WO2017159921A1 - 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크 - Google Patents
연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크 Download PDFInfo
- Publication number
- WO2017159921A1 WO2017159921A1 PCT/KR2016/005292 KR2016005292W WO2017159921A1 WO 2017159921 A1 WO2017159921 A1 WO 2017159921A1 KR 2016005292 W KR2016005292 W KR 2016005292W WO 2017159921 A1 WO2017159921 A1 WO 2017159921A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fibers
- fuel storage
- storage tank
- liner
- fiber
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B7/00—Mixing; Kneading
- B29B7/80—Component parts, details or accessories; Auxiliary operations
- B29B7/88—Adding charges, i.e. additives
- B29B7/90—Fillers or reinforcements, e.g. fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K15/00—Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
- B60K15/03—Fuel tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
Definitions
- the present invention relates to a fuel storage tank liner and a fuel storage tank comprising the same, and more particularly, to a fuel storage tank liner comprising a fiber reinforced plastic and a fuel storage tank including the same.
- These hydrogen storage tanks consist of an outer composite layer that holds most of the internal pressure and a liner that provides an internal mold.
- the liner performs a function of maintaining the airtightness of the hydrogen.
- the liner material is largely a metal material such as aluminum and steel (type 3) and a polymer material such as engineering plastic (type 4). Is being used.
- Metal materials are superior to polymer materials in their functions of confidentiality and defense against external hazards such as fire, but are vulnerable to brittleness and low cycle fatigue properties.
- the polymer material is superior to the metal material in terms of brittleness and low cycle fatigue properties, but there is a weakness that fuel can penetrate and penetrate and break well at low temperatures.
- metals and polymers have advantages and disadvantages, so it is difficult to say which material is more suitable.
- the technical problem to be solved by the present invention is to provide a fuel storage tank liner and a fuel storage tank including the same, while having excellent fuel storage capacity and excellent durability.
- a liner for a fuel storage tank formed of a fiber-reinforced plastic comprising a thermoplastic resin and a reinforcing fiber.
- thermoplastic resin based on the total weight of the fiber reinforced plastic may include 60 to 90% by weight, and the reinforced fiber may include 10 to 40% by weight based on the total weight of the fiber reinforced plastic.
- the unit piece of reinforcing fiber may be 6-12 mm long before mixing with the thermoplastic resin.
- the fiber reinforced plastic may have a flexural strength (ASTM D790) of 160 MPa or more and a tensile strength (ASTM D638) of 150 MPa or more.
- Gas permeation rate (permeation rate) of the fiber-reinforced plastics may be 6.0Ncm 3 / hr / L or less.
- the fiber reinforced plastic may not be broken when the tensile strength is measured at minus 50 °C.
- the thermoplastic resin is polyethylene, polyolefin, polystyrene, acrylonitrile styrene, butadiene, polyester, polybutylene tetrachlorate, polyvinyl chloride, polyphenylene ether, polyphenylene oxide, polyether imide, polycarbonate, poly It may include at least one of ester carbonate, acrylonitrile butyl acrylate styrene polymer, polybutylene terephthalate, polyethylene terephthalate and nylon.
- the reinforcing fibers are metal fibers, metalized inorganic fibers, metallized synthetic fibers, glass fibers, polyester fibers, polyamide fibers, graphite fibers, carbon fibers, ceramic fibers, mineral fibers, basalt fibers, inorganic fibers, aramid fibers And at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulose fibers, sisal fibers and coir fibers.
- It may be formed of a fiber-reinforced plastic, including thermoplastic resins and reinforcing fibers.
- It may include a packaging material surrounding the outer peripheral surface of the liner.
- the packaging material may include a thermosetting resin and a reinforcing fiber.
- the storage capacity and durability of the fuel is excellent.
- FIG. 1 is a perspective view of a fuel storage tank according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view taken along the line II-II of FIG. 1.
- a liner for a fuel storage tank formed of a fiber reinforced plastic comprising a thermoplastic resin and a reinforcing fiber.
- FIG. 1 is a perspective view of a fuel storage tank according to an embodiment of the present invention
- Figure 2 is a cross-sectional view taken along the line II-II of FIG.
- the fuel storage tank includes a fuel inlet 10 and a fuel outlet 20, and an exterior material 40 surrounding the outer circumferential surface of the liner 30 and the liner 30 for a fuel storage tank for storing fuel. ).
- the fuel storage tank may be a hydrogen storage tank that stores hydrogen as fuel, but is not limited thereto and may store various fuels such as methane, butane, propane, helium, nitrogen, and oxygen.
- a hydrogen storage material such as a hydrogen storage alloy
- a fuel storage tank by compression a fuel storage tank by hydrogen storage material
- a tank storing hydrogen as a liquid it may be a storage tank.
- the fuel storage tank can be cylindrical or non-cylindrical with a hollow.
