WO2017161620A1 - 一种切机负效应的检测方法及检测装置 - Google Patents

一种切机负效应的检测方法及检测装置 Download PDF

Info

Publication number
WO2017161620A1
WO2017161620A1 PCT/CN2016/079892 CN2016079892W WO2017161620A1 WO 2017161620 A1 WO2017161620 A1 WO 2017161620A1 CN 2016079892 W CN2016079892 W CN 2016079892W WO 2017161620 A1 WO2017161620 A1 WO 2017161620A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
negative effect
cutting machine
leading group
power system
Prior art date
Application number
PCT/CN2016/079892
Other languages
English (en)
French (fr)
Inventor
吴为
饶宏
洪潮
金小明
柳勇军
Original Assignee
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2017161620A1 publication Critical patent/WO2017161620A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the technical field of power systems, in particular to a detection method and a detecting device for a negative effect of a cutting machine.
  • the emergency cutting machine control refers to the cutting machine control involving the transient stability of the power system in the second line of safety and stability, which is different from the cutting machine control for protecting the local generator and the high frequency cutting machine control for the frequency stability problem.
  • the wide-area measurement system has become more and more perfect, which has led to the development of transient stability analysis and control in the direction of “real-time decision-making, real-time control”, and gradually formed a wide-area security and stability control system based on response.
  • the research on the negative effect of the cutting machine control is especially important for the real-time transient stability analysis and control based on wide-area measurement information. This is because the traditional time-domain simulation-based transient stability analysis method can be simulated. Verify the effect of the cutting machine control strategy in advance to avoid the negative effects of the cutting machine control.
  • real-time transient stability analysis and control based on wide-area measurement information is essentially a response-driven closed-loop control strategy.
  • the object of the present invention is to provide a detection method and a detecting device for the negative effect of the cutting machine, which are used to confirm whether the cutting machine control is beneficial to the development of the power system in a safe and stable direction before performing the cutting machine control.
  • the present invention provides the following technical solutions:
  • a method for detecting a negative effect of a cutting machine comprising the following steps:
  • Step 101 after the power system is interfered, analyzing the sway condition of each generator in the power system according to the wide-area measurement information, and determining the leading group unit S and the lag group unit A;
  • Step 102 Extract, from the wide-area measurement information, dynamic feature information corresponding to each of the generators in the power system;
  • Step 103 Obtain, according to the dynamic feature information, an identification index of the leading group unit S, and an identification index corresponding to the Kth generator in the leading group unit S, where the identification index is an amount of change of the angular velocity;
  • Step 104 when the identification index corresponding to the Kth generator is smaller than the identification index of the leading group unit S, determining that the Kth generator is a unit having a negative effect of cutting; when the Kth When the identification index corresponding to the generator is greater than the identification index of the leading group unit S, it is determined that the Kth generator is a unit that does not have a negative effect of the cutting machine.
  • steps 101 to 104 are performed cyclically to determine the cutter effect of each of the generators in the leader group S at different times.
  • the sampling period when the dynamic feature information is extracted is the same as the sampling period of the phasor measurement unit in the wide-area measurement system.
  • the dynamic feature information includes: an angular velocity corresponding to different moments and a power angle corresponding to different moments.
  • the equivalent work angle ⁇ S (t) and the equivalent angular velocity ⁇ S (t) of the leading group unit S at the time t are:
  • ⁇ i (t) is the power angle of the i-th generator in the leading group S at time t
  • M i is the rotor inertia constant of the i-th generator in the leading group S
  • ⁇ i (t) is the leading The angular velocity deviation of the i-th generator in the group S at time t
  • the equivalent work angle ⁇ A (t) and the equivalent angular velocity ⁇ A (t) of the lag group unit A at the time t are:
  • ⁇ x (t) is the power angle of the xth generator in the lag group unit A at time t
  • M x is the rotor inertia constant of the xth generator in the lag group unit A
  • ⁇ x (t) is the hysteresis The angular velocity deviation of the xth generator in group A at time t.
  • the identification index I S of the leading group unit S at the time t is:
  • ⁇ S (t) is the equivalent angular velocity of the leading group S at the t-th moment
  • ⁇ S (t-1) is the equivalent angular velocity of the leading group S at the t-1th.
  • the identification index I K corresponding to the Kth generator of the leading group unit S at the time t is:
  • ⁇ K (t) is the angular velocity of the Kth generator in the leading group S at the t-th moment
  • ⁇ K (t-1) is the kth generator of the leading group S at the t-1 Angular velocity.
  • the invention also provides a detecting device for the negative effect of the cutting machine, which is used for implementing the detecting method of the negative effect of the above cutting machine.
  • the generators included in the power system can be divided into the leading group unit S and the lag group unit A; and then each generator in the power system is extracted from the wide area measurement information.
  • the dynamic characteristic information is obtained according to the extracted dynamic characteristic information, and the identification index of the leading group unit S is obtained, and the identification index of the Kth generator in the leading group S in the same time is obtained, that is, the leading group unit S is obtained respectively.
  • the identification index is compared, when the identification index of the Kth generator is smaller than the identification index of the leading group S, it is judged that the Kth generator has a negative effect of the cutting machine; therefore, the detection method of the negative effect of the cutting machine provided by the invention It is possible to accurately determine whether the cutting machine control will bring about the negative effect of the cutting machine before performing the cutting machine control operation, and the cutting machine control is well guaranteed. After work, security and stability of the power system can continue to work, and will not develop towards the direction of instability.
  • FIG. 1 is a flowchart of a method for detecting a negative effect of a cutting machine according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an angular velocity difference-power angle difference curve according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a 10-machine 39-node power system according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an absolute power angle curve of a generator in a power system according to an embodiment of the present invention.
  • G31 - first generator G32 - second generator
  • G33-third generator G34-fourth generator
  • G35-fifth generator G36-sixth generator
  • G37- seventh generator G38-eighth generator
  • G39-ninth generator G30-tenth generator
  • a method for detecting a negative effect of a cutting machine includes the following steps:
  • Step 101 After the power system is interfered, analyze the sway condition of each generator in the power system according to the wide-area measurement information, and determine the leading group unit S and the lag group unit A; specifically, after the power system is interfered, The included generator will have a sway phenomenon that deviates from the normal running trajectory. In this case, the sway of all the generators included in the power system is analyzed according to the wide-area measurement information provided by the wide-area measurement system. The set of generators that accelerate the operation is determined as the leading group unit S, and the set of generators with the slower speed is determined as the lag group unit A. It should be noted that there are many factors that can cause interference to the power system, such as short circuit, trip, etc., but are not limited thereto.
