WO2017159855A1 - X線検査装置 - Google Patents

X線検査装置 Download PDF

Info

Publication number
WO2017159855A1
WO2017159855A1 PCT/JP2017/010932 JP2017010932W WO2017159855A1 WO 2017159855 A1 WO2017159855 A1 WO 2017159855A1 JP 2017010932 W JP2017010932 W JP 2017010932W WO 2017159855 A1 WO2017159855 A1 WO 2017159855A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
foreign object
function
product
Prior art date
Application number
PCT/JP2017/010932
Other languages
English (en)
French (fr)
Inventor
株本 隆司
正雄 津野
Original Assignee
株式会社イシダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イシダ filed Critical 株式会社イシダ
Priority to JP2018506042A priority Critical patent/JPWO2017159855A1/ja
Publication of WO2017159855A1 publication Critical patent/WO2017159855A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Definitions

  • the present invention relates to an inspection apparatus that determines the presence or absence of foreign matter in an inspection object based on an X-ray transmission image irradiated on the inspection object.
  • an X-ray inspection apparatus has been used as means for determining the presence or absence of foreign matter in an article.
  • the X-ray inspection apparatus described in Patent Document 1 Japanese Patent Laid-Open No. 2009-210535
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-210535
  • the inspection object is irradiated with X-rays, and the range of the foreign matter is specified based on the X-rays (transmission X-ray dose) transmitted through the inspection object.
  • An object of the present invention is to provide an X-ray inspection apparatus that generates an image that can easily identify the position of a foreign substance in an entire article.
  • An X-ray inspection apparatus is an X-ray inspection apparatus that irradiates an article with X-rays and determines whether or not the article contains foreign matter, and includes an image generation unit.
  • the image generation unit generates an X-ray transmission image from X-ray data transmitted through the article.
  • the image generation unit has a first function, a second function, and a third function.
  • the first function is a function for generating a foreign object extraction image that is an image for determining the presence or absence of a foreign object.
  • the second function is a function of generating a contour extraction image in which a contour indicating the position, size, and shape of the article is extracted.
  • the third function combines the contour extraction image with the foreign object extraction image to generate a foreign object position specifying image that is an image specifying the position of the foreign object in the article.
  • the foreign object position specifying image allows the operator to easily specify the position of the foreign object in the article. It is not necessary to specify the position of the foreign substance in the entire article while alternately comparing them, and the workability is improved.
  • An X-ray inspection apparatus is the X-ray inspection apparatus according to the first aspect, wherein the image generation unit further has a coloring function for coloring the contour and / or the inside of the contour. .
  • the X-ray inspection apparatus is the X-ray inspection apparatus according to the first aspect, and further includes a display unit and an adjustment unit.
  • the display unit displays an image generated by the image generation unit.
  • the adjustment unit is used to adjust the inspection sensitivity while displaying the foreign object position specifying image on the display unit.
  • the operator can adjust the inspection sensitivity while displaying the foreign object position specifying image on the display unit. Therefore, the adjustment is easy and convenient for the inspection operator.
  • the X-ray inspection apparatus is the X-ray inspection apparatus according to the first aspect, and the image generation unit further has an edge processing function and a standardization function.
  • the edge processing function is a function that emphasizes a spatial change in luminance in an X-ray transmission image as an outline.
  • the standardization function is a function for standardizing an outline in an edge-processed image by expansion / reduction processing.
  • This X-ray inspection apparatus can display the contour line clearly.
  • the foreign object position specifying image allows the operator to easily specify the position of the foreign object in the article. There is no need to “specify the position of the foreign object in the entire article while alternately comparing the image and the image”, and workability is improved.
  • FIG. 1 is an external perspective view of an X-ray inspection apparatus according to an embodiment of the present invention.
  • the process block diagram before and behind an X-ray inspection apparatus. The image figure of the X-ray transmission image of the goods from which the foreign material was detected.
  • Image of foreign object position identification image 10 is a flowchart of automatic generation control of a foreign object position specifying image.
  • FIG. 1 is an external perspective view of an X-ray inspection apparatus according to an embodiment of the present invention.
  • an X-ray inspection apparatus 10 is one of apparatuses that are incorporated in a production line for a product G such as food (see FIG. 6) and inspects the quality of the product G, and is continuously conveyed. This is an apparatus for determining whether the product G is acceptable by irradiating the product G with X-rays.
  • the product G which is an inspection object, is carried to the X-ray inspection apparatus 10 by the pre-stage conveyor 60.
  • the product G is classified as a non-defective product or a defective product in the X-ray inspection apparatus 10.
  • the inspection result obtained by the X-ray inspection apparatus 10 is sent to a distribution mechanism 70 disposed on the downstream side of the X-ray inspection apparatus 10.
  • the distribution mechanism 70 sends the product G determined to be a non-defective product by the X-ray inspection apparatus 10 to the conveyor 80 that discharges the normal product, and discharges the product G determined to be a defective product by the X-ray inspection apparatus 10.
  • the direction 90 and the defective discharge direction 91 are distributed.
  • FIG. 2 is an internal configuration diagram of the shield box of the X-ray inspection apparatus. 1 and 2, the X-ray inspection apparatus 10 includes a shield box 11, a conveyor 12, an X-ray irradiator 13, an X-ray line sensor 14, and a monitor 30 with a touch panel function (see FIG. 1). It is comprised from the control computer 20 (refer FIG. 4).
  • Shield box 11 On both side surfaces of the shield box 11, openings 11 a for allowing the product G to be carried in and out of the shield box 11 are formed.
  • the opening 11 a is closed by a shielding noren (not shown) in order to prevent leakage of X-rays to the outside of the shield box 11.
  • This shielding nolen is formed from rubber containing lead and is pushed away by the product G when the product G passes through the opening 11a.
  • a conveyor 12 In the shield box 11, a conveyor 12, an X-ray irradiator 13, an X-ray line sensor 14, a control computer 20 and the like are accommodated.
