WO2017159385A1 - マルチコアファイバ - Google Patents

マルチコアファイバ Download PDF

Info

Publication number
WO2017159385A1
WO2017159385A1 PCT/JP2017/008307 JP2017008307W WO2017159385A1 WO 2017159385 A1 WO2017159385 A1 WO 2017159385A1 JP 2017008307 W JP2017008307 W JP 2017008307W WO 2017159385 A1 WO2017159385 A1 WO 2017159385A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
light
cores
fiber
mode
Prior art date
Application number
PCT/JP2017/008307
Other languages
English (en)
French (fr)
Inventor
雄佑 佐々木
竹永 勝宏
晋聖 齊藤
盛岡 敏夫
Original Assignee
株式会社フジクラ
国立大学法人北海道大学
テクニカル・ユニヴァーシティ・オブ・デンマーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 国立大学法人北海道大学, テクニカル・ユニヴァーシティ・オブ・デンマーク filed Critical 株式会社フジクラ
Priority to CN201780006522.4A priority Critical patent/CN108474903B/zh
Priority to JP2018505807A priority patent/JP6722271B2/ja
Priority to EP17766388.7A priority patent/EP3432041B1/en
Priority to US16/072,786 priority patent/US10690843B2/en
Publication of WO2017159385A1 publication Critical patent/WO2017159385A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/0365Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - - +

