WO2017159525A1 - 環状アセタール骨格を有するジオールの製造方法 - Google Patents
環状アセタール骨格を有するジオールの製造方法 Download PDFInfo
- Publication number
- WO2017159525A1 WO2017159525A1 PCT/JP2017/009403 JP2017009403W WO2017159525A1 WO 2017159525 A1 WO2017159525 A1 WO 2017159525A1 JP 2017009403 W JP2017009403 W JP 2017009403W WO 2017159525 A1 WO2017159525 A1 WO 2017159525A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- diol
- cyclic acetal
- acetal skeleton
- mass
- reaction
- Prior art date
Links
- 0 CC(C)(CO)C(*)OCC1(CO)COC(C(C)(C)CO)OC1 Chemical compound CC(C)(CO)C(*)OCC1(CO)COC(C(C)(C)CO)OC1 0.000 description 1
- HXEWWQYSYQOUSD-UHFFFAOYSA-N CCC1(CO)COC(C(C)(C)CO)OC1 Chemical compound CCC1(CO)COC(C(C)(C)CO)OC1 HXEWWQYSYQOUSD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/79—Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/80—Separation; Purification; Stabilisation; Use of additives by liquid-liquid treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/81—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/78—Separation; Purification; Stabilisation; Use of additives
- C07C45/81—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C45/82—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/04—1,3-Dioxanes; Hydrogenated 1,3-dioxanes
- C07D319/06—1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
Definitions
- the present invention relates to a method for producing a diol having a cyclic acetal skeleton.
- spiroglycol 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane
- HPA hydroxypivalaldehyde
- PE pentaerythritol
- an acid catalyst is used to react HPA and PE in an aqueous solvent to obtain a reaction product solution, and the resulting reaction product solution is neutralized with an alkali.
- a method of producing spiroglycol by heating the neutralized reaction product liquid to 75 to 100 ° C. (see, for example, Patent Document 1), and reacting HPA and PE in an aqueous solvent using an acid catalyst. A liquid is obtained, and the resulting reaction product liquid is adjusted to pH 7 or higher with an alkali to obtain a slurry-like mixture, and the resulting slurry-like mixture is heated at 120 ° C.
- a reaction liquid (slurry) containing a predetermined amount of spiroglycol is obtained by reacting PE and HPA using an acid catalyst.
- a process for producing spiroglycol is known in which spiroglycol is separated by filtration without neutralizing the liquid, and a part of the resulting filtrate is reused in the next reaction (for example, see Patent Document 4).
- a method for producing a sufficiently pure spiroglycol a crude spiroglycol obtained by reacting PE and HPA is dissolved in an organic solvent, and then water is added to the resulting solution to bring impurities into water.
- a method for producing sufficiently high-purity spiroglycol there is known a method for producing spiroglycol having a step of previously contacting hydroxypivalaldehyde, which is a raw material of spiroglycol, with an oxygen-containing gas (for example, a patent) Reference 6).
- a copolymer polycarbonate of bisphenol and spiroglycol originally has excellent optical properties and impact resistance, so it is useful as a resin used for optical applications, but a conventional commercial spiroglycol with low purity is used. Polymers polymerized in this way were not able to obtain satisfactory impact resistance characteristics and could not be used for optical applications due to coloring problems. For these reasons, it is preferable that the purity of spiroglycol is as high as possible.
- Patent Document 5 has a problem that a large amount of purification cost is required industrially.
- Patent Document 6 the relationship between the amount of impurities contained in the raw material HPA and the amount of impurities contained in spiroglycol after the synthesis of spiroglycol has not been sufficiently studied.
- dioxane glycol 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane
- the present invention has been made in view of the above problems, and includes impurities contained in HPA, which is a raw material of a diol having a cyclic acetal skeleton, and impurities contained in a diol having a cyclic acetal skeleton obtained by a synthesis reaction. It is an object of the present invention to provide a method for producing a diol having a cyclic acetal skeleton capable of producing a diol having a high-purity cyclic acetal skeleton by controlling the amount of impurities contained in the raw material HPA.
- reaction mother liquor the filtrate produced by filtering the spiroglycol crystals is discarded as it is after neutralizing the acid catalyst.
- DOT reaction intermediate 5,5-dihydroxymethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane
- this reaction mother liquor is a very large amount of several times as much as spiroglycol to be produced, and this process requires a great deal of labor. Therefore, discarding the reaction mother liquor is industrially disadvantageous.
- the crystallization mother liquor may be reused for the next crystallization, but as the number of reuse increases, impurities accumulate in the crystallization mother liquor and there is an impurity concentration. If it exceeds a certain value, it will precipitate in the product spiroglycol, making it impossible to obtain high-purity spiroglycol.
- Such a problem can be similarly applied to a diol having a cyclic acetal skeleton such as dioxane glycol.
- the present inventors diligently studied to solve the above problems. As a result, it was found that impurities contained in HPA, which is a raw material of a diol having a cyclic acetal skeleton, affect impurities contained in a diol having a cyclic acetal skeleton obtained by a synthesis reaction. The inventors have found that the above problem can be solved by controlling the amount of impurities, and have completed the present invention.
- the raw material hydroxypivalaldehyde contains at least one impurity selected from the group consisting of formaldehyde, neopentyl glycol, an ester compound having a neopentyl glycol skeleton represented by the following formula (III), and isobutyraldehyde,
- R represents a hydrocarbon group having 1 to 4 carbon atoms, a hydrocarbon group having 1 to 4 carbon atoms having a hydroxy group, or a hydrogen atom.
- the content of the formaldehyde is 0.80% by mass or less with respect to 100% by mass of the raw material
- the diol having a cyclic acetal skeleton obtained by an acetalization reaction contains, as impurities, 0.19 area% or less of hydroxypivalaldehyde neopentyl glycol acetal represented by the following formula (II):
- II hydroxypivalaldehyde neopentyl glycol acetal
- the diol having a cyclic acetal skeleton obtained by an acetalization reaction contains 0.15 area% or less of a spiro monoalcohol represented by the following formula (IV) as an impurity, [1] A process for producing a diol having a cyclic acetal skeleton as described in any one of [3].
- the ester compound represented by the formula (III) is an isobutyric acid neopentyl glycol monoester represented by the following formula (V) and / or a hydroxypivalic acid neopentyl glycol monoester represented by the following formula (VI).
- Including, [1] A process for producing a diol having a cyclic acetal skeleton according to any one of [4].
- [6] The method for producing a diol having a cyclic acetal skeleton according to any one of [1] to [5], wherein the diol having a cyclic acetal skeleton is spiroglycol and / or dioxane glycol.
- the crude hydroxypivalaldehyde obtained by the aldol condensation reaction step is distilled by distilling and collecting the raw hydroxypivalaldehyde obtained by the aldol condensation reaction step, and the crude hydroxypivalaldehyde obtained by the aldol condensation reaction step.
- the reaction temperature of the acetalization reaction step is 40 to 105 ° C .;
- the pH value of the reaction solution during the acetalization reaction step is 0.1 to 4.0, After the acetalization reaction step, the reaction solution is solid-liquid separated into a solid of a diol having a cyclic acetal skeleton and a reaction mother liquor, and 30 to 98% by mass of the reaction mother liquor is reused to obtain the next acetalization reaction step.
- I do [1] A process for producing a diol having a cyclic acetal skeleton according to any one of [8].
- a method for producing a diol having a cyclic acetal skeleton capable of producing a diol having a high purity cyclic acetal skeleton, and a diol having a high purity cyclic acetal skeleton even when the reaction mother liquor is repeatedly used. It is possible to provide a process for producing a diol having a cyclic acetal skeleton that can be produced industrially advantageously. Further, the diol having a high-purity cyclic acetal skeleton obtained in this way can be advantageously used industrially mainly as a resin raw material.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.
- the method for producing a diol having a cyclic acetal skeleton comprises acetal containing raw material hydroxypivalaldehyde (hereinafter also referred to as “raw material HPA”) and at least pentaerythritol and / or trimethylolpropane in an acid catalyst.
- raw material HPA raw material hydroxypivalaldehyde
- the raw material hydroxypivalaldehyde contains at least one impurity selected from the group consisting of formaldehyde, neopentyl glycol, an ester compound having a neopentyl glycol skeleton represented by the following formula (III), and isobutyraldehyde, (In the formula, R represents a hydrocarbon group having 1 to 4 carbon atoms, a hydrocarbon group having 1 to 4 carbon atoms having a hydroxy group, or a hydrogen atom.)
- the content of the formaldehyde is 0.80% by mass or less with respect to 100% by mass of the raw material hydroxypivalaldehyde,
- the total mass molar concentration of the neopentyl glycol and / or the ester compound having the neopentyl glycol skeleton is 0.100 mol
- the method for producing a diol having a cyclic acetal skeleton according to this embodiment is controlled by controlling the contents of formaldehyde, neopentyl glycol, an ester compound having a neopentyl glycol skeleton, and isobutyraldehyde, which are impurities contained in the raw material HPA.
- the production of various acetal compounds which are by-products during the synthesis of a diol having an acetal skeleton can be suppressed, and a diol having a high-purity cyclic acetal skeleton can be obtained.