- the liner 30 of the fuel storage tank according to an embodiment of the present invention may include fiber reinforced plastics (FRP).
- FRP fiber reinforced plastics
- the fiber reinforced plastic used as the material of the liner 30 may include thermoplastic resin and reinforced fiber.
- the thermoplastic resin is polyethylene, polyolefin, polystyrene, acrylonitrile styrene, butadiene, polyester, polybutylene tetrachlorate, polyvinyl chloride, polyphenylene ether, polyphenylene oxide, polyether imide, polycarbonate, polyester Carbonate, acrylonitrile butylacrylate styrene polymer, polybutylene terephthalate, polyethylene terephthalate and nylon.
- the reinforcing fibers included in the fiber reinforced plastics include metal fibers, metalized inorganic fibers, metallized synthetic fibers, glass fibers, polyester fibers, polyamide fibers, graphite fibers, carbon fibers, ceramic fibers, mineral fibers, It may include at least one of basalt fibers, inorganic fibers, aramid fibers, kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulose fibers, sisal fibers and coir fibers, but preferably includes carbon fibers. .
- the reinforcing fiber may include 10 to 70 parts by weight, and preferably 11 to 67 parts by weight based on 100 parts by weight of the thermoplastic resin.
- thermoplastic resin may include 60 to 90% by weight relative to the total weight of the fiber reinforced plastic, and the reinforced fiber may include 10 to 40% by weight.
- the bending strength or tensile strength of the liner 30 is low when the reinforcing fiber is included less than 10% by weight, and the liner 30 is easily broken. This is because mixing is poor.
- the unit piece of reinforcing fibers included in the fiber reinforced plastics may be 6-12 mm long before mixing with the thermoplastic resin.
- the unit piece of reinforcing fiber may be smaller than the length before mixing with the thermoplastic when mixed with the thermoplastic and made of fiber reinforced plastic.
- the fiber reinforced plastic used in the liner 30 may further include trace amounts of antioxidants and additives in addition to the thermoplastic resin and the reinforced fiber.
- the antioxidant may include at least one of phenolic, amine, sulfur and phosphorus compounds, and may include at least one of a plasticizer and a compatibilizer as an additive.
- Antioxidants and additives may comprise up to 2% by weight relative to the total weight of the fiber reinforced plastics.
- Fiber-reinforced plastic used as a material of the liner 30 of the fuel storage tank according to an embodiment of the present invention may have a flexural strength (ASTM D790) of 160MPa or more and a tensile strength (ASTM D638) of 150MPa or more.
- the gas permeation rate (permeation rate) of the fiber-reinforced plastics according to the present embodiment may be 6.0 Ncm 3 / hr / L or less, and may not be broken when the tensile strength is measured at minus 50 ° C.
- the exterior material 40 of the fuel storage tank according to the embodiment of the present invention may include a thermosetting resin and reinforcing fibers.
- the thermosetting resin may include at least one of phenol resin, urea resin, melamine resin, furan resin, unsaturated polyester resin, silicone resin, epoxy resin and polyurethane resin.
- Reinforcing fibers include metal fibers, metalized inorganic fibers, metallized synthetic fibers, glass fibers, polyester fibers, polyamide fibers, graphite fibers, carbon fibers, ceramic fibers, mineral fibers, basalt fibers, inorganic fibers, aramid fibers And at least one of kenaf fibers, jute fibers, flax fibers, hemp fibers, cellulose fibers, sisal fibers and coir fibers.
- Fiber-reinforced plastics made of fuel storage tank liners by mixing 100 kg of nylon 6,6 with 11 kg of carbon fiber with a unit piece length of 6 mm and antioxidants and additives up to 2% by weight of the total weight of the fiber-reinforced plastic. was prepared.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic that was used as a material for the fuel storage tank liner was prepared in the same manner as in Example 1, except that 25 kg of carbon fiber having a length of 6 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic which is a material of the fuel storage tank liner was prepared in the same manner as in Example 1 except that 43 kg of carbon fiber having a length of 6 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic that is a material of the fuel storage tank liner was prepared in the same manner as in Example 1 except that 67 kg of carbon fiber having a length of 6 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic which is a material of the fuel storage tank liner was prepared in the same manner as in Example 1 except that 43 kg of carbon fiber having a length of 12 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic that is a material of the fuel storage tank liner was prepared in the same manner as in Example 1 except that 6 kg of carbon fiber having a length of 6 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic which is a material of the fuel storage tank liner was prepared in the same manner as in Example 1 except that 82 kg of carbon fiber having a length of 6 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic that was used as a material for the fuel storage tank liner was prepared in the same manner as in Example 1 except that 43 kg of carbon fiber having a length of 15 mm was used.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic that is used as a material for the fuel storage tank liner was manufactured in the same manner as in Example 1 except that 100 kg of high density polyethylene (HDPE) was used as the thermoplastic resin and no carbon fiber was added.
