction in accordance with the high-pressure difference gas, and the pressure reduction near the outer ring of the lamination 2
  • the area of the channel 1 to the vicinity of the inner ring of the lamination 1 is gradually reduced, the gas is gradually expanded, and the local flow rate does not exceed the speed of sound;
  • the second type is: the buck channel 1 includes two sub-channels 111 and one female channel 112, and the sub-channel 111 and the female channel 112 are alternately connected by the shunting portion 101 and the confluent portion 102, and the two sub-portions
  • the first ends of the channels 111 are respectively connected to the two inlets, the tail ends of the two sub-channels 111 meet the head end of the parent channel 112, and the tail end of the mother channel 112 is connected to the outlet;
  • each of the pressure reducing passages 1 on the cage body 7 has a strip shape, and the pressure reducing passages 1 on each layer are uniformly distributed circumferentially;
  • the fourth type is that each of the pressure reducing passages 1 on the cage body 7 is meandered and turned into a block shape, and the pressure reducing passages 1 on each layer are uniformly distributed circumferentially.
  • Embodiment 6 The difference between Embodiment 6 and Embodiment 1 is that the degree of complexity of each step of the pressure reducing channel 1 is adjusted according to the use characteristics of the regulating valve, and the percentage adjustment characteristic and the linear adjustment characteristic of the regulating valve can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Valves (AREA)

Abstract

一种抗气蚀降压叠片阀笼,包括具有中心通孔(8)的阀笼本体(7),阀笼本体的外表面设置若干进口,中心通孔的内表面具有若干出口,进口与出口之间设置有降压通道(1),降压通道包括依次交替串联的分流部(101)及合流部(102),分流部用于使得流体改变流向,合流部用于使得流体合流,流体在合流时会相互对撞形成高紊流,流体与流体之间、流体与降压通道内壁之间的摩擦会增大,由于流体每合流一次,即会相互碰撞以抵消流体的冲击力,消耗流体的能量,达到降压的目的。

