WO2017159311A1 - GaN結晶の製造方法 - Google Patents

GaN結晶の製造方法 Download PDF

Info

Publication number
WO2017159311A1
WO2017159311A1 PCT/JP2017/007451 JP2017007451W WO2017159311A1 WO 2017159311 A1 WO2017159311 A1 WO 2017159311A1 JP 2017007451 W JP2017007451 W JP 2017007451W WO 2017159311 A1 WO2017159311 A1 WO 2017159311A1
Authority
WO
WIPO (PCT)
Prior art keywords
gan
crystal
manufacturing
wafer
growth
Prior art date
Application number
PCT/JP2017/007451
Other languages
English (en)
French (fr)
Inventor
憲司 磯
纐纈 明伯
尚 村上
Original Assignee
三菱ケミカル株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, 国立大学法人東京農工大学 filed Critical 三菱ケミカル株式会社
Priority to JP2018505773A priority Critical patent/JP6885547B2/ja
Priority to CN201780016941.6A priority patent/CN108779580B/zh
Publication of WO2017159311A1 publication Critical patent/WO2017159311A1/ja
Priority to US16/130,617 priority patent/US10961619B2/en
Priority to US17/178,423 priority patent/US11371140B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/20Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention mainly relates to a method for producing a GaN (gallium nitride) crystal.
  • GaCl 3 gallium trichloride
  • GaCl 3 gallium trichloride
  • Patent Document 2 describes an experimental result that GaN can be grown from a vapor phase on a sapphire (0001) substrate using GaCl 3 and NH 3 (ammonia) as raw materials. The direction of is not clear.
  • Patent Document 3 describes an experimental result that GaN can be grown from a vapor phase on a GaN (000-1) substrate using GaCl 3 and NH 3 as raw materials. As far as the present inventors have known, GaN growth on a nonpolar or semipolar GaN surface using GaCl 3 as a raw material has not been attempted.
  • a main object of the present invention is to provide a novel method for producing a GaN crystal, which includes using GaCl 3 and NH 3 as raw materials and growing GaN from a vapor phase on a nonpolar or semipolar GaN surface.
  • An object of the present invention includes providing a novel method for producing a GaN crystal, which includes using GaCl 3 and NH 3 as raw materials and growing GaN from the vapor phase.
  • the present inventors tried to grow GaN from a vapor phase on a nonpolar or semipolar GaN surface using GaCl 3 and NH 3 as raw materials. And when a nonpolar or semipolar GaN surface has a specific orientation, it has been found that GaN can be grown thereon.
  • One aspect of the present invention has been made based on this finding.
  • Embodiments of the present invention include the following.
  • a step of preparing a GaN seed crystal the normal direction of the GaN seed crystal being at least 85 ° and less than 170 ° with the [0001] direction of the GaN seed crystal.
  • a seed crystal preparation step having a polar or semipolar surface; and
  • GaN is grown from a gas phase on the surface of the GaN seed crystal including the nonpolar or semipolar surface using GaCl 3 and NH 3 as raw materials. And a growth step for producing a GaN crystal.
  • the angle formed by the nonpolar or semipolar surface with the [0001] direction of the GaN seed crystal is 85 ° or more and less than 90 °, 90 ° or more and less than 93 °, 93 ° or more and less than 97 °, 97 ° GaN according to (1) above, less than 102 °, 102 ° or more and less than 107 °, 107 ° or more and less than 112 °, 112 ° or more and less than 122 °, or 122 ° or more and less than 132 °. Crystal manufacturing method.
  • the product of the partial pressures of GaCl 3 and NH 3 supplied to the GaN seed crystal is set to 9.5 ⁇ 10 ⁇ 5 atm 2 or more.
  • GaN crystal manufacturing method as described.
  • the low index orientation of the GaN seed crystal that is parallel or closest to the normal line of the nonpolar or semipolar surface is ⁇ 10-10>, ⁇ 30-3-1>, ⁇ 20-2-1> ⁇ 30-3-2> or ⁇ 10-1-1>, The method for producing a GaN crystal according to any one of (1) to (10) above.
  • the maximum growth height of the bulk GaN crystal is 300 ⁇ m or more and less than 500 ⁇ m, 500 ⁇ m or more and less than 1 mm, 1 mm or more and less than 3 mm, 3 mm or more and less than 5 mm, 5 mm or more and less than 10 mm, 10 mm or more and less than 25 mm, 25 mm.
  • a seed crystal preparation step of preparing a GaN seed crystal having one or more facets selected from ⁇ 10-10 ⁇ facets and ⁇ 10-1-1 ⁇ facets, and the one or more of the GaN seed crystals A method for producing a GaN crystal, comprising a growth step of growing GaN from a gas phase on a surface including facets using GaCl 3 and NH 3 as raw materials. (19) The GaN crystal production according to (18), wherein the ratio of the size in the c-axis direction and the size in an arbitrary direction orthogonal to the c-axis is 0.1 or more and 10 or less. Method. (20) The method for producing a GaN crystal according to (18) or (19), wherein each of the one or more facets is an as-gron surface.
  • the GaN wafer formed in the crystal processing step is a ⁇ 10-10 ⁇ wafer, a ⁇ 30-3-1 ⁇ wafer, a ⁇ 20-2-1 ⁇ wafer, a ⁇ 30-3-2 ⁇ wafer, ⁇ 10-1-1 ⁇ wafer, ⁇ 30-31 ⁇ wafer, ⁇ 20-21 ⁇ wafer, ⁇ 30-32 ⁇ wafer, ⁇ 10-11 ⁇ wafer, (0001) wafer and (000-1) wafer
  • the GaN wafer manufacturing method according to (31) including a GaN wafer.
  • a growth step comprising growing a GaN crystal.
  • a product of partial pressures of GaCl 3 and NH 3 supplied to the GaN wafer is set to 9.5 ⁇ 10 ⁇ 5 atm 2 or more, (33), (34) or (36) 2.
  • a method for producing a GaN crystal according to 1. In the growth step, a GaN crystal including a portion where the FWHM of the (201) plane X-ray rocking curve is less than 100 arcsec is formed on the GaN wafer. GaN crystal manufacturing method. (39) The GaN according to any one of (33) to (38), wherein the metal Ga and Cl 2 are reacted to generate GaCl, and the GaCl is reacted with Cl 2 to generate the GaCl 3. Crystal manufacturing method.
  • a GaN crystal is manufactured using the GaN crystal manufacturing method according to any one of (33) to (40), and then processed to form a GaN ⁇ 20-21 ⁇ wafer. Wafer manufacturing method.