- HDPE high density polyethylene
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- a fiber-reinforced plastic that is a material of the fuel storage tank liner was prepared in the same manner as in Example 1 except that no carbon fiber was added.
- the fiber reinforced plastic thus produced was processed to complete the liner for the fuel storage tank.
- thermoplastic resin According to the degree of mixing of the thermoplastic resin and the carbon fiber, it is described as ⁇ , excellent case ⁇ , good case ⁇ , and bad case X.
- the flexural strength of the liner for fuel storage tanks was measured according to ASTM D790.
- the tensile strength of the liner for fuel storage tank was measured ten times at -50 ° C according to ASTM D638 to determine the number of broken specimens.
- thermoplastic resin containing no reinforcing fiber when used alone, it was confirmed that the flexural strength and the tensile strength were very low.
- thermoplastic resin and the carbon fiber showed superior properties in comparison with the comparative example in terms of mixing properties, bending strength and tensile strength, and transmission rate.
- the storage capacity and durability of the fuel is excellent.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Manufacturing & Machinery (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
본 발명의 일 실시예에 따르면, 열가소성 수지 및 강화 섬유를 포함하는 섬유 강화 플라스틱으로 형성된 연료 저장 탱크용 라이너를 제공한다.
Description
본 발명은 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크에 관한 것으로, 구체적으로 섬유 강화 플라스틱을 포함하는 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크에 관한 것이다.
최근 미래 대체 연료로서 수소가 주목 받고 있는데, 특히 친환경적인 수소를 연료로 사용하기 위해서 수소의 저장 능력이 우수한 저장 탱크 개발이 활발히 이루어지고 있다.
이러한 수소 저장 탱크는 내압의 대부분을 지탱하는 외부 복합재층과 내부의 형틀을 제공하는 라이너(liner)로 구성되어 있다.
라이너는 복합재를 감기 위한 형틀의 제공 이 외에 수소의 기밀을 유지하는 기능을 함께 수행하는데, 라이너 소재로는 크게 알루미늄, 철강 등의 금속 소재(type 3)와 엔지니어링 플라스틱과 같은 폴리머 소재(type 4)가 사용되고 있다.
금속 소재는 기밀 유지 및 화재 등의 외부 위험 요소 방어의 기능에 있어서는 폴리머 소재에 비해 우수하지만, 취성과 저주기 피로 특성에 있어서 취약하다. 또한, 폴리머 소재의 경우 취성과 저주기 피로 특성에 있어서는 금속 소재에 비해 우수하지만, 연료가 투과, 침투될 수 있고 저온에서 잘 부러지는 취약점이 있다. 이렇게 라이너의 소재로서 금속과 폴리머는 각각의 장단점이 있어 어느 소재가 더욱 적합하다고 하기는 어려운 상황이다.
이에 연료 저장 탱크의 안정성 확보와 수명 증가를 위해서는 새로운 소재의 개발이 필요한 상황이다.
본 발명이 해결하고자 하는 기술적 과제는 연료 저장 능력이 우수하면서도, 내구성이 우수한 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크를 제공하는 것이다.
이러한 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 열가소성 수지 및 강화 섬유를 포함하는 섬유 강화 플라스틱으로 형성된 연료 저장 탱크용 라이너를 제공한다.
상기 섬유 강화 플라스틱 총 중량 대비 상기 열가소성 수지는 60~90중량%를 포함하고, 상기 섬유 강화 플라스틱 총 중량 대비 상기 강화 섬유는 10~40중량%를 포함할 수 있다.
상기 강화 섬유의 단위 조각은 상기 열가소성 수지와 혼합 전에 6~12mm의 길이일 수 있다.
상기 섬유 강화 플라스틱은 굴곡 강도(ASTM D790)가 160MPa 이상이고, 인장 강도(ASTM D638)가 150MPa 이상일 수 있다.
상기 섬유 강화 플라스틱의 가스 투과 속도(permeation rate)는 6.0Ncm3/hr/L 이하일 수 있다.
상기 섬유 강화 플라스틱은 영하 50℃에서 인장 강도 측정 시 깨지지 않을 수 있다.
상기 열가소성 수지는 폴리에틸렌, 폴리올레핀, 폴리스티렌, 아크릴로니트릴스티렌, 부타디엔, 폴리에스테르, 폴리부틸렌테트라클로레이트, 폴리비닐클로라이드, 폴리페닐렌 에테르, 폴리페닐렌 옥사이드, 폴리에테르 이미드, 폴리카보네이트, 폴리에스테르카보네이트, 아크릴로니트릴 부틸아크릴레이트 스티렌 중합체, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트 및 나일론 중 적어도 어느 하나를 포함할 수 있다.