Description

抗气蚀降压叠片阀笼 技术领域
本发明涉及流体控制技术领域,尤其是一种抗气蚀降压叠片阀笼。
背景技术
在化工生产过程中常使用一些阀门用于控制介质的流量和压力,在一些特殊工况由于通过的介质差大很容易出现闪蒸,气蚀现象,易对阀门内件造成损伤最终影响产品的使用寿命,现有的产品结构采用迷宫式曲折流道逐级降压,叠片与叠片之间采用特殊的焊接方法进行连接,不同的压差需要不同的迷宫结构来满足现场的使用要求,叠片的加工成本高,加工周期长,易堵塞,无法维护等问题最终影响此类产品的应用。
发明内容
本发明要解决的技术问题是:为了解决现有技术中的阀门在高压差工况下易在局部出现闪蒸空化现象对阀笼造成气蚀损伤的问题,现提供一种高压差工况下流体精确调节的抗气蚀降压叠片阀笼,该阀笼采用逐级分摊压差,有效的避免了阀笼局部出现闪蒸气蚀现象。
本发明解决其技术问题所采用的技术方案是:一种抗气蚀降压叠片阀笼,包括具有中心通孔的阀笼本体,所述阀笼本体的外表面设置若干进口,所述中心通孔的内表面具有若干出口,所述进口与出口之间设置有降压通道,所述降压通道包括依次交替串联的分流部及合流部。
本方案中分流部用于使得流体改变流向,合流部用于使得流体合流,流体在合流时会相互对撞形成高紊流,流体与流体之间、流体与降压通道内壁之间 的摩擦会增大,由于流体每合流一次,即会相互碰撞以抵消流体的冲击力,消耗流体的能量,达到降压的目的,因此通过交替串联的分流部及合流部组成曲折的降压通道,迫使流体不断的分流和合流,流体的速度和压力呈现逐次递减,降低了传播声路,从而使每条降压通道中的噪音能量等级降低。
进一步地,所述阀笼本体沿所述中心通孔的轴线方向分为若干层,每层均设有若干条降压通道。
进一步地,所述阀笼本体上每层的降压通道呈漩涡状分布。
进一步地,所述降压通道包括两个子通道和一个母通道,所述子通道和母通道均由分流部及合流部交替串联而成,两条所述子通道的首端分别与两个进口连通,两条所述子通道的尾端与所述母通道的首端交汇,所述母通道的尾端与所述出口连通。
进一步地,所述阀笼本体由若干层环形叠片层层叠加而成,所述叠片的上表面开设有若干第一凹槽和第二凹槽,所述第一凹槽内设置有分流柱,相邻两个叠片之间位于下层叠片的第一凹槽与位于上层叠片的下表面形成所述分流部,相邻两个叠片之间位于下层叠片的第二凹槽与位于上层叠片的下表面形成所述合流部。
进一步地,所述阀笼本体的两端分别设有上支撑板和下支撑板,所述叠片上位于所述分流柱的部位均开设有安装孔,所述下支撑板上开设有与叠片上安装孔相对应的盲孔,所述上支撑板上开设有与叠片上安装孔相对应的插孔,所述分流柱穿过安装孔将所有叠片串成整体,所述分流柱的顶端位于所述插孔内,所述分流柱的底端位于所述盲孔内。
进一步地,所述叠片的内圈壁上向外开设有内环槽,所述内环槽位于所述叠片的上表面,相邻两个叠片之间的内环槽与当前两个叠片之间的所有降压通道的出口连通。
进一步地,所述内环槽的底面设有环形凸起,所述环形凸起的外侧面与所述内环槽的内侧面之间具有间隙。
进一步地,所述叠片、分流柱、上支撑板及下支撑板的外表面均具有渗硼层或渗氮层。
优选地,所述第一凹槽垂直于所述中心通孔的截面呈圆形,所述第二凹槽垂直于所述中心通孔的截面呈方形,所述分流柱的横截面呈圆形。
本发明的抗气蚀降压叠片阀笼有益效果如下:
1)、通过使流体不断的分流合流,在合流时相互碰撞以抵消流体的冲击力,消耗流体的能量,能够应用与高压差工况中,逐级分摊压差,有效的避免局部出现闪蒸空化现象对阀笼造成气蚀损伤;
2)、所有同一口径叠片基本结构一致,只需要根据不同的使用工况再局部加工,改变降压通道的路径即可,有利于产品的批量生产和提取备货,达到快速交货并且有利于企业组织生产;
3)、降压通道的路径不同,通过的流量也不同,调节阀长时间位于小开度处,流体压差大,流量小,最底层的叠片之间的降压通道的路径越长越复杂,降压效果越好;
4)、整个阀笼的组件加工简单,组装方便,因此,可以大大减少阀笼的生产成本,提高阀笼的竞争优势;
5)、通过在阀笼整体上喷涂渗硼层或渗氮层以提高降压通道内部与流体接触表面的硬度和抗冲刷能力,提高阀笼的使用寿命。
6)、改变将降压通道上分流部中第一凹槽侧壁到与分流柱周面之间的间距和合流部中第二凹槽的宽度,可以适用于高压差高温气体的调节工况,符合高压差气体逐级降压,叠片外圈附近的降压通道面积到叠片内圈附近的降压通道面积逐步减小,气体逐级膨胀,局部流速不超过音速。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明抗气蚀降压叠片阀笼的三维示意图;
图2是本发明抗气蚀降压叠片阀笼的剖面示意图;
图3是本发明抗气蚀降压叠片阀笼中上支撑板的俯视图;
图4是本发明抗气蚀降压叠片阀笼中上支撑板的剖视图;