  • Step 102 Extract dynamic characteristic information corresponding to each generator in the power system from the wide-area measurement information; in more detail, from the wide-area measurement information, sample each power generator in the power system according to a certain period Dynamic feature information.
  • Step 103 According to the dynamic feature information, obtain the identification index of the leading group unit S, and the identification index corresponding to the Kth generator in the leading group unit S, 1 ⁇ K ⁇ N, where N is the generator of the leading group unit S
  • the number of the indicators is the amount of change in the angular velocity; further, based on the dynamic feature information obtained in step 102, the identification index of the leading group unit S is calculated, and the calculation is performed at the same time as the identification index of the leading group unit S.
  • the identification index corresponding to each generator included in the group unit S is the amount of change in angular velocity over a certain period of time.
  • Step 104 When the identification index corresponding to the Kth generator in the leading group S is smaller than the identification index of the leading group S, determine that the Kth generator is a unit with a negative effect of cutting; and when the Kth generator When the corresponding identification index is greater than the identification index of the leading group unit S, it is judged that the Kth generator is a unit that does not have the negative effect of the cutting machine; specifically, the identification indexes corresponding to the respective generators in the leading group unit S are Compare with the identification index of the leading group unit S and determine the comparison result; when the identification index of the generator is smaller than the identification index of the leading group unit S, it is judged that the generator has a negative effect of the cutting machine, in this case The cutter is not controlled by the cutting machine to avoid adverse effects on the power system; when the identification index of the generator is greater than the identification index of the leading group S, it is judged that the generator does not have a negative effect of the cutting machine.
  • the cutting machine control operation of the generator is beneficial to the safer and more stable operation of the power system; when all the generators in the leading group S are identified When the indicators are larger than the identification index of the leading group S, it means that all the generators in the leading group S do not have the negative effect of the cutting machine at this time, and the power system can be operated safely by performing the corresponding cutting control operation. In a stable state.
  • all the generators in the power system can be divided into the leading group unit S and the lag.
  • Group unit A then extracting the dynamic characteristic information corresponding to each generator in the power system from the wide-area measurement information, and then obtaining the identification index of the leading group unit S according to the extracted dynamic characteristic information, and at the same time
  • the identification index of the Kth generator in the leading group S is the angular velocity change of the leading group S in a certain period of time, and the angular velocity of the Kth generator in the leading group S in the same time period.
  • the amount of the identification index of the Kth generator in the leading group S is compared with the identification index of the leading group S.
  • the identification index of the Kth generator is smaller than the identification index of the leading group S, the judgment is made.
  • the K-stage generator has a cutter negative effect; therefore, the detection method of the negative effect of the cutter provided by the present invention can perform the cutting control operation before Determine whether the correct cutting machine cutting machine control will bring negative effects to ensure a good after performing the cutting machine control operations, security and stability of the power system can continue to work, and will not develop towards the direction of instability.
  • steps 101 to 104 may be cyclically executed to determine the cutting effect of each of the generators in the leading group S at different times.
  • any moment of operation of the power system it can be judged by performing steps 101 to 104. Whether the generator in the power system has a negative effect of cutting, only need to obtain the dynamic characteristic information of the generator at the corresponding moment.
  • the dynamic feature information corresponding to each generator in the power system is obtained by sampling, and the sampling period can be set according to requirements, and preferably, the sampling period and the wide area of the dynamic feature information are selected.
  • the sampling period of the phasor measurement unit in the measurement system is the same. Because the sampling period of the dynamic feature information is smaller, the result of the corresponding sampling is more accurate. Therefore, the sampling period and wide-area measurement of the dynamic characteristic information will be performed.
  • the sampling period of the phasor measurement unit in the system is the same, which can minimize the sampling period of the dynamic feature information, and make the result obtained by the sampling more accurate.
  • the above dynamic feature information should include: angular velocities corresponding to different generators at different times, and power angles corresponding at different times.
  • the trajectory generated by the power system when the power system is in a stable working state, the trajectory generated by the power system always moves around the stable equilibrium point and can reach stability under the damping of the power system. Balance point; but when the power system is at the edge of instability due to some kind of interference, that is, when it becomes a critical instability system, the trajectory generated by it may gradually deviate from the stable equilibrium point; in this case, it will generally pass
  • the machine control is used to adjust the working state of the power system in time.
  • the working trajectory of the power system will run on the inner side of the critical instability trajectory and close to the stable equilibrium point; when the cutting machine control is not adopted Conducive to the stability of the power system, after the cutting machine control operation is performed, the working trajectory of the power system will run outside the critical instability trajectory and away from the stable equilibrium point.
  • power system transient stability refers to the ability of each generator to keep running synchronously and transition to a new or restored stable operating state after the power system is greatly disturbed.
  • the power system when the instability occurs (corresponding to the original trajectory 3), the power system can be returned to the stable trajectory by favorable cutting control, as shown in Figure 2.
  • the second trajectory 2 that is, the trajectory of the second generator after cutting off the output of 460 megawatts at the time of cutting control; of course, the instability state of the power system is not necessarily a critical instability, so that when the cutter control produces a negative effect
  • the running trajectory of the power system may enter the negative negative effect interval from the positive effect interval of the cutting machine through the original instability trajectory, as shown in Figure 2.
  • the first trajectory 1 that is, at the time of cutting control, the trajectory of the first generator is cut off by 460 megawatts; and to a more serious extent, the trajectory of the power system can directly enter from the timing of the cutting control.
  • negative effect section cutting machine since the cutting machine of the power system, the negative effect is always accelerating instability, i.e. reaching the unstable equilibrium point ( ⁇ u, ⁇ u), electrical
  • the system has accelerated instability, and therefore there must be intervals Let any point on the interval [ ⁇ a , ⁇ u ] be satisfied:
  • ⁇ ′ is the angular velocity deviation of the equivalent single-machine power system after taking the control of the cutting machine and generating the negative effect
  • ⁇ ′ is the power angle difference of the equivalent single-machine power system after taking the machine control and generating the negative effect
  • is the original equivalent value.
  • the angular velocity deviation and ⁇ of the single-machine power system are the difference in power angle of the original equivalent single-unit power system.
  • the boundary conditions for the negative effect of the cutting machine control in the equivalent single-machine power system are:
  • ⁇ y is the power angle of the yth generator
  • ⁇ y is the deviation of the angular velocity deviation of the yth generator