  • a key insertion slot, a power switch, and the like are disposed on the front upper portion of the shield box 11.
  • the conveyor 12 conveys the commodity G in the shield box 11 and is disposed so as to penetrate through the openings 11a formed on both side surfaces of the shield box 11 as shown in FIG. And the conveyor 12 conveys the goods G mounted on the belt, rotating an endless belt with the drive roller driven by the conveyor motor 12a (refer FIG. 4).
  • the conveyance speed by the conveyor 12 is finely controlled by the inverter control of the conveyor motor 12a by the control computer 20 so as to be the set speed input by the operator.
  • the conveyor motor 12a is equipped with an encoder 12b (see FIG. 4) that detects the conveying speed of the conveyor 12 and sends it to the control computer 20.
  • the X-ray irradiator 13 is disposed above the conveyor 12 and irradiates the fan-shaped irradiation range X with X-rays toward the lower X-ray line sensor 14.
  • FIG. 3 is a schematic diagram showing the principle of X-ray inspection.
  • the X-ray line sensor 14 is disposed below the conveyor 12, and mainly includes a large number of pixel sensors 14a. These pixel sensors 14 a are horizontally arranged in a straight line in a direction orthogonal to the conveying direction by the conveyor 12. Each pixel sensor 14a detects X-rays that have passed through the product G or the conveyor 12, and outputs an X-ray fluoroscopic image signal.
  • the X-ray fluoroscopic image signal indicates the brightness (density) of X-rays.
  • Monitor 30 is a full-dot liquid crystal display, and displays a screen that prompts the operator to input inspection parameters and the like necessary for inspection.
  • the monitor 30 also has a touch panel function and accepts input of inspection parameters and the like from the operator.
  • FIG. 4 is a block diagram of the control computer 20.
  • the control computer 20 includes a CPU (Central Processing Unit) 21, ROM (Read Only Memory) 22, RAM (Random Access Memory) 23, HDD (Hard Disk) 25, and a drive 24 for inserting a storage medium. It is equipped with.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • HDD Hard Disk
  • the CPU 21 executes various programs stored in the ROM 22 and the HDD 25.
  • the HDD 25 stores and accumulates inspection parameters and inspection results.
  • the inspection parameters can be set and changed by input from the operator using the touch panel function of the monitor 30. The operator can set so that these data are stored and accumulated not only in the HDD 25 but also in a storage medium inserted in the drive 24.
  • control computer 20 includes a display control circuit (not shown) for controlling data display on the monitor 30 and a key input circuit (not shown) for capturing key input data input by the operator via the touch panel of the monitor 30. And a communication port (not shown) that enables connection with an external device such as a printer (not shown) or a network such as a LAN.
  • the units (21 to 25) of the control computer 20 are connected to each other via a bus line such as an address bus or a data bus.
  • the control computer 20 is connected to a conveyor motor 12a, an encoder 12b, a photoelectric sensor 15, an X-ray irradiator 13, an X-ray line sensor 14, and the like.
  • the photoelectric sensor 15 is a synchronous sensor for detecting the timing when the product G as a specimen passes through the fan-shaped X-ray irradiation range X (see FIG. 2), and is mainly a pair of sensors arranged with the conveyor 12 interposed therebetween. It consists of a projector and a light receiver.
  • the HDD 25 of the control computer 20 stores an inspection program including an image generation module, an area identification module, a weight estimation module, a weight diagnosis module, a foreign substance inspection module, and a comprehensive diagnosis module. Then, the CPU 21 of the control computer 20 reads and executes these program modules, whereby an image generation unit 21a, an area determination unit 21b, a weight estimation unit 21c, a weight diagnosis unit 21d, a foreign matter inspection unit 21e, and a comprehensive diagnosis unit 21f. (See FIG. 4).
  • the image generation unit 21 a generates an X-ray transmission image of the product G based on the X-ray fluoroscopic image signal output from the X-ray line sensor 14.
  • the image generation unit 21a uses the X-ray fluoroscopic image signal output from each pixel sensor 14a of the X-ray line sensor 14 when the product G passes the fan-shaped X-ray irradiation range X (see FIG. 2) at fine time intervals. And an X-ray transmission image of the product G is generated based on the acquired X-ray fluoroscopic image signal.
  • the timing at which the product G passes through the fan-shaped X-ray irradiation range X is determined by a signal from the photoelectric sensor 15.
  • the image generation unit 21a copies the product G by connecting the data for each fine time interval related to the X-ray brightness obtained from each pixel sensor 14a of the X-ray line sensor 14 in a matrix in time series. A line transmission image is generated.
  • the image generation unit 21a has a function of generating an X-ray transmission image as a main function. In addition to this main function, the image generation unit 21a has some functions necessary for specifying a foreign object position (see FIG. 5). ). These will be described in the section “(4) Specification of foreign object position”.
  • Region discriminating unit 21b discriminates the product region from the X-ray transmission image that shows the product G generated by the image generating unit 21a.
  • Weight estimation unit 21c estimates the weight of the product G by performing image processing on the product region determined by the region determination unit 21b.
  • the weight estimation process is performed on the X-ray transmission image P based on the following principle using the property that a thicker substance appears darker in the X-ray irradiation direction.
  • is a linear absorption coefficient determined according to the energy of X-rays and the type of substance.
  • the weight estimation unit 21c estimates the weight of the entire product G by calculating and adding the weight m corresponding to all the pixels constituting the product G.
  • Weight diagnosis unit 21d The weight diagnosis unit 21d checks whether the weight of the contents of the product G is within a predetermined range. When the weight is within the range, the product G is diagnosed as normal, and when the weight is not within the range, the product G is diagnosed as being abnormal in weight.
  • the foreign substance inspection unit 21e detects a foreign substance contained in the product G by performing a binarization process on the X-ray transmission image of the product G generated by the image generation unit 21a. More specifically, when there is an area that appears darker than a preset threshold on the X-ray transmission image P of the product G, it is determined that foreign matter is mixed in the product G, and the product G is Judge as abnormal.
  • the product G is diagnosed as being defective and the inspection by the weight diagnosis unit 21d is immediately terminated. Even if the product G has only a foreign object detected, even if the product G has only a weight abnormality detected, it cannot be shipped. Therefore, the product G is concluded to be defective regardless of other inspection results. Because it can.