图5是本发明抗气蚀降压叠片阀笼中下支撑板的俯视图;
图6是本发明抗气蚀降压叠片阀笼中下支撑板的腐蚀图;
图7是本发明抗气蚀降压叠片阀笼的介质流向示意图;
图8是本发明抗气蚀降压叠片阀笼中叠片的示意图;
图9是图8中B-B向示意图;
图10是图9中A的局部放大示意图;
图11是本发明抗气蚀降压叠片阀笼中一种类型的降压通道示意图;
图12是本发明抗气蚀降压叠片阀笼中一种类型的降压通道示意图;
图13是本发明抗气蚀降压叠片阀笼中一种类型的降压通道示意图;
图14是本发明抗气蚀降压叠片阀笼中一种类型的降压通道示意图。
图中:1、降压通道,101、分流部,102、合流部,111、子通道,112、母通道,2、叠片,201、第一凹槽,202、第二凹槽,203、安装孔,3、分流柱,4、上支撑板,401、插孔,5、下支撑板,501、盲孔,6、内环槽,601、环形凸起,7、阀笼本体,8、中心通孔。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例1
如图1-8所示,一种抗气蚀降压叠片阀笼,包括具有中心通孔8的阀笼本体7,阀笼本体7的外表面设置若干进口,中心通孔8的内表面具有若干出口,进口与出口之间设置有降压通道1,降压通道1包括依次交替串联的分流部101及合流部102,分流部101用于使得流体改变流向,合流部102用于使得流体合流,流体在合流时会相互对撞形成高紊流,流体与流体之间、流体与降压通道1内壁之间的摩擦会增大,由于流体每合流一次,即会相互碰撞以抵消流体的冲击力,消耗流体的能量,达到降压的目的,因此通过交替串联的分流部101及合流部102组成曲折的降压通道1,迫使流体不断的分流和合流,流体的速度和压力呈现逐次递减,降低了传播声路,从而使每条降压通道1中的噪音能量等级降低。
阀笼本体7沿中心通孔8的轴线方向分为若干层,每层均设有若干条降压通道1,阀笼本体7由若干层环形叠片2层层叠加而成,叠片2的上表面开设有 若干第一凹槽201和第二凹槽202,第一凹槽201内设置有分流柱3,相邻两个叠片2之间位于下层叠片2的第一凹槽201与位于上层叠片2的下表面形成分流部101,相邻两个叠片2之间位于下层叠片2的第二凹槽202与位于上层叠片2的下表面形成合流部102,阀笼本体7的两端分别设有上支撑板4和下支撑板5,叠片2上位于分流柱3的部位均开设有安装孔203,下支撑板5上开设有与叠片2上安装孔203相对应的盲孔501,上支撑板4上开设有与叠片2上安装孔203相对应的插孔401,插孔401为通孔,分流柱3穿过安装孔203将所有叠片2串成整体,分流柱3的顶端位于插孔401内,分流柱3的底端位于盲孔501内,叠片2可以采用圆环形,第一凹槽201垂直于中心通孔8的截面呈圆形,第二凹槽202垂直于中心通孔8的截面呈方形,分流柱3的横截面呈圆形,第一凹槽201的直径和分流柱3的直径均大于第二凹槽202的宽度。
在装配时:先在下支撑板5上的盲孔501中均插入分流柱3,然后将叠片2一层层通过安装孔203串在在分流柱3上,最后将上支撑板4通过插孔401安装在阀笼本体7的最上面,上支撑板4的下表面与最顶层的叠片2上表面接触,下支撑片的上表面与最底层的叠片2的上表面接触,整个装配过程简单,装配效果高。
本实施例中采用层层叠加的叠片2构成阀笼本体7,所有叠片2结构一致,作为阀笼的关键零件其不需要特殊的加工设备,加工简单只需要钻孔和铣槽两道工序就已经完成叠片2的80%的工序。
实施例2
如图9所示,实施例2与实施例1的区别在于:叠片2的内圈壁上向外开设有内环槽6,内环槽6位于叠片2的上表面,相邻两个叠片2之间的内环槽6 与当前两个叠片2之间的所有降压通道1的出口连通,流体经过降压通道1后在内环槽6处相互汇集,保证流体调节的平缓过渡和连续性。
实施例3
如图10所示,实施例3与实施例2的区别在于:内环槽6的底面设有环形凸起601,环形凸起601的外侧面与内环槽6的内侧面之间具有间隙,环形凸起601可以阻挡一部分流体对叠片2的冲刷力,提高叠片2的使用寿命。
实施例4
实施例4与实施例3的区别在于:叠片2、分流柱3、上支撑板4及下支撑板5的外表面均具有渗硼层或渗氮层,渗硼层和渗氮层均具有优异的耐磨性、较好的耐蚀性和抗高温氧化性,因此,在叠片2、分流柱3、上支撑板4及下支撑板5的外表面均涂覆渗硼层或渗氮层,以提高降压通道1内部与流体接触表面的硬度和抗冲刷能力,提高阀笼的使用寿命。
实施例5
实施例5与实施例4的区别在于:依据通过降压通道1的流体的压差,计算需要几级降压才能不会出现闪蒸气蚀现象,具体的,降压通道的形状包括以下几种形式:
如图11所示,第一种为:阀笼本体7上每层的降压通道1呈漩涡状分布,改变将降压通道1上分流部101中第一凹槽201侧壁到与分流柱3周面之间的间距和合流部102中第二凹槽202的宽度,可以适用于高压差高温气体的调节工况,符合高压差气体逐级降压,叠片2外圈附近的降压通道1面积到叠片1内圈附近的降压通道1面积逐步减小,气体逐级膨胀,局部流速不超过音速;
如图12所示,第二种为:降压通道1包括两个子通道111和一个母通道112,子通道111和母通道112均由分流部101及合流部102交替串联而成,两条子 通道111的首端分别与两个进口连通,两条子通道111的尾端与母通道112的首端交汇,母通道112的尾端与出口连通;
如图13所示,第三种为:阀笼本体7上每条降压通道1呈狭长的条状,每层上的降压通道1呈圆周均布,;
如图14所示,第四种为:阀笼本体7上每条降压通道1迂回曲折呈块状,每层上的降压通道1呈圆周均布。
实施例6
实施例6与实施例1的区别在于:根据调节阀的使用特性调节每层降压通道1的复杂程度,可以做到调节阀等百分比调节特性和线性调节特性。
上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种抗气蚀降压叠片阀笼,其特征在于:包括具有中心通孔(8)的阀笼本体(7),所述阀笼本体(7)的外表面设置若干进口,所述中心通孔(8)的内表面具有若干出口,所述进口与出口之间设置有降压通道(1),所述降压通道(1)包括依次交替串联的分流部(101)及合流部(102)。
  2. 根据权利要求1所述的抗气蚀降压叠片阀笼,其特征在于:所述阀笼本体(7)沿所述中心通孔(8)的轴线方向分为若干层,每层均设有若干条降压通道(1)。
  3. 根据权利要求2所述的抗气蚀降压叠片阀笼,其特征在于:所述阀笼本体(7)上每层的降压通道(1)呈漩涡状分布。
  4. 根据权利要求1所述的抗气蚀降压叠片阀笼,其特征在于:所述降压通道(1)包括两个子通道(111)和一个母通道(112),所述子通道(111)和母通道(112)均由分流部(101)及合流部(102)交替串联而成,两条所述子通道(111)的首端分别与两个进口连通,两条所述子通道(111)的尾端与所述母通道(112)的首端交汇,所述母通道(112)的尾端与所述出口连通。
  5. 根据权利要求1所述的抗气蚀降压叠片阀笼,其特征在于:所述阀笼本体(7)由若干层环形叠片(2)层层叠加而成,所述叠片(2)的上表面开设有若干第一凹槽(201)和第二凹槽(202),所述第一凹槽(201)内设置有分流柱(3),相邻两个叠片(2)之间位于下层叠片(2)的第一凹槽(201)与位于上层叠片(2)的下表面形成所述分流部(101),相邻两个叠片(2)之间位于下层叠片(2)的第二凹槽(202)与位于上层叠片(2)的下表面形成所述合流部(102)。
  6. 根据权利要求5所述的抗气蚀降压叠片阀笼,其特征在于:所述阀笼本体(7)的两端分别设有上支撑板(4)和下支撑板(5),所述叠片(2)上位于 所述分流柱(3)的部位均开设有安装孔(203),所述下支撑板(5)上开设有与叠片(2)上安装孔(203)相对应的盲孔(501),所述上支撑板(4)上开设有与叠片(2)上安装孔(203)相对应的插孔(401),所述分流柱(3)穿过安装孔(203)将所有叠片(2)串成整体,所述分流柱(3)的顶端位于所述插孔(401)内,所述分流柱(3)的底端位于所述盲孔(501)内。
  7. 根据权利要求5所述的抗气蚀降压叠片阀笼,其特征在于:所述叠片(2)的内圈壁上向外开设有内环槽(6),所述内环槽(6)位于所述叠片(2)的上表面,相邻两个叠片(2)之间的内环槽(6)与当前两个叠片(2)之间的所有降压通道(1)的出口连通。
  8. 根据权利要求7所述的抗气蚀降压叠片阀笼,其特征在于:所述内环槽(6)的底面设有环形凸起(601),所述环形凸起(601)的外侧面与所述内环槽(6)的内侧面之间具有间隙。
  9. 根据权利要求5所述的抗气蚀降压叠片阀笼,其特征在于:所述叠片(2)、分流柱(3)、上支撑板(4)及下支撑板(5)的外表面均具有渗硼层或渗氮层。
  10. 根据权利要求5所述的抗气蚀降压叠片阀笼,其特征在于:所述第一凹槽(201)垂直于所述中心通孔(8)的截面呈圆形,所述第二凹槽(202)垂直于所述中心通孔(8)的截面呈方形,所述分流柱(3)的横截面呈圆形。
PCT/CN2016/112268 2016-03-25 2016-12-27 抗气蚀降压叠片阀笼 WO2017161940A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610171075.5 2016-03-25
CN201610171075.5A CN105626957B (zh) 2016-03-25 2016-03-25 抗气蚀降压叠片阀笼