- diol which has the cyclic acetal structure manufactured by this embodiment
- spiro glycol and / or dioxane glycol are mentioned.
- Spiroglycol is a compound represented by the following formula (A)
- dioxane glycol is a compound represented by the following formula (B).
- the raw material HPA may contain a predetermined amount of formaldehyde as an impurity, but preferably does not contain it.
- the content of formaldehyde that can be contained in the raw material HPA is 0.80% by mass or less, preferably 0.55% by mass or less, more preferably 0.35% by mass or less with respect to 100% by mass of the raw material HPA. is there.
- the lower limit of the content of formaldehyde that can be contained in the raw material HPA is not particularly limited, but is preferably below the detection limit and 0% by mass.
- the content of formaldehyde that can be contained in the raw material HPA can be measured by the acetylacetone colorimetric method, and more specifically can be measured by the method described in the examples. Further, the content of formaldehyde that can be contained in the raw material HPA can be reduced by purification of the raw material HPA described later.
- the raw material HPA may contain a predetermined amount of neopentyl glycol and / or an ester compound having a neopentyl glycol skeleton represented by the formula (III) as impurities, but it is preferable not to contain it.
- an ester compound shown by Formula (III) Specifically, it shows by isobutyric acid neopentyl glycol monoester shown by the following formula (V), and / or shown by the following formula (VI). And hydroxypivalic acid neopentyl glycol monoester.
- R represents a hydrocarbon group having 1 to 4 carbon atoms, a hydrocarbon group having 1 to 4 carbon atoms having a hydroxy group, or a hydrogen atom.
- the total content of neopentyl glycol that can be contained in the raw material HPA and / or the ester compound having a neopentyl glycol skeleton represented by the formula (III) is 0.100 mol / kg or less on a mass molar basis, preferably It is 0.080 mol / kg or less, More preferably, it is 0.060 mol / kg or less.
- the lower limit of the content of the neopentyl glycol that can be contained in the raw material HPA and / or the ester compound having a neopentyl glycol skeleton represented by the formula (III) is not particularly limited, but is preferably below the detection limit and 0 mol / kg.
- the content of neopentyl glycol that can be contained in the raw material HPA and / or the ester compound having a neopentyl glycol skeleton represented by the formula (III) can be measured by gas chromatography, more specifically in the examples. It can be measured by the method described.
- the content of neopentyl glycol that can be contained in the raw material HPA and / or the ester compound having a neopentyl glycol skeleton represented by the formula (III) can be reduced by purification of the raw material HPA described later.
- the raw material HPA may contain a predetermined amount of isobutyraldehyde as an impurity, but preferably does not contain it.
- the total content of isobutyraldehyde that can be contained in the raw material HPA is 0.10% by mass or less, preferably 0.07% by mass or less, more preferably 0.05% by mass with respect to 100% by mass of the raw material HPA. It is as follows.
- the lower limit of the content of isobutyraldehyde that can be contained in the raw material HPA is not particularly limited, but is preferably below the detection limit and 0% by mass.
- the content of isobutyraldehyde that can be contained in the raw material HPA can be measured by gas chromatography, and more specifically can be measured by the method described in Examples.
- the content of isobutyraldehyde that can be contained in the raw material HPA can be reduced by purification of the raw material HPA described later.
- the diol having a cyclic acetal skeleton obtained by the acetalization reaction may contain the dioxane triol monoformal represented by the formula (I) as an impurity, but it is preferable not to contain it.
- the content of dioxane triol monoformal is 100 areas of components having a relative retention time of 1.45 or less when the relative retention time of a diol having a cyclic acetal skeleton in gas chromatography analysis under a predetermined condition is 1.00. It can express as an area fraction density
- the content of dioxane triol monoformal is 0.04 area% or less, preferably 0.03 area% or less, more preferably 0.02 area% or less.
- the lower limit of the content of dioxane triol monoformal is not particularly limited, but is preferably below the detection limit and 0 area%.
- the content of dioxane triol monoformal can be measured by gas chromatography, more specifically, by the method described in the examples. Further, the content of dioxane triol monoformal that can be contained in a diol having a cyclic acetal skeleton obtained by an acetalization reaction can be reduced by reducing formaldehyde in the raw material HPA described later.
- the “predetermined condition” refers to a component having a relative retention time of 1.45 or less excluding methanol when the relative retention time of a diol having a cyclic acetal skeleton is 1.00 under the following conditions. It means that the GC chart total area is measured as 100 area%.
- the diol having a cyclic acetal skeleton obtained by the acetalization reaction may contain a hydroxypivalaldehyde neopentylglycol acetal represented by the formula (II) as an impurity, but it is preferably not contained.
- the content of hydroxypivalaldehyde neopentyl glycol acetal is such that the relative retention time is 1.45 or less when the relative retention time of the diol having a cyclic acetal skeleton in gas chromatography analysis under predetermined conditions is 1.00. It can represent as an area fraction density
- the content of hydroxypivalaldehyde neopentyl glycol acetal is 0.19 area% or less, preferably 0.13 area% or less, more preferably 0.08 area% or less.
- the lower limit of the content of hydroxypivalaldehyde neopentyl glycol acetal is not particularly limited, but is preferably below the detection limit and 0 area%.
- the content of hydroxypivalaldehyde neopentyl glycol acetal can be measured by gas chromatography, and more specifically can be measured by the method described in the examples.
- the content of hydroxypivalaldehyde neopentyl glycol acetal that can be contained in a diol having a cyclic acetal skeleton obtained by acetalization reaction is neopentyl glycol in raw material HPA and / or neopentyl glycol represented by formula (III) This can be reduced by reducing the ester compound having a skeleton.
- the diol having a cyclic acetal skeleton obtained by the acetalization reaction may contain a spiro monoalcohol represented by the formula (IV) as an impurity, but preferably does not contain it.
- the content of the spiro monoalcohol is 100% by area of components having a relative retention time of 1.45 or less when the relative retention time of the diol having a cyclic acetal skeleton in gas chromatography analysis under a predetermined condition is 1.00. Can be expressed as an area fraction concentration.
- the spiro monoalcohol content is 0.15 area% or less, preferably 0.13 area% or less, and more preferably 0.12 area% or less.
- the lower limit of the spiro monoalcohol content is not particularly limited, but is preferably below the detection limit and 0 area%.
- the spiro monoalcohol content can be measured by gas chromatography, more specifically by the method described in the examples.
- the content of spiro monoalcohol that can be contained in a diol having a cyclic acetal skeleton obtained by an acetalization reaction can be reduced by reducing isobutyraldehyde in the raw material HPA.
- the production method of this embodiment may include an aldol condensation reaction step of synthesizing a raw material HPA that is a raw material of a diol having a cyclic acetal skeleton.
- the aldol condensation reaction step is a step of obtaining crude hydroxypivalaldehyde (hereinafter also referred to as “crude HPA”) by an aldol condensation reaction of formaldehyde and isobutyraldehyde.
- a basic catalyst may be used as necessary.
- Formaldehyde includes an aqueous formaldehyde solution (formalin). Note that the crude HPA may contain impurities such as those contained in the raw material HPA.
- the basic catalyst used in the aldol condensation reaction step is not particularly limited, and examples thereof include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate; and organic bases such as tertiary amine and pyridine. It is done. Of these, tertiary amines are preferred.
- inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate
- organic bases such as tertiary amine and pyridine. It is done. Of these, tertiary amines are preferred.
- the tertiary amine is not particularly limited.
- trimethylamine and triethylamine which are available at low cost are preferable, and triethylamine is more preferable.
- the amount of the basic catalyst to be used naturally varies depending on the type of the basic catalyst, but is preferably 0.001 to 0.5 mol, more preferably 0.01 to 0.00 mol per mol of isobutyraldehyde. 2 moles.
- the production method of the present embodiment may have a crude hydroxypivalaldehyde purification step that purifies the crude hydroxypivalaldehyde obtained by the aldol condensation reaction step to obtain a raw material HPA.
- purification process For example, the extraction process which adds water and / or an organic solvent to crude HPA obtained by the aldol condensation reaction process, and extracts raw material HPA; Distillation step of distilling and recovering raw HPA by distilling and recovering raw HPA; crystallization by adding water and / or an organic solvent to the crude HPA obtained by the aldol condensation reaction step; A crystallization process for recovering HPA can be mentioned. These steps may be performed singly or in combination of two or more.
- extraction process Although it does not specifically limit as an organic solvent used in an extraction process, For example, isobutyraldehyde is mentioned.
- extraction step raw material HPA is extracted into the isobutyraldehyde layer.
- distillation process The distillation conditions for the crude HPA are not particularly limited, and examples include a tower top temperature of 88 to 150 ° C. and a tower top absolute pressure of 1.0 kPa to 1 MPa.
- Crystallization process Although it does not specifically limit as an organic solvent used in a crystallization process, for example, water is mentioned. Further, the solid-liquid separation method is not particularly limited, and for example, known means such as filtration and centrifugation can be used. The temperature operation conditions for crystallization are not particularly limited, and examples include 10 to 80 ° C.
- the crude hydroxypivalaldehyde purification step it is preferable to purify the raw material HPA so that the content of formaldehyde is 0.80% by mass or less with respect to 100% by mass of the raw material HPA.