  • M y is the rotor inertia constant of the yth generator
  • P my is the yth generator Mechanical power
  • Pey is the electromagnetic power of the yth generator.
  • the multi-machine power system into the equivalent two-machine power system mentioned in the above embodiments.
  • it is determined according to the operating state of the generator group included in the multi-machine power system after being disturbed.
  • the machine power system is divided into a leading group unit S and a lag group unit A, and the leading group unit S is equivalent to one generator, and the lag group unit A is equivalent to another generator; among them, the leading group unit S
  • the corresponding equivalent rotor motion equation is:
  • ⁇ S is the equivalent power angle of the leading group S before the cutting control
  • ⁇ S is the equivalent angular velocity deviation (deviation between the rotating speed and the synchronous speed) of the leading group S before the cutting control
  • M S The equivalent rotor inertia constant of the leading group S before the cutting machine control
  • P mS is the equivalent mechanical power of the leading group S before the cutting control
  • P eS is the leading group S before the cutting control Equivalent electromagnetic power.
  • ⁇ A is the equivalent power angle of the lag group A before the cutting machine control
  • ⁇ A is the equivalent angular velocity deviation of the lag group A before the cutting control is performed
  • M A is the lag before the cutting control is performed
  • P mA is the equivalent mechanical power of the group A before the cutting control
  • P eA is the equivalent electromagnetic power of the group A before the cutting control.
  • leading group unit S and the lag group unit A are reduced to the equivalent single-machine power system, and the equation of motion of the equivalent single-machine power system is obtained:
  • is the power angle deviation corresponding to the equivalent single-machine power system
  • is the angular velocity deviation corresponding to the equivalent single-machine power system
  • M eq is the rotor inertia constant corresponding to the equivalent single-machine power system
  • P eq_m is the equivalent single machine The mechanical power corresponding to the power system
  • P eq_e is the electromagnetic power corresponding to the equivalent single-machine power system.
  • formula (5) can be reduced to:
  • ⁇ t is the time interval
  • ⁇ ′ S′ is the equivalent angular velocity deviation of the leading group S after adopting the cutting control measures and generating the negative effect of the cutting machine
  • ⁇ ′ A′ is the lag group A after adopting the cutting control measures and generating the negative effect of the cutting machine.
  • the equivalent angular velocity deviation is the equivalent angular velocity deviation.
  • the generator in the leading group unit S is generally first cut off, and in the case of a reasonable number of cutting machines, the nature of the power transmitting end and the receiving end of the interconnected power system is not There will be changes, and the clustering of all the generators in the power system (divided into the leading group unit S and the lag group unit A) will not be abrupt, and all the generators in the power system will only be synchronized after a slow adjustment process.
  • the obtained lag group unit A and the lag group unit A before the cutting machine control contain exactly the same generator set, and the cutting machine performed in the leading group S
  • the impact of control on the lag group unit A is negligible, so it can be obtained:
  • formula (15) can be reduced to:
  • M' S' is the equivalent rotor inertia constant of the leading group S after adopting the cutting machine control measures and generating the negative effect of the cutting machine
  • P′ mS′ is the leading group unit after adopting the cutting machine control measures and generating the negative effect of the cutting machine
  • P' eS' is the equivalent electromagnetic power of the leading group S after adopting the cutting control measures and generating the negative effect of the cutting machine.
  • leading group unit S includes n generators, and after performing the cutting machine control operation, the kth generator is cut off, and n and k are integers greater than or equal to 1, then:
  • formula (32) can be further reduced to:
  • the physical meaning of the corresponding formula (33) is: when the angular acceleration of the removed generator is less than the equivalent angular acceleration of the leading group S where the generator is located, the cutting machine control will produce a negative effect of the cutting machine, that is, perform the cutting After the machine is controlled, it will not be conducive to the safe and stable operation of the power system.
  • equation (33) can be reduced to:
  • the calculation formula of the identification index I S of the leading group unit S at the time t is:
  • ⁇ S (t) is the angular velocity of the leading group S at the t-th moment
  • ⁇ S (t-1) is the angular velocity of the leading group S at the t-1th.
  • ⁇ K (t) is the angular velocity of the Kth generator in the leading group S at the t-th moment
  • ⁇ K (t-1) is the kth generator of the leading group S at the t-1 Angular velocity.
  • FIG. 3 taking the New England 10-machine 39-node system as an example.
  • the generator adopts the classical second-order model
  • the load adopts the constant impedance model
  • the disturbance response data obtained by the simulation program is used to simulate the real-time measurement of the wide-area measurement system. data.
  • the fault condition is that the sixteenth node Bus16 - the seventeenth node Bus17 line has a three-phase ground short circuit fault at 0.00s, the fault duration is 0.10s, and then the line is cut off.
  • the simulation duration is 10s, and the absolute power angle curve of the full power system generator as shown in Fig. 4 is obtained.
  • Step S1 analyzing the sway condition of the generator after the power system is disturbed by the wide-area measurement information, and determining the leading group unit S and the lag group unit A; wherein the leading group unit S includes the generator ⁇ the first generator G31, The second generator G32, the third generator G33, the fourth generator G34, the fifth generator G35, the sixth generator G36 ⁇ , the generator included in the lag group unit A is ⁇ seventh generator G37, the eighth power generation Machine G38, ninth generator G39, tenth generator G30 ⁇ .
  • Step S2 extracting dynamic characteristic information of the generator set from the wide-area measurement information, the data after the fault starts from 0.00s, and the dynamic characteristic information is the first generator G31, the second generator G32, and the third generator.
  • G33, the fourth generator G34, the fifth generator G35, and the sixth generator G36 have a one-to-one angular velocity.
  • the identification index corresponding to G36 at time t; t is between 0.11s and 0.29s, and the interval is 0.01s.
  • Table 1 The corresponding data is as shown in Table 1:
  • I G31 is an identification index of the first generator G31
  • I G32 is an identification index of the second generator G32
  • I G33 is an identification index of the third generator G33
  • I G34 is an identification index of the fourth generator G34
  • I G35 is an identification index of the fifth generator G35
  • I G36 is an identification index of the sixth generator G36.
  • Step S4 judging whether the generator satisfies the cutting machine by comparing the numerical values of I G31 , I G32 , I G33 , I G34 , I G35 , and I G36 with the identification index I S of the leading group unit S at the same time.
  • the identification condition of the negative effect can be obtained according to the data of Table 1 for each time period I G31 ⁇ I S , I G32 ⁇ I S , and therefore the first generator G31 and the second generator G32 are units having a negative effect of the cutting machine.
  • the embodiment of the invention further provides a detecting device for the negative effect of the cutting machine, which is used for implementing the detecting method of the negative effect of the cutting machine.
  • a detecting device for the negative effect of the cutting machine which is used for implementing the detecting method of the negative effect of the cutting machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Power Engineering (AREA)
  • Public Health (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Electric Motors In General (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种切机负效应的检测方法包括:根据广域量测信息分析电力系统中各个发电机的摇摆情况,并确定领先群机组S和滞后群机组A;提取电力系统中各个发电机对应的动态特征信息;获得领先群机组S的识别指标,和领先群机组S中第K台发电机所对应的识别指标,识别指标为角速度的变化量;当第K台发电机所对应的识别指标小于领先群机组S的识别指标时,判断第K台发电机为具有切机负效应的机组。该切机负效应的检测方法涉及电力系统技术领域,用于在进行切机控制之前,确认该切机控制是否有利于电力系统的运行向着安全稳定的方向发展。以及一种切机负效应的检测装置。