  • Production method. (45) The GaN crystal manufacturing method according to (42) or (43), wherein in the growth step, GaCl 3 is supplied to the GaN wafer at a partial pressure of 1.5 ⁇ 10 ⁇ 3 atm or more.
  • the product of partial pressures of GaCl 3 and NH 3 supplied to the GaN wafer is 9.5 ⁇ 10 ⁇ 5 atm 2 or more, (42), (43) or (45) 2.
  • a method for producing a GaN crystal according to 1. (47) The growth step according to any one of (42) to (46), wherein in the growth step, a GaN crystal including a portion having a FWHM of a (100) plane X-ray rocking curve of less than 100 arcsec is formed on the GaN wafer. GaN crystal manufacturing method.
  • (51) (i) a seed crystal preparation step of preparing a GaN seed crystal having a ⁇ 10-10 ⁇ surface; and (ii) GaN using GaCl 3 and NH 3 as raw materials on the ⁇ 10-10 ⁇ surface. And a growth step of growing from a vapor phase.
  • the product of partial pressures of GaCl 3 and NH 3 supplied to the GaN seed crystal is set to 9.5 ⁇ 10 ⁇ 5 atm 2 or more, (51), (52) or (54 GaN crystal production method described in the above.
  • a GaN crystal including a portion where the FWHM of the (100) plane X-ray rocking curve is less than 100 arcsec is formed on the ⁇ 10-10 ⁇ surface
  • the present inventors have tried SAG (Selective Area Growth) of GaN on a polar or nonpolar GaN surface using GaCl 3 and NH 3 as raw materials. And it discovered that SAG was possible and that a GaN island of a specific shape was formed in the initial stage of SAG.
  • One aspect of the present invention has been made based on this finding.
  • the embodiments of the present invention further include the following. (60) (i) A step of preparing a GaN seed crystal, wherein the GaN seed crystal has a polar surface whose normal direction forms an angle of 175 ° to 180 ° with the [0001] direction of the GaN seed crystal.
  • a growth step of growing from a vapor phase on a surface including the surface. (61) The GaN crystal manufacturing method according to (60), wherein the hexagonal column portion is terminated with a (000-1) facet. (62) The GaN crystal according to (61), wherein the hexagonal column portion has a chamfer that is a ⁇ 10-1-1 ⁇ facet between the ⁇ 10-10 ⁇ facet and the (000-1) facet. Production method.
  • the GaN crystal manufacturing method according to any one of (63) to (66), wherein, in the growth step, a bulk GaN crystal having a maximum growth height of 300 ⁇ m or more on the polar surface is grown.
  • the maximum growth height of the bulk GaN crystal is 300 ⁇ m or more and less than 500 ⁇ m, 500 ⁇ m or more and less than 1 mm, 1 mm or more and less than 3 mm, 3 mm or more and less than 5 mm, 5 mm or more and less than 10 mm, 10 mm or more and less than 25 mm, 25 mm
  • the GaN seed crystal having the three-dimensional shape has a hexagonal column portion having a ⁇ 10-10 ⁇ facet as a side surface, which is disposed on the [0001] side of the hexagonal pyramid portion.
  • the GaN seed crystal having the three-dimensional shape has a hexagonal column portion having a ⁇ 10-10 ⁇ facet as a side surface, and the [000-1] side of the hexagonal column portion terminates at the (000-1) surface.
  • the method for producing a GaN crystal according to (72). (76) The three-dimensional GaN seed crystal has a hexagonal column portion having a ⁇ 10-10 ⁇ facet as a side surface, and a (000-1) facet disposed on the [000-1] side thereof. And a hexagonal frustum portion having a ⁇ 10-1-1 ⁇ facet as a side surface.
  • the GaN seed crystal having the three-dimensional shape has a hexagonal frustum shape having a (000-1) facet as a top surface, a (0001) facet as a bottom surface, and a ⁇ 10-1-1 ⁇ facet as a side surface.
  • the method for producing a GaN crystal according to (72). (78) In any of the above (72) to (77), the ratio of the size in the c-axis direction to the size in an arbitrary direction orthogonal to the c-axis is 0.1 or more and 10 or less.
  • a method for producing a GaN crystal according to claim 1. The GaN crystal manufacturing method according to any one of (60) to (78), wherein, in the growth step, the growth of the GaN crystal is repeated intermittently.
  • (80) The GaN according to any one of (60) to (79), wherein the metal Ga and Cl 2 are reacted to generate GaCl, and the GaCl is reacted with Cl 2 to generate the GaCl 3. Crystal manufacturing method.
  • the GaN wafer formed in the crystal processing step is a ⁇ 10-10 ⁇ wafer, a ⁇ 30-3-1 ⁇ wafer, a ⁇ 20-2-1 ⁇ wafer, a ⁇ 30-3-2 ⁇ wafer, ⁇ 10-1-1 ⁇ wafer, ⁇ 30-31 ⁇ wafer, ⁇ 20-21 ⁇ wafer, ⁇ 30-32 ⁇ wafer, ⁇ 10-11 ⁇ wafer, (0001) wafer and (000-1) wafer
  • the GaN wafer manufacturing method according to (82) including a GaN wafer.
  • Another aspect of the present invention relates to a case where the GaN substrate surface has a specific semipolar surface
  • embodiments of the present invention further include the following.
  • (84) (i) A step of preparing a GaN seed crystal having a semipolar surface, wherein the low index orientation of the GaN seed crystal is parallel or closest to the normal direction of the semipolar surface is ⁇ 10 ⁇ 1-1> a seed crystal preparation step, and (ii) a growth step in which GaN is grown from a vapor phase on the surface including the semipolar surface of the GaN seed crystal using GaCl 3 and NH 3 as raw materials.
  • a method for producing a GaN crystal (i) A step of preparing a GaN seed crystal having a semipolar surface, wherein the low index orientation of the GaN seed crystal is parallel or closest to the normal direction of the semipolar surface is ⁇ 10 ⁇ 1-1> a seed crystal preparation step, and (ii) a growth step in which GaN is grown from a vapor phase on the surface including the semipolar surface of
  • GaN crystal manufacturing method (92) In the growth step, a GaN crystal including a portion having a FWHM of (202) plane X-ray rocking curve of less than 30 arcsec is formed on the semipolar surface, according to any one of (84) to (87) GaN crystal manufacturing method. (93) The method for producing a GaN crystal according to (92), wherein in the growth step, a GaN crystal including a portion where the FWHM of the (202) plane X-ray rocking curve is less than 20 arcsec is formed on the semipolar surface. (94) The GaN crystal manufacturing method according to (91), wherein a growth rate of GaN on the semipolar surface in the growth step is 50 ⁇ m / h or more.