Definitions

  • the present invention relates to a multi-core fiber for long-distance communication, and is suitable for increasing the density of the core.
  • An optical fiber used in a widely used optical fiber communication system has a structure in which an outer peripheral surface of one core is surrounded by a clad, and information is transmitted by propagation of an optical signal in the core.
  • a multi-core fiber in which the outer peripheral surfaces of a plurality of cores are surrounded by one clad. According to the multi-core fiber, a signal can be transmitted by each light propagating through a plurality of cores, so that the amount of information that can be transmitted by one optical fiber can be increased.
  • a multi-core fiber is disclosed in Patent Document 1 below, for example.
  • part of light propagating through mutually adjacent cores may overlap each other, resulting in crosstalk between cores.
  • As a method for suppressing crosstalk between cores for example, increasing the interval between adjacent cores is conceivable. Since the crosstalk between the cores is determined by the integral of the overlap between the lights propagating through the adjacent cores, the crosstalk between the cores is suppressed by increasing the intercore distance to reduce the overlap.
  • crosstalk between cores can also be suppressed by the core being surrounded by a low refractive index layer formed by glass or pores having a lower refractive index than the core and cladding.
  • the core is surrounded by the low refractive index layer, the spread of the light propagating through the core in the radial direction can be reduced, so that the overlap between the lights propagating through the adjacent cores is reduced, and crosstalk between the cores is reduced. Is suppressed.
  • the number of cores provided in one multi-core fiber must be reduced when the fiber diameter is constant, and the amount of information that can be transmitted is reduced.
  • the cut-off wavelength of the inner core surrounded by the plurality of cores with trenches becomes longer as the distance between the cores becomes smaller. It is known. If the cutoff wavelength is excessively long, extra high-order mode light is likely to propagate. When extra high-order mode light propagates, crosstalk due to the higher-order mode light may occur, or multi-path interference (MPI: Multi-Path Interference) may occur.
  • MPI Multi-Path Interference
  • the cutoff wavelength within a predetermined range. From the viewpoint of suppressing the cutoff wavelength from increasing, it is preferable to increase the inter-core distance. However, if the inter-core distance is increased, the amount of information that can be transmitted by one multi-core fiber is reduced as described above.
  • the amount of information that can be transmitted is reduced in order to suppress the cut-off wavelength and to suppress the crosstalk between the cores.
  • the optical fiber currently sold as a product has a cutoff wavelength defined by a 2 m fiber cutoff wavelength or a 22 m cable cutoff wavelength. That is, in the conventional multi-core fiber, the distance between the cores and the like are designed so that the cut-off wavelength at the time of propagation of 2 m or 22 m becomes a predetermined value, similarly to the optical fiber sold as a product.
  • an optical fiber having a length of about 1 km is used at the shortest.
  • the optical fiber is laid with a length of 1 km to several thousand km, but it is difficult to realize this with one optical fiber. Therefore, a plurality of optical fibers are connected at intervals of about 1 km at the shortest.
  • the present inventors have found that in order to obtain a multi-core fiber suitable for long-distance communication, it is sufficient that the cutoff wavelength at the time when light propagates 1 km becomes a predetermined value. Accordingly, an object of the present invention is to provide a multicore fiber suitable for long-distance communication.
  • the multi-core fiber of the present invention has a mode whose order is higher than the mode of light used for transmitting the information in the wavelength band of light used for transmitting information when bending of 280 mm in diameter is applied. At least one core having a light propagation loss of 1 dB / m or less and 0.02 dB / m or more is provided.
  • the propagation loss of mode light whose order is higher than that of the light mode used for information transmission, that is, extra high-order mode light is 0.02 dB / m or more.
  • extra high-order mode light is sufficiently attenuated when propagating through the core for 1 km.
  • a plurality of optical fibers are usually connected at intervals of about 1 km at the shortest.
  • High-order mode light that causes deterioration in the quality of the transmitted signal and crosstalk occurs due to misalignment between optical fibers or at the connection point between optical fibers and various devices such as input / output devices and amplifiers. It has been known.
  • the multi-core fiber is suitable for a multi-core fiber having a length of 1 km or more, and is suitable for long-distance communication.
  • the inter-core distance and the like are designed based on the 2 m fiber cutoff wavelength and the 22 m cable cutoff wavelength.
  • the propagation loss of extra high-order mode light is 1 dB / m or less, there is a case where the extra high-order mode light is not sufficiently attenuated when it propagates by 2 m or 22 m. is there.
  • the cutoff wavelength (1 km cutoff wavelength) after the light has propagated 1 km is used for information transmission. It becomes below the wavelength band of the light.
  • the cut-off wavelength is longer than that of the conventional multi-core fiber. Therefore, in the above multicore fiber, it is possible to suppress crosstalk between cores by increasing the relative refractive index difference with respect to the cladding of the core, and between cores than conventional multicore fibers while suppressing crosstalk between cores.
  • the distance can be reduced. That is, in the multicore fiber, crosstalk between cores can be suppressed without reducing the number of cores provided in one multicore fiber when the fiber diameter is constant.
  • the amount of crosstalk is constant, the distance between the cores can be reduced without reducing the number of cores provided in one multicore fiber, the outer cladding thickness can be reduced, and the fiber diameter can also be reduced.
  • the multi-core fiber preferably includes an inner clad surrounding the outer peripheral surface of the core and a low refractive index layer having a lower refractive index than the inner clad and surrounding the inner clad.
  • the radial spread of the light propagating through the core is reduced, so that the overlap between the lights propagating through the adjacent cores is reduced, and crosstalk between the cores is suppressed.
  • the cutoff wavelength of the core surrounded by the plurality of cores becomes longer as the distance between the cores becomes smaller.
  • the cut-off wavelength is longer than that of the conventional multi-core fiber as described above. Therefore, the inter-core distance can be made smaller than that of the conventional multi-core fiber.
  • the multi-core fiber can use LP 01 mode light as light used for transmitting the information.
  • the light used for transmitting the information may be LP 01 mode light and LP 11 mode.
  • the communication mode is fu-mode communication, and the light in the higher order mode than the LP 11 mode is sufficiently attenuated when propagating through the core for 1 km.
  • the multi-core fiber a total of 32 cores composed of two types of cores having different propagation constants are arranged on a square lattice so that the two types of cores alternate, and the bending radius is 100 mm or more and
  • the crosstalk can be set to ⁇ 29 dB / 100 km or less, and the fiber diameter can be set to 250 ⁇ m or less.
  • the multi-core fiber has a circle whose radius is a line connecting the center of a certain core and the center of another core disposed at a position closest to the certain core, and a bending having a diameter of 280 mm is applied.
  • a core arranged at the center of the reference circle that overlaps with three or more cores light in a mode whose order is higher than the mode of the light used for transmitting the information in the wavelength band of the light used for transmitting the information Is preferably 1 dB / m or less and 0.02 dB / m or more.
  • the multi-core fiber has an order from a mode of light used for transmitting the information in a wavelength band of light used for transmitting the information in the core arranged at the center of the reference circle overlapping the six cores.
  • the propagation loss of light in the first-order higher mode is 1 dB / m or less and 0.02 dB / m or more.
  • all cores when bending of a diameter of 280 mm is applied to the multi-core fiber, all cores have a mode whose order is higher than the mode of light used for transmitting the information in the wavelength band of light used for transmitting the information.
  • the light propagation loss is preferably 1 dB / m or less and 0.02 dB / m or more.
  • a suitable optical fiber can be obtained by long-distance communication.
  • a multicore fiber suitable for long-distance communication can be provided.
  • FIG. 1 shows the calculation result of the relationship between the inter-core crosstalk XT [dB / 100 km] and the bending radius [mm] when the correlation length is 50 mm and the wavelength of light propagating through the core is 1565 nm.
  • FIG. It is a figure which shows the calculation result of 1 km cut-off wavelength [micrometer] when the thickness of the low-refractive-index layer surrounding each core is changed in the conditions 2 shown in Table 1.
  • the condition 2 shown in Table 1 when the thickness of the low refractive index layer surrounding each core is changed, the bending loss [dB / km] and the distance OCT of the LP 01 mode light when the bending diameter is 280 mm.
  • LP 21 light bending losses of modes [dB / km] and a diagram showing the relationship between the distance between the centers of adjacent core ⁇ each other. It is a diagram showing the relationship between the center-to-center distance ⁇ of the adjacent cores in the size and mutual inter-core crosstalk between light of LP 11 mode at the wavelength 1550 nm.
  • FIG. 1 is a view showing a state of a cross section perpendicular to the longitudinal direction of a multi-core fiber in an embodiment of the present invention.
  • the multi-core fiber 1 of the present embodiment includes 16 first core elements 10 and 16 second core elements 20, and the outer peripheries of the first core elements 10 and the second core elements 20.
  • An outer cladding 30 is provided to surround the surface without any gap.
  • the same constituent elements are denoted by reference numerals only, and the reference numerals that should be applied to other similar constituent elements are omitted. ing.
  • the multi-core fiber 1 is covered with a resin or the like.
  • the first core element 10 includes a first core 11, an inner cladding 12 that surrounds the outer circumferential surface of the first core 11 without a gap, and an outer circumferential surface of the inner cladding 12 that surrounds the outer cladding 30 without a gap. And a low refractive index layer 13.
  • the second core element 20 surrounds the second core 21, the inner cladding 22 that surrounds the outer peripheral surface of the second core 21 without a gap, and the outer peripheral surface of the inner cladding 22 without a gap, and the outer peripheral surface of the outer cladding 30 has a clearance.
  • a low-refractive index layer 23 that is surrounded.
  • the diameter of the first core element 10 is made smaller than the diameter of the second core element 20.
  • the term “core” may mean both the first core 11 and the second core 21, and the term “core element” refers to both the first core element 10 and the second core element 20. May mean.
  • the first core 11 and the second core 21 are arranged on a square lattice so as to be alternated. Further, the first core 11 and the second core 21 have different propagation constants. Thus, by arrange
  • FIG. 2 is a diagram showing the refractive indexes and sizes of the first core element 10 and the second core element 20 of the multicore fiber 1 shown in FIG. 2A, the first core element 10 and the second core element 20 are shown side by side.
  • FIG. 2B the space between the first core element 10 and the second core element 20 is filled with the outer cladding 30.
  • the refractive index is indicated by a solid line.
  • the first core 11 and the second core 21 are formed so as to have different refractive indexes and sizes.
  • the refractive index of the first core 11 is higher than the refractive index of the inner cladding 12, and the refractive index of the low refractive index layer 13 is lower than the refractive index of the inner cladding 12 and the refractive index of the outer cladding 30.
  • the refractive index of the second core 21 is higher than the refractive index of the inner cladding 22, and the refractive index of the low refractive index layer 23 is lower than the refractive index of the inner cladding 22 and the outer cladding 30.
  • the refractive index of the inner cladding 12 is the same as the refractive index of the outer cladding 30.
  • the refractive index of the inner cladding 22 is the same as the refractive index of the outer cladding 30.
  • the relative refractive index difference of the first core 11 with respect to the outer cladding 30 is ⁇ 11
  • the relative refractive index difference of the low refractive index layer 13 with respect to the outer cladding 30 is ⁇ 12
  • the second core is ⁇ 21
  • the relative refractive index difference of 21 with respect to the outer cladding 30 is ⁇ 21
  • the relative refractive index difference of the low refractive index layer 23 with respect to the outer cladding 30 is ⁇ 22 .
  • the radius of the first core 11 is r 11
  • the radius of the inner periphery of the low refractive index layer 13 is r 12
  • the radius of the outer periphery of the low refractive index layer 13 is r 13
  • the thickness of the low refractive index layer 13 is W 1.
  • the radius of the second core 21 is r 21
  • the radius r 22 of the inner periphery of the low refractive index layer 23 is r 23
  • the radius of the outer periphery of the low refractive index layer 23 is r 23
  • the propagation loss of light of a mode whose order is higher than the mode of light used for information transmission in the wavelength band of light used for information transmission is 1 dB / m or less.
  • the 1st core 11 and the 2nd core 21 which become 0.02 dB / m or more are provided.
  • the wavelength band of light used for information transmission can be, for example, the C band.
  • the light used for information transmission can be, for example, LP 01 mode light.
  • r 11 4.80 ⁇ m
  • r 21 4.60 ⁇ m
  • ⁇ 11 0.35%
  • ⁇ 12 -0.7%
  • ⁇ 21 0.30%
  • ⁇ 22 -0.
  • the distance OCT from the center of the core disposed on the outermost side from the center of the fiber to the coating of the multi-core fiber 1 may be 37.3 ⁇ m
  • the fiber diameter may be 234.37 ⁇ m.
  • the propagation loss of mode light whose order is higher than that of the light mode used for information transmission, that is, extra high-order mode light is 0.02 dB / m or more.
  • extra high-order mode light is sufficiently attenuated when propagating through the core for 1 km.
  • light used for information transmission is LP 01 mode light
  • the LP 11 mode light is sufficiently attenuated when it propagates 1 km.
  • a plurality of optical fibers are usually connected at intervals of about 1 km at the shortest.
  • Higher-order mode light which causes deterioration in the quality of transmitted signals and causes crosstalk, may occur due to misalignment between optical fibers or at the connection points between optical fibers and various devices such as input / output devices and amplifiers.
  • the extra high-order mode light is sufficiently attenuated when propagating for 1 km, so that extra high-order mode light is obtained at the connection point between the multi-core fibers 1 and between the multi-core fiber 1 and various devices. Even if this occurs, the extra high-order mode light is sufficiently attenuated until the next connection point. Therefore, in the entire transmission path configured by connecting a plurality of multi-core fibers 1, the accumulation of light of higher-order modes is suppressed. Therefore, the multicore fiber 1 is suitable for long-distance communication.
  • the inter-core distance and the like are designed based on the 2 m fiber cutoff wavelength and the 22 m cable cutoff wavelength.
  • the propagation loss of the extra high-order mode light is 1 dB / m or less, and therefore, the extra high-order mode light is not sufficiently attenuated when it propagates 2 m or 22 m. is there.
  • the 1 km cutoff wavelength is equal to or less than the wavelength band of light used for information transmission.
  • the multi-core fiber 1 is allowed to some extent that the cutoff wavelength is longer than that of the conventional multi-core fiber. Therefore, in the multi-core fiber 1, it is possible to suppress the crosstalk between the cores by increasing the relative refractive index difference of the core with respect to the outer cladding 30, and the inter-core distance can be made smaller than that of the conventional multi-core fiber. it can. As a result, in the multi-core fiber 1, the number of cores provided in one multi-core fiber 1 can be increased when the fiber diameter is constant, so that the amount of information that can be transmitted can be increased. Therefore, the multi-core fiber 1 is suitable for long-distance large-capacity communication.