Description

一种切机负效应的检测方法及检测装置
本申请要求于2016年3月24日提交中国专利局、申请号为201610178938.1、发明名称为“一种切机负效应的检测方法及检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力系统技术领域,尤其涉及一种切机负效应的检测方法及检测装置。
背景技术
随着电力系统的发展,电力系统的稳定特性越来越复杂,为保证电力系统的安全稳定运行,采用了多种安全稳定控制措施,其中紧急切机控制是确保电力系统暂态稳定常用的手段之一。紧急切机控制指的是安全稳定第二道防线中涉及电力系统暂态稳定性的切机控制,区别于单纯为保护本地发电机的切机控制和针对频率稳定问题的高频切机控制。
在采用暂态稳定切机控制时,首先要保证切机控制措施对电力系统的稳定性是有利的,严格避免切机负效应而导致电力系统加速向失稳方向发展,这样后续切机量的计算才有意义。切机负效应问题很早就引起了人们的关注,在相同切机时间相同切机量的情况下,切除不同的机组组合,产生的控制效果是不同的,甚至会引起切机负效应。但是这一问题,长期以来并没有得到足够的重 视。近年来广域量测系统的日益完善,促使暂态稳定分析与控制向着“实时决策,实时控制”的方向发展,逐渐形成了基于响应的电力系统广域安全稳定控制体系。其中,对基于广域量测信息的实时暂态稳定分析与控制而言,切机控制负效应的研究显得尤为重要,这是因为传统的基于时域仿真的暂态稳定分析方法可以通过仿真手段事先验证切机控制策略的效果,以此来避免切机控制负效应的产生。但是基于广域量测信息的实时暂态稳定分析与控制本质上是一种响应驱动的闭环控制策略,不依赖于时域仿真手段,也不可能事先进行控制策略验证。因此,研究切机控制措施的机理,实时检测具有负效应的机组避免切机负效应,对基于广域量测信息的实时暂态稳定分析与控制具有重要意义。
发明内容
本发明的目的在于提供一种切机负效应的检测方法及检测装置,用于在进行切机控制之前,确认该切机控制是否有利于电力系统的运行向着安全稳定的方向发展。
为了实现上述目的,本发明提供如下技术方案:
一种切机负效应的检测方法,包括以下步骤:
步骤101,在电力系统受到干扰后,根据广域量测信息分析电力系统中各个发电机的摇摆情况,并确定领先群机组S和滞后群机组A;
步骤102,从广域量测信息中,提取电力系统中各个所述发电机对应的动态特征信息;
步骤103,根据所述动态特征信息,获得所述领先群机组S的识别指标,以及所述领先群机组S中第K台发电机所对应的识别指标,所述识别指标为角速度的变化量;
步骤104,当所述第K台发电机所对应的识别指标小于所述领先群机组S的识别指标时,判断所述第K台发电机为具有切机负效应的机组;当所述第K台发电机所对应的识别指标大于所述领先群机组S的识别指标时,判断所述第K台发电机为不具有切机负效应的机组。
优选地,循环执行步骤101至步骤104,以判断不同时刻所述领先群机组S中各个所述发电机的切机效应。
较佳地,在所述步骤102中,提取所述动态特征信息时的采样周期与广域量测系统中的相量测量单元的采样周期相同。
较佳地,所述动态特征信息包括:对应不同时刻的角速度以及对应不同时刻的功角。
较佳地,领先群机组S在第t时刻的等值功角δS(t)和等值角速度ωS(t)分别为:
Figure PCTCN2016079892-appb-000001
Figure PCTCN2016079892-appb-000002
其中,δi(t)为领先群机组S中第i台发电机在t时刻的功角,Mi为领先群机组S中第i台发电机的转子惯性常数,Δωi(t)为领先群机组S中第i台发电机 在t时刻的角速度偏差;
滞后群机组A在第t时刻的等值功角δA(t)和等值角速度ωA(t)分别为:
Figure PCTCN2016079892-appb-000003
Figure PCTCN2016079892-appb-000004
其中,δx(t)为滞后群机组A中第x台发电机在t时刻的功角,Mx为滞后群机组A中第x台发电机的转子惯性常数,Δωx(t)为滞后群机组A中第x台发电机在t时刻的角速度偏差。
优选地,所述领先群机组S在第t时刻的识别指标IS为:
IS=ωS(t)-ωS(t-1)
其中,ωS(t)为领先群机组S在第t时刻的等值角速度,ωS(t-1)为领先群机组S在第t-1时刻的等值角速度。
优选地,所述领先群机组S中第K台发电机在第t时刻所对应的识别指标IK为:
IK=ωK(t)-ωK(t-1)
其中,ωK(t)为领先群机组S中第K台发电机在第t时刻的角速度,ωK(t-1)为领先群机组S中第K台发电机在第t-1时刻的角速度。
本发明还提供了一种切机负效应的检测装置,用于实施上述切机负效应的检测方法。
本发明提供的切机负效应的检测方法中,当电力系统受到干扰后,通过分 析电力系统中各个发电机的摇摆情况,能够将电力系统中包括的发电机分成领先群机组S和滞后群机组A;然后从广域量测信息中提取出电力系统中每一个发电机所对应的动态特征信息,再根据提取出的动态特征信息对应获得领先群机组S的识别指标,以及在相同时间内领先群机组S中第K台发电机的识别指标,即分别获得领先群机组S在一定时间内的角速度变化量,以及在相同时间段内领先群机组S中第K台发电机的角速度变化量;再将领先群机组S中第K台发电机的识别指标与领先群机组S的识别指标进行比较,当出现第K台发电机的识别指标小于领先群机组S的识别指标时,判断第K台发电机具有切机负效应;因此,本发明提供的切机负效应的检测方法能够在执行切机控制操作之前,准确的判断出切机控制是否会带来切机负效应,很好的保证了在执行切机控制操作之后,电力系统能够继续安全稳定的工作,而不会向失稳的方向发展。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的切机负效应的检测方法的流程图;
图2为本发明实施例提供的角速度差-功角差曲线示意图;
图3为本发明实施例提供的10机39节点电力系统示意图;
图4为本发明实施例提供的电力系统中发电机的绝对功角曲线示意图。
附图标记:
G31-第一发电机,                G32-第二发电机,
G33-第三发电机,                G34-第四发电机,
G35-第五发电机,                G36-第六发电机,
G37-第七发电机,                G38-第八发电机,
G39-第九发电机,                G30-第十发电机,
Bus16-第十六节点,              Bus17-第十七节点,
1-第一轨迹,                    2-第二轨迹,
3-原轨迹。
具体实施方式
为了进一步说明本发明实施例提供的切机负效应的检测方法及检测装置,下面结合说明书附图进行详细描述。
请参阅图1,本发明实施例提供的切机负效应的检测方法包括以下步骤:
步骤101,在电力系统受到干扰后,根据广域量测信息分析电力系统中各个发电机的摇摆情况,并确定领先群机组S和滞后群机组A;具体的,电力系统在受到干扰后,其所包括的发电机会出现偏离正常运行轨迹的摇摆现象,在这种情况下,根据由广域量测系统提供的广域量测信息,来分析电力系统中所包括的全部发电机的摇摆情况,并将加速运转的发电机集合确定为领先群机组S,并将转速较慢的发电机集合确定为滞后群机组A。需要说明的是,能够对电力系统造成干扰的因素有很多,例如:短路、跳闸等,但不仅限于此。
步骤102,从广域量测信息中,提取电力系统中各个发电机对应的动态特征信息;更详细的说:从广域量测信息中,按照一定周期采样出电力系统中各发电机所对应的动态特征信息。
步骤103,根据动态特征信息,获得领先群机组S的识别指标,以及领先群机组S中第K台发电机所对应的识别指标,1<K<N,其中N为领先群机组S中发电机的台数;识别指标为角速度的变化量;进一步的说,根据步骤102中得到的动态特征信息,计算得到领先群机组S的识别指标,并且计算与领先群机组S的识别指标在同一时刻,领先群机组S中所包括的各个发电机所对应的识别指标,识别指标即为在某一段时间内角速度的变化量。
步骤104,当领先群机组S中第K台发电机所对应的识别指标小于领先群机组S的识别指标时,判断第K台发电机为具有切机负效应的机组;当第K台发电机所对应的识别指标大于领先群机组S的识别指标时,判断第K台发电机为不具有切机负效应的机组;具体的,将领先群机组S中的各个发电机所对应的识别指标均与领先群机组S的识别指标进行比较,并确定比较的结果;当出现有发电机的识别指标小于领先群机组S的识别指标时,判断该发电机具有切机负效应,在这种情况下,不对该发电机进行切机控制操作,以免对电力系统产生不良的影响;当发电机的识别指标大于领先群机组S的识别指标时,判断该发电机不具有切机负效应,在这种情况下,对该发电机进行切机控制操作,有利于电力系统更加安全稳定的运行;当领先群机组S中的所有发电机的识别 指标均大于领先群机组S的识别指标时,说明在此时刻领先群机组S中的所有发电机均不具有切机负效应,可以通过执行相应的切机控制操作,来使电力系统运行在安全稳定的状态下。