  • the maximum growth height of the bulk GaN crystal is 300 ⁇ m or more and less than 500 ⁇ m, 500 ⁇ m or more and less than 1 mm, 1 mm or more and less than 3 mm, 3 mm or more and less than 5 mm, 5 mm or more and less than 10 mm, 10 mm or more and less than 25 mm, 25 mm
  • a seed crystal preparation step of preparing a GaN seed crystal having ⁇ 10-1-1 ⁇ facet, and GaCl 3 and a surface of the GaN seed crystal including the ⁇ 10-1-1 ⁇ facet A method for producing a GaN crystal, comprising a growth step of growing GaN from a vapor phase using NH 3 as a raw material.
  • Method. (101) The method for producing a GaN crystal according to (99) or (100), wherein the ⁇ 10-1-1 ⁇ facet is an as-gron surface.
  • GaCl 3 is supplied to the GaN seed crystal at a partial pressure of 1.5 ⁇ 10 ⁇ 3 atm or more, The GaN crystal manufacturing method according to any one of (99) to (105) .
  • a GaN crystal including a portion where the FWHM of the (202) plane X-ray rocking curve is less than 30 arcsec is formed on the ⁇ 10-1-1 ⁇ facet. 107).
  • the (202) plane X-ray rocking curve has a GaN crystal including a part having a FWHM of less than 20 arcsec formed on the ⁇ 10-1-1 ⁇ facet.
  • GaN crystal manufacturing method In the growth step, the (202) plane X-ray rocking curve has a GaN crystal including a part having a FWHM of less than 20 arcsec formed on the ⁇ 10-1-1 ⁇ facet.
  • GaN crystal manufacturing method (10) The GaN crystal manufacturing method according to any one of (84) to (109), wherein, in the growth step, GaN growth is repeated intermittently.
  • GaCl is generated by reacting metal Ga and Cl 2
  • GaCl 3 is generated by reacting GaCl with Cl 2. Any of (84) to (110)
  • the GaN wafer formed in the crystal processing step is a ⁇ 10-10 ⁇ wafer, a ⁇ 30-3-1 ⁇ wafer, a ⁇ 20-2-1 ⁇ wafer, a ⁇ 30-3-2 ⁇ wafer, ⁇ 10-1-1 ⁇ wafer, ⁇ 30-31 ⁇ wafer, ⁇ 20-21 ⁇ wafer, ⁇ 30-32 ⁇ wafer, ⁇ 10-11 ⁇ wafer, (0001) wafer and (000-1) wafer
  • the GaN wafer manufacturing method according to (113) including a GaN wafer.
  • the embodiment of the present invention further includes the following.
  • (115) (i) A step of preparing a GaN seed crystal, wherein the GaN seed crystal has a normal direction that forms an angle of 85 ° or more and 180 ° or less with the [0001] direction of the GaN seed crystal.
  • a step of preparing a GaN seed crystal having a surface and a pattern mask disposed on the main surface; and (ii) raw material of GaCl 3 and NH 3 on the main surface of the GaN seed crystal through the pattern mask And a SAG (Selective Area Growth) step for growing GaN from the vapor phase.
  • the pattern mask has a plurality of dot-shaped openings including a first dot-shaped opening and a second dot-shaped opening, and in the SAG step, respectively on the first dot-shaped opening and the second dot-shaped opening.
  • the GaN island formed on the first dot-shaped opening and the GaN island formed on the second dot-shaped opening are coreless.
  • Production method (122) The manufacturing method according to any one of (115) to (121), wherein, in the SAG step, GaN growth is continued until a GaN layer covering the main surface is formed. (123) The manufacturing method according to any one of (115) to (122), wherein, in the SAG step, GaCl 3 is supplied to the GaN seed crystal at a partial pressure of 1.5 ⁇ 10 ⁇ 3 atm or more.
  • a product of partial pressures of GaCl 3 and NH 3 supplied to the GaN seed crystal is set to 9.5 ⁇ 10 ⁇ 5 atm 2 or more.
  • the manufacturing method as described in. (125) The manufacturing method according to any one of (115) to (124), wherein the GaN seed crystal is at least a part of a GaN substrate.
  • a step of preparing a GaN seed crystal, wherein the GaN seed crystal has a polarity whose normal direction forms an angle of 175 ° or more and 180 ° or less with the [0001] direction of the GaN seed crystal A GaN seed preparation step having a surface mask and a pattern mask disposed on the polar surface and provided with a dot-shaped aperture; and (ii) through the pattern mask on the polar surface of the GaN seed crystal and GaCl SAG (Selective Area Growth) step of growing GaN from the vapor phase using 3 and NH 3 as raw materials, and in this SAG step, a GaN island including a hexagonal column portion is formed on the dot-shaped opening , GaN crystal manufacturing method.
  • GaN seed preparation step having a surface mask and a pattern mask disposed on the polar surface and provided with a dot-shaped aperture; and (ii) through the pattern mask on the polar surface of the GaN seed crystal and GaCl SAG (Selective Area Growth) step of growing
  • a novel method for producing a GaN crystal which includes growing GaN from the vapor phase on a nonpolar or semipolar GaN surface using GaCl 3 and NH 3 as raw materials. Is done.
  • a novel method for producing a GaN crystal is provided, which includes growing a GaN crystal having a specific shape from a gas phase using GaCl 3 and NH 3 as raw materials.
  • FIG. 1 shows a flowchart of a GaN crystal manufacturing method according to the embodiment.
  • FIG. 2 is a perspective view showing an example of a GaN substrate that can be used in the GaN crystal manufacturing method according to the embodiment.
  • FIG. 3 shows a GaN single crystal having the first main surface as a surface, as viewed from a direction parallel to the line of intersection between the C-plane of the GaN single crystal and the first main surface.
  • FIG. 4 is a perspective view showing an example of the shape of a GaN seed crystal.
  • FIG. 5 is a perspective view showing an example of the shape of a GaN seed crystal.
  • FIG. 6 is a perspective view showing a shape example of a GaN seed crystal.
  • FIG. 1 shows a flowchart of a GaN crystal manufacturing method according to the embodiment.
  • FIG. 2 is a perspective view showing an example of a GaN substrate that can be used in the GaN crystal manufacturing method according to the embodiment.
  • FIG. 3 shows a GaN single crystal having the
  • FIG. 7 is a perspective view showing an example of the shape of a GaN seed crystal.