상기 강화 섬유는 금속 섬유, 금속화된 무기 섬유, 금속화된 합성 섬유, 유리 섬유, 폴리에스테르 섬유, 폴리아미드 섬유, 흑연 섬유, 탄소 섬유, 세라믹 섬유, 미네랄 섬유, 현무암 섬유, 무기 섬유, 아라미드 섬유, 케나프 섬유, 주트 섬유, 아마 섬유, 대마 섬유, 셀룰로스 섬유, 사이잘 섬유 및 코이어 섬유 중 적어도 어느 하나를 포함할 수 있다.
열가소성 수지 및 강화 섬유를 포함하는 섬유 강화 플라스틱으로 형성될 수 있다.
상기 라이너의 외주면을 둘러싸고 있는 외장재를 포함할 수 있다.
상기 외장재는 열경화성 수지 및 강화 섬유를 포함할 수 있다.
이상과 같이 본 발명의 실시예에 따른 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크에 따르면, 연료의 저장 능력과 내구성이 우수하다.
도 1은 본 발명의 실시예에 따른 연료 저장 탱크의 사시도이다.
도 2는 도 1의 II-II 단면선에 따라 자른 단면도이다.
10: 연료 유입구 20: 연료 방출구
30: 라이너 40: 외장재
본 발명의 일 실시예에 따르면, 열가소성 수지 및 강화 섬유를 포함하는 섬유 강화 플라스틱으로 형성된 연료 저장 탱크용 라이너를 제공한다.
첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
달리 정의되지 않는 한, 본 명세서에서 사용되는 모든 기술적 및 과학적 용어는 본 발명이 속하는 기술 분야의 숙련자에 의해 통상적으로 이해되는 바와 동일한 의미를 갖는다. 상충되는 경우, 정의를 포함하는 본 명세서가 우선할 것이다. 또한 본 명세서에서 설명되는 것과 유사하거나 동등한 방법 및 재료가 본 발명의 실시 또는 시험에 사용될 수 있지만, 적합한 방법 및 재료가 본 명세서에 기재된다.
이하, 도 1 및 도 2를 참고하여 본 발명의 실시예에 따른 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크에 대해서 상세하게 설명한다.
도 1은 본 발명의 실시예에 따른 연료 저장 탱크의 사시도이며, 도 2는 도 1의 II-II 단면선에 따라 자른 단면도이다.
본 발명의 실시예에 따른 연료 저장 탱크는 연료 유입구(10) 및 연료 방출구(20)를 포함하고 연료를 저장하는 연료 저장 탱크용 라이너(30)와 라이너(30) 외주면을 둘러싸고 있는 외장재(40)를 포함한다.
여기서, 연료 저장 탱크는 연료로서 수소를 저장하고 있는 수소 저장 탱크일 수 있으나, 이에 한정되지 않고 메탄, 부탄, 프로판, 헬륨, 질소 및 산소 등의 다양한 연료를 저장할 수 있다.
연료로서 수소를 저장하고 있는 경우에는 수소 용기 내에 수소 흡장 합금 등의 수소 저장 재료를 넣어 압축에 의한 연료 저장 탱크, 수소 저장 재료에 의한 연료 저장 탱크나 수소를 액체로 저장하는 탱크 등 다양한 형태의 연료 저장 탱크일 수 있다.
연료 저장 탱크는 중공을 갖는 원통형 또는 비원통형일 수 있다.
본 발명의 실시예에 따른 연료 저장 탱크의 라이너(30)는 섬유 강화 플라스틱(fiber reinforced plastics; FRP)을 포함할 수 있다.
라이너(30)의 소재로서 사용되는 섬유 강화 플라스틱은 열가소성 수지와 강화 섬유를 포함할 수 있다.
열가소성 수지는 폴리에틸렌, 폴리올레핀, 폴리스티렌, 아크릴로니트릴스티렌, 부타디엔, 폴리에스테르, 폴리부틸렌테트라클로레이트, 폴리비닐클로라이드, 폴리페닐렌 에테르, 폴리페닐렌 옥사이드, 폴리에테르 이미드, 폴리카보네이트, 폴리에스테르카보네이트, 아크릴로니트릴 부틸아크릴레이트 스티렌 중합체, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트 및 나일론 중 적어도 어느 하나를 포함할 수 있다.
또한, 섬유 강화 플라스틱에 포함된 강화 섬유로는 금속 섬유, 금속화된 무기 섬유, 금속화된 합성 섬유, 유리 섬유, 폴리에스테르 섬유, 폴리아미드 섬유, 흑연 섬유, 탄소 섬유, 세라믹 섬유, 미네랄 섬유, 현무암 섬유, 무기 섬유, 아라미드 섬유, 케나프 섬유, 주트 섬유, 아마 섬유, 대마 섬유, 셀룰로스 섬유, 사이잘 섬유 및 코이어 섬유 중 적어도 어느 하나를 포함할 수 있으나, 탄소 섬유를 포함하는 것이 바람직하다.