Publications (1)

Publication Number Publication Date
WO2017161940A1 true WO2017161940A1 (zh) 2017-09-28

Family

ID=56042152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112268 WO2017161940A1 (zh) 2016-03-25 2016-12-27 抗气蚀降压叠片阀笼

Country Status (2)

Country Link
CN (1) CN105626957B (zh)
WO (1) WO2017161940A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180340643A1 (en) * 2017-05-25 2018-11-29 Fisher Controls International Llc Method of Manufacturing a Fluid Pressure Reduction Device
CN109027296A (zh) * 2018-09-11 2018-12-18 山东沃克控制阀有限公司 一种能够降噪的高压抗气蚀切断球阀
CN114135686A (zh) * 2021-12-09 2022-03-04 温州芝寰流体技术有限公司 一种柱塞式多孔减压闪蒸阀
US11506305B2 (en) 2017-05-25 2022-11-22 Fisher Controls International Llc Method of manufacturing a fluid pressure reduction device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105626957B (zh) * 2016-03-25 2019-01-25 吴忠仪表有限责任公司 抗气蚀降压叠片阀笼
US10458555B2 (en) 2017-04-19 2019-10-29 Fisher Controls International Llc Control valve with high performance valve cage
CN108980365B (zh) * 2018-09-10 2024-05-10 四川滨大阀门有限责任公司 一种高压差控制阀的阀内组件结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306608A (zh) * 1998-07-14 2001-08-01 权甲周 调节高压流体流动的控制阀
US20050199298A1 (en) * 2004-03-10 2005-09-15 Fisher Controls International, Llc Contiguously formed valve cage with a multidirectional fluid path
CN1912435A (zh) * 2005-07-19 2007-02-14 Spx公司 流体阀内件设备和方法
CN103629432A (zh) * 2013-12-18 2014-03-12 哈尔滨工程大学 一种用于大口径低噪声调节阀的阀笼结构
CN203963232U (zh) * 2014-02-16 2014-11-26 重庆川仪调节阀有限公司 迷宫式节流组件
CN204358240U (zh) * 2014-12-24 2015-05-27 山东裕鸿阀门股份有限公司 迷宫式芯包组件
CN105626957A (zh) * 2016-03-25 2016-06-01 吴忠仪表有限责任公司 抗气蚀降压叠片阀笼

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201166191Y (zh) * 2008-03-28 2008-12-17 大连亨利测控仪表工程有限公司 迷宫式多级降压控制阀
CN101699115A (zh) * 2009-10-29 2010-04-28 黄育进 迷宫式调节阀用降压盘片
CN102537647A (zh) * 2012-01-19 2012-07-04 蔡天山 一种抗冲刷疏水阀
KR101376093B1 (ko) * 2012-04-13 2014-03-19 한국기계연구원 해양플랜트용 디스크 적층형 고차압 제어밸브
CN202901512U (zh) * 2012-09-12 2013-04-24 北京智创联合科技有限公司 一种迷宫式调节阀
CN202868037U (zh) * 2012-10-30 2013-04-10 温州市飞球电站阀门制造有限公司 给水泵再循环阀
CN203770778U (zh) * 2014-03-31 2014-08-13 浙江贝尔控制阀门有限公司 一种系列化多级降压阀内件
CN204176123U (zh) * 2014-10-11 2015-02-25 武汉希尔阀门技术有限公司 一种变矢量多级减压盘片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1306608A (zh) * 1998-07-14 2001-08-01 权甲周 调节高压流体流动的控制阀
US20050199298A1 (en) * 2004-03-10 2005-09-15 Fisher Controls International, Llc Contiguously formed valve cage with a multidirectional fluid path
CN1912435A (zh) * 2005-07-19 2007-02-14 Spx公司 流体阀内件设备和方法
CN103629432A (zh) * 2013-12-18 2014-03-12 哈尔滨工程大学 一种用于大口径低噪声调节阀的阀笼结构
CN203963232U (zh) * 2014-02-16 2014-11-26 重庆川仪调节阀有限公司 迷宫式节流组件
CN204358240U (zh) * 2014-12-24 2015-05-27 山东裕鸿阀门股份有限公司 迷宫式芯包组件
CN105626957A (zh) * 2016-03-25 2016-06-01 吴忠仪表有限责任公司 抗气蚀降压叠片阀笼