  • FIG. 8 is a perspective view showing an example of the shape of a GaN seed crystal.
  • FIG. 9 is a perspective view (a) and a sectional view (b) showing a shape example of a GaN seed crystal.
  • FIG. 10 is a schematic diagram of a crystal growth apparatus that can be used in the GaN crystal manufacturing method according to the embodiment.
  • FIG. 11 is a schematic diagram of a crystal growth apparatus that can be used in the GaN crystal manufacturing method according to the embodiment.
  • FIG. 12 is a graph showing the relationship between the product of GaCl 3 partial pressure and NH 3 partial pressure in the growth zone and the growth rate of GaN.
  • FIG. 13 shows an SEM image of a GaN island formed on a GaN substrate by SAG.
  • FIG. 13A is a planar image and FIG. 13B is a bird's-eye view (photo).
  • 14A and 14B show SEM images of GaN islands formed on a GaN substrate by SAG.
  • FIG. 14A is a planar image and FIG. 14B is a bird's-eye view (photo).
  • FIG. 15 shows an SEM image of a GaN island formed on a GaN substrate by SAG.
  • FIG. 15A is a planar image and FIG. 15B is a bird's-eye view (photograph).
  • FIG. 16 shows an SEM image of a GaN island formed on a GaN substrate by SAG.
  • FIG. 16A is a planar image and FIG.
  • FIG. 16B is a bird's-eye view (photo).
  • FIG. 17A is a bird's-eye view SEM image of a GaN island formed on a GaN (000-1) substrate by SAG
  • FIG. 17B is formed on a GaN (10-10) substrate by SAG.
  • This is a bird's-eye view SEM image of a GaN island (photo).
  • FIG. 18A is a bird's-eye view SEM image of a GaN island formed on a GaN (000-1) substrate by SAG
  • FIG. 18B is formed on a GaN (10-10) substrate by SAG. This is a bird's-eye view SEM image of a GaN island (photo).
  • GaN has a wurtzite crystal structure belonging to the hexagonal system.
  • the crystal axis parallel to [0001] and [000-1] is called the c axis
  • the crystal axis parallel to ⁇ 10-10> is called the m axis
  • the crystal axis parallel to ⁇ 11-20> is called the a axis.
  • the crystal plane orthogonal to the c-axis is referred to as C-plane (C-plane)
  • the crystal plane orthogonal to the m-axis is referred to as M-plane (M-plane)
  • the crystal plane orthogonal to the a-axis is referred to as A-plane.
  • the GaN surface orthogonal to the c-axis includes a (0001) surface (gallium polar surface) and a (000-1) surface (nitrogen polar surface). These surfaces are also called polar surfaces.
  • a GaN surface parallel to the c-axis that is, a GaN surface having a Miller index ⁇ hkil ⁇ of 1 (zero) such as a ⁇ 10-10 ⁇ surface or a ⁇ 11-20 ⁇ surface is called a nonpolar surface.
  • a GaN crystal surface that is neither a polar surface nor a nonpolar surface is called a semipolar surface.
  • a crystal axis, a crystal surface, a crystal orientation, etc. unless otherwise specified, it means the crystal axis, crystal surface, crystal orientation, etc. of GaN.
  • the GaN crystal manufacturing method includes the following two steps as shown in the flowchart of FIG. (S1) A step of preparing a GaN seed crystal, wherein the normal direction of the GaN seed crystal is non-polar or semi-polar with an angle of 85 ° or more and less than 170 ° with the [0001] direction of the GaN seed crystal A seed preparation step having a polar surface. (S2) A growth step of growing GaN from the vapor phase using GaCl 3 and NH 3 as raw materials on the surface including the nonpolar or semipolar surface of the GaN seed crystal prepared in the seed crystal preparation step.
  • the GaN seed crystal prepared in the seed crystal preparation step (S1) may have two or more nonpolar or semipolar surfaces. In that case, at least one of the two or more nonpolar or semipolar surfaces, It is sufficient that the condition that the direction of the line forms an angle of 85 ° or more and less than 170 ° with the [0001] direction of the GaN seed crystal.
  • the GaN crystal manufacturing method according to the embodiment may include other steps in addition to the seed crystal preparation step and the growth step.
  • GaN seed crystal [1] GaN substrate
  • a GaN seed crystal is used.
  • the GaN seed crystal can be a GaN substrate or part of a GaN substrate.
  • FIG. 2 is a perspective view showing an example of a GaN substrate that can be used as a seed crystal in the GaN crystal manufacturing method according to the embodiment.
  • the GaN substrate 10 has a first main surface 11 that is a main surface on one side and a second main surface 12 that is a main surface on the opposite side. The first main surface and the second main surface are connected via the side surface 13.
  • the first main surface 11 and the second main surface 12 of the GaN substrate 10 are rectangular, but are not limited, and may be circular, hexagonal, or any other shape.
  • the first main surface 11 and the second main surface 12 are usually parallel to each other.
  • the area of the first main surface 11 is usually 1 cm 2 or more, preferably 2 cm 2 or more, more preferably 4 cm 2 or more, more preferably 10 cm 2 or more.
  • the area of the first main surface 11 may be 10 cm 2 or more and less than 40 cm 2 , 40 cm 2 or more and less than 60 cm 2 , 60 cm 2 or more and less than 120 cm 2 , 120 cm 2 or more and less than 180 cm 2 , or 180 cm 2 or more.
  • the thickness t of the GaN substrate 10 is usually 200 ⁇ m or more, preferably 250 ⁇ m or more, and more preferably 300 ⁇ m or more. The thickness t can be further increased according to the area of the first main surface 11.
  • a portion of the GaN substrate 10 including at least the first main surface 11 is composed of a GaN single crystal. That is, the first main surface 11 is the surface of a GaN single crystal.
  • 3 shows the GaN single crystal 1 constituting the portion including the first main surface 11 of the GaN substrate 10 as viewed from a direction parallel to the intersection line between the C-plane of the GaN single crystal 1 and the first main surface. It shows the place.
  • the first main surface 11 is the surface of the GaN single crystal 1.
  • the line of intersection between the C-plane of the GaN single crystal 1 and the first main surface 11 is perpendicular to the paper surface.
  • the normal direction Dn of the first main surface 11 forms an angle ⁇ with the [0001] direction of the GaN single crystal 1.
  • the angle ⁇ is 85 ° or more and less than 170 °.