  • the outer cladding 30 is made smaller and the fiber diameter (the outer diameter of the outer cladding 30) is made smaller.
  • the fiber diameter of the multi-core fiber 1 is not particularly limited, but can be 250 ⁇ m or less, and is preferably about 230 ⁇ m from the viewpoint of ensuring reliability over a long period of time.
  • the first core 11 and the second core 21 are surrounded by the first core 11 surrounded by the low refractive index layer 13 and the second core 21 surrounded by the low refractive index layer 23. Since the spread in the radial direction of the light propagating through the core is reduced, the overlap between the lights propagating through the adjacent cores is reduced, and crosstalk between the cores is suppressed.
  • the cutoff wavelength of the core surrounded by the plurality of cores becomes longer as the distance between the cores becomes smaller.
  • the multi-core fiber 1 is allowed to have a longer cutoff wavelength than the conventional multi-core fiber as described above, the inter-core distance can be made smaller than that of the conventional multi-core fiber.
  • the first core 11 and the second core 21 having different refractive indexes and sizes and different propagation constants are described, but the refractive indexes in the first core 11 and the second core 21 are described. Or at least one of the magnitude
  • the multi-core fiber 1 of the above embodiment has a propagation loss of light of a mode whose order is higher than the mode of light used for transmission of information in the wavelength band of light used for transmission of information when bending with a diameter of 280 mm is applied.
  • the propagation loss of light in a mode whose order is higher than the mode of light used for information transmission in the wavelength band of light used for information transmission is 1 dB / m or less and 0.02 dB. It suffices to have at least one core that is at least / m.
  • the propagation loss of light of a mode whose order is higher than the mode of light used for information transmission in the wavelength band of light used for information transmission is 1 dB / m or less. It is preferably 0.02 dB / m or more. This will be described in more detail below with reference to FIG.
  • FIG. 3 is a diagram in which the core elements provided in the multi-core fiber 1 shown in FIG. 1 are numbered. For example, if each core element is numbered as shown in FIG. Two core elements overlap on a reference circle centered on the core elements of 1, 4, 6, 9, 11, 14, 16, and 19, and Three core elements overlap on a reference circle centered on core elements 2, 3, 7, 8, 12, 13, 17, 18 and four on a reference circle centered on other core elements. The core elements overlap.
  • the core element has a low refractive index layer surrounding the core, the core element arranged on the inner side as described above is surrounded by more core elements than the core elements arranged on the outer side. In such a core surrounded by many core elements, it is known that the cut-off wavelength tends to be long.
  • the propagation loss of the light of the extra high-order mode in the core surrounded by three or more cores is 0.02 dB / m or more, so that the extra multi-mode fiber 1 as a whole has an extra high-order mode.
  • the light propagates 1 km, it is easily attenuated, and an optical fiber suitable for long-distance communication can be obtained.
  • the propagation loss of the light of the mode whose order is first order higher than the mode of the light used for information transmission in the wavelength band of the light used for information transmission is 0.02 dB / m or more,
  • the extra high-order mode light propagates 1 km in the entire multi-core fiber 1, it becomes more easily attenuated, and an optical fiber suitable for long-distance communication can be obtained.
  • the low refractive index layer 13 and the low refractive index layer 23 are provided.
  • either one or both of the low refractive index layer 13 and the low refractive index layer 23 are provided. It does not have to be.
  • a total of 12 cores 15 are arranged on each vertex and each side of the hexagon.
  • the number of adjacent cores and the distance to the adjacent cores can be the same for all the cores.
  • the propagation loss of all the cores can be made the same if the parameters of all the cores are the same.
  • the light mode used for information transmission in the wavelength band of light used for information transmission when bending of a diameter of 280 mm is applied to all cores.
  • the propagation loss of light in the first order higher mode it is easy to set the propagation loss of light in the first order higher mode to 1 dB / m or less and 0.02 dB / m or more.
  • the multi-core fiber in which the propagation loss of all the cores is 1 dB / m or less and 0.02 dB / m or more as compared with the multi-core fiber in which the propagation loss of all the cores is larger than 1 dB / m as in the past. Since the confinement loss increases in any core, it is considered that the crosstalk can be improved and the distance between the cores can be reduced.
  • the number and arrangement of the cores are not limited to the form shown in FIG.
  • the total number of cores is not particularly limited.
  • the core may be arranged on each vertex of the regular polygon, or a plurality of cores may be arranged at equal intervals on each vertex and each side of the regular polygon. A plurality of cores may be arranged in a ring at regular intervals.
  • a total of 19 cores 15 are arranged on a triangular lattice.
  • a plurality of cores 15 are arranged in a ring shape, and the core 15 is also arranged at the center of the ring.
  • a core 15 is disposed at each vertex of the hexagon, and at the other vertex of the other hexagon that shares the center with the hexagon and is shifted by 30 degrees inside the hexagon. The core 15 is also arranged.
  • the entire core 15 has the same configuration as that of the first core element 10, or a part of the core 15 has the same configuration as that of the first core element 10 and the other part of the core 15 has the same configuration as the second core.
  • a configuration similar to that of the element 20 may be adopted.
  • the LP 01 mode light is exemplified as the light used for information transmission.
  • the LP 11 mode light or higher order mode light may also be used for information transmission.
  • the LP 01 mode light and the LP 11 mode light may be used for information transmission, and the higher order mode light than the LP 11 mode may be sufficiently attenuated after 1 km propagation.
  • the so-called step index type in which the refractive index of the core is substantially constant in the radial direction has been described as an example.
  • the refractive index of the core gradually increases from the outer side in the radial direction toward the center. It may be increased stepwise from the outer side in the radial direction toward the center, and the central part may be lower than the outer peripheral part.
  • Example 1 A simulation was performed on the multi-core fiber corresponding to the multi-core fiber 1 shown in FIG.
  • the effective area A eff when the wavelength of light propagating through the core is 1550 nm is equal to that of a conventional single mode fiber and is 80 ⁇ m 2 .
  • the 1 km cut-off wavelength [ ⁇ m] is shown in FIG. 8, and the bending radius R is 140 mm (bending diameter is 280 mm).
  • 9 shows the relationship between the bending loss [dB / km] of the LP 01 mode light and the distance OCT [ ⁇ m] in FIG. 9, and the crosstalk between the cores when the correlation length is 50 mm and the wavelength of light propagating through the core is 1565 nm.
  • FIG. 10 shows the relationship between XT [dB / 100 km] and the bending radius [mm].
  • FIG. 11 shows the 1 km cutoff wavelength [ ⁇ m] in FIG. 11 and the bending radius R is 140 mm (bending diameter is 280 mm).
  • FIG. 12 shows the relationship between the bending loss [dB / km] of the LP 01 mode light and the distance OCT [ ⁇ m], and the inter-core distance when the correlation length is 50 mm and the wavelength of light propagating through the core is 1565 nm.
  • FIG. 13 shows the relationship between the crosstalk XT [dB / 100 km] and the bending radius [mm].
  • the ratio W 1 / r 11 between the thickness W 1 of the low refractive index layer 13 and the radius r 11 of the first core 11 is set to 0.4 or more. Even so, it can be seen that the required distance OCT does not change.
  • the required distance OCT can be seen from FIG. That is, in FIG. 9, the propagation loss of the light drawn in the LP 01 mode and the line drawn for each condition (W 1 / r 11 or W 2 / r 21 ) of the thickness of the low refractive index layer is 0.001 dB / km.
  • the required distance OCT is determined at the position where the line (broken line in FIG. 9) intersects.
  • FIG. 10 shows the crosstalk at the bending radius when the inter-core crosstalk XT is maximized and the bending radius (100 mm or more) when the normal use state of the multi-core fiber 1 is assumed.
  • LP 01 mode preferably W 1 / r 11 and in view of the light bending loss can be reduced 0.001 dB / miles next distance OCT of The value of W 2 / r 21, the value of the distance OCT at that time, the fiber diameter, the bending radius when the inter-core crosstalk XT is maximized, and the bending radius when assuming the normal use state of the multicore fiber 1 (100 mm You can see the crosstalk in the above.
  • Table 2 shows the calculation results obtained based on the conditions shown in Table 1 in view of the above.
  • pk is a bending radius when the inter-core crosstalk XT becomes the largest.
  • the inter-core crosstalk XT is larger in the case of the condition 3. This is because the relative refractive index difference ⁇ 11 with respect to the outer cladding 30 of the first core 11 is larger under the condition 3, and the thickness W of the low refractive index layer 13 required for setting the cutoff wavelength to a predetermined value or less. This is because 1 is small.
  • the distance OCT is thicker in the condition 1 than in the case of the condition 2. This is because the relative refractive index difference ⁇ 21 with respect to the outer cladding 30 of the second core 21 is smaller in the condition 1 and it is difficult to confine light in the second core 21.
  • a difference in propagation constant between the first core 11 and the second core 21 is obtained by decreasing the relative refractive index difference ⁇ 11 of the first core 11 and increasing the relative refractive index difference ⁇ 21 of the second core 21. As it decreases, R pk increases.
  • the bending loss of the LP 01 mode light is 0.001 dB / km and the distance OCT can be reduced in the same manner as in Example 1 except that the 22 m cutoff wavelength is 1500 nm or less.
  • the preferred values of W 1 / r 11 and W 2 / r 21 , the value of the distance OCT and the fiber diameter, the value when the inter-core crosstalk XT becomes the largest, and the bending radius at that time are known. The calculation results are shown in Table 3 below.
  • the results shown in Table 3 show that, when bending with a diameter of 280 mm is applied, each parameter is studied so that the propagation loss of LP 11 mode light at a wavelength of 1500 nm is greater than 1 dB / m in all cores. .
  • the parameters shown in Table 3 are examined so that the LP 11 mode light is sufficiently attenuated when 22 m propagates.
  • Example 1 Table 2
  • Comparative Example 1 Table 3
  • Fiber A was produced as a multicore fiber according to Example 2, and Fiber B was produced as a multicore fiber according to Comparative Example 2.
  • the fiber A is the same as the multi-core fiber of the first embodiment.
  • Fiber B is similar to Fiber A except that when a 280 mm diameter bend is applied, the propagation loss of LP 11 mode light at a wavelength of 1530 nm is greater than 1 dB / m in all cores.
  • the parameters of fiber A and fiber B are shown in Tables 4 and 5 below.
  • Table 6 shows optical measurement results of the fiber A and the fiber B.
  • the core numbers correspond to the core element numbers shown in FIG.
  • the 22 m cutoff wavelength exceeded 1600 nm in some cores arranged inside, but the 1 km cutoff wavelength was below 1530 nm in all cores.
  • the 22 m cutoff wavelength was less than 1530 nm in all the cores.
  • the worst crosstalk is a crosstalk that assumes a time when a signal is transmitted to all the cores.
  • the crosstalk between two cores closest to each other and the diagonal lines of the square lattice are arranged. This is the sum of crosstalk between two adjacent cores. Therefore, the number of crosstalk combinations when considering the worst crosstalk differs depending on the position of the excited core.
  • crosstalk is smaller in fiber A in all cores. This is considered to be due to the design of the distance between the cores, the refractive index of the core, and the like for the fiber A with reference to the 1 km cutoff wavelength.
  • the R pk of the fiber A was 100 mm or less, specifically about 60 mm. Considering that the bending radius of an optical fiber in a cable used for long-distance communication is several hundred mm, it is considered that excessive increase in crosstalk due to bending is unlikely to occur when fiber A is used for long-distance communication. . Further, the fiber A had a crosstalk smaller than ⁇ 29 dB / 100 km, which is a crosstalk condition required for transmitting a quadrature phase modulation (QPSK) signal by 1000 km.
  • QPSK quadrature phase modulation
  • the LP 11 mode light having a wavelength of 1530 nm generated by the mode converter is converted into the fiber A No. Input to 23 cores.
  • LP 11 mode light was observed at a position 22 m from the input end because the cutoff wavelength was 1600 nm or more.
  • the cutoff wavelength is 1530 nm or less at a position 1 km from the input end, the LP 11 mode light is sufficiently lost, and the LP 01 mode light generated by crosstalk in the mode converter is observed. It was. As described above, it was confirmed that in the fiber A, after the light propagates through the core for 1 km, the light of the extra high-order mode is sufficiently attenuated to become the single mode.
  • FIG. 17 is a view showing a cross section perpendicular to the longitudinal direction of the multi-core fiber in Example 3 in the same manner as FIG.
  • the multi-core fiber 6 in which the first core element 10 is arranged at the center of the outer cladding 30 and each vertex of the regular hexagon centering on the center was manufactured.
  • this multi-core fiber 6 six cores are arranged on a reference circle centered on the core arranged at the center of the outer cladding 30.
  • the cut-off wavelength is likely to be longer than the other cores.
  • the core disposed at the center of the outer cladding 30 is likely to have a longer cutoff wavelength.
  • the multi-core fiber 6 is designed so that information can be transmitted by light of LP 01 mode and light of LP 11 mode.
  • Each parameter of the multi-core fiber 6 is as shown in Table 8 below. ⁇ 11 , r 11 , r 12 , and W 11 in Table 8 are as defined using FIG.
  • a eff (LP 01 ) is an effective area when the wavelength of the LP 01 mode light propagating through the core is 1550 nm
  • a eff (LP 11 ) is the wavelength of the LP 11 mode light propagating through the core at 1550 nm. Is the effective area.
  • FIG. 18 shows the relationship between the bending loss [dB / km] of LP 21 mode light and the center-to-center distance ⁇ of adjacent cores when the bending radius R is 140 mm (bending diameter is 280 mm).
  • the LP 01 mode light and the LP 11 mode light are used for information transmission as described above, propagation of the LP 21 mode light, which is higher order mode light than the LP 11 mode, is suppressed. Is required. From FIG. 18, it is necessary to set the inter-core distance ⁇ to 42.5 ⁇ m or more in order to make the 22 m cable cut-off wavelength 1530 nm or less, that is, to make the propagation loss of the LP 21 mode light 1 dB / m or more.
  • the inter-core distance ⁇ is reduced to about 38.8 ⁇ m. You can also see that it is good.
  • FIG. 19 shows the relationship between the magnitude of the inter-core crosstalk between LP 11 mode lights at a wavelength of 1550 nm and the center-to-center distance ⁇ of adjacent cores. As can be seen from FIG. 19, even when the inter-core distance ⁇ is reduced to 38.8 ⁇ m, the crosstalk after propagation of 100 km is ⁇ 30 dB or less, and the QPSK signal can be transmitted.
  • the optical characteristics other than the cutoff wavelength are the same as shown in Table 10. Further, as shown in Table 9, the multi-core fiber according to Example 3 was able to reduce the fiber diameter compared to the multi-core fiber according to Comparative Example 3. The effect of reducing the fiber diameter in this way becomes more prominent as the number of cores provided in the multi-core fiber increases.
  • the multi-core fiber according to the present invention described above is suitable for long-distance communication and can be used in the optical communication industry.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