- the content of formaldehyde in the raw material HPA exceeds 0.80% by mass, acetalization occurs in HPA, PE, and formaldehyde during the synthesis reaction (acetalization reaction step) of a diol having a cyclic acetal skeleton, 2-Methyl-2- (2,4,8,10-tetraoxaspiro [5.5] undecan-3-yl) propan-1-ol (hereinafter also referred to as “dioxanetriol monoformal”) is a by-product.
- the amount to be increased When a certain amount or more of dioxane triol monoformal is present, the dioxane triol monoformal is likely to be mixed in the crystal of the diol having a cyclic acetal skeleton, and the purity of the resulting diol having a cyclic acetal skeleton is lowered.
- neopentyl glycol in raw material HPA and 3-methyl-2,2-dimethylpropyl 2-methylpropanoate (hereinafter also referred to as “isobutyric acid neopentyl glycol monoester”) are used.
- 3-hydroxy-2,2-dimethylpropyl 3-hydroxy-2,2-dimethylpropanoate (hereinafter also referred to as “hydroxypivalic acid neopentyl glycol monoester”) It is preferable to refine
- the ester compound having a neopentyl glycol skeleton in the raw material HPA exceeds 0.100 mol / kg
- the ester compound is hydrolyzed during the synthesis reaction (acetalization reaction step) of the diol having a cyclic acetal skeleton, Pentyl glycol is formed, and acetalization of neopentyl glycol and HPA occurs, and 2-methyl-2- (5,5-dimethyl-1,3-dioxan-2-yl) -1-propanol (hereinafter referred to as “hydroxypyridine”).
- the amount of by-produced “valaldehyde neopentyl glycol acetal”) is increased.
- hydroxypivalaldehyde neopentylglycol acetal When hydroxypivalaldehyde neopentylglycol acetal is present in a certain amount or more, it tends to be mixed in the diol crystal having a cyclic acetal skeleton, and the purity of the resulting diol having a cyclic acetal skeleton is lowered.
- the content of isobutyraldehyde in the raw material HPA is 0.05% by mass or less with respect to 100% by mass of the raw material HPA.
- isobutyraldehyde in the raw material HPA exceeds 0.05% by mass, acetalization occurs in isobutyraldehyde, HPA, and PE during the synthesis of a diol having a cyclic acetal skeleton (acetalization reaction step).
- Dioxane triol monoformal, hydroxypivalaldehyde neopentyl glycol acetal, spiro monoalcohol is easily incorporated into the diol crystals having a cyclic acetal skeleton during the synthesis reaction of the diol having a cyclic acetal skeleton in an aqueous solvent, or Due to its low solubility in the reaction mother liquor, it tends to be relatively easily incorporated into a product of a diol having a cyclic acetal skeleton.
- the acetalization reaction step is a step in which a raw material HPA and PE are subjected to an acetalization reaction under an acid catalyst to obtain a diol having a cyclic acetal skeleton.
- the molar ratio of raw material HPA to PE (HPA / PE) is preferably 1.0 to 4.0, more preferably 1.5 to 2.5.
- HPA / PE molar ratio of raw material HPA to PE
- the deterioration of the purity of the diol having a cyclic acetal skeleton tends to be suppressed.
- the molar ratio (HPA / PE) is 1.0 or more, the yield reduction of the diol having the cyclic acetal skeleton due to the large amount of the reaction intermediate of the diol having the cyclic acetal skeleton can be suppressed.
- the deterioration of the purity of the diol having a cyclic acetal skeleton by this intermediate and the deterioration of the basic unit of PE tend to be suppressed.
- a solvent can be used as necessary. Although it does not specifically limit as a solvent, For example, water can be used.
- seed crystals may be added to the reaction system as necessary.
- a seed crystal a crystal mainly composed of a diol having a cyclic acetal skeleton is used.
- the particle size of the seed crystal is not particularly limited, and is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more.
- the addition amount of the seed crystal is preferably 1.5 to 30% by mass, more preferably 1.5 to 5% by mass with respect to the total supply amount (raw material, solvent, catalyst and seed crystal) to the reaction system. It is.
- the seed crystal By adding 1.5% by mass or more of the seed crystal, the effect of improving the particle size is more efficiently exhibited, and the filtration time of the resulting diol crystals having a cyclic acetal skeleton can be shortened. It is difficult for cracks to enter the cake, and the washability is improved, and the liquid content of the wet cake tends to decrease. On the other hand, when the amount is larger than this, the amount of crystals obtained by the reaction decreases, and the production efficiency of the diol having a cyclic acetal skeleton deteriorates.
- the seed crystal may be added before the reaction or may be added during the reaction.
- the acid catalyst used in the reaction is not particularly limited, and examples thereof include mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid, or organic acids such as paratoluenesulfonic acid and methanesulfonic acid.
- the amount of the acid catalyst used varies depending on the type of the acid catalyst, but generally, the pH value of the reaction solution during the reaction is preferably 0.1 to 4.0, more preferably 1.0 to 4.0. It should be between 2.0. When the pH value is 0.1 or more, the risk of device corrosion or the like tends to be further reduced. Further, when the pH value is 4.0 or less, the reactivity is further improved, and the yield of the diol having a cyclic acetal skeleton tends to be further improved.
- the reaction temperature of the acetalization reaction is preferably 40 to 105 ° C, more preferably 60 to 95 ° C.
- the reaction temperature is 40 ° C. or higher, the reaction time tends to be shorter and industrially advantageous.
- the reaction temperature is 105 ° C. or lower, HPA alteration is suppressed, and the yield and purity of the diol having a cyclic acetal skeleton tend to be further improved.
- the method for the acetalization reaction may be batch, semi-batch or continuous, or a combination thereof.
- all the raw materials other than the raw material HPA are charged into the reactor, heated to a predetermined temperature, and then the raw material HPA or an aqueous solution thereof is continuously added over 0.5 to 24 hours, preferably 1 to 6 hours.
- the diol having a cyclic acetal skeleton is precipitated during the synthesis reaction, and the reaction solution becomes a slurry.
- the addition time is short (a large amount is added in a short time)
- the reaction proceeds rapidly, so that the crystal grain size tends to be small.
- the addition time is within the above range, the purity of the diol having a cyclic acetal skeleton becomes higher and the time required for the reaction can be shortened, which is preferable from an industrial viewpoint.
- the production method of the present embodiment includes a separation and purification step for a diol having a cyclic acetal skeleton, in which the diol having a cyclic acetal skeleton precipitated in the reaction solution is separated, and the diol having a separated cyclic acetal skeleton is washed. May be.
- the reaction solution obtained by the above reaction is a slurry in which a target diol having a cyclic acetal skeleton is deposited, from which crystals of the diol having a cyclic acetal skeleton can be separated by filtration or centrifugation. .
- the diol having a cyclic acetal skeleton separated by filtration is washed with a basic aqueous solution and / or water.
- the amount of washing water used is preferably 0.1 to 10 times, more preferably 0.5 to 3 times the weight of the separated diol having a liquid-containing cyclic acetal skeleton.
- the washing liquid recovered by washing can be used as it is or mixed with the reaction mother liquor for the next reaction.
- the type of base in the basic aqueous solution is not particularly limited.
- An inorganic base such as sodium acid, potassium phosphate, calcium carbonate, calcium hydroxide, barium carbonate, or an organic base such as diethylamine or triethylamine can be used.
- an inorganic base from the viewpoint of physical properties, coloring, odor, etc. of the derivative when the derivative is synthesized using a diol having a cyclic acetal skeleton.
- the reaction mother liquor obtained by separating the diol crystals having a cyclic acetal skeleton from the reaction solution contains a lot of acid catalyst, unreacted HPA and PE, and reaction intermediates.
- the reaction solution is solid-liquid separated into a solid of a diol having a cyclic acetal skeleton and a reaction mother liquor, and 30 to 98% by mass of the reaction mother liquor is reused to obtain the next acetalization.
- a reaction step can be performed.
- the amount of the reaction mother liquor to be reused is preferably 30 to 98% by mass, more preferably 50 to 90% by mass, based on the total amount of the reaction mother liquor.
- the reuse rate is 98% by mass or less, impurities are not easily accumulated in the mother liquor, and the precipitation of impurities into the diol having a cyclic acetal skeleton tends to be further suppressed.
- the polyester resin of the present embodiment includes a diol structural unit and a dicarboxylic acid structural unit, and the diol structural unit is derived from a diol having a cyclic acetal skeleton represented by the following formula (A) and / or formula (B). Containing structural units.
- the diol structural unit includes a structural unit derived from a diol having a cyclic acetal skeleton represented by the formula (A) and / or the formula (B), and may include a structural unit derived from another diol as necessary. Good.
- the content of the structural unit derived from the diol having a cyclic acetal skeleton is preferably 1 to 80 mol%, more preferably 3 to 60 mol%, still more preferably 5%, based on the total amount of the diol structural units. It is ⁇ 55 mol%, particularly preferably 10 to 50 mol%.
- Other diols are not particularly limited. For example, ethylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, propylene glycol, neopentyl glycol, etc.