  • the angle ⁇ is 85 ° or more and less than 90 °, 90 ° or more and less than 93 °, 93 ° or more and less than 97 °, 97 ° or more and less than 102 °, 102 ° or more and less than 107 °, 107 ° or more and 112 It may be less than °, 112 ° or more and less than 122 °, 122 ° or more and less than 132 °, or the like.
  • the angle ⁇ formed between the normal direction Dn of the first main surface 11 and the [0001] direction of the GaN single crystal 1 is 87 ° or less or 93 ° or more.
  • the angle ⁇ is in the range of 90 ° ⁇ about 2 °, when GaN is epitaxially grown on the first main surface in the growth step described later, a GaN crystal having a relatively low quality tends to be formed. Because there is.
  • the normal direction Dn of the first main surface 11 and the [0001] direction of the GaN single crystal 1 are obtained by rotating the former around the intersection line between the C surface of the GaN single crystal 1 and the first main surface 11 as a rotation axis. It is in a relationship overlapping with the latter.
  • the direction of the intersecting line is not limited, but is preferably an a-axis direction ⁇ 15 °, more preferably an a-axis direction ⁇ 5 °, more preferably an a-axis direction ⁇ 3 °, more preferably an a-axis.
  • the direction is ⁇ 2 °, more preferably ⁇ 1 ° in the a-axis direction.
  • the low index orientation of the GaN single crystal 1 that is parallel or closest to the normal direction of the first main surface 11 is ⁇ 10-10>, ⁇ 30-3-1>, ⁇ 20-2- 1>, ⁇ 30-3-2> or ⁇ 10-1-1>.
  • a crystal orientation in which the absolute values of the integers h, k, i, and l in the Miller index ⁇ hkil> are all 3 or less is referred to as a low index orientation.
  • the angle formed by the direction of the normal and the [0001] direction of the GaN single crystal 1 is 90 °.
  • the direction of the line of intersection between the first main surface 11 and the C-plane of the GaN single crystal 1 is the a-axis direction.
  • the angle formed by the direction of the normal and the [0001] direction of the GaN single crystal 1 is 100. 1 °, and the direction of the line of intersection between the first main surface 11 and the C-plane of the GaN single crystal 1 is the a-axis direction.
  • the angle formed by the direction of the normal and the [0001] direction of the GaN single crystal 1 is 104. 9 °, and the direction of the line of intersection between the first main surface 11 and the C-plane of the GaN single crystal 1 is the a-axis direction.
  • the angle formed by the direction of the normal and the [0001] direction of the GaN single crystal 1 is 109.
  • the direction of the intersection line between the first main surface 11 and the C-plane of the GaN single crystal 1 is the a-axis direction.
  • the angle formed by the direction of the normal and the [0001] direction of the GaN single crystal 1 is 118 °.
  • the direction of the intersection line between the first main surface 11 and the C-plane of the GaN single crystal 1 is the a-axis direction.
  • the angle formed by the direction of the normal line and the [0001] direction of the GaN single crystal 1 is 128. It is 6 °, and the direction of the line of intersection between the first main surface 11 and the C-plane of the GaN single crystal 1 is the a-axis direction.
  • the GaN substrate 10 is preferably a GaN single crystal substrate. It is known that GaN single crystal substrates having various plane orientations can be produced by slicing bulk GaN single crystals grown by various methods such as HVPE, flux, and sublimation in any direction. ing. For example, WO 2008/059875 discloses a large-area nonpolar or semipolar GaN single crystal substrate cut out from a bulk GaN crystal grown on a plurality of rectangular substrates arranged adjacent to each other. .
  • the GaN substrate 10 may be a template substrate composed of a base substrate and a GaN single crystal layer epitaxially grown on the base substrate.
  • the first main surface 11 corresponds to the surface of the GaN single crystal layer.
  • the base substrate is typically a single crystal substrate (hetero substrate) made of a material having a composition different from that of GaN, such as a sapphire substrate, spinel substrate, AlN substrate, SiC substrate, Si substrate, or the like.
  • the epitaxial growth method may be a vapor phase growth method such as MOVPE or HVPE, or a flux method.
  • the GaN substrate 10 may be a GaN layer bonded substrate composed of a base substrate and a GaN single crystal layer bonded to the base substrate.
  • the first main surface 11 corresponds to the surface of the GaN single crystal layer.
  • the GaN layer bonded substrate is formed by a method of cutting the bulk GaN single crystal so that the GaN single crystal layer remains on the base substrate side after the bulk GaN single crystal is bonded to the base substrate.
  • the base substrate may be various single crystal substrates, and may be a metal substrate, a ceramic substrate, a polycrystalline GaN substrate, or the like.
  • the first main surface 11 of the GaN substrate 10 is planarized by mechanical polishing (grinding, lapping, etc.), and then subjected to dry etching and / or removal in order to remove crystal defects introduced by the mechanical polishing. It is a finished surface that includes CMP (Chemical Mechanical Polishing).
  • the first major surface 11 of the GaN substrate 10 can be an as-grown GaN surface.
  • a pattern mask for generating SAG can be disposed on the first main surface 11 of the GaN substrate 10.
  • the material of the pattern mask is, for example, SiN x .
  • vapor phase growth of GaN from GaCl 3 and NH 3 is inhibited.
  • an amorphous inorganic thin film made of another material for example, a thin film of silicon oxide or silicon oxynitride can be used as a material for the pattern mask.
  • the pattern mask can be provided with a dot-shaped opening such as a circle or a regular polygon. For example, the dot-shaped openings can be arranged closest.
  • each opening is arranged at a lattice position of the equilateral triangle lattice (vertex of the equilateral triangle).
  • the pattern mask can be provided with a linear opening. Therefore, the pattern mask may be a stripe mask.
  • the GaN seed crystal used in the GaN crystal manufacturing method according to the embodiment may be a GaN crystal having a three-dimensional shape.
  • the ratio between the size in the c-axis direction and the size in an arbitrary direction orthogonal to the c-axis is preferably 0.1 or more and 10 or less.
  • the ratio may be 0.2 or more, further 0.3 or more, and may be 5 or less, further 3 or less. Examples of the shape of a three-dimensional GaN seed crystal that can be used in the GaN crystal manufacturing method according to the embodiment are shown in FIGS.
  • the GaN seed crystal shown in FIG. 4 includes a hexagonal column portion having a ⁇ 10-10 ⁇ facet as a side surface, a first hexagonal pyramid portion having a ⁇ 10-1-1 ⁇ facet as a side surface, and a ⁇ 10-11 ⁇ facet. And a second hexagonal pyramid portion having a side surface.