라이너(30)의 소재로서 사용되는 섬유 강화 플라스틱에서 열가소성 수지 100중량부에 대해 강화 섬유는 10~70 중량부를 포함할 수 있으며, 바람직하게는 11~67 중량부를 포함할 수 있다.
즉, 열가소성 수지는 섬유 강화 플라스틱 총 중량 대비 60~90중량%를 포함할 수 있으며, 강화 섬유는 10~40중량%를 포함할 수 있다.
이는 강화 섬유가 10중량% 미만으로 포함될 경우 라이너(30)의 굴곡 강도나 인장 강도가 낮아 라이너(30)가 부러지기 쉽고, 이와 반대로 강화 섬유가 40중량% 초과로 포함될 경우 강화 섬유와 열가소성 수지의 혼합성이 떨어지기 때문이다.
섬유 강화 플라스틱에 포함되는 강화 섬유의 단위 조각은 열가소성 수지와 혼합 전 6~12mm의 길이일 수 있다.
이는 강화 섬유 단위 조각의 길이가 6mm 미만인 것을 사용할 경우 라이너(30)의 강도가 낮아지며, 강화 섬유 단위 조각의 길이가 12mm를 초과인 것을 사용할 경우 열가소성 수지와의 혼합성이 떨어지기 때문이다.
강화 섬유의 단위 조각은 열가소성 수지와 혼합되어 섬유 강화 플라스틱으로 제조될 경우, 열가소성 수지와 혼합 전의 길이보다 작아질 수 있다.
라이너(30)에 사용되는 섬유 강화 플라스틱은 열가소성 수지와 강화 섬유 이 외에 미량의 산화 방지제 및 첨가제를 더 포함할 수 있다.
산화 방지제는 페놀계, 아민계, 유황계 및 인계 화합물 중 적어도 어느 하나를 포함할 수 있으며, 첨가제로서 가소제, 상용화제 중 적어도 어느 하나를 포함할 수 있다.
산화 방지제 및 첨가제는 섬유 강화 플라스틱 총 중량 대비 2중량% 이하로 포함할 수 있다.
본 발명의 실시예에 따른 연료 저장 탱크의 라이너(30)의 소재로서 사용되는 섬유 강화 플라스틱은 굴곡 강도(ASTM D790)가 160MPa 이상 및 인장 강도(ASTM D638)가 150MPa 이상일 수 있다.
또한, 본 실시예에 따른 섬유 강화 플라스틱의 가스 투과 속도(permeation rate)는 6.0Ncm3/hr/L 이하일 수 있고, 영하 50℃에서 인장 강도 측정 시 부러지지 않을 수 있다.
다음으로, 본 발명의 실시예에 따른 연료 저장 탱크의 외장재(40)는 열경화성 수지와 강화 섬유를 포함할 수 있다.
열경화성 수지는 페놀수지, 요소수지, 멜라민수지, 푸란수지, 불포화 폴리에스테르수지, 실리콘수지, 에폭시수지 및 폴리우레탄수지 중 적어도 어느 하나를 포함할 수 있다.
강화 섬유로는 금속 섬유, 금속화된 무기 섬유, 금속화된 합성 섬유, 유리 섬유, 폴리에스테르 섬유, 폴리아미드 섬유, 흑연 섬유, 탄소 섬유, 세라믹 섬유, 미네랄 섬유, 현무암 섬유, 무기 섬유, 아라미드 섬유, 케나프 섬유, 주트 섬유, 아마 섬유, 대마 섬유, 셀룰로스 섬유, 사이잘 섬유 및 코이어 섬유 중 적어도 어느 하나를 포함할 수 있다.
이하, 실시예와 비교예를 통하여 본 발명의 구성 및 그에 따른 효과를 보다 상세히 설명하고자 한다. 그러나, 본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 연료 저장 탱크 라이너의 제조
열가소성 수지로서 나일론 6,6을 100kg, 단위 조각의 길이가 6mm인 탄소 섬유 11kg과 섬유 강화 플라스틱 총 중량의 2중량% 이하의 산화 방지제 및 첨가제를 혼합하여 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
실시예 2
단위 조각의 길이가 6mm인 탄소 섬유 25kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
실시예 3
단위 조각의 길이가 6mm인 탄소 섬유 43kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
실시예 4
단위 조각의 길이가 6mm인 탄소 섬유 67kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
실시예 5
단위 조각의 길이가 12mm인 탄소 섬유 43kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
비교예 1
단위 조각의 길이가 6mm인 탄소 섬유 6kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
비교예 2
단위 조각의 길이가 6mm인 탄소 섬유 82kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
비교예 3
단위 조각의 길이가 15mm인 탄소 섬유 43kg을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
비교예 4
열가소성 수지로서 고밀도 폴리에틸렌(HDPE)을 100kg을 사용하고, 탄소 섬유를 미첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
비교예 5
탄소 섬유를 미첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 연료 저장 탱크 라이너의 소재가 되는 섬유 강화 플라스틱을 제조하였다.