- ethylene glycol diethylene glycol, trimethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol are preferred, and ethylene glycol is particularly preferred from the viewpoint of mechanical performance and economical efficiency of the polyester resin.
- Other diols may be used alone or in combination of two or more.
- the content of structural units derived from other diols is 20 to 99 mol%, preferably 40 to 97 mol%, more preferably 45 to 95 mol%, based on the total amount of diol structural units. More preferably, it is 50 to 90 mol%.
- the dicarboxylic acid structural unit is not particularly limited. Aliphatic dicarboxylic acids such as tricyclodecane dicarboxylic acid and pentacyclododecane dicarboxylic acid; terephthalic acid, isophthalic acid, phthalic acid, 2-methylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, Aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and tetralindicarboxylic acid are listed.
- terephthalic acid isophthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7 from the viewpoint of mechanical performance and heat resistance of the polyester resin.
- An aromatic dicarboxylic acid such as naphthalenedicarboxylic acid is preferred, and terephthalic acid, 2,6-naphthalenedicarboxylic acid, and isophthalic acid are particularly preferred.
- terephthalic acid is most preferable from the viewpoint of economy.
- Dicarboxylic acid may be used individually by 1 type, or may use 2 or more types together.
- the method for producing the polyester resin is not particularly limited, and a conventionally known method can be applied. Examples thereof include a melt polymerization method such as a transesterification method and a direct esterification method, or a solution polymerization method. As the raw material, it is preferable to use a material purified as described above.
- a known catalyst can be used.
- metal magnesium, sodium, magnesium alkoxide; zinc, lead, cerium, cadmium, manganese, cobalt, lithium, sodium, potassium, calcium, nickel, magnesium, vanadium, aluminum examples thereof include fatty acid salts such as tin, germanium, antimony, and titanium, carbonates, hydroxides, chlorides, and oxides.
- fatty acid salts such as tin, germanium, antimony, and titanium, carbonates, hydroxides, chlorides, and oxides.
- compounds of manganese, titanium, antimony, and germanium are preferable, and manganese acetate, tetrabutoxytitanium, antimony trioxide, and germanium dioxide are particularly preferable.
- These catalysts may be used alone or in combination of two or more.
- additives may be used as necessary.
- Known additives are not particularly limited, for example, various stabilizers such as etherification inhibitors, heat stabilizers and light stabilizers, polymerization regulators, antistatic agents, lubricants, antioxidants, mold release agents, Examples include basic compounds.
- an etherification inhibitor For example, an amine compound etc. can be mentioned.
- the heat stabilizer is not particularly limited, and examples thereof include phosphorus compounds. Of these, phosphate esters are preferable, and triethyl phosphate is more preferable.
- the basic compound is not particularly limited, and examples thereof include carbonates, hydroxides, carboxylates, oxides, chlorides, and alkoxides of alkali metals such as lithium, sodium, and potassium. Of these, potassium acetate, sodium acetate, and lithium acetate are particularly preferable.
- the polyester resin of this embodiment can be used for various uses.
- it can be used for injection molded articles, sheets, films, extruded molded articles such as pipes, bottles, foams, adhesives, adhesives, paints and the like.
- the sheet may be a single layer or a multilayer
- the film may be a single layer or a multilayer.
- the sheet may be unstretched, or may be stretched in one direction or in two directions. May be.
- the bottle may be a direct blow bottle, an injection blow bottle, or an injection molded bottle.
- the foam may be a bead foam or an extruded foam.
- the crude HPA aqueous solution was HPA 62.5 mass%, isobutyraldehyde 0.30 mass%, neopentyl glycol 1.17 mass%, formaldehyde 1.55 mass%, triethylamine 1.29 mass%, formic acid 0.38 mass%. %, Hydroxypivalic acid neopentyl glycol monoester 0.85 mass%, isobutyric acid neopentyl glycol monoester 0.15 mass%, water 30.52 mass%, and other 1.29 mass%.
- ⁇ Production Example 2> (Preparation of purified HPA) 260 parts by mass of the crude HPA aqueous solution obtained in Production Example 1 and 590 parts by mass of water were charged into a crystallization tank to make the concentration of HPA 19.0% by mass and maintained at 60 ° C. The solution was cooled to 40 ° C. with stirring and held at 39-40 ° C. After 90 minutes, the entire amount of the slurry containing HPA crystals was then solid-liquid separated with a centrifuge, and the resulting HPA crystals were washed using 100 parts by mass of water. As a result, 857.5 parts by mass of the filtrate was recovered to obtain 91.9 parts by mass of a wet cake. This cake was dried at 30 ° C.
- HPA crystals were 99.3% by mass of HPA, 0.00% by mass of neopentyl glycol (below the detection limit), 0.00% by mass of neopentyl glycol monoester butyrate (below the detection limit), neopentyl glycol hydroxypivalin.
- the reaction solution was divided into 765 parts by mass and 1441 parts by mass, and 1441 parts by mass of the reaction solution was subjected to solid-liquid separation to obtain 183 parts by mass of wet spiroglycol and 1130 parts by mass of the filtrate. Thereafter, the obtained wet spiroglycol was neutralized and washed with 500 parts by mass of a 500 ppm aqueous sodium hydroxide solution, and then washed with 500 parts by mass of water. Thereafter, the spiroglycol was dried.
- the spiroglycol crystal is also contained in the reaction liquid divided into 765 parts by mass, but the spiroglycol crystal acts as a seed crystal in the subsequent second and subsequent reactions.
- reaction liquid After completion of the aging, the reaction liquid is divided into 765 parts by mass and the remaining 1431.7 parts by mass, and 1431.7 parts by mass of the reaction liquid is solid-liquid separated to obtain 244 parts by mass of wet spiroglycol and 1083 filtrate. A mass part was obtained.
- spiroglycol contains 99.60 area% spiroglycol, 0.01 area% dioxanetriol monoformal, 0.10 area% hydroxypivalaldehyde neopentylglycol acetal, and 0.13 area% spiromonoalcohol. there were.
- Example 1> (Repeated synthesis of spiroglycol using purified HPA) 765 parts by mass of the reaction solution obtained in the 15th reaction of Reference Example 5, 1000 parts by mass of the filtrate, 25 parts by mass of water, 116 parts by mass of pentaerythritol, and 0.7 parts by mass of methanesulfonic acid were mixed together to prepare an aqueous HPA solution. A290 parts by mass of A290 was added dropwise over 3 hours, and the same synthesis as in Reference Example 5 was performed (corresponding to one SPG synthesis in FIGS. 1 and 2).
- the gas chromatographic purity of spiroglycol obtained by the 11th synthesis of SPG was 99.58 area% spiroglycol, 0.01 area% dioxanetriol monoformal, 0.11 area hydroxypivalaldehyde neopentylglycol acetal. %, Spiro monoalcohol 0.14 area%.
- the results are summarized in Table 1. Moreover, transition of the impurity concentration contained in spiroglycol is shown in FIGS.
- Example 2> (Repeated synthesis of spiroglycol when formaldehyde is added to purified HPA)
- the purified HPA produced in Production Example 2 water and formaldehyde were mixed to prepare an aqueous HPA solution B containing 60% by mass of purified HPA and 0.33% by mass of formaldehyde with respect to 100% by mass of purified HPA.
- the synthetic reaction was repeated in the same manner as in Example 1 except that HPA aqueous solution B was used instead of HPA aqueous solution A.
- the 14th gas chromatographic purity of spiroglycol was as follows: spiroglycol 99.60 area%, dioxane triol monoformal 0.02 area%, hydroxypivalaldehyde neopentylglycol acetal 0.12 area%, spiromonoalcohol It was 0.14 area%.
- the results are summarized in Table 1.
- transition of the impurity concentration contained in spiroglycol is shown in FIGS.
- Example 3> (Spiroglycol repetitive synthesis in the case of adding isobutyric acid neopentyl glycol monoester to purified HPA)
- the purified HPA produced in Production Example 2 water and isobutyric acid neopentyl glycol monoester were mixed to contain 60% by mass of purified HPA, and isobutyric acid neopentyl glycol monoester was added to 100% by mass of purified HPA.
- An aqueous HPA solution C containing 58% by mass was prepared. The synthetic reaction was repeated in the same manner as in Example 1 except that the HPA aqueous solution C was used instead of the HPA aqueous solution A.
- the gas chromatographic purity of spiroglycol obtained at the 13th time was as follows: spiroglycol 99.58 area%, dioxanetriol monoformal 0.01 area%, hydroxypivalaldehyde neopentylglycol acetal 0.18 area%, spiromonoalcohol It was 0.15 area%.
- the results are summarized in Table 1. Moreover, transition of the impurity concentration contained in spiroglycol is shown in FIGS.
- ⁇ Comparative Example 1> (Repeated synthesis of spiroglycol when formaldehyde is added to purified HPA)
- the purified HPA produced in Production Example 2 water and formaldehyde were mixed to prepare an aqueous HPA solution D containing 60% by mass of purified HPA and 0.83% by mass of formaldehyde with respect to 100% by mass of purified HPA.
- the synthetic reaction was repeated in the same manner as in Example 1 except that the HPA aqueous solution D was used instead of the HPA aqueous solution A.