複数のコアを備えるマルチコアファイバであって、直径280mmの曲げが加えられるときに、情報の伝送に用いられる光の波長帯における当該情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上とされ、余計な高次モードの光が1km伝搬したときに十分減衰されることにより、ファイバ同士の接続点で余計な高次モードの光が生じたとしても、次の接続点までにはその余計な高次モードの光が十分減衰される。

Description

マルチコアファイバ
 本発明は長距離通信用マルチコアファイバに関し、コアの高密度化に好適なものである。
 一般に普及している光ファイバ通信システムに用いられる光ファイバは、1本のコアの外周面がクラッドにより囲まれた構造をしており、このコア内を光信号が伝搬することで情報が伝送される。
 近年、光ファイバ通信システムの普及に伴い、伝送される情報量が飛躍的に増大している。こうした光ファイバ通信システムの伝送容量増大を実現するためのものとして、複数のコアの外周面が1つのクラッドにより囲まれたマルチコアファイバが知られている。マルチコアファイバによれば、複数のコアを伝搬するそれぞれの光によって信号を伝送させることができるので、1つの光ファイバによって伝送できる情報量を増大させることができる。このようなマルチコアファイバは、例えば下記特許文献1に開示されている。
 下記特許文献1にも記載されているように、マルチコアファイバでは、互いに隣り合うコアを伝搬する光の一部同士が重なり、コア間クロストークが生じる場合がある。コア間クロストークを抑制する方法として、例えば、互いに隣り合うコアの間隔を大きくすることが考えられる。コア間クロストークは互いに隣り合うコアを伝搬する光同士の重なりの積分で決まるため、コア間距離を大きくしてこの重なりを小さくすることにより、コア間クロストークが抑制される。また、コアやクラッドより屈折率が低いガラスや空孔によって形成される低屈折率層によってコアが囲まれることによっても、コア間クロストークを抑制することができる。コアが低屈折率層によって囲われることにより、コアを伝搬する光の径方向への広がりを小さくすることができるため、互いに隣り合うコアを伝搬する光同士の重なりが小さくなり、コア間クロストークが抑制される。
特開2012-211964号公報
 しかし、マルチコアファイバにおいてコア間距離を大きくすると、ファイバ径を一定とする場合に1つのマルチコアファイバに備えられるコアの数を少なくしなければならなくなり、伝送できる情報量が少なくなる。また、コアを低屈折率層(トレンチ)で囲う場合は、コア間距離が小さくなると、複数のトレンチ付コア(トレンチで囲まれるコア)に囲まれた内側コアのカットオフ波長が長波長化することが知られている。カットオフ波長が過度に長波長化すると、余計な高次モードの光が伝搬しやすくなる。余計な高次モードの光が伝搬すると、その高次モードの光によるクロストークが生じたり、多光路干渉(MPI:Multi-Path Interference)が生じたりする可能性がある。従って、カットオフ波長の長波長化は所定の範囲に抑制されることが好ましく、カットオフ波長の長波長化を抑制するという観点からは、コア間距離を大きくすることが好ましい。しかし、コア間距離を大きくすれば上記のように1つのマルチコアファイバによって伝送できる情報量が少なくなる。
 このように、従来のマルチコアファイバでは、カットオフ波長の長波長化の抑制およびコア間クロストークを抑制するために伝送できる情報量が少なくなる場合があった。
 ところで、現在製品として売られている光ファイバは、2mファイバカットオフ波長や22mケーブルカットオフ波長によってカットオフ波長が規定されている。すなわち、従来のマルチコアファイバは、製品として売られている光ファイバと同様に、2mや22m伝搬した時点でのカットオフ波長が所定の値となるようにコア間距離等が設計されている。
 しかし、メトロネットワーク、基幹系ネットワークのような長距離通信を行う場合は、短くても1km程度の長さの光ファイバが用いられる。長距離通信を行う場合、光ファイバは1kmから数千kmの長さで敷設されるが、これを1つの光ファイバで実現することは困難である。そのため、短くても1km程度の間隔で複数の光ファイバが接続される。ここで、本発明者らは、長距離通信に好適なマルチコアファイバとするためには、光が1km伝搬した時点におけるカットオフ波長が所定の値となるようすれば十分であることを見出した。そこで、本発明は、長距離通信に好適なマルチコアファイバを提供することを目的とする。
 かかる課題を解決するため本発明のマルチコアファイバは、直径280mmの曲げが加えられるとき、情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であるコアを少なくとも1つ備えることを特徴とするものである。
 上記マルチコアファイバでは、情報の伝送に用いられる光のモードより次数が一次高いモードの光、すなわち余計な高次モードの光の伝搬損失が0.02dB/m以上である。これにより、上記マルチコアファイバでは、余計な高次モードの光はコアを1km伝搬したときに十分減衰される。上記の様に、長距離通信を行う場合、通常は短くても1km程度の間隔で複数の光ファイバが接続される。伝送される信号の品質の悪化やクロストークの要因となる高次モードの光は、光ファイバ同士または光ファイバと入出力デバイスや増幅器等の各種デバイスとの接続点での軸ずれによって発生することが知られている。従って、余計な高次モードの光が1km伝搬したときに十分減衰されることにより、接続点で余計な高次モードの光が生じたとしても、次の接続点までにはその余計な高次モードの光は十分減衰される。よって、マルチコアファイバが複数接続されて構成される伝送路全体では、高次モードの光の累積が抑制される。従って、上記マルチコアファイバは、1km以上の長さのマルチコアファイバに好適であり、長距離通信に好適である。
 ところで、従来のマルチコアファイバでは、上記のように2mファイバカットオフ波長や22mケーブルカットオフ波長を基準としてコア間距離などが設計されている。しかし、上記マルチコアファイバでは、余計な高次モードの光の伝搬損失が1dB/m以下であることから、余計な高次モードの光が2mや22m伝搬した時点では十分に減衰されていない場合がある。上記マルチコアファイバでは、22mケーブルカットオフ波長が情報の伝送に用いられる光の波長帯以上になっていても、光が1km伝搬した後のカットオフ波長(1kmカットオフ波長)は情報の伝送に用いられる光の波長帯以下になる。このように、上記マルチコアファイバでは、従来のマルチコアファイバよりもカットオフ波長が長波長化することがある程度許容される。そのため、上記マルチコアファイバでは、コアのクラッドに対する比屈折率差を大きくする等してコア間クロストークを抑制することが可能であり、コア間クロストークを抑制しつつ従来のマルチコアファイバよりもコア間距離を小さくすることができる。すなわち、上記マルチコアファイバでは、ファイバ径を一定とする場合に1つのマルチコアファイバに備えられるコア数を減らすことなくコア間クロストークを抑制できる。または、クロストーク量を一定とする場合に1つのマルチコアファイバに備えられるコア数を減らすことなくコア間距離を小さくでき、外側クラッド厚も小さくでき、ファイバ径も小さくできる。
 また、上記マルチコアファイバは、前記コアの外周面を囲む内側クラッドと、前記内側クラッドよりも低い屈折率とされると共に前記内側クラッドを囲む低屈折率層と、を備えることが好ましい。
 コアが低屈折率層に囲まれることによって、当該コアを伝搬する光の径方向の広がりが小さくなるので、互いに隣り合うコアを伝搬する光同士の重なりが小さくなり、コア間クロストークが抑制される。ただし、コアが低屈折率層によって囲まれる場合、コア間距離が小さくなると複数のコアで囲まれるコアのカットオフ波長が長波長化することが知られている。しかし、上記マルチコアファイバでは、上記のように従来のマルチコアファイバよりもカットオフ波長が長波長化することがある程度許容されるので、従来のマルチコアファイバよりもコア間距離を小さくすることができる。
 また、上記マルチコアファイバは、前記情報の伝送に用いられる光をLP01モードの光とすることができる。
 この場合、シングルモード通信とされ、LP01モードより次数が一次高いLP11モードの光はコアを1km伝搬した時点で十分に減衰される。
 もしくは、上記マルチコアファイバは、前記情報の伝送に用いられる光をLP01モードの光及びLP11モードとすることもできる。
 この場合、フューモード通信とされ、LP11モードより高次モードの光はコアを1km伝搬した時点で十分に減衰される。
 また、上記マルチコアファイバでは、伝搬定数が異なる2種類のコアからなる総数32個のコアを、前記2種類のコアが交互になるように正方格子上に配置し、曲げ半径が100mm以上でコア間クロストークを-29dB/100km以下とし、ファイバ径を250μm以下とすることができる。
 また、上記マルチコアファイバは、あるコアの中心と前記あるコアに最も近い位置に配置される他のコアの中心とを結ぶ線を半径とする円を基準円とし、直径280mmの曲げが加えられるとき、3つ以上のコアと重なる前記基準円の中心に配置されるコアにおいて、前記情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であることが好ましい。
 多くのコアに囲まれるコアは、カットオフ波長が長波長化しやすいことが知られている。従って、上記のように3つ以上のコアに囲まれるコアにおいて余計な高次モードの光の伝搬損失が0.02dB/m以上とされることによって、マルチコアファイバ全体において余計な高次モードの光が1km伝搬した時点で十分に減衰されやすくなり、長距離通信に好適な光ファイバとすることができる。
 また、上記マルチコアファイバは、6つの前記コアと重なる前記基準円の中心に配置される前記コアにおいて、前記情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であることが好ましい。
 このようにコアが配置されることによって、複数のコアを高密度に配置することができる。
 また、上記マルチコアファイバは、直径280mmの曲げが加えられるとき、全てのコアにおいて、前記情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であることが好ましい。
 全てのコアにおいて余計な高次モードの光の伝搬損失が0.02dB/m以上とされることによって、マルチコアファイバ全体において余計な高次モードの光が1km伝搬した時点でより減衰されやすくなり、長距離通信により好適な光ファイバとすることができる。
 以上のように本発明によれば、長距離通信に好適なマルチコアファイバを提供することができる。