本发明实施例提供的切机负效应的检测方法中,当电力系统受到干扰后,通过分析电力系统中的发电机的摇摆情况,能够将电力系统中的全部发电机分成领先群机组S和滞后群机组A;然后从广域量测信息中提取出电力系统中每一个发电机所对应的动态特征信息,再根据提取出的动态特征信息对应获得领先群机组S的识别指标,以及在相同时间内领先群机组S中第K台发电机的识别指标,即分别获得领先群机组S在一定时间内的角速度变化量,以及在相同时间段内领先群机组S中第K台发电机的角速度变化量;再将领先群机组S中第K台发电机的识别指标与领先群机组S的识别指标进行比较,当出现第K台发电机的识别指标小于领先群机组S的识别指标时,判断第K台发电机具有切机负效应;因此,本发明提供的切机负效应的检测方法能够在执行切机控制操作之前,准确的判断出切机控制是否会带来切机负效应,很好的保证了在执行切机控制操作之后,电力系统能够继续安全稳定的工作,而不会向失稳的方向发展。
上述实施例提供的切机负效应的检测方法中,可以循环执行步骤101至步骤104,以判断不同时刻领先群机组S中各个所述发电机的切机效应。
针对电力系统运行的任何时刻,均可以通过执行步骤101至步骤104来判 断电力系统中的发电机是否具有切机负效应,只需要获得发电机在对应时刻的动态特征信息即可。
值得注意的是,上述步骤102中,通过采样来获得电力系统中各个发电机所对应的动态特征信息,而采样的周期可以根据需要设定,优选的,对动态特征信息的采样周期与广域量测系统中的相量测量单元的采样周期相同,由于对动态特征信息的采样周期越小,相应的采样所得的结果就越精确,因此,将对动态特征信息的采样周期与广域量测系统中的相量测量单元的采样周期相同,可以最大程度上缩小对动态特征信息的采样周期,使采样所得到的结果更加精确。另外,上述动态特征信息应包括:不同发电机在不同时刻所对应的角速度,以及在不同时刻所对应的功角。
为了更加清楚的说明切机负效应的检测方法的依据,下面对判断的原理进行详细说明。
根据传统的角速度-功角相图可以知道,当电力系统处在稳定的工作状态时,其所产生的运行轨迹,总是围绕着稳定平衡点运动的,并且能够在电力系统阻尼作用下到达稳定平衡点;但当电力系统由于某种干扰而处在失稳边缘时,即成为临界失稳系统时,其所产生的运行轨迹将可能逐渐偏离稳定平衡点;在这种情况下,一般会通过切机控制来及时调整电力系统的工作状态。而当所采取的切机控制有利于电力系统的稳定时,切机控制操作执行后,电力系统的工作轨迹将运行在临界失稳轨迹的内侧且靠近稳定平衡点;当采取的切机控制不 利于电力系统的稳定时,切机控制操作执行后,电力系统的工作轨迹将运行在临界失稳轨迹的外侧且远离稳定平衡点。
需要说明的是,对于一个具有多台发电机的多机电力系统,一般会将其化简为等值两机电力系统,再将等值两机电力系统化简为等值单机电力系统,然后再通过研究等值单机电力系统的暂态稳定特性(电力系统暂态稳定指电力系统受到大干扰后,各发电机保持同步运行并过渡到新的,或恢复到原来稳定运行状态的能力),来判断具有多台发电机的多机电力系统的暂态稳定特性。
请参阅图2,根据上述对切机控制所产生的效果分析可知,对切机控制时刻电力系统的运行点(Δδc,Δωc)与不稳定平衡点(Δδu,Δωu)之间的区域,基于电力系统的失稳轨迹(原轨迹3)可以将其划分为切机正效应区间和切机负效应区间;即当切机控制带来有益效果时,对应的角速度差-功角差曲线会有向下的走向,从而进入切机正效应区间,而当切机控制带来切机负效应时,对应的角速度差-功角差曲线会有向上的走向,从而进入切机负效应区间。
请继续参阅图2,电力系统在实际运行中,当出现失稳的情况时(对应原轨迹3),可以通过有利的切机控制使电力系统回到稳定的运行轨迹上,正如图2中的第二轨迹2,即在切机控制时刻,将二号发电机切除460兆瓦出力后的轨迹;当然,电力系统出现的失稳状态不一定是临界失稳,这样当切机控制产生负效应时,考虑到切机负效应的程度和电力系统自身的运行惯性,电力系统的运行轨迹可能会从切机正效应区间穿越原来的失稳轨迹而进入到切机负效应区 间,正如图2中的第一轨迹1,即在切机控制时刻,将一号发电机切除460兆瓦出力后的轨迹;而在更严重的程度下电力系统的运行轨迹才可能从切机控制时刻开始直接进入到切机负效应区间;但是无论对应上述那种情况,因为切机负效应总会使电力系统加速失稳,即在到达不稳定平衡点(Δδu,Δωu)前,电力系统已加速失稳,因此必定存在区间
Figure PCTCN2016079892-appb-000005
使得在区间[Δδa,Δδu]上的任意一点均满足:
Figure PCTCN2016079892-appb-000006
其中,Δω′为采取切机控制并产生负效应后等值单机电力系统的角速度偏差、Δδ′为采取切机控制并产生负效应后等值单机电力系统的功角差,Δω为原等值单机电力系统的角速度偏差、Δδ为原等值单机电力系统的功角差。
值得注意的是,当等值单机电力系统处于加速运行的状态时,切机控制后导致电力系统更快的加速运行,或者,当等值单机电力系统处于减速运行状态时,切机控制后导致电力系统更慢的减速运行,这两种情况下均会认为切机控制是不利于系统稳定性的,因此,仅以上述公式(1)作为产生切机负效应的条件是过于严苛的。
而根据等值后单机电力系统的角速度-功角相图可知,当电力系统处于加速的运行状态时,等值单机电力系统中切机控制产生负效应的边界条件为:
Figure PCTCN2016079892-appb-000007
当电力系统处于减速的运行状态时,等值单机电力系统中切机控制产生负效应的边界条件为:
Figure PCTCN2016079892-appb-000008
综上所述,根据公式(1)、公式(2)和公式(3)得到等值单机电力系统中切机控制产生负效应的边界条件为:
Figure PCTCN2016079892-appb-000009
将公式(4)中的各个变量均对时间进行微分,则可以得到:
Figure PCTCN2016079892-appb-000010
由于多机电力系统中第y台发电机的转子运动方程为:
Figure PCTCN2016079892-appb-000011
其中,δy为第y台发电机的功角;Δωy为第y台发电机的角速度偏差的偏差;My为第y台发电机的转子惯性常数;Pmy为第y台发电机的机械功率;Pey为第y台发电机的电磁功率。
上述实施例提到的将多机电力系统化简为等值两机电力系统的方式有很多,优选的,按照多机电力系统受扰后其所包括的发电机群的运行状态来确定,即将多机电力系统分为领先群机组S和滞后群机组A,并将领先群机组S等值为一台发电机,将滞后群机组A等值为另一台发电机;其中,领先群机组S所对应的等值转子运动方程为:
Figure PCTCN2016079892-appb-000012
其中,δS为在进行切机控制之前领先群机组S的等值功角;ΔωS为在进行切机控制之前领先群机组S的等值角速度偏差(转速与同步速的偏差);MS为在进行切机控制之前领先群机组S的等值转子惯性常数;PmS为在进行切机控制之前领先群机组S的等值机械功率;PeS为在进行切机控制之前领先群机组S的等值电磁功率。
领先群机组S在第t时刻的等值功角δS(t),
Figure PCTCN2016079892-appb-000013
领先群机组S在第t时刻的等值角速度ωS(t),
Figure PCTCN2016079892-appb-000014
Figure PCTCN2016079892-appb-000015
MS=∑Mi;PmS=∑Pmi;PeS=∑Pei;其中i∈S;另外,δi(t)为领先群机组S中第i台发电机在t时刻的功角,Mi为领先群机组S中第i台发电机的转子惯性常数,Δωi(t)为领先群机组S中第i台发电机在t时刻的角速度偏差,Pmi为领先群机组S中第i台发电机的机械功率,Pei为领先群机组S中第i台发电机的电磁功率。
同理,滞后群机组A所对应的等值转子运动方程为:
Figure PCTCN2016079892-appb-000016
其中,δA为在进行切机控制之前滞后群机组A的等值功角;ΔωA为在进行切机控制之前滞后群机组A的等值角速度偏差;MA为在进行切机控制之前滞后群机组A的等值转子惯性常数;PmA为在进行切机控制之前滞后群机组A的等值机械功率;PeA为在进行切机控制之前滞后群机组A的等值电磁功率。
滞后群机组A在第t时刻的等值功角δA(t),
Figure PCTCN2016079892-appb-000017
滞后群机组A 在第t时刻的等值角速度ωA(t),
Figure PCTCN2016079892-appb-000018
Figure PCTCN2016079892-appb-000019
MA=∑Mx;PmA=∑Pmx;PeA=∑Pex;其中x∈A;另外,δx(t)为滞后群机组A中第x台发电机在t时刻的功角,Mx为滞后群机组A中第x台发电机的转子惯性常数,Δωx(t)为滞后群机组A中第x台发电机在t时刻的角速度偏差,Pmx为滞后群机组A中第x台发电机的机械功率,Pex为滞后群机组A中第x台发电机的电磁功率。