  • the first hexagonal pyramid portion is disposed on the [000-1] side of the hexagonal column portion, and the second hexagonal pyramid portion is disposed on the [0001] side of the hexagonal column portion.
  • the GaN seed crystal shown in FIG. 4 can be manufactured by a liquid phase growth method such as a Na flux method or an ammonothermal method.
  • the GaN seed crystal shown in FIG. 5 includes a hexagonal prism portion having a ⁇ 10-10 ⁇ facet as a side surface and a hexagonal pyramid disposed on the [000-1] side and having a ⁇ 10-1-1 ⁇ facet as a side surface. And have a part.
  • the [0001] side of the hexagonal column portion terminates at the (0001) surface.
  • the GaN seed crystal shown in FIG. 5 can be manufactured, for example, by removing the second hexagonal pyramid portion from the GaN seed crystal shown in FIG. 4 by cutting or polishing.
  • the GaN seed crystal shown in FIG. 6 has a hexagonal prism portion having a ⁇ 10-10 ⁇ facet as a side surface and a hexagonal pyramid portion disposed on the [0001] side thereof and having a ⁇ 10-11 ⁇ facet as a side surface. is doing.
  • the [000-1] side of the hexagonal column portion terminates at the (000-1) surface.
  • the GaN seed crystal shown in FIG. 6 can be manufactured, for example, by removing the first hexagonal pyramid portion from the GaN seed crystal shown in FIG. 4 by cutting or polishing.
  • FIG. 7 is a perspective view showing still another example of the GaN seed crystal prepared in the seed crystal preparation step.
  • the GaN seed crystal shown in FIG. 7 has a hexagonal column portion with ⁇ 10-10 ⁇ facets as side surfaces and a (000-1) facet disposed on the [000-1] side of the top surface, with ⁇ 10-1 -1 ⁇ and a hexagonal frustum portion having a facet as a side surface.
  • the [0001] side of the hexagonal column portion terminates at the (0001) surface.
  • the GaN seed crystal shown in FIG. 7 can be manufactured using, for example, a crystal growth method disclosed in Japanese Patent Application Laid-Open No. 2013-212978.
  • the GaN seed crystal shown in FIG. 8 has a hexagonal frustum shape having a (000-1) facet as a top surface, a (0001) facet as a bottom surface, and a ⁇ 10-1-1 ⁇ facet as a side surface.
  • the GaN seed crystal shown in FIG. 8 can be manufactured using, for example, the crystal growth method disclosed in Japanese Patent Application Laid-Open No. 2013-212978.
  • FIG. 9 shows a GaN seed crystal that can be manufactured using the crystal growth method disclosed in Japanese Patent Application Laid-Open No. 2013-212978.
  • FIG. 9 (a) is a perspective view, and FIG. It is sectional drawing when cut
  • the ⁇ 10-10 ⁇ facet and the ⁇ 10-1-1 ⁇ facet can be an as-grown surface. Alternatively, these facets may be etched surfaces.
  • a vapor phase growth apparatus including a first zone, a second zone, and a growth zone can be preferably used to grow GaN from GaCl 3 and NH 3 .
  • Cl 2 and metal Ga react to generate GaCl.
  • GaCl produced in the first zone reacts with Cl 2 to produce GaCl 3 .
  • gaseous gallium chloride containing GaCl 3 reacts with NH 3, and the produced GaN grows epitaxially on the GaN seed crystal.
  • the vapor phase growth apparatus 100 includes a first reaction tube 110 and a second reaction tube 120.
  • the first zone Z1 and the second zone Z2 are provided in the first reaction tube 110, and the growth zone Z3 is provided in the second reaction tube 120.
  • the first reaction tube 110 and the second reaction tube 120 can be made of quartz, although not limited thereto.
  • Metal Ga is installed in the first zone Z ⁇ b> 1 in the first reaction tube 110.
  • the container for storing the metal Ga is, for example, a quartz boat.
  • the first reaction tube 110 has a first Cl 2 supply port 111 provided on the upstream side of the first zone Z1 and a second Cl 2 supply port 112 provided on the downstream side of the first zone Z1. .
  • the second zone Z2 starts from the position of the second Cl 2 supply port 112 and extends toward the downstream side.
  • External heating means (not shown) is arranged outside the first reaction tube 110, and the first zone Z1 and the second zone Z2 can be heated independently by the external heating means. Examples of the external heating means include a resistance heater, an induction heater, and a lamp heater.
  • GaCl generated by the following reaction.
  • (l), (s), and (g) indicate that the substance is a liquid, a solid, and a gas, respectively (the same applies hereinafter).
  • Cl 2 is introduced from the second Cl 2 supply port 112, is reacted with gaseous gallium chloride which is transported from the first zone Z1.
  • the main reaction is the following GaCl 3 production reaction.
  • the first reaction tube 110 has a gas outlet 113 at the downstream end.
  • the downstream portion of the first reaction tube 110 is inserted into the second reaction tube 120, and gallium chloride generated in the first reaction tube is transported into the second reaction tube 120 through the gas outlet 113.
  • the second reaction tube 120 has an NH 3 supply port 121 provided on the upstream side of the growth zone Z3 and an exhaust port 122 provided on the downstream side of the growth zone Z3.
  • the gas outlet 113 of the first reaction tube 110 is located upstream of the growth zone Z3.
  • a susceptor 130 for placing a GaN seed crystal is installed in the growth zone Z3.
  • the susceptor 130 is made of carbon, for example.
  • external heating means (not shown) for heating the GaN seed crystal installed on the susceptor 130 together with the susceptor is disposed.
  • the external heating means include a resistance heater, an induction heater, and a lamp heater.
  • a resistance heater may be provided inside the susceptor 130 instead of or in addition to the external heating means.
  • gallium chloride containing GaCl 3 reacts with NH 3 to generate GaN.
  • the generated GaN grows epitaxially on the GaN seed crystal.
  • the vapor phase growth apparatus used in the growth step may have the same basic configuration as the vapor phase growth apparatus shown in FIG. An example of such a vapor phase growth apparatus is shown in FIG. In FIG. 11, the same reference numerals are given to the configurations corresponding to the configurations included in the vapor phase growth apparatus illustrated in FIG. 10.
  • the first reaction tube 110 is an L-shaped tube, and only the downstream portion including the gas outlet 113 is inserted into the second reaction tube 120, whereas in the apparatus of FIG. 110 is a straight pipe, and the whole is installed inside the second reaction pipe 120.
  • the funnel shape gradually reduces the cross-sectional area of the flow path from the upstream side toward the downstream side.