実施形態におけるマルチコアファイバの長手方向に垂直な断面の様子を示す図である。 図1に示すマルチコアファイバのそれぞれのコア要素の屈折率及び大きさを示す図である。 図1に示すマルチコアファイバに含まれるコアに説明のための番号を振った図である。 コアが六角形上に配置される例を示す図である。 コアが三角格子上に配置される例を示す図である。 コアが環状に配置されると共に当該環の中心にも配置される例を示す図である。 コアが二重環状に配置される例を示す図である。 表1に示す条件1において、各コアを囲う低屈折率層の厚さを変えたときの1kmカットオフ波長[μm]を示す図である。 表1に示す条件1において、各コアを囲う低屈折率層の厚さを変えたときの、曲げ直径を280mmにした場合にけるLP01モードの光の曲げ損失[dB/km]とクラッドの中心から最も遠いコアの中心から被覆までの距離OCT(外側クラッド厚)[μm]との関係を示す図である。 表1に示す条件1において、相関長を50mmとしてコアを伝搬する光の波長を1565nmとしたときのコア間クロストークXT[dB/100km]と曲げ半径[mm]との関係の計算結果を示す図である。 表1に示す条件2において、各コアを囲う低屈折率層の厚さを変えたときの1kmカットオフ波長[μm]の計算結果を示す図である。 表1に示す条件2において、各コアを囲う低屈折率層の厚さを変えたときの、曲げ直径を280mmにした場合におけるLP01モードの光の曲げ損失[dB/km]と距離OCT[μm]との関係の計算結果を示す図である。 表1に示す条件2において、相関長を50mmとしてコアを伝搬する光の波長を1565nmとしたときのコア間クロストークXT[dB/100km]と曲げ半径[mm]との関係の計算結果を示す図である。 表1に示す条件1において、各コアを囲う低屈折率層の厚さを変えたときの22mカットオフ波長[μm]の計算結果を示す図である。 表1に示す条件1において、各コアを囲う低屈折率層の厚さを変えたときの、曲げ直径を280mmにした場合におけるLP01モードの光の曲げ損失[dB/km]と距離OCT[μm]との計算結果の関係を示す図である。 表1に示す条件1において、相関長を50mmとしてコアを伝搬する光の波長を1565nmとしたときのコア間クロストークXT[dB/100km]と曲げ半径[mm]との関係の計算結果を示す図である。 実施例3におけるマルチコアファイバの長手方向に垂直な断面の様子を図1と同様に示す図である。 LP21モードの光の曲げ損失[dB/km]と互いに隣り合うコアの中心間距離Λとの関係を示す図である。 波長1550nmにおけるLP11モードの光同士のコア間クロストークの大きさと互いに隣り合うコアの中心間距離Λとの関係を示す図である。
 以下、本発明に係るマルチコアファイバの好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図に記載のスケールと、以下の説明に記載のスケールとが異なる場合がある。
 図1は、本発明の実施形態におけるマルチコアファイバの長手方向に垂直な断面の様子を示す図である。図1に示すように、本実施形態のマルチコアファイバ1は、16個の第1コア要素10及び16個の第2コア要素20を備え、これら第1コア要素10及び第2コア要素20の外周面を隙間なく包囲する外側クラッド30を備える。なお、図が煩雑になること防ぐため、図1及び以下に示す他の図において、同様の構成要素については一部にのみ符号が付され、他の同様の構成要素に付すべき符号が省略されている。また、図1には示されていないが、マルチコアファイバ1は樹脂等で被覆されている。
 第1コア要素10は、第1コア11と、第1コア11の外周面を隙間なく囲む内側クラッド12と、内側クラッド12の外周面を隙間なく囲み、外側クラッド30に外周面が隙間なく囲まれる低屈折率層13とを有している。また、第2コア要素20は、第2コア21と、第2コア21の外周面を隙間なく囲む内側クラッド22と、内側クラッド22の外周面を隙間なく囲み、外側クラッド30に外周面が隙間なく囲まれる低屈折率層23とを有している。本実施形態では、図に示す通り、第1コア要素10の径が第2コア要素20の径より小さくされている。なお、以下の説明において、単にコアという場合は第1コア11及び第2コア21の両方を意味する場合があり、単にコア要素という場合は第1コア要素10及び第2コア要素20の両方を意味する場合がある。
 第1コア11と第2コア21とは、交互になるように正方格子上に配置されている。また、第1コア11と第2コア21とは、互いに伝搬定数が異なる。このように伝搬定数が互いに異なる第1コア11と第2コア21とが交互になるように配置されていることにより、マルチコアファイバ1では位相整合が起きにくく、コア間クロストークが抑制されやすい。また、第1コア11と第2コア21とが正方格子上に配置されていることにより、2種のコアを交互になるように且つ所定の範囲内にできる限り多く配置することが容易である。
 図2は、図1に示すマルチコアファイバ1の第1コア要素10及び第2コア要素20の屈折率及び大きさを示す図である。図2(A)では、第1コア要素10及び第2コア要素20が並べて示され、図2(B)では、第1コア要素10と第2コア要素20との間を外側クラッド30で埋めた場合について、屈折率が実線で示されている。
 本実施形態では、上記のように第1コア11と第2コア21とは屈折率及び大きさが異なるように形成されている。また、第1コア11の屈折率は内側クラッド12の屈折率よりも高く、低屈折率層13の屈折率は内側クラッド12の屈折率及び外側クラッド30の屈折率よりも低くされている。第2コア21の屈折率は内側クラッド22の屈折率よりも高く、低屈折率層23の屈折率は内側クラッド22の屈折率及び外側クラッド30の屈折率よりも低くされている。なお、本実施形態では、内側クラッド12の屈折率は外側クラッド30の屈折率と同じ屈折率とされている。また、内側クラッド22の屈折率は外側クラッド30の屈折率と同じ屈折率とされている。
 以下の説明において、図2に示すように、第1コア11の外側クラッド30に対する比屈折率差をΔ11、低屈折率層13の外側クラッド30に対する比屈折率差をΔ12、第2コア21の外側クラッド30に対する比屈折率差をΔ21、低屈折率層23の外側クラッド30に対する比屈折率差をΔ22とする。また、第1コア11の半径をr11、低屈折率層13の内周の半径をr12、低屈折率層13の外周の半径をr13、低屈折率層13の厚さをW(=r13-r12)、第2コア21の半径をr21、低屈折率層23の内周の半径r22、低屈折率層23の外周の半径をr23、低屈折率層23の厚さをW(=r23-r22)とする。なお、マルチコアファイバ1では、下記関係式が成り立っている。
11>r21
12/r11=r22/r21
12>r22
Δ11>Δ21
Δ12=Δ22
>W
 マルチコアファイバ1は、直径280mmの曲げが加えられるとき、情報の伝送に用いられる光の波長帯における情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上となる第1コア11及び第2コア21を備える。ここで、情報の伝送に用いられる光の波長帯とは、例えばCバンドとすることができる。また、情報の伝送に用いられる光とは、例えばLP01モードの光とすることができる。また、上記のように光を伝搬させるには、例えば、r11=4.80μm、r12/r11=1.7、W/r11=0.3、r21=4.60μm、r22/r21=1.7、W/r21=1.1、Δ11=0.35%、Δ12=-0.7%、Δ21=0.30%、Δ22=-0.7%、ファイバの中心から最も外側に配置されるコアの中心からマルチコアファイバ1の被覆までの距離OCT=37.3μm、ファイバ径=234.37μmとすればよい。
 マルチコアファイバ1では、情報の伝送に用いられる光のモードより次数が一次高いモードの光、すなわち余計な高次モードの光の伝搬損失が0.02dB/m以上である。これにより、マルチコアファイバ1では、余計な高次モードの光はコアを1km伝搬したときに十分減衰される。例えば、情報の伝送に用いられる光をLP01モードの光とすれば、LP11モードの光は1km伝搬した時点で十分に減衰される。長距離通信を行う場合、通常は短くても1km程度の間隔で複数の光ファイバが接続される。伝送される信号の品質の悪化やクロストークの要因となる高次モードの光は、光ファイバ同士または光ファイバと入出力デバイスや増幅器等各種デバイスとの接続点での軸ずれによって発生することが知られている。上記のように余計な高次モードの光が1km伝搬したときに十分減衰されることによって、マルチコアファイバ1同士の接続点やマルチコアファイバ1と各種デバイスとの接続点で余計な高次モードの光が生じたとしても、次の接続点までにはその余計な高次モードの光は十分減衰される。よって、マルチコアファイバ1が複数接続されて構成される伝送路全体では、高次モードの光の累積が抑制される。従って、マルチコアファイバ1は長距離通信に好適である。
 ところで、従来のマルチコアファイバでは、上記のように2mファイバカットオフ波長や22mケーブルカットオフ波長を基準としてコア間距離などが設計されている。しかし、マルチコアファイバ1では、余計な高次モードの光の伝搬損失が1dB/m以下であることから、余計な高次モードの光が2mや22m伝搬した時点では十分に減衰されていないことがある。マルチコアファイバ1では、22mケーブルカットオフ波長が情報の伝送に用いられる光の波長帯以上になっていても、1kmカットオフ波長は情報の伝送に用いられる光の波長帯以下になる。このように、マルチコアファイバ1では、従来のマルチコアファイバよりもカットオフ波長が長波長化することがある程度許容される。そのため、マルチコアファイバ1では、コアの外側クラッド30に対する比屈折率差を大きくする等してコア間クロストークを抑制することが可能であり、従来のマルチコアファイバよりもコア間距離を小さくすることができる。その結果、マルチコアファイバ1では、ファイバ径を一定とする場合に1つのマルチコアファイバ1に備えられるコア数を増やすことができるので、伝送可能な情報量を増大させることができる。従って、マルチコアファイバ1は、長距離大容量通信に好適である。
 また、マルチコアファイバ1によれば、上記のように従来のマルチコアファイバよりもコア間距離を小さくすることができることから、外側クラッド30を小さくしてファイバ径(外側クラッド30の外周の直径)を小さくすることもできる。マルチコアファイバ1のファイバ径は特に限定されないが、250μm以下とすることができ、長期に亘って信頼性を確保する観点からは、230μm程度であることが好ましい。
 また、マルチコアファイバ1によれば、第1コア11が低屈折率層13に囲まれると共に第2コア21が低屈折率層23に囲まれていることによって、第1コア11及び第2コア21を伝搬する光の径方向の広がりが小さくなるので、互いに隣り合うコアを伝搬する光同士の重なりが小さくなり、コア間クロストークが抑制される。ただし、コアが低屈折率層によって囲まれる場合、コア間距離が小さくなると複数のコアに囲まれるコアのカットオフ波長が長波長化することが知られている。しかし、マルチコアファイバ1では、上記のように従来のマルチコアファイバよりもカットオフ波長が長波長化することがある程度許容されるため、従来のマルチコアファイバよりもコア間距離を小さくすることができる。