이렇게 제조된 섬유 강화 플라스틱을 가공하여 연료 저장 탱크용 라이너를 완성하였다.
실험예
실시예 1~5 및 비교예 1~5에 따른 연료 저장 탱크용 라이너를 이용하여 라이너의 특성을 측정하였으며, 이의 결과를 하기 표 1에 나타내었다.
(1) 혼합성 측정
열가소성 수지와 탄소 섬유의 혼합 정도에 따라 혼합성이 우수한 경우 ◎로, 양호한 경우 ○로, 보통인 경우 △로, 불량인 경우 Ⅹ로 표기하였다.
(2) 굴곡 강도 측정
ASTM D790에 따라 연료 저장 탱크용 라이너의 굴곡 강도를 측정하였다.
(3) 인장 강도 측정
ASTM D638에 따라 연료 저장 탱크용 라이너의 인장 강도를 측정하였다.
추가로, 영하 50℃에서 ASTM D638에 따라 연료 저장 탱크용 라이너의 인장강도를 10회 측정하여 깨진 시편의 수를 측정하였다.
(4) 투과 속도 측정
실시예 1~5 및 비교예 1~5에 따른 연료 저장 탱크용 라이너에 수소 가스를 700bar의 압력까지 충전한 후, 15±2℃의 챔버에서 48시간동안 방치한 후, 투과 속도를 5회 측정하여 투과 속도가 6.0Ncm3/hr/L 이상인 횟수를 측정하였다.
탄소 섬유 길이(mm) | 열가소성 수지(중량부) | 탄소 섬유(중량부) | 혼합성 | 굴곡 강도 | 인장 강도 | 인장 강도(-50℃) | 투과 속도 | |
실시예 1 | 6 | 100 | 11 | ◎ | 167 | 152 | 0/10 | 0/5 |
실시예 2 | 6 | 100 | 25 | ◎ | 253 | 197 | 0/10 | 0/5 |
실시예 3 | 6 | 100 | 43 | ◎ | 301 | 234 | 0/10 | 0/5 |
실시예 4 | 6 | 100 | 67 | ○ | 330 | 244 | 0/10 | 0/5 |
실시예 5 | 12 | 100 | 43 | △ | 251 | 199 | 0/10 | 0/5 |
비교예 1 | 6 | 100 | 8 | ◎ | 132 | 121 | 1/10 | 0/5 |
비교예 2 | 6 | 100 | 82 | Ⅹ | - | - | - | - |
비교예 3 | 15 | 100 | 43 | Ⅹ | - | - | - | - |
비교예 4 | - | 100 | 0 | - | 30 | 25 | 0/10 | 2/5 |
비교예 5 | - | 100 | 0 | - | 65 | 49 | 3/10 | 0/5 |
상기 표 1를 참고하면, 비교예 1과 같이 열가소성 수지 100 중량부에 대해 탄소 섬유가 10 중량부 미만인 경우 실시예 1~5와 대비할 때 굴곡 강도와 인장 강도가 떨어지고, 특히 영하 50℃에서 깨질 수 있다는 것을 확인하였다.
반대로 비교예 2와 같이 열가성 수지 100 중량부에 대해 탄소 섬유가 70 중량부를 초과하는 경우 열가소성 수지와 탄소 섬유의 혼합성이 불량하여 섬유 강화 플라스틱의 제조가 어려운 것을 확인하였다.
또한, 비교예 3을 참고하면 탄소 섬유의 길이가 12mm를 초과하는 경우 역시 열가소성 수지와 탄소 섬유의 혼합성이 불량하여 섬유 강화 플라스틱의 제조가 어려운 것을 확인하였다.
그리고, 비교예 4~5의 경우와 같이 강화 섬유가 포함되지 않은 열가소성 수지가 단독으로 사용된 경우에는 굴곡 강도와 인장 강도가 매우 낮은 것을 확인하였다.
이에 반해, 실시예 1~5의 경우 열가소성 수지와 탄소 섬유의 혼합성, 굴곡 강도 및 인장 강도, 투과 속도 면에서 모두 비교예에 비해 우수한 특성을 보이는 것을 확인하였다.
이상과 같이 본 발명의 실시예에 따른 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크에 따르면, 연료의 저장 능력과 내구성이 우수하다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
Claims (11)
- 열가소성 수지 및 강화 섬유를 포함하는 섬유 강화 플라스틱으로 형성된 연료 저장 탱크용 라이너.
- 제1항에서,상기 섬유 강화 플라스틱 총 중량 대비 상기 열가소성 수지는 60~90중량%를 포함하고,상기 섬유 강화 플라스틱 총 중량 대비 상기 강화 섬유는 10~40중량%를 포함하는 연료 저장 탱크용 라이너.