  • the general diagnosis unit 21f diagnoses the product G as a non-defective product. Then, the comprehensive diagnosis unit 21 f sends the diagnosis result to the distribution mechanism 70.
  • FIG. 7A is an image diagram of an X-ray transmission image P0 of the commodity G from which a foreign object is detected.
  • the region Rg that appears dark is the silhouette of the product G.
  • the region Rf that appears light in the silhouette is determined to be a foreign object.
  • the inspector can display the original image on the screen at any time.
  • FIG. 7B is an image diagram of the foreign substance extraction image P1.
  • a foreign substance extraction image P1 is an image obtained by extracting a region Rf determined as a foreign substance in the X-ray transmission image P0.
  • the image generation unit 21a has a function of generating a foreign matter extraction image P1 (hereinafter referred to as a first function).
  • the inspector has to specify the position of the foreign substance in the entire product G while alternately comparing the X-ray transmission image P0 and the foreign substance extraction image P1 on the screen, which is not always convenient. Therefore, in the X-ray inspection apparatus according to the present embodiment, functions described below are added to the image generation unit 21a in order to improve usability.
  • FIG. 7C is an image diagram of the contour extraction image P2.
  • the contour extraction image P2 is an image obtained by extracting only the contour of the region Rg of the X-ray transmission image P0.
  • the image generation unit 21a has a function of generating a contour extraction image P2 (hereinafter referred to as a second function).
  • the image generation unit 21a standardizes the edge in the edge-processed image by the expansion / reduction process and the edge processing function that emphasizes the spatial change in luminance in the X-ray transmission image P0 as the outline in order to specify the outline. And a standardization function.
  • FIG. 7D is an image diagram of the foreign object position specifying image P3.
  • the foreign object position specifying image P3 is an image obtained by combining the contour extraction image P2 with the foreign object extraction image P1 and specifying the position of the foreign object in the product G.
  • the image generation unit 21a has a function of generating a foreign object position specifying image P3 (hereinafter referred to as a third function).
  • the inspector uses the foreign object position specifying image P3 to specify the position of the foreign substance in the actual product G, takes out the foreign substance from the product G, and performs analysis.
  • the image generation unit 21a combines the second function for generating the contour extraction image P2 and the contour extraction image P2 with the foreign substance extraction image P1.
  • the third function for generating the position specifying image P3 it is much easier to specify the position of the foreign matter in the product G.
  • the monitor 30 may be provided with an adjustment unit 33 that adjusts the inspection sensitivity while displaying the foreign object position specifying image P3 on the monitor 30.
  • the image generation unit 21a further has a coloring function for coloring the contour lines on the contour extraction image P2 and the foreign object position specifying image P3 or coloring the inside of the contour line. It can be colored, or the inside of the contour line can be colored to improve visibility and improve work efficiency.
  • the image generation unit 21a emphasizes the spatial change in luminance in the X-ray transmission image P0 as an outline by the edge processing function, and normalizes the outline by the expansion / reduction process by the standardization function. Lines can be clearly displayed.
  • the image generation unit 21a further has a coloring function for coloring the contour line on the contour extraction image P2 and the foreign object position specifying image P3, or for coloring the inside of the contour line.
  • a coloring function for coloring the contour line on the contour extraction image P2 and the foreign object position specifying image P3, or for coloring the inside of the contour line.
  • the foreign object position specifying method has been described using the procedure until the inspector generates the foreign object position specifying image P3. For example, if a predetermined input is performed, the foreign object position is determined. Control for automatically generating the specifying image P3 may be introduced.
  • FIG. 8 is a flowchart of the automatic generation control of the foreign object position specifying image P3.
  • the control computer 20 performs the following control via the image generation unit 21a.
  • Step S1 the control computer 20 determines whether or not there is a foreign object position specifying image P3 generation command in step S1. If there is a command, the control computer 20 proceeds to step S2. If there is no command, the control computer 20 generates a foreign object position specifying image P3. Continue to determine whether or not
  • Step S2 the control computer 20 reads the target X-ray data in step S2, and proceeds to step S3.
  • Step S3 the control computer 20 generates an X-ray transmission image P0 in step S3, and proceeds to step S4.
  • Step S4 the control computer 20 generates a foreign substance extraction image P1 in step S4, and proceeds to step S5.
  • Step S5 the control computer 20 creates the contour extraction image P2 in step S5, and proceeds to step S6.
  • Step S6 the control computer 20 combines the contour extraction image P2 with the foreign matter extraction image P1 to generate a foreign matter position specifying image P3.
  • Step S7 the control computer 20 determines whether or not there is a command for coloring the contour of the foreign object position specifying image P3. When there is a command, the control computer 20 proceeds to step S8, and when there is no command, the control ends.
  • Step S8 the control computer 20 colors the outline of the article in the foreign object position specifying image P3 in step S8, and ends the control.
  • the foreign object position specifying image P3 is automatically generated, which is convenient for the user.
  • the X-ray inspection apparatus 10 can inspect chicken bones. By detecting the small bone left in the chicken with the inspection object as chicken, the worker can recognize where the small bone is in the chicken. As a result, the operator can easily remove small bones from chicken on the conveyor.
  • the X-ray inspection apparatus of the present invention can be widely applied to X-ray inspection apparatuses that determine the contamination of foreign substances from the brightness in an area included in an X-ray transmission image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本発明の課題は、物品全体における異物の位置を特定し易い画像を生成するX線検査装置を提供することにある。X線検査装置(10)では、異物位置特定用画像(P3)によって、検査員は商品(G)における異物の位置を容易に特定することができるので、従来のような「物品の全体形状の画像と当該異物のみの画像とを交互に見比べながら当該物品全体における当該異物の位置を特定する」必要がなくなり、作業性が向上する。