 以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、上記実施形態では、屈折率及び大きさが異なり、伝搬定数が異なる第1コア11及び第2コア21を備える例を挙げて説明したが、第1コア11及び第2コア21における屈折率や大きさの少なくとも一方が同じであっても良く、それぞれの伝搬定数が同じであっても良い。
 また、上記実施形態のマルチコアファイバ1は、直径280mmの曲げが加えられるとき情報の伝送に用いられる光の波長帯における情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上である第1コア11及び第2コアを備える。しかし、直径280mmの曲げが加えられるとき、情報の伝送に用いられる光の波長帯における情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であるコアを少なくとも1つ備えていればよい。
 ただし、あるコアの中心と当該あるコアに最も近い位置に配置される他のコアの中心とを結ぶ線を半径とする円を基準円とし、直径280mmの曲げが加えられるとき、3つ以上のコアと重なる基準円の中心に配置されるコアにおいて、情報の伝送に用いられる光の波長帯における情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であることが好ましい。図3を参照して以下により詳細に説明する。
 図3は、図1に示すマルチコアファイバ1に備えられるコア要素に番号を振った図である。例えば、図3の示すように各コア要素に番号を振ると、No.1,4,6,9,11,14,16,19のコア要素を中心とする基準円上には2個のコア要素が重なり、No.2,3,7,8,12,13,17,18のコア要素を中心とする基準円上には3個のコア要素が重なり、その他のコア要素を中心とする基準円上には4個のコア要素が重なる。コア要素がコアを囲う低屈折率層を有する場合、上記のように内側に配置されるコア要素は外側に配置されるコア要素よりも多くのコア要素に囲まれる。このように多くのコア要素に囲まれるコアは、カットオフ波長が長波長化しやすいことが知られている。従って、上記のように3つ以上のコアに囲まれるコアにおいて余計な高次モードの光の伝搬損失が0.02dB/m以上とされることによって、マルチコアファイバ1全体において余計な高次モードの光が1km伝搬した時点で十分に減衰されやすくなり、長距離通信に好適な光ファイバとすることができる。
 なお、全てのコアにおいて、情報の伝送に用いられる光の波長帯における情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が0.02dB/m以上であることによって、マルチコアファイバ1全体において余計な高次モードの光が1km伝搬した時点でより減衰されやすくなり、長距離通信により好適な光ファイバとすることができる。
 また、上記実施形態では、低屈折率層13及び低屈折率層23が備えられる例を示して説明したが、低屈折率層13及び低屈折率層23は、どちらか一方又は両方が備えられていなくてもよい。
 また、上記実施形態では、第1コア11及び第2コア21からなる総数32個のコアが正方格子上に配置される例を示して説明した。しかし、マルチコアファイバに備えられるコアの総数、コアの種類の数、コアの配置は、これに限定されない。他のコアの配置の例を図4から図7に示す。
 図4に示すマルチコアファイバ2では、総数12個のコア15が六角形の各頂点及び各辺上に配置されている。このような構造では、全てのコアについて近接するコアの数及びその近接するコアとの距離を同じにすることができる。全てのコアについて近接するコア数及びコア間距離が同じにされることによって、全てのコアのパラメータが同じであれば、全てのコアの伝搬損失を同じにすることができる。このように全てのコアの伝搬損失が同じであれば、全てのコアについて、直径280mmの曲げが加えられるときに情報の伝送に用いられる光の波長帯における情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失を1dB/m以下0.02dB/m以上とすることが容易である。そして、このような全てのコアの伝搬損失が1dB/m以下0.02dB/m以上であるマルチコアファイバでは、従来のように全てのコアの伝搬損失が1dB/mより大きいマルチコアファイバと比べて、いずれのコアでも閉じ込め損失が強くなるので、クロストークの改善やコア間距離を小さくすることができると考えられる。
 なお、図4では12個のコアが六角形上に配置される例を挙げたが、上記のように全てのコアについて近接するコアの数及びその近接するコアとの距離を同じにするという観点からは、コアの数及び配置は図4に示す形態には限定されない。コアの総数は特に限定されない。また、コアの配置については、例えば、正多角形の各頂点上にコアが配置されても良く、正多角形の各頂点上及び各辺上に等間隔に複数のコアが配置されても良く、環状に等間隔に複数のコアが配置されても良い。
 また、図5に示すマルチコアファイバ3では、総数19個のコア15が三角格子上に配置されている。また、図6に示すマルチコアファイバ4では、複数のコア15が環状に配置されると共にその環の中心にもコア15が配置されている。また、図7に示すマルチコアファイバ5では、六角形の各頂点にコア15が配置されると共に当該六角形の内側において当該六角形と中心を共有し30度ずれた他の六角形の各頂点にもコア15が配置されている。なお、これらの形態において、コア15の全部を第1コア要素10と同様の構成としたり、コア15の一部を第1コア要素10と同様の構成とすると共に他の一部を第2コア要素20と同様の構成としたりすることもできる。
 また、上記実施形態では、情報の伝送に用いられる光としてLP01モードの光を例示したが、LP11モードやより高次モードの光も情報の伝送に用いられてもよい。例えば、LP01モードの光及びLP11モードの光が情報の伝送に用いられ、LP11モードより高次モードの光が1km伝搬後に十分に減衰される形態とされてもよい。
 また、上記実施形態では、コアの屈折率が径方向に概ね一定である所謂ステップインデックス型を例示して説明したが、コアの屈折率は、径方向の外側から中心に向かって徐々に高くなっていてもよく、径方向の外側から中心に向かって段階的に高くなっていてもよく、中心部が外周部より低くなっていてもよい。
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 <実施例1>
 図1に示すマルチコアファイバ1に相当するマルチコアファイバについて、以下に示す条件でシミュレーションを行った。
 第1コア11の半径r11と低屈折率層13の内周の半径r12との比r12/r11=1.7、第2コア21の半径r21と低屈折率層23の内周の半径r22との比r22/r21=1.7、低屈折率層13の外側クラッド30に対する比屈折率差Δ12=-0.7%、低屈折率層23の外側クラッド30に対する比屈折率差Δ22=-0.7%とした。この場合、最も外側に配置されるコアの中心からマルチコアファイバ1の被覆までの距離OCT=35μm、外側クラッド30の外周の直径=230μmとすると、互いに隣り合うコアの中心間距離Λ=27.4μmとなる。
 このようなマルチコアファイバ1において、図3に示すNo.21~32のコアを中心とする基準円上には4つのコアが配置される。このように内側に配置されるコアは外側に配置される他のコアよりもカットオフ波長が長波長化すると考えられる。このマルチコアファイバ1が曲げ直径280mmで曲げられるときに、これらの内側に配置されるコアにおけるLP11モードの光の1kmカットオフ波長が1500nm以下(波長1500nmにおいて伝搬損失が0.02dB/m以上)となり、且つ最も外側に配置されるコアの中心からマルチコアファイバ1の被覆までの距離OCTが最小になる(ファイバ径が最小になる)ときのコアのパラメータを検討した。その結果を下記表1に示す。なお、コアを伝搬する光の波長が1550nmである場合の有効断面積Aeffは、従来のシングルモードファイバと同等で80μmになる。
Figure JPOXMLDOC01-appb-I000001
 表1に示す条件1において各コアを囲う低屈折率層の厚さを変えたときの、1kmカットオフ波長[μm]を図8に、曲げ半径Rを140mm(曲げ直径を280mm)にしたときのLP01モードの光の曲げ損失[dB/km]と距離OCT[μm]との関係を図9に、相関長を50mmとしてコアを伝搬する光の波長を1565nmとした場合のコア間クロストークXT[dB/100km]と曲げ半径[mm]との関係を図10に、それぞれ示す。
 また、表1に示す条件2において各コアを囲う低屈折率層の厚さを変えたときの、1kmカットオフ波長[μm]を図11に、曲げ半径Rを140mm(曲げ直径を280mm)にしたときのLP01モードの光の曲げ損失[dB/km]と距離OCT[μm]との関係を図12に、相関長を50mmとしてコアを伝搬する光の波長を1565nmとした場合のコア間クロストークXT[dB/100km]と曲げ半径[mm]との関係を図13に、それぞれ示す。
 以下に説明するように、表1に示す条件1の場合、低屈折率層13の厚さWと第1コア11の半径r11との比W/r11を0.4以上に設定しても、必要な距離OCTは変化しないことがわかる。必要な距離OCTは、図9からわかる。すなわち、図9において、低屈折率層の厚さの条件(W/r11又はW/r21)毎に引かれる線とLP01モードの光の伝搬損失が0.001dB/kmとなる線(図9の破線)とが交差する位置で必要となる距離OCTが決まる。ここで、W/r11をより大きくする場合を考えると、図8からわかるように、W/r21が小さくなる。すなわち、低屈折率層23の厚さWが小さくなる。次に、図9を見ると、W/r11が大きくなれば第1コア11に着目した場合に必要となる距離OCTは小さくなるが、Wが小さくなることから、第2コア21に着目した場合に必要となる距離OCTは大きくなる。従って、第1コア11及び第2コア21の両方を基準として考えた場合に最小となる距離OCTが存在することがわかる。また、図10からは、コア間クロストークXTが最も大きくなるときの曲げ半径とマルチコアファイバ1の通常の使用状態を想定した場合の曲げ半径(100mm以上)でのクロストークがわかる。
 また、条件1と同様にして、条件2についても図11~図13から、LP01モードの光の曲げ損失が0.001dB/kmとなり距離OCTを小さくできるという観点から好ましいW/r11及びW/r21の値、そのときの距離OCTの値及びファイバ径、コア間クロストークXTが最も大きくなるときの曲げ半径とマルチコアファイバ1の通常の使用状態を想定した場合の曲げ半径(100mm以上)でのクロストークがわかる。