- the gas chromatographic purity of the 11th spiroglycol was as follows: spiroglycol 99.41 area%, dioxanetriol monoformal 0.05 area%, hydroxypivalaldehyde neopentylglycol acetal 0.15 area%, spiromonoalcohol It was 0.13 area%.
- the results are summarized in Table 1. Moreover, transition of the impurity concentration contained in spiroglycol is shown in FIGS.
- the gas chromatographic purity of spiroglycol obtained in the 13th time was 99.56 area% spiroglycol, 0.01 area% or less dioxanetriol monoformal, 0.20 area% hydroxypivalaldehyde neopentylglycol acetal, spiromono
- the alcohol was 0.13 area%.
- Table 1 The results are summarized in Table 1. Moreover, transition of the impurity concentration contained in spiroglycol is shown in FIGS.
- the 16th gas chromatographic purity of spiroglycol was as follows: spiroglycol 99.54 area%, dioxane triol monoformal 0.01 area%, hydroxypivalaldehyde neopentylglycol acetal 0.22 area%, spiromonoalcohol It was 0.15 area%.
- Table 1 The results are summarized in Table 1. Moreover, transition of the impurity concentration contained in spiroglycol is shown in FIGS.
- the gas chromatographic purity of spiroglycol obtained in the first round was 96.20 area% spiroglycol, 0.01 area% dioxanetriol monoformal, 0.10 area% hydroxypivalaldehyde neopentylglycol acetal, spiromonoalcohol. It was 3.53 area%.
- the results are summarized in Table 1.
- Each amount of HCHO, IBD, BNE, NPG, and ESG in the raw material HPA described in Table 1 is a value relative to the total amount of the raw material hydroxypivalaldehyde, and is 60% HPA including water. It is not a ratio to the total aqueous solution.
- DOT-F dioxane triol monoformal NPA; hydroxypivalaldehyde neopentyl glycol acetal SPM; spiro monoalcohol HCHO; formaldehyde IBD; isobutyraldehyde BNE; isobutyric acid neopentyl glycol monoester NPG; neopentyl glycol ESG; hydroxypivalic acid neo Pentyl glycol monoester
- Spiroglycol is a polyhydric alcohol having a cyclic acetal in the molecule, and is used as an intermediate or monomer of a polymer material such as polycarbonate, polyester, polyacrylate, polyurethane, polyether polyol, epoxy resin, adhesive, It is a compound useful as a raw material for plasticizers, resin stabilizers, lubricating oils and the like.
- a polymer material such as polycarbonate, polyester, polyacrylate, polyurethane, polyether polyol, epoxy resin, adhesive, It is a compound useful as a raw material for plasticizers, resin stabilizers, lubricating oils and the like.
- the present invention has industrial applicability at least in these applications.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
Abstract
Description
〔1〕
酸触媒下、原料ヒドロキシピバルアルデヒドと、少なくともペンタエリスリトール及び/又はトリメチロールプロパンと、をアセタール化反応させて、環状アセタール骨格を有するジオールを得るアセタール化反応工程を有し、
前記原料ヒドロキシピバルアルデヒドが、ホルムアルデヒド、ネオペンチルグリコール、下記式(III)で示されるネオペンチルグリコール骨格を持つエステル化合物、及びイソブチルアルデヒドからなる群より選ばれる少なくとも1種の不純物を含み、
前記不純物を含む場合において、
前記ホルムアルデヒドの含有量が、前記原料ヒドロキシピバルアルデヒド100質量%に対して、0.80質量%以下であり、
前記ネオペンチルグリコール及び/又は前記ネオペンチルグリコール骨格を持つエステル化合物の合計質量モル濃度が、前記原料ヒドロキシピバルアルデヒドの総量に対して、0.100mol/kg以下であり、
前記イソブチルアルデヒドの含有量が、前記原料ヒドロキシピバルアルデヒド100質量%に対して、0.05質量%以下である、
環状アセタール骨格を有するジオールの製造方法。
〔2〕
所定条件下のガスクロマトグラフィー分析における前記環状アセタール骨格を有するジオールの相対保持時間を1.00とした場合に、相対保持時間が1.45以下の成分を合計した面積分率濃度において、
アセタール化反応により得られる前記環状アセタール骨格を有するジオールが、不純物として、下記式(I)で示されるジオキサントリオールモノホルマールを0.04面積%以下含む、
〔3〕
所定条件下のガスクロマトグラフィー分析における前記環状アセタール骨格を有するジオールの相対保持時間を1.00とした場合に、相対保持時間が1.45以下の成分を合計した面積分率濃度において、
アセタール化反応により得られる前記環状アセタール骨格を有するジオールが、不純物として、下記式(II)で示されるヒドロキシピバルアルデヒドネオペンチルグリコールアセタールを0.19面積%以下含む、
〔4〕
所定条件下のガスクロマトグラフィー分析における前記環状アセタール骨格を有するジオールの相対保持時間を1.00とした場合に、相対保持時間が1.45以下の成分を合計した面積分率濃度において、
アセタール化反応により得られる前記環状アセタール骨格を有するジオールが、不純物として、下記式(IV)で示されるスピロモノアルコールを0.15面積%以下含む、
〔5〕
前記式(III)で示される前記エステル化合物が、下記式(V)で示されるイソ酪酸ネオペンチルグリコールモノエステル、及び/又は、下記式(VI)で示されるヒドロキシピバリン酸ネオペンチルグリコールモノエステルを含む、
〔6〕
前記環状アセタール骨格を有するジオールが、スピログリコール及び/又はジオキサングリコールである、〔1〕~〔5〕のいずれか1項に記載の環状アセタール骨格を有するジオールの製造方法。
〔7〕
ホルムアルデヒドとイソブチルアルデヒドのアルドール縮合反応により粗ヒドロキシピバルアルデヒドを得るアルドール縮合反応工程を有する、
〔1〕~〔6〕のいずれか1項に記載の環状アセタール骨格を有するジオールの製造方法。
〔8〕
前記アルドール縮合反応工程により得られた前記粗ヒドロキシピバルアルデヒドに、水及び/又は有機溶媒を添加して前記原料ヒドロキシピバルアルデヒドを抽出する抽出工程、
前記アルドール縮合反応工程により得られた前記粗ヒドロキシピバルアルデヒドを蒸留して、前記原料ヒドロキシピバルアルデヒドを留出回収する蒸留工程、及び
前記アルドール縮合反応工程により得られた前記粗ヒドロキシピバルアルデヒドに、水及び/又は有機溶媒を添加して晶析し、固液分離により前記原料ヒドロキシピバルアルデヒドを回収する晶析工程の少なくともいずれかの工程を有する、
〔7〕に記載の環状アセタール骨格を有するジオールの製造方法。
〔9〕
前記アセタール化反応工程の反応温度が40~105℃であり、
前記アセタール化反応工程中の反応液のpH値が、0.1~4.0であり、
前記アセタール化反応工程後、前記反応液を、環状アセタール骨格を有するジオールの固体と反応母液に固液分離し、前記反応母液の30~98質量%を再使用して、次のアセタール化反応工程を行う、
〔1〕~〔8〕のいずれか1項に記載の環状アセタール骨格を有するジオールの製造方法。
本実施形態の環状アセタール骨格を有するジオールの製造方法は、酸触媒下、原料ヒドロキシピバルアルデヒド(以下、「原料HPA」ともいう。)と、少なくともペンタエリスリトール及び/又はトリメチロールプロパンと、をアセタール化反応させて、環状アセタール骨格を有するジオールを得るアセタール化反応工程を有し、
前記原料ヒドロキシピバルアルデヒドが、ホルムアルデヒド、ネオペンチルグリコール、下記式(III)で示されるネオペンチルグリコール骨格を持つエステル化合物、及びイソブチルアルデヒドからなる群より選ばれる少なくとも1種の不純物を含み、
前記不純物を含む場合において、
前記ホルムアルデヒドの含有量が、前記原料ヒドロキシピバルアルデヒド100質量%に対して、0.80質量%以下であり、
前記ネオペンチルグリコール及び/又は前記ネオペンチルグリコール骨格を持つエステル化合物の合計質量モル濃度が、前記原料ヒドロキシピバルアルデヒドの総量に対して、0.100mol/kg以下であり、
前記イソブチルアルデヒドの含有量が、前記原料ヒドロキシピバルアルデヒド100質量%に対して、0.05質量%以下である。
(条件)