将领先群机组S和滞后群机组A化简为等值单机电力系统,并得到等值单机电力系统的运动方程:
Figure PCTCN2016079892-appb-000020
其中,Δδ为等值单机电力系统所对应的功角偏差;Δω为等值单机电力系统所对应的角速度偏差;Meq为等值单机电力系统所对应的转子惯性常数;Peq_m为等值单机电力系统所对应的机械功率;Peq_e为等值单机电力系统所对应的电磁功率。
且Δδ=δSA;Δω=ΔωS-ΔωA
Figure PCTCN2016079892-appb-000021
Figure PCTCN2016079892-appb-000022
根据公式(7)可以将公式(5)化简为:
Figure PCTCN2016079892-appb-000023
以切机控制时刻电力系统的运行点(Δδc,Δωc)为参考,可以得到:
Figure PCTCN2016079892-appb-000024
Figure PCTCN2016079892-appb-000025
将公式(11)和公式(12)带入公式十,从而得到:
Figure PCTCN2016079892-appb-000026
其中,Δt为时间间隔。
对公式(13)进行化简得到:
Figure PCTCN2016079892-appb-000027
由于对应上述Δω=ΔωS-ΔωA,可以得到Δω′=Δω′s-Δω′A′,将此式带入公式(14)中,可以得到:
Figure PCTCN2016079892-appb-000028
其中,Δω′S′为采取切机控制措施并产生切机负效应后领先群机组S的等值角速度偏差,Δω′A′为采取切机控制措施并产生切机负效应后滞后群机组A的等值角速度偏差。
当根据实际情况判断出需要进行切机控制操作时,一般先切除领先群机组S中的发电机,而在合理切机数量的情况下,互联的电力系统的送电端和受电端的性质不会发生改变,电力系统中所有的发电机的分群(分为领先群机组S和滞后群机组A)情况也不会发生突变,电力系统中所有的发电机只是经过一个缓慢的调节过程后再同步;因此,在采取切机控制措施后的瞬间,所得到的滞后群机组A与进行切机控制之前的滞后群机组A包含完全相同的发电机集合,而领先群机组S中所进行的切机控制对滞后群机组A带来的影响是可以忽略不计的,因此能够得到:
Figure PCTCN2016079892-appb-000029
根据公式(16),可以将公式(15)化简为:
Figure PCTCN2016079892-appb-000030
根据上述公式(7),可以得到:
Figure PCTCN2016079892-appb-000031
根据公式(18),同理可以得到:
Figure PCTCN2016079892-appb-000032
其中,M′S′为采取切机控制措施并产生切机负效应后领先群机组S的等值转子惯性常数;P′mS′为采取切机控制措施并产生切机负效应后领先群机组S的等值机械功率;P′eS′为采取切机控制措施并产生切机负效应后领先群机组S的等值电磁功率。
假设领先群机组S包括n台发电机,在执行切机控制操作后,将其中的第k台发电机切除,n和k均为大于等于1的整数,则有:
Figure PCTCN2016079892-appb-000033
Figure PCTCN2016079892-appb-000034
根据公式(20)和公式(21)可以得到:
Figure PCTCN2016079892-appb-000035
而且,由于发电机转子的运动惯性,切机控制前后剩余发电机的有功功率和机械功率也不可能突变,因此,可以得到:
Figure PCTCN2016079892-appb-000036
Figure PCTCN2016079892-appb-000037
Figure PCTCN2016079892-appb-000038
Figure PCTCN2016079892-appb-000039
根据公式(23)和公式(24)可以得到:
P′mS′=PmS-Pmk                              (27)
根据公式(25)和公式(26)可以得到:
P′eS′=PeS-Pek                          (28)
将公式(22)、公式(27)和公式(28)均带入公式(19)可以得到:
Figure PCTCN2016079892-appb-000040
将公式(18)和公式(29)均带入公式(17),可以得到:
Figure PCTCN2016079892-appb-000041
对公式(30)进行化简得到:
MS(Pmk-Pek)<Mk(PmS-PeS)                 (31)
从而得到:
Figure PCTCN2016079892-appb-000042
根据公式(6)和公式(7)可以将公式(32)进一步化简为:
Figure PCTCN2016079892-appb-000043
对应公式(33)的物理含义为:当所切除的发电机的角加速度小于该发电机所在的领先群机组S的等值角加速度时,此切机控制会产生切机负效应,即执行此切机控制操作后,将不利于电力系统的安全稳定运行。
用差分代替微分将公式(33)可以化简为:
Δωk<ΔωS(k∈S)                         (34)
即:
ωk(t)-ωk(t-1)<ωS(t)-ωS(t-1)             (35)
其中,t代表第t时刻。
根据上述分析过程可以得到:
基于发电机的动态特征信息,领先群机组S在第t时刻的识别指标IS的计算公式即为:
IS=ωS(t)-ωS(t-1)                          (36)
其中,ωS(t)为领先群机组S在第t时刻的角速度,ωS(t-1)为领先群机组S在第t-1时刻的角速度。
领先群机组S中第K台发电机在第t时刻的识别指标IK的计算公式即为:
IK=ωK(t)-ωK(t-1)                     (37)
其中,ωK(t)为领先群机组S中第K台发电机在第t时刻的角速度,ωK(t-1)为领先群机组S中第K台发电机在第t-1时刻的角速度。
因此,在判断切机控制是否具有切机负效应时,只需要判断IK和IS的大小即可。
为了更清楚的说明上述实施例提供的切机负效应的检测方法,下面给出具体实施例:
请参阅图3,以新英格兰10机39节点系统为例,其中的发电机采用经典二阶模型,负荷采用恒阻抗模型,并用仿真程序得到的扰动响应数据来模拟广域测量系统的实时量测数据。
故障条件为第十六节点Bus16-第十七节点Bus17线路在0.00s时发生三相接地短路故障,故障持续时间为0.10s,之后切除该线路。仿真时长为10s,得到如图4所示的全电力系统发电机绝对功角曲线。
步骤S1:通过广域量测信息分析电力系统受扰后发电机的摇摆情况,确定领先群机组S和滞后群机组A;其中,领先群机组S包含的发电机为{第一发电机G31,第二发电机G32,第三发电机G33,第四发电机G34,第五发电机G35,第六发电机G36},滞后群机组A包含的发电机为{第七发电机G37,第八发电机G38,第九发电机G39,第十发电机G30}。
步骤S2:从广域量测信息中,提取发电机组的动态特征信息,故障后数据从0.00s开始,动态特征信息为第一发电机G31,第二发电机G32,第三发电机 G33,第四发电机G34,第五发电机G35,第六发电机G36所一一对应的角速度。
步骤S3:根据步骤S2中获得动态特征信息和IS=ωS(t)-ωS(t-1)获得领先群机组S在第t时刻的识别指标IS,根据IK=ωK(t)-ωK(t-1)获得领先群机组S中第一发电机G31,第二发电机G32,第三发电机G33,第四发电机G34,第五发电机G35,第六发电机G36分别在第t时刻所对应的识别指标;t取0.11s-0.29s之间,间隔为0.01s,获得对应数据如表1所示:
Figure PCTCN2016079892-appb-000044
表1
其中,IG31为第一发电机G31的识别指标,IG32为第二发电机G32的识别指标,IG33为第三发电机G33的识别指标,IG34为第四发电机G34的识别指标,IG35为第五发电机G35的识别指标,IG36为第六发电机G36的识别指标。
步骤S4:通过将IG31、IG32、IG33、IG34、IG35、IG36分别与领先群机组S的识别指标IS在对应相同的时刻比较数值大小,来判断发电机是否满足切机负效应的识别条件,根据表1数据可得对应各个时间段IG31<IS,IG32<IS,因此第一发电 机G31和第二发电机G32为具有切机负效应的机组。
本发明实施例还提供了一种切机负效应的检测装置,用于实施上述切机负效应的检测方法。其所能够带来的有益效果与上述方法部分相同,在此不做赘述。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