 上記のように考えて表1に示す各条件に基づいて得られた計算結果を下記表2に示す。表2に示すXT(d=50mm)は、相関長dを50mmとしてコアを伝搬する光の波長が1565nmとした場合の曲げ半径155mmでのコア間クロストークXT[dB/100km]であり、Rpkはコア間クロストークXTが最も大きくなるときの曲げ半径である。
Figure JPOXMLDOC01-appb-I000002
 条件2と条件3とを比較すると、条件3の場合の方がコア間クロストークXTが大きい。これは、条件3の方が第1コア11の外側クラッド30に対する比屈折率差Δ11が大きく、カットオフ波長を所定の値以下とするために必要となる低屈折率層13の厚さWが小さいからである。条件1と条件2とを比較すると、条件1の方が条件2の場合よりも距離OCTが厚くなっている。これは、条件1の方が第2コア21の外側クラッド30に対する比屈折率差Δ21が小さく、第2コア21に光を閉じ込め難くなっているからである。第1コア11の比屈折率差Δ11を小さくして第2コア21の比屈折率差Δ21を大きくする等して第1コア11と第2コア21との間の伝搬定数の差が小さくなると、Rpkが大きくなる。
 <比較例1>
 表1に示す条件1のパラメータを用い、各コアを囲う低屈折率層の厚さを変えたときの、22mカットオフ波長[μm]を図14に、曲げ半径Rを140mm(曲げ直径を280mm)にしたときのLP01モードの光の曲げ損失[dB/km]と距離OCT[μm]との関係を図15に、相関長を50mmとしてコアを伝搬する光の波長を1565nmとした場合のコア間クロストークXT[dB/100km]と曲げ半径[mm]との関係を図16に、それぞれ示す。図14~図16からは、22mカットオフ波長が1500nm以下となるようにした以外は実施例1と同様にして、LP01モードの光の曲げ損失が0.001dB/kmとなり距離OCTを小さくできるという観点から好ましいW/r11及びW/r21の値、そのときの距離OCTの値及びファイバ径、コア間クロストークXTが最も大きくなるときの値及びそのときの曲げ半径がわかる。その計算結果を下記表3に示す。
Figure JPOXMLDOC01-appb-I000003
 (実施例1と比較例1との比較)
 表2に示す結果は、直径280mmの曲げが加えられるとき、伝搬損失が最も小さいコアにおいて、波長1500nmにおけるLP11モードの光の伝搬損失が1dB/m以下0.02dB/m以上となるように各パラメータが検討されている。すなわち、表2に示す結果は、LP11モードの光が1km伝搬したときには十分減衰されるように各パラメータが検討されている。一方、表3に示す結果は、直径280mmの曲げが加えられるとき、全てのコアにおいて、波長1500nmにおけるLP11モードの光の伝搬損失が1dB/mより大きくなるように各パラメータが検討されている。すなわち、表3に示す結果は、LP11モードの光が22m伝搬したときに十分減衰されるように各パラメータが検討されている。
 実施例1(表2)と比較例1(表3)とを比較することによって、光が1km伝搬した後におけるカットオフ波長を基準としてコア間距離やコアの屈折率等を規定した方が、光が22m伝搬した後におけるカットオフ波長を基準とするよりも、ファイバ径を小さくしつつコア間クロストークを低減できることが確認された。
 <実施例2及び比較例2>
 実施例2に係るマルチコアファイバとしてファイバAを作製し、比較例2に係るマルチコアファイバとしてファイバBを作製した。ファイバAは実施例1のマルチコアファイバと同様である。ファイバBは、直径280mmの曲げが加えられるとき、全てのコアにおいて、波長1530nmにおけるLP11モードの光の伝搬損失が1dB/mより大きいということ以外は、ファイバAと同様である。ファイバA及びファイバBのパラメータを下記表4及び表5に示す。また、ファイバA及びファイバBの光学測定結果を表6に示す。なお、表6及び以下に示す表7において、コア番号は図3に示すコア要素の番号に対応している。
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 表6からわかるように、ファイバAでは、内側に配置される一部のコアにおいて22mカットオフ波長が1600nmを超えているが、全てのコアにおいて1kmカットオフ波長は1530nmを下回っていた。一方、ファイバBでは、従来のマルチコアファイバと同様に、全てのコアにおいて、22mカットオフ波長が1530nmを下回っていた。
 下記表7には、ファイバA及びファイバBのそれぞれについて、No.6,11,22,29のコアを励振させたときの最悪クロストーク[dB]の測定結果を、光がコアを100km伝搬した後の値に換算して示す。ここで、最悪クロストークとは、すべてのコアに信号を伝送した時を想定したクロストークであり、ここでは、互いに最も近い2つのコア間のクロストークと正方格子の対角線上に配置される第二近接コア同士の間のクロストークとの合計である。よって、最悪クロストークを考える場合のクロストークの組み合わせ数は、励振されるコアの位置によって異なる。表7に示す結果は、コアを伝搬する光の波長が1550nmである場合と、Cバンドにおいてクロストークが最も大きくなると考えられる、コアを伝搬する光の波長が1565nmである場合とについて、ファイバの巻直径を310mmとして最悪クロストークを測定した結果である。
Figure JPOXMLDOC01-appb-I000007
 ファイバAとファイバBとを比較すると、ファイバAの方が全てのコアでクロストークが小さくなっていた。これは、ファイバAの方については、1kmカットオフ波長を基準としてコア間距離やコアの屈折率等を設計したことによると考えられる。
 なお、ファイバAのRpkは100mm以下であり、具体的には60mm程度であった。長距離通信に用いられるケーブル内での光ファイバの曲げ半径が数百mmになることを考えると、ファイバAを長距離通信に用いる場合に曲げによるクロストークの過度な増大は起こりにくいと考えられる。また、ファイバAは、四相位相変調(QPSK)信号を1000km伝送するのに必要とされるクロストークの条件である-29dB/100kmよりクロストークが小さかった。
 また、モード変換器により生成した波長1530nmのLP11モードの光をファイバAのNo.23のコアに入力した。その結果、入力端から22mの位置ではカットオフ波長が1600nm以上であるため、LP11モードの光が観測された。しかし、入力端から1kmの位置ではカットオフ波長が1530nm以下であるため、LP11モードの光が十分に損失しており、モード変換器内のクロストークにより生じたLP01モードの光が観測された。このように、ファイバAでは、光がコアを1km伝搬した後には余計な高次モードの光が十分に減衰されてシングルモードとなることが確認された。
 <実施例3>
 図17は、実施例3におけるマルチコアファイバの長手方向に垂直な断面の様子を図1と同様に示す図である。実施例3では、図17に示すように、外側クラッド30の中心と当該中心を中心とする正六角形の各頂点とに第1コア要素10が配置されるマルチコアファイバ6を作製した。このマルチコアファイバ6では、外側クラッド30の中心に配置されるコアを中心とする基準円上には6つのコアが配置される。上述したように、他のコア要素に囲まれるコアでは、他のコアよりカットオフ波長が長波長化し易い。よって、このマルチコアファイバ6では、外側クラッド30の中心に配置されるコアはカットオフ波長が長波長化し易い。また、本実施例では、LP01モードの光及びLP11モードの光によって情報の伝送し得るように、マルチコアファイバ6を設計した。マルチコアファイバ6の各パラメータは下記表8に示す通りである。表8におけるΔ11、r11、r12、W11は図2(B)を用いて定義した通りである。Aeff(LP01)はコアを伝搬するLP01モードの光の波長が1550nmである場合の有効断面積であり、Aeff(LP11)はコアを伝搬するLP11モードの光の波長が1550nmである場合の有効断面積である。
Figure JPOXMLDOC01-appb-I000008
 図18は、曲げ半径Rを140mm(曲げ直径を280mm)にしたときのLP21モードの光の曲げ損失[dB/km]と互いに隣り合うコアの中心間距離Λとの関係を示す。本実施例では、上記のようにLP01モードの光及びLP11モードの光を情報の伝送に用いるため、LP11モードより高次モードの光であるLP21モードの光の伝搬が抑制されることが求められる。図18から、22mケーブルカットオフ波長を1530nm以下とするためには、すなわちLP21モードの光の伝搬損失を1dB/m以上とするためには、コア間距離Λを42.5μm以上にする必要があることがわかる。一方、1kmカットオフ波長を1530nm以下とするためには、すなわちLP21モードの光の伝搬損失を0.02dB/m以上とするためには、コア間距離Λが38.8μm程度まで小さくされても良いことがわかる。
 図19は、波長1550nmにおけるLP11モードの光同士のコア間クロストークの大きさと互いに隣り合うコアの中心間距離Λとの関係を示す。図19より、コア間距離Λが38.8μmまで小さくされても、100km伝搬後のクロストークが-30dB以下であり、QPSK信号を伝送可能であることがわかる。
 <比較例3>
 実施例3のマルチコアファイバ作製に用いた母材と同様の母材を用いて、コア間距離が45μmとなるように狙って線引した以外は実施例3と同様にして、比較例3に係るマルチコアファイバを作製した。比較例3に係るマルチコアファイバでは、コア間距離Λが42.5μm以上とされため、上記のように全てのコアにおいて22mケーブルカットオフ波長が1530nm以下になると考えられる。実施例3に係るマルチコアファイバと比較例3に係るマルチコアファイバとのコア間距離Λ、距離OCT及びファイバ径の測定結果を下記表9に示す。また、実施例3に係るマルチコアファイバ6と比較例3に係るマルチコアファイバとの光学測定結果を下記表10に示す。なお、表10に示すカットオフ波長は、外側クラッド30の中心に配置されたコアについて測定した結果である。
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 実施例3に係るマルチコアファイバと比較例3に係るマルチコアファイバとは、同様の母材を用いているため、表10に示すようにカットオフ波長以外の光学特性は同じとなった。また、表9に示したように、実施例3に係るマルチコアファイバでは比較例3に係るマルチコアファイバに対してファイバ径を小さくすることができた。このようにファイバ径を小さくし得る効果は、マルチコアファイバに備えられるコアの数が多くなる程顕著になる。
 以上に説明した本発明に係るマルチコアファイバは、長距離通信に好適であり、光通信の産業において利用することができる。
 1,2,3,4,5,6・・・マルチコアファイバ
 10・・・第1コア要素
 11・・・第1コア
 12・・・内側クラッド
 13・・・低屈折率層
 15・・・コア
 20・・・第2コア要素
 21・・・第2コア
 22・・・内側クラッド
 23・・・低屈折率層
 30・・・外側クラッド