測定試料 :2.5質量%のメタノール溶液に調製
装置 :GC-1700(株式会社島津製作所製)
使用カラム:DB-1長さ30m×内径0.53mm、膜厚1.5μm(アジレント・テクノロジー株式会社製)
分析条件 :injection temp.280℃
detection temp.280℃
キャリアーガス:ヘリウム
カラム温度:80℃で4分保持→250℃迄6℃/分で昇温→250℃で10分保持
→280℃迄10℃/分で昇温→280℃で15分保持
検出器 :水素炎イオン化検出器(FID)
本実施形態の製造方法は、環状アセタール骨格を有するジオールの原料である原料HPAを合成するアルドール縮合反応工程を含んでいてもよい。アルドール縮合反応工程は、ホルムアルデヒドとイソブチルアルデヒドのアルドール縮合反応により粗ヒドロキシピバルアルデヒド(以下、「粗HPA」ともいう。)を得る工程である。アルドール縮合反応工程においては、必要に応じて塩基性触媒を用いてもよい。また、ホルムアルデヒドには、ホルムアルデヒド水溶液(ホルマリン)が含まれるものとする。なお、粗HPAには、原料HPAに含まれるような不純物が含まれていてもよいものとする。
本実施形態の製造方法は、アルドール縮合反応工程により得られた粗ヒドロキシピバルアルデヒドを精製して原料HPAを得る粗ヒドロキシピバルアルデヒド精製工程を有していてもよい。粗HPA精製工程としては、特に限定されないが、例えば、アルドール縮合反応工程により得られた粗HPAに、水及び/又は有機溶媒を添加して原料HPAを抽出する抽出工程;アルドール縮合反応工程により得られた粗HPAを蒸留して、原料HPAを留出回収する蒸留工程;アルドール縮合反応工程により得られた粗HPAに、水及び/又は有機溶媒を添加して晶析し、固液分離により原料HPAを回収する晶析工程が挙げられる。これら工程は、1種単独で実施しても、2種以上を併せて実施してもよい。
抽出工程において用いる有機溶媒としては、特に限定されないが、例えば、イソブチルアルデヒドが挙げられる。抽出工程においては、イソブチルアルデヒド層に原料HPAが抽出される。
粗HPAの蒸留条件としては、特に限定されないが、塔頂部の温度が、88~150℃で、塔頂絶対圧力が1.0kPa~1MPaが挙げられる。
晶析工程において用いる有機溶媒としては、特に限定されないが、例えば、水が挙げられる。また、固液分離方法としては、特に限定されないが、例えば、濾過や、遠心分離など公知の手段を用いることができる。晶析の温度操作条件としては、特に限定されないが、10~80℃が挙げられる。
アセタール化反応工程は、酸触媒下、原料HPAと、PEと、をアセタール化反応させて、環状アセタール骨格を有するジオールを得る工程である。アセタール化反応工程において、PEに対する原料HPAのモル比(HPA/PE)は、好ましくは1.0~4.0であり、より好ましくは1.5~2.5である。モル比(HPA/PE)が4.0以下であることにより、反応に関わらない過剰な原料HPA量が少なくなり、HPA同士が2量化するなどの副反応が抑制されるため、原単位の悪化や環状アセタール骨格を有するジオールの純度の悪化を抑制できる傾向にある。一方、モル比(HPA/PE)が1.0以上であることにより、環状アセタール骨格を有するジオールの反応中間体が多量にできてしまうことによる環状アセタール骨格を有するジオールの収率低下を抑制でき、この中間体による環状アセタール骨格を有するジオールの純度の悪化や、PEの原単位の悪化を抑制できる傾向にある。
本実施形態の製造方法は、反応液中に析出した環状アセタール骨格を有するジオールを分離し、分離した環状アセタール骨格を有するジオールを洗浄などする環状アセタール骨格を有するジオールの分離精製工程を有していてもよい。上記反応で得られた反応液は、目的物である環状アセタール骨格を有するジオールが析出したスラリー状であり、ここからろ過や遠心分離などによって環状アセタール骨格を有するジオールの結晶を分離することができる。ろ過によって分離された環状アセタール骨格を有するジオールは塩基性水溶液及び/又は水を用いて洗浄される。
本実施形態のポリエステル樹脂は、ジオール構成単位とジカルボン酸構成単位とを含み、前記ジオール構成単位が、下記式(A)及び/又は式(B)で表される環状アセタール骨格を有するジオールに由来する構成単位を含む。
ジオール構成単位は、式(A)及び/又は式(B)で表される環状アセタール骨格を有するジオールに由来する構成単位を含み、必要に応じて、その他のジオールに由来する構成単位を含んでもよい。
その他のジオールとしては、特に限定されないが、例えば、エチレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール等の脂肪族ジオール類;ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテルジオール類;1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、ペンタシクロドデカンジメタノール等の脂環式ジオール類;4,4’-(1-メチルエチリデン)ビスフェノール、メチレンビスフェノール(別名ビスフェノールF)、4,4’-シクロヘキシリデンビスフェノール(別名ビスフェノールZ)、4,4’-スルホニルビスフェノール(別名ビスフェノールS)等のビスフェノール類;上記ビスフェノール類のアルキレンオキシド付加物;ヒドロキノン、レゾルシン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルベンゾフェノン等の芳香族ジヒドロキシ化合物;及び上記芳香族ジヒドロキシ化合物のアルキレンオキシド付加物等が挙げられる。
ジカルボン酸構成単位としては、特に限定されないが、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸等の脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、2-メチルテレフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族ジカルボン酸が挙げられる。このなかでも、ポリエステル樹脂の機械的性能、及び耐熱性の面からテレフタル酸、イソフタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸および2,7-ナフタレンジカルボン酸といった芳香族ジカルボン酸が好ましく、特にテレフタル酸、2,6-ナフタレンジカルボン酸、およびイソフタル酸が好ましい。その中でも、経済性の面からテレフタル酸がもっとも好ましい。ジカルボン酸は、は、1種単独で用いても、2種以上を併用してもよい。
ポリエステル樹脂を製造する方法は、特に限定されず、従来公知の方法を適用することができる。例えば、エステル交換法、直接エステル化法等の溶融重合法または溶液重合法を挙げることができる。原料としては、上述したように精製したものを用いることが好ましい。
本実施形態のポリエステル樹脂は、種々の用途に用いることができる。例えば、射出成形体、シート、フィルム、パイプ等の押し出し成形体、ボトル、発泡体、粘着材、接着剤、塗料等に用いることができる。更に詳しく述べるとすれば、シートは単層でも多層でもよく、フィルムも単層でも多層でもよく、また未延伸のものでも、一方向、又は二方向に延伸されたものでもよく、鋼板などに積層してもよい。ボトルはダイレクトブローボトルでもインジェクションブローボトルでもよく、射出成形されたものでもよい。発泡体は、ビーズ発泡体でも押出し発泡体でもよい。
得られた環状アセタール骨格を有するジオールの純度分析は下記条件のガスクロマトグラフィーにより行った。環状アセタール骨格を有するジオールの相対保持時間を1.00とした場合に、メタノールを除く相対保持時間が1.45以下の成分のGCチャート総面積を100面積%とし、各成分の面積分率濃度を求めた。
(条件)
測定試料 :2.5質量%のメタノール溶液に調製
装置 :GC-1700(株式会社島津製作所製)
使用カラム:DB-1長さ30m×内径0.53mm、膜厚1.5μm(アジレント・テクノロジー株式会社製)
分析条件 :injection temp.280℃
detection temp.280℃
キャリアーガス:ヘリウム
カラム温度:80℃で4分保持→250℃迄6℃/分で昇温→250℃で10分保持
→280℃迄10℃/分で昇温→280℃で15分保持
検出器 :水素炎イオン化検出器(FID)
以下のようにして得られた粗HPA及び精製HPAの純度は、下記条件のガスクロマトグラフィー分析及びホルムアルデヒドの定量方法により測定した。
(ガスクロマトグラフィー分析条件)
測定試料 :1質量%のアセトン溶液に調製
装置 :GC-6890N(アジレント・テクノロジー株式会社製)
使用カラム:DB-1長さ30m×内径0.53mm、膜厚1.5μm(アジレント・テクノロジー株式会社製)
分析条件 :injection temp.200℃
detection temp.250℃
キャリアーガス:ヘリウム
カラム温度:60℃で7分保持→250℃迄6℃/分で昇温→250℃で20分保持
検出器 :水素炎イオン化検出器(FID)
UVスペクトロメーターを用いてアセチルアセトン比色法で測定した。
イソブチルアルデヒド(和光純薬品)200質量部と、40質量%ホルマリン(三菱瓦斯化学品)225質量部と、を仕込み、40℃、窒素気流下で攪拌しながら、触媒としてトリエチルアミン(和光純薬品)9.9質量部を5分間かけて加え、アルドール縮合反応を行った。トリエチルアミン添加終了時、反応液温度は65℃に達した。ここから、反応液温度を徐々に上げ、30分後には反応液温度を90℃とした。反応液温度90℃で50分間反応を継続させた後、外部冷却によって、反応液温度を60℃まで冷却し、反応を停止させた。
製造例1で得られた粗HPA水溶液260質量部及び水590質量部を晶析槽に仕込み、HPAの濃度19.0質量%とし、60℃に保った。この溶液を攪拌しながら、40℃まで冷却し、39~40℃で保持した。90分後、この後、HPAの結晶を含むスラリーの全量を遠心分離機にて固液分離し、得られたHPA結晶を水100質量部を使用して洗浄した。この結果、857.5質量部の濾液を回収し、湿ケーキを91.9質量部得た。このケーキを窒素気流下、30℃で乾燥し、HPAの結晶71.3質量部を得た。粗HPAに対するHPA結晶の回収率は44.1%であった。この結晶を、ガスクロマトグラフィー(アジレント・テクノロジー社製)を用いて分析した。その結果、HPA結晶は、HPA99.3質量%、ネオペンチルグリコール0.00質量%(検出限界以下)、イソ酪酸ネオペンチルグリコールモノエステル0.00質量%(検出限界以下)、ネオペンチルグリコールヒドロキシピバリン酸モノエステル0.50質量%、イソブチルアルヒド0.05質量%、ホルムアルデヒド0.00質量%(検出限界以下)、その他0.15質量%を含むものであった。得られた精製HPA結晶と水を混合し、精製HPA結晶を60質量%含むHPA水溶液Aを調製した。
ネオペンチルグリコール(三菱瓦斯化学品)280.8質量部、ピリジン(和光純薬品)79.0質量部、N,N-ジメチル-4-アミノピリジン(和光純薬品)12.2質量部、及び塩化メチレン(和光純薬品)2500質量部を混合し、25℃とした。ここにイソ酪酸クロリド(和光純薬品)95.4質量部の塩化メチレン溶液を4時間かけて滴下した。25℃にて16時間撹拌後、水を用いた抽出にて未反応のネオペンチルグリコールや不純物を除去した。得られた油層の溶媒を単蒸留にて除去した後の缶出液の純度を分析したところ、イソ酪酸ネオペンチルグリコールモノエステル96.4質量%、その他3.60質量%であった。