Description

X線検査装置
 本発明は、検査対象物に対して照射されたX線の透過画像に基づいて検査対象物内の異物混入の有無を判定する検査装置に関する。
 従来、物品への異物混入の有無を判定する手段としてX線検査装置が利用されている。例えば、特許文献1(特開2009-210535号公報)に記載のX線検査装置は、
被検査物にX線を照射し、被検査物を透過したX線(透過X線量)に基づいて異物の範囲を特定している。
 しかしながら、異物の混入があると判定された物品から当該異物を除去するために対象となるX線透過画像で当該異物の位置を特定しようとしても、当該物品の全体形状の画像と当該異物のみの画像とを交互に見比べながら当該物品全体における当該異物の位置を特定しなければならず、不慣れなオペレータには手間がかかる作業であった。
 本発明の課題は、物品全体における異物の位置を特定し易い画像を生成するX線検査装置を提供することにある。
 本発明の第1観点に係るX線検査装置は、物品に対してX線を照射して、物品に異物が含まれているか否かを判定するX線検査装置であって、画像生成部を備えている。画像生成部は、物品を透過したX線のデータからX線透過画像を生成する。また、画像生成部は、第1機能と、第2機能と、第3機能とを有している。第1機能は、異物の有無を判定するための画像である異物抽出画像を生成する機能である。第2機能は、物品の位置、大きさ、及び形状を示す輪郭を抽出した輪郭抽出画像を生成する機能である。第3機能は、輪郭抽出画像を異物抽出画像に合成し、物品における異物の位置を特定した画像である異物位置特定用画像を生成する。
 このX線検査装置では、異物位置特定画像によって、作業者は物品における異物の位置を容易に特定することができるので、従来のような「物品の全体形状の画像と当該異物のみの画像とを交互に見比べながら当該物品全体における当該異物の位置を特定する」必要がなくなり、作業性が向上する。
 本発明の第2観点に係るX線検査装置は、第1観点に係るX線検査装置であって、画像生成部が、輪郭及び/又は輪郭の内側を着色する着色機能をさらに有している。
 このX線検査装置では、物品の輪郭の視認性が向上するので、作業効率の向上に繋がる。
 本発明の第3観点に係るX線検査装置は、第1観点に係るX線検査装置であって、表示部と、調整部とをさらに備えている。表示部は、画像生成部が生成する画像を表示する。調整部は、表示部に異物位置特定用画像を表示させながら、検査感度の調整を行うために使用される。
 このX線検査装置では、作業者は、表示部に異物位置特定用画像を表示させながら、検査感度の調整を行うことができるので、調整が容易で、検査作業者にとって使い勝手がよい。
 本発明の第4観点に係るX線検査装置は、第1観点に係るX線検査装置であって、画像生成部が、エッジ処理の機能と、標準化機能とをさらに有している。エッジ処理の機能は、X線透過画像における輝度の空間変化を輪郭として強調する機能である。標準化機能は、エッジ処理された画像において輪郭を膨張・縮小処理によって標準化する機能である。
 このX線検査装置では、輪郭線を明瞭に表示することができる。
 本発明に係るX線検査装置では、異物位置特定画像によって、作業者は物品における異物の位置を容易に特定することができるので、従来のような「物品の全体形状の画像と当該異物のみの画像とを交互に見比べながら当該物品全体における当該異物の位置を特定する」必要がなくなり、作業性が向上する。
本発明の一実施形態に係るX線検査装置の外観斜視図。 X線検査装置のシールドボックスの内部構成図。 X線検査の原理を示す模式図。 制御コンピュータのブロック構成図。 画像生成部の機能ブロック図。 X線検査装置の前後の工程構成図。 異物が検出された商品のX線透過画像の画像図。 異物抽出画像の画像図。 輪郭抽出画像の画像図。 異物位置特定画像の画像図 異物位置特定用画像の自動生成制御のフローチャート。
 以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 (1)X線検査装置10全体の構成
 図1は、本発明の一実施形態に係るX線検査装置の外観斜視図である。図1において、X線検査装置10は、食品等の商品Gの生産ライン(図6参照)に組み込まれて商品Gの品質検査を行う装置の1つであって、連続的に搬送されてくる商品Gに対してX線を照射することにより商品Gの良否判断を行う装置である。
 検査対象物である商品Gは、前段コンベア60によってX線検査装置10のところまで運ばれてくる。商品Gは、X線検査装置10において良品または不良品に分類される。このX線検査装置10での検査結果は、X線検査装置10の下流側に配置されている振分機構70に送られる。
 振分機構70は、X線検査装置10において良品と判断された商品Gを、正常品を排出するコンベア80へと送り、X線検査装置10において不良品と判断された商品Gを、不良排出方向90、不良排出方向91へと振り分ける。
 (2)詳細構成
 図2は、X線検査装置のシールドボックスの内部構成図である。図1及び図2において、X線検査装置10は、シールドボックス11と、コンベア12と、X線照射器13と、X線ラインセンサ14と、タッチパネル機能付きのモニタ30(図1参照)と、制御コンピュータ20(図4参照)とから構成されている。
 (2-1)シールドボックス11