  1. 一种切机负效应的检测方法,其特征在于,包括以下步骤:
    步骤101,在电力系统受到干扰后,根据广域量测信息分析电力系统中各个发电机的摇摆情况,并确定领先群机组S和滞后群机组A;
    步骤102,从广域量测信息中,提取电力系统中各个所述发电机对应的动态特征信息;
    步骤103,根据所述动态特征信息,获得所述领先群机组S的识别指标,以及所述领先群机组S中第K台发电机所对应的识别指标,所述识别指标为角速度的变化量;
    步骤104,当所述第K台发电机所对应的识别指标小于所述领先群机组S的识别指标时,判断所述第K台发电机为具有切机负效应的机组;当所述第K台发电机所对应的识别指标大于所述领先群机组S的识别指标时,判断所述第K台发电机为不具有切机负效应的机组。
  2. 根据权利要求1所述的切机负效应的检测方法,其特征在于,循环执行步骤101至步骤104,以判断不同时刻所述领先群机组S中各个所述发电机的切机效应。
  3. 根据权利要求2所述的切机负效应的检测方法,其特征在于,在所述步骤102中,提取所述动态特征信息时的采样周期与广域量测系统中的相量测量单元的采样周期相同。
  4. 根据权利要求3所述的切机负效应的检测方法,其特征在于,所述动态特征信息包括:对应不同时刻的角速度以及对应不同时刻的功角。
  5. 根据权利要求4所述的切机负效应的检测方法,其特征在于,
    领先群机组S在第t时刻的等值功角δS(t)和等值角速度ωS(t)分别为:
    Figure PCTCN2016079892-appb-100001
    Figure PCTCN2016079892-appb-100002
    其中,δi(t)为领先群机组S中第i台发电机在t时刻的功角,Mi为领先群机组S中第i台发电机的转子惯性常数,Δωi(t)为领先群机组S中第i台发电机在t时刻的角速度偏差;
    滞后群机组A在第t时刻的等值功角δA(t)和等值角速度ωA(t)分别为:
    Figure PCTCN2016079892-appb-100003
    Figure PCTCN2016079892-appb-100004
    其中,δx(t)为滞后群机组A中第x台发电机在t时刻的功角,Mx为滞后群机组A中第x台发电机的转子惯性常数,Δωx(t)为滞后群机组A中第x台发电机在t时刻的角速度偏差。
  6. 根据权利要求5所述的切机负效应的检测方法,其特征在于,所述领先群机组S在第t时刻的识别指标IS为:
    IS=ωS(t)-ωS(t-1)
    其中,ωS(t)为领先群机组S在第t时刻的等值角速度,ωS(t-1)为领先群机 组S在第t-1时刻的等值角速度。
  7. 根据权利要求5所述的切机负效应的检测方法,其特征在于,所述领先群机组S中第K台发电机在第t时刻所对应的识别指标IK为:
    IK=ωK(t)-ωK(t-1)
    其中,ωK(t)为领先群机组S中第K台发电机在第t时刻的角速度,ωK(t-1)为领先群机组S中第K台发电机在第t-1时刻的角速度。
  8. 一种切机负效应的检测装置,其特征在于,用于实施如权利要求1-7中任一项所述切机负效应的检测方法。
PCT/CN2016/079892 2016-03-24 2016-04-21 一种切机负效应的检测方法及检测装置 WO2017161620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610178938.1A CN105720577B (zh) 2016-03-24 2016-03-24 一种切机负效应的检测方法及检测装置
CN201610178938.1 2016-03-24