水1800質量部にペンタエリスリトール116質量部を溶解し、メタンスルホン酸(和光純薬品)を溶液のpHが1.6となるように添加した。ここに製造例2で調製したHPA水溶液A290質量部を3時間かけて滴下した。反応温度は90℃であった。滴下終了後90℃のまま12時間熟成した。熟成終了後、反応液を、765質量部と、1441質量部にわけ、1441質量部の反応液を固液分離することによって、湿スピログリコール183質量部と、ろ液1130質量部を得た。その後、得られた湿スピログリコールを、500ppm水酸化ナトリウム水溶液500質量部にて中和洗浄し、次いで、水500質量部にて洗浄を行った。その後、スピログリコールの乾燥を行った。なお、765質量部に分けた反応液にもスピログリコール結晶が含まれるが、当該スピログリコール結晶は続く2回目以降の反応において種晶として作用する。
1回目の反応で得られた反応液765質量部、1回目の反応で得られたろ液のうち1000質量部、水25質量部、ペンタエリスリトール116質量部、メタンスルホン酸0.7質量部を混合した。この際、溶液のpHは1.6であった。ここにHPA水溶液A290質量部を3時間かけて滴下した。反応温度は90℃であった。滴下終了後90℃のまま3時間熟成した。熟成終了後、反応液を、765質量部と、残りの1431.7質量部にわけ、1431.7質量部の反応液を固液分離することによって、湿スピログリコール244質量部と、ろ液1083質量部を得た。
参考例5の15回目の反応で得られた反応液765質量部と、ろ液1000質量部、水25質量部、ペンタエリスリトール116質量部、メタンスルホン酸0.7質量部を混合し、HPA水溶液A290質量部を3時間かけて滴下して、参考例5と同様の合成を行った(図1及び2中のSPG合成回数1回に相当)。そして、この1回目の反応で得られた反応液765質量部を用いて、ろ液1000質量部、水25質量部、ペンタエリスリトール116質量部、メタンスルホン酸0.7質量部を混合し、HPA水溶液A290質量部を3時間かけて滴下して、スピログリコールの合成反応を繰り返しおこなった。このようなスピログリコール合成反応を、得られたスピログリコールに含まれる不純物濃度が安定するまで、更に繰り返した。
製造例2で作製した精製HPAと水とホルムアルデヒドとを混合して、精製HPAを60質量%含み、且つ、精製HPA100質量%に対してホルムアルデヒド0.33質量%を含むHPA水溶液Bを調製した。HPA水溶液Aに代えて、HPA水溶液Bを用いたこと以外は、実施例1と同様の方法にて合成反応を繰り返した。
製造例2で作製した精製HPAと水とイソ酪酸ネオペンチルグリコールモノエステルとを混合して、精製HPAを60質量%含み、且つ、精製HPA100質量%に対してイソ酪酸ネオペンチルグリコールモノエステル0.58質量%を含むHPA水溶液Cを調製した。HPA水溶液Aに代えて、HPA水溶液Cを用いたこと以外は、実施例1と同様の方法にて合成反応を繰り返した。
製造例2で作製した精製HPAと水とホルムアルデヒドとを混合して、精製HPAを60質量%含み、且つ、精製HPA100質量%に対してホルムアルデヒド0.83質量%を含むHPA水溶液Dを調製した。HPA水溶液Aに代えて、HPA水溶液Dを用いたこと以外は、実施例1と同様の方法にて合成反応を繰り返した。
製造例2で作製した精製HPAと水とネオペンチルグリコールとを混合して、精製HPAを60質量%含み、且つ、精製HPA100質量%に対してネオペンチルグリコール2.50質量%を含むHPA水溶液Eを調製した。HPA水溶液Aに代えて、HPA水溶液Eを用いたこと以外は、実施例1と同様の方法にて合成反応を繰り返した。
製造例2で作製した精製HPAと水とヒドロキシピバリン酸ネオペンチルグリコールモノエステルとを混合して、精製HPAを60質量%含み、且つ、精製HPA100質量%に対してヒドロキシピバリン酸ネオペンチルグリコールモノエステル2.50質量%を含むHPA水溶液Fを調製した。HPA水溶液Aに代えて、HPA水溶液Fを用いたこと以外は、実施例1と同様の方法にて合成反応を繰り返した。
製造例2で作製した精製HPAと水とイソブチルアルデヒドとを混合して、精製HPAを60質量%含み、且つ、精製HPA100質量%に対してイソブチルアルデヒド3.33質量%を含むHPA水溶液Gを調製した。HPA水溶液Aに代えて、HPA水溶液Gを用いたこと以外は、実施例1と同様の方法にて合成反応を行った。
DOT-F;ジオキサントリオールモノホルマール
NPA ;ヒドロキシピバルアルデヒドネオペンチルグリコールアセタール
SPM ;スピロモノアルコール
HCHO ;ホルムアルデヒド
IBD ;イソブチルアルデヒド
BNE ;イソ酪酸ネオペンチルグリコールモノエステル
NPG ;ネオペンチルグリコール
ESG ;ヒドロキシピバリン酸ネオペンチルグリコールモノエステル
Claims (9)
- 酸触媒下、原料ヒドロキシピバルアルデヒドと、少なくともペンタエリスリトール及び/又はトリメチロールプロパンと、をアセタール化反応させて、環状アセタール骨格を有するジオールを得るアセタール化反応工程を有し、
前記原料ヒドロキシピバルアルデヒドが、ホルムアルデヒド、ネオペンチルグリコール、下記式(III)で示されるネオペンチルグリコール骨格を持つエステル化合物、及びイソブチルアルデヒドからなる群より選ばれる少なくとも1種の不純物を含み、
前記不純物を含む場合において、
前記ホルムアルデヒドの含有量が、前記原料ヒドロキシピバルアルデヒド100質量%に対して、0.80質量%以下であり、
前記ネオペンチルグリコール及び/又は前記ネオペンチルグリコール骨格を持つエステル化合物の合計質量モル濃度が、前記原料ヒドロキシピバルアルデヒドの総量に対して、0.100mol/kg以下であり、
前記イソブチルアルデヒドの含有量が、前記原料ヒドロキシピバルアルデヒド100質量%に対して、0.05質量%以下である、
環状アセタール骨格を有するジオールの製造方法。 - 前記環状アセタール骨格を有するジオールが、スピログリコール及び/又はジオキサングリコールである、請求項1~5のいずれか1項に記載の環状アセタール骨格を有するジオールの製造方法。
- ホルムアルデヒドとイソブチルアルデヒドのアルドール縮合反応により粗ヒドロキシピバルアルデヒドを得るアルドール縮合反応工程を有する、
請求項1~6のいずれか1項に記載の環状アセタール骨格を有するジオールの製造方法。 - 前記アルドール縮合反応工程により得られた前記粗ヒドロキシピバルアルデヒドに、水及び/又は有機溶媒を添加して前記原料ヒドロキシピバルアルデヒドを抽出する抽出工程、
前記アルドール縮合反応工程により得られた前記粗ヒドロキシピバルアルデヒドを蒸留して、前記原料ヒドロキシピバルアルデヒドを留出回収する蒸留工程、及び
前記アルドール縮合反応工程により得られた前記粗ヒドロキシピバルアルデヒドに、水及び/又は有機溶媒を添加して晶析し、固液分離により前記原料ヒドロキシピバルアルデヒドを回収する晶析工程の少なくともいずれかの工程を有する、
請求項7に記載の環状アセタール骨格を有するジオールの製造方法。 - 前記アセタール化反応工程の反応温度が40~105℃であり、
前記アセタール化反応工程中の反応液のpH値が、0.1~4.0であり、
前記アセタール化反応工程後、前記反応液を、環状アセタール骨格を有するジオールの固体と反応母液に固液分離し、前記反応母液の30~98質量%を再使用して、次のアセタール化反応工程を行う、
請求項1~8のいずれか1項に記載の環状アセタール骨格を有するジオールの製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/078,292 US10370384B2 (en) | 2016-03-15 | 2017-03-09 | Method for producing diol having cyclic acetal skeleton |
JP2018505872A JP6876275B2 (ja) | 2016-03-15 | 2017-03-09 | 環状アセタール骨格を有するジオールの製造方法 |
EP17766526.2A EP3431479B1 (en) | 2016-03-15 | 2017-03-09 | Method for producing diol having cyclic acetal skeleton |
SG11201805782RA SG11201805782RA (en) | 2016-03-15 | 2017-03-09 | Method for producing diol having cyclic acetal skeleton |
CN201780017080.3A CN108779125A (zh) | 2016-03-15 | 2017-03-09 | 具有环状缩醛骨架的二醇的制造方法 |
KR1020187029543A KR102316674B1 (ko) | 2016-03-15 | 2017-03-09 | 환상 아세탈 골격을 갖는 다이올의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016050882 | 2016-03-15 | ||
JP2016-050882 | 2016-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017159525A1 true WO2017159525A1 (ja) | 2017-09-21 |
Family
ID=59850281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009403 WO2017159525A1 (ja) | 2016-03-15 | 2017-03-09 | 環状アセタール骨格を有するジオールの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10370384B2 (ja) |
EP (1) | EP3431479B1 (ja) |
JP (1) | JP6876275B2 (ja) |
KR (1) | KR102316674B1 (ja) |
CN (1) | CN108779125A (ja) |
SG (1) | SG11201805782RA (ja) |
WO (1) | WO2017159525A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021200952A1 (ja) | 2020-03-31 | 2021-10-07 | 三菱ケミカル株式会社 | カーボネート結合を有する熱可塑性樹脂 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59134788A (ja) * | 1983-01-22 | 1984-08-02 | Mitsubishi Gas Chem Co Inc | ジオキサングリコ−ルの製造法 |
JP2001302673A (ja) * | 2000-04-25 | 2001-10-31 | Mitsubishi Gas Chem Co Inc | スピログリコールの製造方法 |