  • a tube 114 is provided.
  • the purpose is to increase the Cl 2 partial pressure in the first zone Z1 by increasing the downstream flow path resistance and improve the generation efficiency of GaCl in the same zone.
  • the production efficiency of GaCl 3 is improved by providing the baffle 115 in the second zone Z2. By installing the baffle, the flow path length is extended, and the time for GaCl and Cl 2 to stay in the second zone is increased. In addition, the effect of promoting the mixing of GaCl and Cl 2 by disturbing the gas flow can be expected.
  • the gas outlet 113 of the first reaction tube 110 has a double tube structure, and gallium chloride gas is released from the inner tube and barrier gas is released from the outer tube.
  • the barrier gas N 2 (nitrogen gas) or a rare gas (Ar or the like) which is an inert gas is used.
  • the first reaction tube 110 and the second reaction tube 120 can be appropriately provided with a gas supply port dedicated to the carrier gas.
  • the carrier gas N 2 (nitrogen gas) or a rare gas (Ar or the like) which is an inert gas is used.
  • the L-shaped first reaction tube 110 may be arranged so that one of the straight portions is vertical and the other is horizontal, or both of the straight portions are horizontal. You may arrange
  • the directions of the first reaction tube 110 and the second reaction tube 120 may be either vertical or horizontal, or may be inclined.
  • a mechanism for rotating the susceptor 130 can be provided as appropriate.
  • vapor phase growth apparatus that can be preferably used for the vapor phase growth of GaN using GaCl 3 and NH 3 as raw materials has been described above. It is not limited to what has been described. For example, as disclosed in Patent Document 1, it is also possible to use a vapor phase growth apparatus of the type generating gas GaCl 3 to vaporize solid GaCl 3.
  • GaN can be vapor grown on a GaN seed crystal by the following procedure. First, a GaN seed crystal is set on the susceptor 130 disposed in the second reaction tube 120. In the first zone Z1 of the first reaction tube 110, a quartz boat containing metal gallium is installed.
  • a carrier gas is flowed into the first reaction tube 110 and the second reaction tube 120, and the atmosphere inside these reaction tubes is set as a carrier gas atmosphere.
  • an inert gas N 2 or a rare gas is used as the carrier gas.
  • Barrier gas may also begin to flow at this timing.
  • the carrier gas can be introduced into the reaction tube through a Cl 2 supply port or an NH 3 supply port, or can be introduced into the reaction tube through a supply port dedicated to an inert gas provided in the reaction tube as appropriate.
  • the GaN seed crystal is heated to a predetermined growth temperature using an external heating means (not shown).
  • the growth temperature is usually 900 ° C. or higher.
  • GaN can be grown at a growth rate sufficient for practical use even at a growth temperature of 1200 ° C. or higher, or even 1300 ° C. or higher.
  • the growth temperature is preferably less than 1500 ° C. in order to prevent the malfunction of the vapor phase growth apparatus due to thermal deterioration of components including the reaction tube, More preferably, the temperature is less than 1400 ° C.
  • the pressure in the second reaction tube 120 (growth zone pressure) is, for example, in the range of 0.8 to 1.2 atm using an external exhaust means (for example, a fan) connected to the exhaust port 122 of the second reaction tube. Adjust so that it is a constant value.
  • the first reaction tube is heated to a predetermined temperature using an external heating means (not shown) before the GaN seed crystal reaches a predetermined growth temperature.
  • an external heating means not shown
  • the temperature of the first zone Z1 is preferably 500 ° C. or higher, more preferably 700 ° C. or higher.
  • the temperature of the first zone Z1 is preferably 1000 ° C. or lower, more preferably 900 ° C. or lower, more preferably 850 ° C. or lower.
  • the second zone Z2 is heated to a temperature at which GaCl supplied from the first zone Z1 does not precipitate on the reaction tube wall.
  • the temperature of the second zone Z2 may be less than 200 ° C. because most of the gallium chloride species produced are dimers of gallium trichloride represented by GaCl 3 or (GaCl 3 ) 2 . This dimer changes to GaCl 3 in the growth zone Z3 heated to a high temperature.
  • the temperature of the second zone Z2 is preferably 500 ° C.
  • the temperature of the second zone Z2 is preferably 1000 ° C. or lower, more preferably 900 ° C. or lower, and more preferably 850 ° C. or lower. From the viewpoint of stabilizing the gas flow, the temperature of the second zone Z2 is preferably the same as the temperature of the first zone Z1.
  • the Cl 2 was supplied from each of the first Cl 2 supply port 111 and the second Cl 2 supply port 112 to the first reaction tube 110, to produce a gallium chloride .
  • Cl 2 is introduced into the first reaction tube 110 together with the carrier gas as necessary.
  • the carrier gas N 2 which is an inert gas or a rare gas is used.
  • the flow rate of Cl 2 supplied to the first reaction tube 110 and the flow rate of NH 3 supplied to the second reaction tube 120 are the total pressure and Cl 2 partial pressure in each of the first zone Z1 and the second zone Z2, and the growth.
  • the total pressure, the GaCl 3 partial pressure, and the NH 3 partial pressure in the zone Z3 are set to be within desired ranges, respectively.
  • the Cl 2 partial pressure is 1.0 ⁇ 10 ⁇ 3 atm or more and the total pressure is 0.8 to 1.2 atm.
  • the Cl 2 partial pressure is 2.0 ⁇ 10 ⁇ 3 atm or more, and the total pressure is 0.8 to 1.2 atm.
  • the GaCl 3 partial pressure is 9.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 ⁇ 1 atm
  • the NH 3 partial pressure is 5.0 ⁇ 10 ⁇ 2 to 2.5 ⁇ 10 ⁇ 1 atm
  • the total pressure is 0.8 to 1.2 atm.
  • the GaCl 3 partial pressure in the growth zone Z3 is the partial pressure of GaCl 3 supplied to the GaN seed crystal.
  • the GaCl 3 partial pressure in the growth zone Z3 may be lower than 9.0 ⁇ 10 ⁇ 3 atm, for example, 1.5 ⁇ 10 ⁇ 3 atm or more and less than 2.4 ⁇ 10 ⁇ 3 atm, 2.4 ⁇ 10 -3 atm or more and less than 4.1 ⁇ 10 ⁇ 3 atm, or 4.1 ⁇ 10 ⁇ 3 atm or more and less than 9.0 ⁇ 10 ⁇ 3 atm.
  • the growth rate of GaN can be controlled by the partial pressure of GaCl 3 and NH 3 supplied to the GaN seed crystal.