Claims (8)

  1.  直径280mmの曲げが加えられるとき、情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上であるコアを少なくとも1つ備える
    ことを特徴とするマルチコアファイバ。
  2.  前記コアの外周面を囲む内側クラッドと、前記内側クラッドよりも低い屈折率とされると共に前記内側クラッドを囲む低屈折率層と、を備える
    ことを特徴とする請求項1に記載のマルチコアファイバ。
  3.  前記情報の伝送に用いられる光がLP01モードの光である
    ことを特徴とする請求項1または2に記載のマルチコアファイバ。
  4.  前記情報の伝送に用いられる光がLP01モードの光及びLP11モードの光である
    ことを特徴とする請求項1または2に記載のマルチコアファイバ。
  5.  伝搬定数が異なる2種類のコアからなる総数32個のコアが、前記2種類のコアが交互になるように正方格子上に配置され、
     曲げ半径が100mm以上でコア間クロストークが-29dB/100km以下であり、
     ファイバ径が250μm以下である
    ことを特徴とする請求項1から4のいずれか1項に記載のマルチコアファイバ。
  6.  あるコアの中心と前記あるコアに最も近い位置に配置される他のコアの中心とを結ぶ線を半径とする円を基準円とし、
     直径280mmの曲げが加えられるとき、3つ以上のコアと重なる前記基準円の中心に配置されるコアにおいて、前記情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上である
    ことを特徴とする請求項1から5のいずれか1項に記載のマルチコアファイバ。
  7.  6つの前記コアと重なる前記基準円の中心に配置される前記コアにおいて、前記情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上である
    ことを特徴とする請求項6に記載のマルチコアファイバ。
  8.  直径280mmの曲げが加えられるとき、全てのコアにおいて、前記情報の伝送に用いられる光の波長帯における前記情報の伝送に用いられる光のモードより次数が一次高いモードの光の伝搬損失が1dB/m以下0.02dB/m以上である
    ことを特徴とする請求項1から7のいずれか1項に記載のマルチコアファイバ。
PCT/JP2017/008307 2016-03-17 2017-03-02 マルチコアファイバ WO2017159385A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780006522.4A CN108474903B (zh) 2016-03-17 2017-03-02 多芯光纤
JP2018505807A JP6722271B2 (ja) 2016-03-17 2017-03-02 マルチコアファイバ
EP17766388.7A EP3432041B1 (en) 2016-03-17 2017-03-02 Multicore fiber
US16/072,786 US10690843B2 (en) 2016-03-17 2017-03-02 Multicore fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-054378 2016-03-17
JP2016054378 2016-03-17

Publications (1)

Publication Number Publication Date
WO2017159385A1 true WO2017159385A1 (ja) 2017-09-21

Family

ID=59852191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008307 WO2017159385A1 (ja) 2016-03-17 2017-03-02 マルチコアファイバ

Country Status (5)

Country Link
US (1) US10690843B2 (ja)
EP (1) EP3432041B1 (ja)
JP (1) JP6722271B2 (ja)
CN (1) CN108474903B (ja)
WO (1) WO2017159385A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146750A1 (ja) * 2018-01-25 2019-08-01 古河電気工業株式会社 マルチコアファイバ及びその製造方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11165508B2 (en) 2018-07-25 2021-11-02 Corning Incorporated Communications systems comprising waveguide arrays for realizing localized quantum walks
CN110346864B (zh) * 2019-06-04 2020-10-27 烽火通信科技股份有限公司 一种多芯少模光纤及其制造方法
CN110568548B (zh) * 2019-09-06 2021-01-19 江苏斯德雷特通光光纤有限公司 一种多层纤芯可控的多芯光纤
US11137538B2 (en) * 2019-10-08 2021-10-05 Corning Incorporated Multicore ring fibers and quantum systems comprising such fibers
CN112630882B (zh) * 2019-10-08 2024-04-16 康宁股份有限公司 多芯体环形光纤以及包含所述光纤的量子系统
CN111273394B (zh) * 2020-03-27 2022-03-25 长飞光纤光缆股份有限公司 一种多芯多模光纤
CN111635125A (zh) * 2020-04-21 2020-09-08 艾菲博(宁波)光电科技有限责任公司 一种高占空比的多芯微结构成像光纤束的制备方法
CN111897045B (zh) * 2020-09-17 2022-08-02 长飞光纤光缆股份有限公司 一种抗弯曲多芯光纤
CN112198587B (zh) * 2020-09-28 2021-12-31 北京邮电大学 一种多芯少模光纤及其参数的确定方法
US11726257B2 (en) 2021-03-05 2023-08-15 Corning Incorporated Multicore optical fiber
CN113325510B (zh) * 2021-06-23 2022-03-18 长飞光纤光缆股份有限公司 一种多芯光纤及其易分支光缆
CN113662658A (zh) * 2021-08-26 2021-11-19 桂林电子科技大学 环形芯与传像束集成的医用光纤及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106135A (ja) * 2011-11-11 2013-05-30 Sumitomo Electric Ind Ltd 双方向光通信方法およびマルチコア光ファイバ
JP2014010266A (ja) * 2012-06-29 2014-01-20 Fujikura Ltd マルチコアファイバ
JP2015022086A (ja) * 2013-07-18 2015-02-02 日本電信電話株式会社 マルチコア光ファイバ
WO2015133407A1 (ja) * 2014-03-07 2015-09-11 株式会社フジクラ マルチコアファイバ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3823996A (en) * 1973-04-05 1974-07-16 Bell Telephone Labor Inc Multicore, multimode optical wave transmission line
CN102282488B (zh) * 2009-01-19 2014-04-23 住友电气工业株式会社 多芯光纤
JPWO2011024808A1 (ja) 2009-08-28 2013-01-31 株式会社フジクラ マルチコアファイバ
EP2613185B1 (en) * 2010-08-30 2020-11-18 Sumitomo Electric Industries, Ltd. Multicore optical fiber
RU2489741C2 (ru) * 2011-01-19 2013-08-10 Учреждение Российской академии наук Научный центр волоконной оптики РАН (НЦВО РАН) Многосердцевинный волоконный световод (варианты)
JP2012211964A (ja) 2011-03-30 2012-11-01 Fujikura Ltd マルチコアファイバ
EP2743742B1 (en) * 2011-08-08 2018-01-10 Furukawa Electric Co., Ltd. Multi-core optical fiber and optical transmission system
JP5819682B2 (ja) * 2011-09-05 2015-11-24 株式会社フジクラ 通信用マルチコアファイバ
JP2013171181A (ja) * 2012-02-21 2013-09-02 Hitachi Cable Ltd マルチコアファイバ
US9151887B2 (en) * 2012-09-04 2015-10-06 Corning Incorporated Multi-core optical fibers with single mode and multimode core elements
EP2930546A4 (en) * 2012-12-05 2016-07-20 Sumitomo Electric Industries OPTICAL WAVE GUIDE, AND FIBER OPTIC TRANSMISSION SYSTEM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106135A (ja) * 2011-11-11 2013-05-30 Sumitomo Electric Ind Ltd 双方向光通信方法およびマルチコア光ファイバ
JP2014010266A (ja) * 2012-06-29 2014-01-20 Fujikura Ltd マルチコアファイバ
JP2015022086A (ja) * 2013-07-18 2015-02-02 日本電信電話株式会社 マルチコア光ファイバ
WO2015133407A1 (ja) * 2014-03-07 2015-09-11 株式会社フジクラ マルチコアファイバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3432041A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146750A1 (ja) * 2018-01-25 2019-08-01 古河電気工業株式会社 マルチコアファイバ及びその製造方法
JPWO2019146750A1 (ja) * 2018-01-25 2021-01-28 古河電気工業株式会社 マルチコアファイバ及びその製造方法
US11555957B2 (en) 2018-01-25 2023-01-17 Furukawa Electric Co., Ltd. Multicore fiber and method of manufacture therefor
JP7335817B2 (ja) 2018-01-25 2023-08-30 古河電気工業株式会社 マルチコアファイバ及びその製造方法

Also Published As

Publication number Publication date
EP3432041A1 (en) 2019-01-23
US10690843B2 (en) 2020-06-23
CN108474903B (zh) 2021-05-14
CN108474903A (zh) 2018-08-31
JPWO2017159385A1 (ja) 2018-09-06
EP3432041B1 (en) 2024-02-28
US20190033513A1 (en) 2019-01-31
EP3432041A4 (en) 2019-04-03
JP6722271B2 (ja) 2020-07-15

Similar Documents

Publication Publication Date Title
WO2017159385A1 (ja) マルチコアファイバ
JP5916525B2 (ja) マルチコアファイバ
JP6177994B2 (ja) マルチコアファイバ
WO2011024808A1 (ja) マルチコアファイバ
JP6532748B2 (ja) マルチコアファイバ
JP6050847B2 (ja) マルチコアファイバ
JP5855351B2 (ja) マルチコアファイバ
JP5468711B2 (ja) マルチコアファイバ
JP2014016472A (ja) 光学入出力デバイス
JP5771025B2 (ja) マルチコアファイバ
JP6321589B2 (ja) 光ファイバ
WO2014133057A1 (ja) マルチコアファイバ
JP6340342B2 (ja) マルチコアファイバ
JP2015184371A (ja) 偏波保持光ファイバ
WO2017130426A1 (ja) 光デバイス
WO2015001990A1 (ja) マルチコア光ファイバおよびマルチコア光ファイバケーブル
WO2017130487A1 (ja) マルチコアファイバ
JP6623190B2 (ja) マルチコアファイバ
JPWO2018150867A1 (ja) マルチコアファイバ、及び、これを用いたマルチコアファイバテープ
GB2565128A (en) Fan-in/Fan-out device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017766388

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017766388

Country of ref document: EP

Effective date: 20181017

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766388

Country of ref document: EP

Kind code of ref document: A1