 シールドボックス11の両側面には、商品Gをシールドボックス11の内外に搬入出させるための開口11aが形成されている。開口11aは、シールドボックス11の外部へのX線の漏洩を防止するために、遮蔽ノレン(図示せず)により塞がれている。この遮蔽ノレンは、鉛を含むゴムから成形されており、商品Gが開口11aを通過する際に商品Gによって押しのけられるようになっている。
 そして、シールドボックス11内には、コンベア12、X線照射器13、X線ラインセンサ14、制御コンピュータ20等が収容されている。また、シールドボックス11の正面上部には、モニタ30の他、キーの差し込み口および電源スイッチ等が配置されている。
 (2-2)コンベア12
 コンベア12は、シールドボックス11内において商品Gを搬送するものであり、図1に示すように、シールドボックス11の両側面に形成された開口11aを貫通するように配置されている。そして、コンベア12は、コンベアモータ12a(図4参照)によって駆動される駆動ローラによって無端状のベルトを回転させながら、ベルト上に載置された商品Gを搬送する。
 コンベア12による搬送速度は、オペレータが入力した設定速度になるように、制御コンピュータ20によるコンベアモータ12aのインバータ制御によって細かく制御される。また、コンベアモータ12aには、コンベア12による搬送速度を検出して制御コンピュータ20に送るエンコーダ12b(図4参照)が装着されている。
 (2-3)X線照射器13
 X線照射器13は、図2に示すように、コンベア12の上方に配置されており、下方のX線ラインセンサ14に向けて扇状の照射範囲XにX線を照射する。
 (2-4)X線ラインセンサ14
 図3は、X線検査の原理を示す模式図である。図3において、X線ラインセンサ14は、コンベア12の下方に配置されており、主として多数の画素センサ14aから構成されている。これらの画素センサ14aは、コンベア12による搬送方向に直交する向きに一直線に水平配置されている。また、各画素センサ14aは、商品Gやコンベア12を透過したX線を検出し、X線透視像信号を出力する。X線透視像信号は、X線の明るさ(濃度)を示すものである。
 (2-5)モニタ30
 モニタ30は、フルドット表示の液晶ディスプレイであり、検査時に必要となる検査パラメータ等の入力をオペレータに促す画面を表示する。また、モニタ30は、タッチパネル機能も有しており、オペレータからの検査パラメータ等の入力を受け付ける。
 (2-6)制御コンピュータ20
 図4は、制御コンピュータ20のブロック構成図である。図4において、制御コンピュータ20は、CPU(中央演算処理装置)21、ROM(リードオンリーメモリ)22、RAM(ランダムアクセスメモリ)23、HDD(ハードディスク)25および記憶メディア等を挿入するためのドライブ24を搭載している。
 CPU21では、ROM22やHDD25に格納されている各種プログラムが実行される。HDD25には、検査パラメータや検査結果が保存蓄積される。検査パラメータについては、モニタ30のタッチパネル機能を使ったオペレータからの入力によって設定及び変更が可能である。オペレータは、これらのデータがHDD25だけでなくドライブ24に挿入された記憶メディアにも保存蓄積されるように設定することができる。
 さらに、制御コンピュータ20は、モニタ30でのデータ表示を制御する表示制御回路(図示せず)、モニタ30のタッチパネルを介してオペレータにより入力されたキー入力データを取り込むキー入力回路(図示せず)、プリンタ(図示せず)等の外部機器やLAN等のネットワークとの接続を可能にする通信ポート(図示せず)なども備えている。
 そして、制御コンピュータ20の各部(21~25)は、アドレスバスやデータバス等のバスラインを介して相互に接続されている。
 また、制御コンピュータ20は、コンベアモータ12a、エンコーダ12b、光電センサ15、X線照射器13、X線ラインセンサ14等に接続されている。光電センサ15は、検体である商品Gが扇状のX線の照射範囲X(図2参照)を通過するタイミングを検知するための同期センサであり、主として、コンベア12を挟んで配置される一対の投光器および受光器から構成されている。
 (3)CPU21の構成
 制御コンピュータ20のHDD25には、画像生成モジュール、領域特定モジュール、重量推定モジュール、重量診断モジュール、異物検査モジュールおよび総合診断モジュールを含む検査プログラムが格納されている。そして、制御コンピュータ20のCPU21は、これらのプログラムモジュールを読み出して実行することにより、画像生成部21a、領域判別部21b、重量推定部21c、重量診断部21d、異物検査部21eおよび総合診断部21f(図4参照)として動作する。
 (3-1)画像生成部21a
 画像生成部21aは、X線ラインセンサ14から出力されるX線透視像信号に基づいて、商品GのX線透過画像を生成する。画像生成部21aは、商品Gが扇状のX線の照射範囲X(図2参照)を通過するときにX線ラインセンサ14の各画素センサ14aから出力されるX線透視像信号を細かい時間間隔で取得し、取得したX線透視像信号に基づいて商品GのX線透過画像を生成する。なお、商品Gが扇状のX線の照射範囲Xを通過するタイミングは、光電センサ15からの信号により判断される。すなわち、画像生成部21aは、X線ラインセンサ14の各画素センサ14aから得られるX線の明るさに関する細かい時間間隔毎のデータをマトリクス状に時系列につなぎ合わせることにより、商品Gを写すX線透過画像を生成する。