JP2001302674A (ja) * | 2000-04-25 | 2001-10-31 | Mitsubishi Gas Chem Co Inc | 高純度スピログリコールの製造法 |
JP2005029563A (ja) * | 2003-06-18 | 2005-02-03 | Mitsubishi Gas Chem Co Inc | スピログリコールの製造方法 |
JP2007070339A (ja) * | 2005-08-08 | 2007-03-22 | Mitsubishi Gas Chem Co Inc | 高純度ヒドロキシピバルアルデヒドおよび/またはその二量体の製造方法 |
JP2007126448A (ja) * | 2005-10-04 | 2007-05-24 | Mitsubishi Gas Chem Co Inc | ジオキサングリコールの製造方法 |
JP2011074000A (ja) * | 2009-09-30 | 2011-04-14 | Mitsubishi Gas Chemical Co Inc | 高純度ヒドロキシピバルアルデヒドおよび/またはその二量体の結晶の製造方法 |
WO2012118196A1 (ja) * | 2011-03-03 | 2012-09-07 | 三菱瓦斯化学株式会社 | 3-ヒドロキシ-2,2-ジメチルプロパナール水溶液の濃縮方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59134758A (ja) * | 1983-01-20 | 1984-08-02 | Dai Ichi Seiyaku Co Ltd | セトラキサ−トの製造法 |
JPS59148776A (ja) | 1983-02-14 | 1984-08-25 | Mitsubishi Gas Chem Co Inc | 多価アルコ−ルの製造方法 |
JP2796130B2 (ja) | 1989-06-26 | 1998-09-10 | 広栄化学工業株式会社 | β,β,β′,β′―テトラメチル―2,4,8,10―テトラオキサスピロ[5,5]ウンデカン―3,9―ジエタノールの製造方法 |
JP2000034290A (ja) | 1998-07-17 | 2000-02-02 | Mitsubishi Gas Chem Co Inc | 高純度スピログリコールの製造方法 |
JP4576667B2 (ja) | 1999-06-10 | 2010-11-10 | 住友化学株式会社 | 3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンの製造方法 |
SG130108A1 (en) | 2005-08-08 | 2007-03-20 | Mitsubishi Gas Chemical Co | Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof |
EP2433934B1 (en) | 2005-10-04 | 2013-07-03 | Mitsubishi Gas Chemical Company, Inc. | Process of producing dioxane glycol |
-
2017
- 2017-03-09 US US16/078,292 patent/US10370384B2/en active Active
- 2017-03-09 SG SG11201805782RA patent/SG11201805782RA/en unknown
- 2017-03-09 KR KR1020187029543A patent/KR102316674B1/ko active IP Right Grant
- 2017-03-09 CN CN201780017080.3A patent/CN108779125A/zh active Pending
- 2017-03-09 WO PCT/JP2017/009403 patent/WO2017159525A1/ja active Application Filing
- 2017-03-09 JP JP2018505872A patent/JP6876275B2/ja active Active
- 2017-03-09 EP EP17766526.2A patent/EP3431479B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59134788A (ja) * | 1983-01-22 | 1984-08-02 | Mitsubishi Gas Chem Co Inc | ジオキサングリコ−ルの製造法 |
JP2001302673A (ja) * | 2000-04-25 | 2001-10-31 | Mitsubishi Gas Chem Co Inc | スピログリコールの製造方法 |
JP2001302674A (ja) * | 2000-04-25 | 2001-10-31 | Mitsubishi Gas Chem Co Inc | 高純度スピログリコールの製造法 |
JP2005029563A (ja) * | 2003-06-18 | 2005-02-03 | Mitsubishi Gas Chem Co Inc | スピログリコールの製造方法 |
JP2007070339A (ja) * | 2005-08-08 | 2007-03-22 | Mitsubishi Gas Chem Co Inc | 高純度ヒドロキシピバルアルデヒドおよび/またはその二量体の製造方法 |
JP2007126448A (ja) * | 2005-10-04 | 2007-05-24 | Mitsubishi Gas Chem Co Inc | ジオキサングリコールの製造方法 |
JP2011074000A (ja) * | 2009-09-30 | 2011-04-14 | Mitsubishi Gas Chemical Co Inc | 高純度ヒドロキシピバルアルデヒドおよび/またはその二量体の結晶の製造方法 |
WO2012118196A1 (ja) * | 2011-03-03 | 2012-09-07 | 三菱瓦斯化学株式会社 | 3-ヒドロキシ-2,2-ジメチルプロパナール水溶液の濃縮方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021200952A1 (ja) | 2020-03-31 | 2021-10-07 | 三菱ケミカル株式会社 | カーボネート結合を有する熱可塑性樹脂 |
EP4400490A2 (en) | 2020-03-31 | 2024-07-17 | Mitsubishi Chemical Corporation | Thermoplastic resin having carbonate bond |
Also Published As
Publication number | Publication date |
---|---|
US10370384B2 (en) | 2019-08-06 |
EP3431479A4 (en) | 2019-10-23 |
JP6876275B2 (ja) | 2021-05-26 |
CN108779125A (zh) | 2018-11-09 |
SG11201805782RA (en) | 2018-08-30 |
KR102316674B1 (ko) | 2021-10-22 |
KR20180120266A (ko) | 2018-11-05 |
US20190055259A1 (en) | 2019-02-21 |
EP3431479B1 (en) | 2020-08-26 |
JPWO2017159525A1 (ja) | 2019-01-24 |
EP3431479A1 (en) | 2019-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111615506B (zh) | 对苯二甲酸酯的形成 | |
EP2351726B1 (en) | High-purity 1,6-hexanediol and manufacturing method thereof | |
CN110590551A (zh) | 双(2-羟基乙基)对苯二甲酸酯的制造方法及聚对苯二甲酸乙二醇酯的制造方法 | |
SG172807A1 (en) | Method for producing polymethylols | |
KR102066760B1 (ko) | 폴리에스터 수지의 제조 방법 | |
WO2017159525A1 (ja) | 環状アセタール骨格を有するジオールの製造方法 | |
JP4604562B2 (ja) | スピログリコールの製造方法 | |
CA2104253A1 (en) | Process for the preparation of monomeric terephthalic diesters and diols from polyesters | |
CN113166031B (zh) | 用于制备碳酸二烷基酯和链烷二醇的方法 | |
CN118119591A (zh) | 包含回收的双(2-羟基乙基)对苯二甲酸酯的可聚合原材料和用于制备其的方法 | |
CN108779236B (zh) | 聚酯树脂 | |
JP4645032B2 (ja) | スピログリコールの製造方法 | |
US10882814B2 (en) | Method for producing an ester | |
JP6747780B2 (ja) | 4−ヒドロキシ安息香酸長鎖エステルの製造方法 | |
CN118076579A (zh) | 使用再生乙二醇制备双(2-羟乙基)对苯二甲酸酯的方法 | |
JP4187979B2 (ja) | エチレングリコールの回収蒸留釜残の処理方法 | |
US20220119334A1 (en) | Process for preparing a cycloaliphatic diester | |
JP2001302672A (ja) | スピログリコールの製造法 | |
WO2018125879A1 (en) | A method of treating a carbonate stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 11201805782R Country of ref document: SG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018505872 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20187029543 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017766526 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017766526 Country of ref document: EP Effective date: 20181015 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17766526 Country of ref document: EP Kind code of ref document: A1 |