Publications (1)

Publication Number Publication Date
WO2017161620A1 true WO2017161620A1 (zh) 2017-09-28

Family

ID=56158169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079892 WO2017161620A1 (zh) 2016-03-24 2016-04-21 一种切机负效应的检测方法及检测装置

Country Status (2)

Country Link
CN (1) CN105720577B (zh)
WO (1) WO2017161620A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494718A (zh) * 2018-11-16 2019-03-19 陕西理工大学 考虑阻尼的复杂电力系统紧急控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410878A1 (de) * 1984-03-22 1985-10-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zum an- und abfahren eines bahnumformers unter verwendung des zur schlupfspeisung notwendigen direktumrichters
CN103337831A (zh) * 2013-06-17 2013-10-02 国家电网公司 一种具有自适应功能的失步解列方法
CN104300531A (zh) * 2014-08-15 2015-01-21 国家电网公司 一种电力系统安稳控制策略整定方法
CN104866973A (zh) * 2015-05-29 2015-08-26 西安交通大学 电力系统暂态稳定控制策略表快速整定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5668969B2 (ja) * 2010-10-01 2015-02-12 清水建設株式会社 電源出力制御装置、需要電力制御システム、電源出力制御方法、および電源出力制御プログラム
CN103595043B (zh) * 2013-11-26 2016-06-08 国家电网公司 一种基于广域量测的电力系统动态稳定性评估方法
CN105244887B (zh) * 2015-09-21 2018-02-13 南方电网科学研究院有限责任公司 电力系统暂态功角失稳的闭环控制方法
CN105244871B (zh) * 2015-10-19 2018-06-29 南方电网科学研究院有限责任公司 暂态功角失稳识别方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410878A1 (de) * 1984-03-22 1985-10-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren zum an- und abfahren eines bahnumformers unter verwendung des zur schlupfspeisung notwendigen direktumrichters
CN103337831A (zh) * 2013-06-17 2013-10-02 国家电网公司 一种具有自适应功能的失步解列方法
CN104300531A (zh) * 2014-08-15 2015-01-21 国家电网公司 一种电力系统安稳控制策略整定方法
CN104866973A (zh) * 2015-05-29 2015-08-26 西安交通大学 电力系统暂态稳定控制策略表快速整定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494718A (zh) * 2018-11-16 2019-03-19 陕西理工大学 考虑阻尼的复杂电力系统紧急控制方法

Also Published As

Publication number Publication date
CN105720577A (zh) 2016-06-29
CN105720577B (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
Wei et al. Model-free MLE estimation for online rotor angle stability assessment with PMU data
Wall et al. Smart frequency control for the future GB power system
CN106229976B (zh) 基于数据驱动的暂态功角稳定态势预估方法
CN102928697B (zh) 励磁调节器pss2a模型低频段阻尼检测方法及系统
CN109238455B (zh) 一种基于图论的旋转机械振动信号监测方法及系统
Zhang et al. Synchrophasor measurement-based wind plant inertia estimation
CN103346558A (zh) 一种基于广域测量系统的电力系统功角暂态失稳判别方法
CN102761125A (zh) 基于响应的电力系统暂态稳定性实时闭环系统及控制方法
CN102170127B (zh) 引发强迫功率振荡的原动机扰动源定位方法
CN103336442A (zh) 一种基于agent建模技术的飞机电力系统半实物仿真方法
CN104808653A (zh) 基于滑模的电机伺服系统加性故障检测和容错控制方法
CN107919666A (zh) 一种基于广域响应的地区电网暂态稳定在线综合预判方法
CN102570448B (zh) 基于wams的电力系统分群及稳定裕度评估系统及方法
CN107565867A (zh) 一种基于轨迹灵敏度的同步发电机参数辨识方法
WO2017161620A1 (zh) 一种切机负效应的检测方法及检测装置
CN103323200A (zh) 主轴空运行激励下速度相关的刀尖点模态参数的获取方法
CN105226637B (zh) 一种基于振荡分群辨识方法的低频振荡调度控制方法
CN101540495B (zh) 基于发电机运动轨迹几何特征的失步保护系统及方法
CN104316827B (zh) 一种电力系统振荡中心定位方法
CN100541212C (zh) 基于相量测量技术的电网扰动在线自动识别方法
CN105244887A (zh) 电力系统暂态功角失稳的闭环控制方法
CN111654038B (zh) 一种基于轨迹特征识别电力系统暂态失稳的方法及系统
CN104793161B (zh) 电机驱动系统电流传感器故障诊断方法
CN109001556A (zh) 一种类强迫超低频振荡的判别方法及系统
Ali et al. Detection of coherent groups of generators and the need for system separation using synchrophasor data

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894973

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/03/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16894973

Country of ref document: EP

Kind code of ref document: A1