- 제2항에서,상기 강화 섬유의 단위 조각은 열가소성 수지와 혼합 전에 6~12mm의 길이인 연료 저장 탱크용 라이너.
- 제3항에서,상기 섬유 강화 플라스틱은 굴곡 강도(ASTM D790)가 160MPa 이상이고, 인장 강도(ASTM D638)가 150MPa 이상인 연료 저장 탱크용 라이너.
- 제3항에서,상기 섬유 강화 플라스틱의 가스 투과 속도(permeation rate)는 6.0Ncm3/hr/L 이하인 연료 저장 탱크용 라이너.
- 제2항에서,상기 섬유 강화 플라스틱은 영하 50℃에서 인장 강도 측정 시 깨지지 않는 연료 저장 탱크용 라이너.
- 제2항에서,상기 열가소성 수지는 폴리에틸렌, 폴리올레핀, 폴리스티렌, 아크릴로니트릴스티렌, 부타디엔, 폴리에스테르, 폴리부틸렌테트라클로레이트, 폴리비닐클로라이드, 폴리페닐렌 에테르, 폴리페닐렌 옥사이드, 폴리에테르 이미드, 폴리카보네이트, 폴리에스테르카보네이트, 아크릴로니트릴 부틸아크릴레이트 스티렌 중합체, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트 및 나일론 중 적어도 어느 하나를 포함하는 연료 저장 탱크용 라이너.
- 제7항에서,상기 강화 섬유는 금속 섬유, 금속화된 무기 섬유, 금속화된 합성 섬유, 유리 섬유, 폴리에스테르 섬유, 폴리아미드 섬유, 흑연 섬유, 탄소 섬유, 세라믹 섬유, 미네랄 섬유, 현무암 섬유, 무기 섬유, 아라미드 섬유, 케나프 섬유, 주트 섬유, 아마 섬유, 대마 섬유, 셀룰로스 섬유, 사이잘 섬유 및 코이어 섬유 중 적어도 어느 하나를 포함하는 연료 저장 탱크용 라이너.
- 열가소성 수지 및 강화 섬유를 포함하는 섬유 강화 플라스틱으로 형성된 연료 저장 탱크용 라이너,상기 라이너의 외주면을 둘러싸고 있는 외장재를 포함하는 연료 저장 탱크.
- 제9항에서,상기 외장재는 열경화성 수지 및 강화 섬유를 포함하는 연료 저장 탱크.
- 제10항에서,상기 섬유 강화 플라스틱 총 중량 대비 상기 열가소성 수지는 60~90중량%를 포함하고,상기 섬유 강화 플라스틱 총 중량 대비 상기 강화 섬유는 10~40중량%를 포함하는 연료 저장 탱크.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0032303 | 2016-03-17 | ||
KR20160032303 | 2016-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159921A1 true WO2017159921A1 (ko) | 2017-09-21 |
Family
ID=59852270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/005292 WO2017159921A1 (ko) | 2016-03-17 | 2016-05-19 | 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI637124B (ko) |
WO (1) | WO2017159921A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112377799A (zh) * | 2020-11-06 | 2021-02-19 | 中材科技(成都)有限公司 | 一种耐火烧性能强的复合材料气瓶 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101037555B1 (ko) * | 2002-12-27 | 2011-05-31 | 나가세케무텍쿠스가부시키가이샤 | 섬유 강화된 열가소성 플라스틱의 제조방법 및 섬유 강화된열가소성 플라스틱 |
JP5049507B2 (ja) * | 2006-04-06 | 2012-10-17 | 三菱エンジニアリングプラスチックス株式会社 | 熱可塑性樹脂組成物の製造方法 |
WO2013080820A1 (ja) * | 2011-11-29 | 2013-06-06 | 東レ株式会社 | 炭素繊維強化熱可塑性樹脂組成物、そのペレットおよび成形品 |
KR20150091928A (ko) * | 2014-02-04 | 2015-08-12 | 도레이첨단소재 주식회사 | 탄소섬유 강화 열가소성 수지 조성물, 이를 이용한 탄소섬유 강화 열가소성 수지 성형품 및 이의 제조방법 |
WO2015163599A1 (ko) * | 2014-04-24 | 2015-10-29 | (주)엘지하우시스 | 섬유 강화 플라스틱 조성물, 이로부터 형성된 충격성능이 향상된 섬유 강화 복합재 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3591034B2 (ja) * | 1995-02-15 | 2004-11-17 | 東レ株式会社 | ガスボンベおよびその製造方法 |
EP2020282B1 (en) * | 2006-05-25 | 2014-08-13 | Mitsubishi Engineering-Plastics Corporation | Moldings of fiber-reinforced thermoplastic resin |
-
2016
- 2016-05-19 WO PCT/KR2016/005292 patent/WO2017159921A1/ko active Application Filing