 画像生成部21aは、X線透過画像を生成する機能が主機能であるが、この主機能のほかに、異物位置を特定するために必要ないくつかの機能を有している(図5参照)。これらについては「(4)異物位置の特定」の段で説明する。
 (3-2)領域判別部21b
 領域判別部21bは、画像生成部21aにより生成された商品Gを写すX線透過画像から、商品領域を判別する。
 (3-3)重量推定部21c
 重量推定部21cは、領域判別部21bにより判別された商品領域に対して画像処理を施すことにより、商品Gの重量を推定する。当該重量推定処理は、X線透過画像P上においてはX線の照射方向に厚みのある物質ほど暗く写るという性質を利用し、以下の原理に基づいて行われる。
 X線透過画像P上の厚さtの物質を写す画素の明るさIは、物質の存在しない領域に含まれる画素の明るさをI0とした場合、以下の式(1)によって表される。
   I/I0=e-μt ・・・(1)
 ここで、μは、X線のエネルギーと物質の種類とに応じて定まる線吸収係数である。式(1)を物質の厚さtについて解くと、以下の式(2)のようになる。
   t=-1/μ×ln(I/I0) ・・・(2)
 また、内容物の微小部位の重量は、当該微小部位の厚さに比例する。したがって、明るさIの画素の写す内容物の微小部位の重量mは、適当な定数αを用いて、以下の式(3)によって近似的に算出される。
   m=-αln(I/I0) ・・・(3)
 重量推定部21cは、商品Gを構成する全ての画素に対応する重量mを算出して足し合わせることにより、商品G全体の重量を推定する。
 (3-4)重量診断部21d
 重量診断部21dは、商品Gの内容物の重量が所定の範囲内に収まっているか否かをチェックする。そして、重量が当該範囲内に収まっている場合には、その商品Gを正常と診断し、当該範囲内に収まっていない場合には、その商品Gを重量異常と診断する。
 なお、重量診断部21dによる処理は、重量推定部21cによる処理に遅れて並列に実行される。
 (3-5)異物検査部21e
 異物検査部21eは、画像生成部21aにより生成された商品GのX線透過画像に対して2値化処理を施すことにより、商品Gに含まれる異物を検出する。より具体的には、商品GのX線透過画像P上に予め設定した閾値よりも暗く現れる領域が存在する場合には、その商品Gに異物が混入していると判断し、その商品Gを異常と判断する。
 (3-6)総合診断部21f
 重量診断部21dも異物検査部21eも、商品Gを異常と判断すると、直ちにその旨を示す信号を総合診断部21fに送る。総合診断部21fは、重量診断部21dから当該信号を受け取ると、商品Gを不良品であると診断するとともに、直ちに異物検査部21eによる検査を終了させる。
 また、異物検査部21eから当該信号を受け取った場合には、商品Gを不良品であると診断するとともに、直ちに重量診断部21dによる検査を終了させる。異物が検出されただけの商品Gであっても、重量異常が検出されただけの商品Gであっても出荷できないのであるから、他の検査結果にかかわらず当該商品Gを不良品と結論付けることができるからである。また、総合診断部21fは、重量診断部21dおよび異物検査部21eの両方から異常が検出されなかった旨を示す信号を受け取った場合には、商品Gを良品である診断する。そして、総合診断部21fは、診断結果を振分機構70へ送る。
 (4)異物位置の特定手順
 異物検査部21eによって異物が検出された商品Gは、振分機構70によってコンベア80から除外され、異物の再検査が行われる。異物の再検査では、商品G内に混入した異物の位置を特定する作業が必要であり、以下の手順で行われる。
 (4-1)手順1
 先ず、画面と実際の商品Gとを観察しながら異物の位置を特定するため、再検査の対象となる商品GのX線透過画像P0がモニタ30に表示される。
 図7Aは、異物が検出された商品GのX線透過画像P0の画像図である。図7Aにおいて、濃く写る領域Rgは商品Gのシルエットである。そのシルエット中に薄く写る領域Rfが異物と判定されたものである。
 なお、異物検査部21eによって異物が検出された商品GのX線透過画像P0は、ROM22に格納されているので、検査員は、随時、元画像を画面に表示することができる。
 (4-2)手順2
 次に、異物抽出画像P1がモニタ30に表示される。図7Bは、異物抽出画像P1の画像図である。図7Bにおいて、異物抽出画像P1は、X線透過画像P0の異物と判定された領域Rfを抽出した画像である。画像生成部21aは、異物抽出画像P1を生成する機能(以後、第1機能という。)を有している。
 従来、検査員は画面上で、X線透過画像P0と異物抽出画像P1とを交互に見比べながら商品G全体における異物の位置を特定しなければならず、必ずしも使い勝手が良いとはいえなかった。そこで、本実施形態のX線検査装置では、さらに使い勝手を良くするため、画像生成部21aには以下に説明する機能が追加されている。
 (4-3)手順3
 ここでは、輪郭抽出画像P2がモニタ30に表示される。図7Cは、輪郭抽出画像P2の画像図である。図7Cにおいて、輪郭抽出画像P2は、X線透過画像P0の領域Rgの輪郭のみを抽出した画像である。画像生成部21aは、輪郭抽出画像P2を生成する機能(以後、第2機能という。)を有している。
 なお、画像生成部21aは、輪郭を特定するため、X線透過画像P0における輝度の空間変化を輪郭として強調するエッジ処理の機能と、エッジ処理された画像において輪郭を膨張・縮小処理によって標準化する標準化機能とをさらに有している。
 (4-4)手順4