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180340643A1 (en) * 2017-05-25 2018-11-29 Fisher Controls International Llc Method of Manufacturing a Fluid Pressure Reduction Device
US10711937B2 (en) * 2017-05-25 2020-07-14 Fisher Controls International Llc Method of manufacturing a fluid pressure reduction device
US20200340609A1 (en) * 2017-05-25 2020-10-29 Fisher Controls International Llc Method of Manufacturing a Fluid Pressure Reduction Device
US11506305B2 (en) 2017-05-25 2022-11-22 Fisher Controls International Llc Method of manufacturing a fluid pressure reduction device
US11719362B2 (en) 2017-05-25 2023-08-08 Fisher Controls International Llc Method of manufacturing a fluid pressure reduction device
CN109027296A (zh) * 2018-09-11 2018-12-18 山东沃克控制阀有限公司 一种能够降噪的高压抗气蚀切断球阀
CN114135686A (zh) * 2021-12-09 2022-03-04 温州芝寰流体技术有限公司 一种柱塞式多孔减压闪蒸阀
CN114135686B (zh) * 2021-12-09 2023-08-25 浙江芝寰流体技术有限公司 一种柱塞式多孔减压闪蒸阀

Also Published As

Publication number Publication date
CN105626957B (zh) 2019-01-25
CN105626957A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017161940A1 (zh) 抗气蚀降压叠片阀笼
JP6462026B2 (ja) 分岐する単位セルを含む熱交換器
JP6352283B2 (ja) 騒音軽減区分と高容積流区分との間に不感帯を有しない弁ケージ
US10215497B2 (en) Heat exchanger and production method for heat exchanger
WO2021180151A1 (zh) 香槟塔型多级节流控制阀
JP6660883B2 (ja) プレート式熱交換器のための熱交換プレートおよび前記熱交換プレートが設けられたプレート式熱交換器
CN103968149A (zh) 一种轴流式迷宫节流结构
CN205136796U (zh) 迷宫式叠片结构及具有该结构的套筒和调节阀
CN106555895A (zh) 控制阀
US20160178077A1 (en) Fluid flow device and method of operating same
CN107968210B (zh) 一种非对称结构的燃料电池阴阳极板及由其构成的电堆
KR101583164B1 (ko) 발전소 컨트롤 밸브의 유체 고압 조절장치
JP4414199B2 (ja) 2重管式熱交換器
CN206398150U (zh) 控制阀
CN212986240U (zh) 一种阀笼
JP2006172849A (ja) 燃料電池のマニフォールド
CN204942749U (zh) 一种多级减压装置及减压盘片
EP3314154B1 (en) A toroidal fluid swivel for transfer of fluid across a rotary interface
CN109895363B (zh) 多层共挤吹膜机头
CN203703347U (zh) 一种节流盘片流道入口结构
CN1010119B (zh) 多级分流叠板式防空化高压差调节阀
CN113531203B (zh) 一种y型流道节流套筒
KR101376393B1 (ko) 다중패턴 대칭유로 복합유동체 고차압 유동제어장치 밸브
CN214662172U (zh) 一种阀塞及调节阀
KR100477005B1 (ko) 디스크적층식 감압장치 및 이를 장착한 유체처리장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16895284

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16895284

Country of ref document: EP

Kind code of ref document: A1