- 2016-07-06 TW TW105121421A patent/TWI637124B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101037555B1 (ko) * | 2002-12-27 | 2011-05-31 | 나가세케무텍쿠스가부시키가이샤 | 섬유 강화된 열가소성 플라스틱의 제조방법 및 섬유 강화된열가소성 플라스틱 |
JP5049507B2 (ja) * | 2006-04-06 | 2012-10-17 | 三菱エンジニアリングプラスチックス株式会社 | 熱可塑性樹脂組成物の製造方法 |
WO2013080820A1 (ja) * | 2011-11-29 | 2013-06-06 | 東レ株式会社 | 炭素繊維強化熱可塑性樹脂組成物、そのペレットおよび成形品 |
KR20150091928A (ko) * | 2014-02-04 | 2015-08-12 | 도레이첨단소재 주식회사 | 탄소섬유 강화 열가소성 수지 조성물, 이를 이용한 탄소섬유 강화 열가소성 수지 성형품 및 이의 제조방법 |
WO2015163599A1 (ko) * | 2014-04-24 | 2015-10-29 | (주)엘지하우시스 | 섬유 강화 플라스틱 조성물, 이로부터 형성된 충격성능이 향상된 섬유 강화 복합재 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112377799A (zh) * | 2020-11-06 | 2021-02-19 | 中材科技(成都)有限公司 | 一种耐火烧性能强的复合材料气瓶 |
CN112377799B (zh) * | 2020-11-06 | 2022-04-22 | 中材科技(成都)有限公司 | 一种耐火烧性能强的复合材料气瓶 |
Also Published As
Publication number | Publication date |
---|---|
TW201734352A (zh) | 2017-10-01 |
TWI637124B (zh) | 2018-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101469112A (zh) | 一种高韧性无卤阻燃玻纤增强聚碳酸酯组合物 | |
KR101905938B1 (ko) | 경화성 에폭시 수지 조성물 및 이로부터 제조된 복합체 | |
WO2021201407A1 (ko) | 전기차 배터리 모듈 프레임 | |
WO2017104891A1 (ko) | 저점도 액상 에폭시 수지 조성물 및 이로부터 제조되는 압력용기 | |
CN101139462A (zh) | 一种碳纤维增强无卤阻燃尼龙66及其制备方法 | |
KR102710083B1 (ko) | 고압 수소에 접하는 블로우 성형품용의 폴리아미드 수지 조성물 및 이를 이용한 블로우 성형품 | |
WO2017159921A1 (ko) | 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크 | |
CN103059559A (zh) | 一种地铁隧道平台用高强度阻燃热塑性复合材料及其复合板材的制备方法 | |
WO2015088239A1 (ko) | 할로겐계 난연 유리섬유 강화 폴리아미드 수지 조성물, 및 제조방법 | |
WO2017200133A1 (ko) | 보강재 재질 변경으로 피로저항 성능이 개선된 가요성을 갖는 액화가스 저장탱크용 2차 가스배리어 | |
WO2020197132A1 (ko) | 열가소성 수지 조성물 및 이로부터 형성된 성형품 | |
CN103525052A (zh) | 一种无卤阻燃耐寒导电聚碳酸酯/碳纤维复合材料及其制备方法 | |
WO2017204558A1 (ko) | 보강 복합재 및 이를 포함하는 물품 | |
WO2013154256A1 (ko) | 친환경 고강도 수지 복합재 | |
CN102181139A (zh) | 玻璃纤维增强聚碳酸酯树脂及其制备方法 | |
CN110649538B (zh) | 一种高抗冲枕形复合套管及套管组件 | |
WO2020111551A1 (ko) | 열가소성 수지 조성물 및 이로부터 제조된 성형품 | |
CN103421294A (zh) | 一种无卤阻燃增强型pc/abs合金及其制备方法 | |
WO2024049049A1 (ko) | 가스저장용기용 폴리아미드 수지 조성물 및 이를 이용한 가스 저장 탱크 라이너 | |
WO2017122884A1 (ko) | 고기능성의 건축·토목 자재용 frp 및 이로부터 제조된 frp 전주 | |
WO2022145799A1 (ko) | 수소 탱크 라이너용 폴리아미드 수지 조성물 및 이로부터 제조된 성형품 | |
WO2018044007A1 (ko) | 섬유 강화 복합재 및 이를 이용한 자동차용 내·외장재 | |
CN110358296A (zh) | 一种高韧性连续纤维增强pps复合材料预浸带及其制备方法 | |
WO2017111441A1 (ko) | 섬유 강화 복합재용 조성물, 섬유 강화 복합재 및 섬유 강화 복합재의 제조방법 | |
WO2021060882A1 (ko) | 고강성 고내열 열가소성 복합소재 조성물 및 이로부터 제조된 성형품 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16894652 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16894652 Country of ref document: EP Kind code of ref document: A1 |