 次に、異物位置特定用画像P3がモニタ30に表示される。図7Dは、異物位置特定用画像P3の画像図である。図7Dにおいて、異物位置特定用画像P3は、輪郭抽出画像P2を異物抽出画像P1に合成し、商品Gにおける異物の位置を特定した画像である。画像生成部21aは、異物位置特定用画像P3を生成する機能(以後、第3機能という。)を有している。
 検査員は、異物位置特定用画像P3を利用して、実際の商品Gにおける異物の位置を特定し、商品Gから異物を取り出し、解析を行う。
 上記の通り、画像生成部21aが、異物抽出画像P1を生成する第1機能に加えて、輪郭抽出画像P2を生成する第2機能と、輪郭抽出画像P2を異物抽出画像P1に合成して異物位置特定用画像P3を生成する第3機能とを備えたことにより、商品Gにおける異物位置の特定が格段に容易となる。
 また、付加機能として、モニタ30に異物位置特定用画像P3を表示させながら、検査感度の調整を行う調整部33をモニタ30側に備えてもよい。
 (4-5)手順5
 画像生成部21aは、輪郭抽出画像P2及び異物位置特定用画像P3上の輪郭線を着色する、或いは輪郭線の内側を着色する着色機能をさらに有しているので、この機能によって、輪郭線を着色するか、或いは輪郭線の内側を着色することができ、視認性を良くし、作業効率の向上を図ることができる。
 (5)特徴
 (5-1)
 X線検査装置10では、異物位置特定用画像P3によって、検査員は商品Gにおける異物の位置を容易に特定することができるので、従来のような「物品の全体形状の画像と当該異物のみの画像とを交互に見比べながら当該物品全体における当該異物の位置を特定する」必要がなくなり、作業性が向上する。
 (5-2)
 X線検査装置10では、画像生成部21aが、エッジ処理の機能によってX線透過画像P0における輝度の空間変化を輪郭として強調し、標準化機能によってその輪郭を膨張・縮小処理によって標準化するので、輪郭線を明瞭に表示することができる。
 (5-3)
 X線検査装置10では、検査員は、モニタ30に異物位置特定用画像P3を表示させながら、検査感度の調整を行うことができるので、調整が容易で、検査員にとって使い勝手がよい。
 (5-4)
 X線検査装置10では、画像生成部21aが、輪郭抽出画像P2及び異物位置特定用画像P3上の輪郭線を着色する、或いは輪郭線の内側を着色する着色機能をさらに有しているので、この機能によって、輪郭線を着色するか、或いは輪郭線の内側を着色することによって、視認性が良くし、作業効率の向上を図ることができる。
 (6)変形例
 上記の実施形態では、検査員が異物位置特定用画像P3を生成するまでの手順を用いて異物位置の特定方法を説明したが、例えば、所定の入力を行えば、異物位置特定用画像P3を自動生成する制御を導入してもよい。
 図8は、異物位置特定用画像P3の自動生成制御のフローチャートである。図8において、制御コンピュータ20は画像生成部21aを介して以下の制御を行う。
 (ステップS1)
 先ず、制御コンピュータ20は、ステップS1で異物位置特定用画像P3の生成指令の有無を判定し、指令があったときはステップS2に進み、指令がないときは異物位置特定用画像P3の生成指令の有無の判定を継続する。
 (ステップS2)
 次に、制御コンピュータ20は、ステップS2で対象となるX線データを読み込み、ステップS3に進む。
 (ステップS3)
 次に、制御コンピュータ20は、ステップS3でX線透過画像P0を生成し、ステップS4に進む。
 (ステップS4)
 次に、制御コンピュータ20は、ステップS4で異物抽出画像P1を生成し、ステップS5に進む。
 (ステップS5)
 次に、制御コンピュータ20は、ステップS5で輪郭抽出画像P2を作成し、ステップS6に進む。
 (ステップS6)
 次に、制御コンピュータ20は、ステップS6で異物抽出画像P1に輪郭抽出画像P2を合成して異物位置特定用画像P3を生成する。
 (ステップS7)
 次に、制御コンピュータ20は、ステップS7で異物位置特定用画像P3の輪郭を着色する指令の有無を判定し、指令があったときはステップS8進み、指令がないときは制御を終了する。
 (ステップS8)
 そして、制御コンピュータ20は、ステップS8で異物位置特定用画像P3の物品の輪郭を着色し、制御を終了する。
 以上のように、異物位置特定用画像P3が自動で生成されるので、ユーザーにとって使い勝手がよい。
 (7)その他の実施形態
 上記実施形態では、主に、異物が検出されてコンベアから除外された商品Gに対して、その異物の位置を特定する作業に関する、いわゆる「調整の場面」を中心に説明を行ってきた。しかし、本発明に係るX線検査装置10の適用例はそれだけに限定されるものではなく、調整の場面以外にも適用される。
 例えば、X線検査装置10は、鶏肉の骨の検査が可能である。検査対象物を鶏肉として、鶏肉に残された小骨を検知することによって、作業者はその小骨が鶏肉のどの場所にあるのかを認識することができる。その結果、作業者はコンベア上で容易に鶏肉から小骨を除去することができる。
 本発明のX線検査装置は、X線透過画像に含まれる領域における明るさから異物混入を判定するX線検査装置に対して広く適用可能である。
10     X線検査装置
21a    画像生成部
30     モニタ(表示部)
33     調整部
P0     X線透過画像
P1     異物抽出画像
P2     輪郭抽出画像
P3     異物位置特定画像
特開2009-210535号公報

Claims (4)

  1.  物品に対してX線を照射して、前記物品に異物が含まれているか否かを判定するX線検査装置であって、
     前記物品を透過したX線のデータからX線透過画像を生成する画像生成部を備え、
     前記画像生成部は、
     前記異物の有無を判定するための画像である異物抽出画像を生成する第1機能と、
     前記物品の位置、大きさ、及び形状を示す輪郭を抽出した輪郭抽出画像を生成する第2機能と、
     前記輪郭抽出画像を前記異物抽出画像に合成し、前記物品における前記異物の位置を特定した画像である異物位置特定用画像を生成する第3機能と、
    を有する、
    X線検査装置。
  2.  前記画像生成部は、前記輪郭及び/又は前記輪郭の内側を着色する着色機能をさらに有する、
    請求項1に記載のX線検査装置。
  3.  前記画像生成部が生成する画像を表示する表示部と、
     前記表示部に前記異物位置特定用画像を表示させながら、検査感度の調整を行うための調整部と、
    をさらに備える、
    請求項1に記載のX線検査装置。
  4.  前記画像生成部は、
     前記X線透過画像における輝度の空間変化を輪郭として強調するエッジ処理の機能と、
     前記エッジ処理された画像において、前記輪郭を膨張・縮小処理によって標準化する標準化機能と、
    をさらに有する、
    請求項1に記載のX線検査装置。
PCT/JP2017/010932 2016-03-18 2017-03-17 X線検査装置 WO2017159855A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018506042A JPWO2017159855A1 (ja) 2016-03-18 2017-03-17 X線検査装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055555 2016-03-18
JP2016-055555 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159855A1 true WO2017159855A1 (ja) 2017-09-21

Family

ID=59851065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010932 WO2017159855A1 (ja) 2016-03-18 2017-03-17 X線検査装置

Country Status (2)

Country Link
JP (1) JPWO2017159855A1 (ja)
WO (1) WO2017159855A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304077B2 (ja) * 2020-11-20 2023-07-06 朝日レントゲン工業株式会社 検査結果表示装置及び検査結果表示方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091015A (ja) * 2003-09-12 2005-04-07 Anritsu Sanki System Co Ltd X線検査装置
JP2006064662A (ja) * 2004-08-30 2006-03-09 Anritsu Sanki System Co Ltd 異物検出方法、異物検出プログラム及び異物検出装置
JP2007024835A (ja) * 2005-07-21 2007-02-01 Anritsu Sanki System Co Ltd X線異物検出方法及びx線異物検出装置
JP2007232586A (ja) * 2006-03-01 2007-09-13 Anritsu Sanki System Co Ltd X線検査装置
JP2011196796A (ja) * 2010-03-18 2011-10-06 Ishida Co Ltd X線検査装置
JP2013019689A (ja) * 2011-07-07 2013-01-31 Anritsu Sanki System Co Ltd X線検査装置
JP5884145B1 (ja) * 2014-10-22 2016-03-15 株式会社 システムスクエア 電磁波検知部と光学検知部を使用した検査装置
JP5884144B1 (ja) * 2014-10-22 2016-03-15 株式会社 システムスクエア 包装体の検査装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091015A (ja) * 2003-09-12 2005-04-07 Anritsu Sanki System Co Ltd X線検査装置
JP2006064662A (ja) * 2004-08-30 2006-03-09 Anritsu Sanki System Co Ltd 異物検出方法、異物検出プログラム及び異物検出装置
JP2007024835A (ja) * 2005-07-21 2007-02-01 Anritsu Sanki System Co Ltd X線異物検出方法及びx線異物検出装置
JP2007232586A (ja) * 2006-03-01 2007-09-13 Anritsu Sanki System Co Ltd X線検査装置
JP2011196796A (ja) * 2010-03-18 2011-10-06 Ishida Co Ltd X線検査装置
JP2013019689A (ja) * 2011-07-07 2013-01-31 Anritsu Sanki System Co Ltd X線検査装置
JP5884145B1 (ja) * 2014-10-22 2016-03-15 株式会社 システムスクエア 電磁波検知部と光学検知部を使用した検査装置
JP5884144B1 (ja) * 2014-10-22 2016-03-15 株式会社 システムスクエア 包装体の検査装置

Also Published As

Publication number Publication date
JPWO2017159855A1 (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2019159440A1 (ja) 検査装置
US7477726B2 (en) X-ray inspection apparatus
JP6537008B1 (ja) 検査装置
JP4585915B2 (ja) X線検査装置
JP3828781B2 (ja) X線異物検出装置
JP5243008B2 (ja) X線異物検出装置
JP2016156647A (ja) 電磁波を使用した検査装置
EP3800468A1 (en) Inspection device
JP2009085627A (ja) X線ラインセンサモジュール及びx線異物検査装置
WO2017159855A1 (ja) X線検査装置
JP7239960B2 (ja) 検査装置
JP2007183200A (ja) X線検査装置及び物品検査装置
JP6466671B2 (ja) 検査装置
JP2015137858A (ja) 検査装置
JP2005031069A (ja) X線検査装置
JP2009168590A (ja) X線検査装置
JP2019107605A5 (ja)
JP2009080031A (ja) X線検査装置
JP2009080030A (ja) X線検査装置
WO2017159856A1 (ja) X線検査装置
JP4291123B2 (ja) 放射線異物検査装置および放射線異物検査方法
JP6941851B2 (ja) 質量推定装置
WO2018168668A1 (ja) X線検査装置
JP2009080029A (ja) X線検査装置
JP6346831B2 (ja) 検査装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018506042

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766850

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766850

Country of ref document: EP

Kind code of ref document: A1