  • the product of GaCl 3 partial pressure and NH 3 partial pressure in the growth zone Z3 is 9.5 ⁇ 10 ⁇ 5 atm 2 or more and less than 3.2 ⁇ 10 ⁇ 4 atm 2 , 3.2 ⁇ 10 ⁇ 4 atm 2 or 7.0 ⁇ 10 -4 atm less than 2 may be set to 7.0 ⁇ 10 -4 atm 2 or 9.8 ⁇ 10 -4 atm less than 2, or 9.8 ⁇ 10 -4 atm 2 or more.
  • the supply of Cl 2 to the first reaction tube 110 is stopped to stop the supply of gallium chloride to the growth zone Z3.
  • heating of the GaN seed crystal is stopped, and the reaction tube temperature of the second reaction tube is lowered to room temperature.
  • NH 3 and a carrier gas are allowed to flow in the second reaction tube 120 even during the temperature drop.
  • GaN can be grown from GaCl 3 and NH 3 on the basis that the normal direction is an angle of 85 ° or more and 180 ° or less with the [0001] direction of the GaN seed crystal. It is the surface which forms.
  • the growth rate of GaN on such a surface can be 1 ⁇ m / h or more.
  • the growth rate is 1 ⁇ m / h or more and less than 5 ⁇ m / h, 5 ⁇ m / h or more and less than 10 ⁇ m / h, 10 ⁇ m / h or more and less than 15 ⁇ m / h, 15 ⁇ m / h or more and less than 20 ⁇ m / h, 20 ⁇ m / h or more and Less than 25 ⁇ m / h, 25 ⁇ m / h or more and less than 50 ⁇ m / h, 50 ⁇ m / h or more and less than 75 ⁇ m / h, 75 ⁇ m / h or more and less than 100 ⁇ m / h, 100 ⁇ m / h or more and less than 125 ⁇ m / h, 125 ⁇ m / h or more and Less than 150 ⁇ m / h, 150 ⁇ m / h or more and less than 175 ⁇ m / h, 175
  • the growth rate of GaN on a certain GaN surface can be examined by growing a GaN crystal layer on the GaN surface and dividing the thickness of the GaN crystal layer by the growth time.
  • the growth time can be from the time when the Cl 2 supply to the first reaction tube is started to the time when the Cl 2 supply is stopped.
  • the time from the start of supply of GaCl 3 into the growth chamber to the stop of supply can be used as the growth time.
  • the growth rate of GaN is preferably less than 150 ⁇ m / h, more preferably less than 125 ⁇ m / h.
  • An exception is when a GaN crystal is grown on the ⁇ 10-1-1 ⁇ surface of GaN.
  • a GaN crystal grown at a rate of 200 ⁇ m / h or more is grown at a rate of about 100 ⁇ m / h.
  • the GaN grown on the GaN substrate may be a film having a thickness equal to or less than the thickness of the GaN substrate, or on the main surface of the GaN substrate. It may be a bulk crystal whose maximum growth height exceeds the thickness of the GaN substrate.
  • the growth height here means the height of the bulk GaN crystal grown on the surface of the underlying GaN when the surface of the underlying GaN is used as a reference plane, in other words, from the surface of the underlying GaN to the bulk GaN crystal. It is the distance to the upper surface of.
  • the maximum growth height is a growth height at a position where the growth height is maximum.
  • the maximum growth height on the main surface of the GaN substrate is 300 ⁇ m or more and less than 500 ⁇ m, 500 ⁇ m or more and less than 1 mm, 1 mm or more and less than 3 mm, 3 mm or more and less than 5 mm It may be 5 mm or more and less than 10 mm, 10 mm or more and less than 25 mm, 25 mm or more and less than 50 mm, 50 mm or more and less than 75 mm, 75 mm or more and less than 100 mm, 100 mm or more and less than 200 mm.
  • GaN seed crystal has two or more surfaces on which vapor phase epitaxial growth of GaN using GaCl 3 and NH 3 as raw materials can occur, GaN is grown on each of the surfaces at the aforementioned growth rate.
  • the GaN seed crystal shown in FIG. 4 or FIG. 5 at least 1 ⁇ m / h on each of six ⁇ 10-10 ⁇ facets and six ⁇ 10-1-1 ⁇ facets GaN can be grown at a growth rate.
  • GaN seed crystal shown in FIG. 7 when the GaN seed crystal shown in FIG. 7 is used, 1 ⁇ m is formed on each of six ⁇ 10-10 ⁇ facets, six ⁇ 10-1-1 ⁇ facets, and (000-1) facets.
  • GaN can be grown at a growth rate of at least / h.
  • the growth of GaN on the GaN seed crystal can be repeated intermittently. In other words, GaN can be grown in multiple steps.
  • the second and subsequent growths in this case are generally called regrowth.
  • the crystal growth apparatus and / or crystal growth conditions used in the n-th growth and the (n + 1) -th growth may be the same or different. Good [where N is an integer of 2 or more, and n is an integer of 1 to (N ⁇ 1)]. Further, before the (n + 1) th growth, a cleaning process including etching can be performed on the surface of the crystal formed by the nth growth.
  • GaN is grown by adding a trace amount of oxygen gas (O 2 ) to the carrier gas or introducing an inert gas to which a trace amount of oxygen gas is added into the second reaction tube 120 together with other gases.
  • Oxygen (O) acts as a donor in GaN and generates n-type carriers, so that oxygen-doped GaN exhibits n-type conductivity.
  • GaN crystal manufacturing method can be used for various applications such as formation of GaN films for nitride semiconductor devices and manufacture of bulk GaN crystals.
  • a nitride semiconductor device is a semiconductor device using a nitride semiconductor as a main part of a device structure.
  • Nitride semiconductors are also called nitride-based III-V compound semiconductors, III-nitride compound semiconductors, GaN-based semiconductors, etc.
  • some or all of Ga in GaN may have other periods. Including compounds substituted by Table 13 group elements (B, Al, In, etc.). Specifically, AlN, InN, AlGaN, AlInN, GaInN, AlGaInN, etc. are exemplified.
  • nitride semiconductor devices include light emitting devices such as light emitting diodes and laser diodes, rectifiers, bipolar transistors, field effect transistors, electronic devices such as HEMT (High Electron Mobility Transistor), temperature sensors, pressure sensors, radiation sensors, There are semiconductor sensors such as visible-ultraviolet light detectors, SAW (Surface Acoustic Wave) devices, vibrators, resonators, oscillators, MEMS (Micro Electro Mechanical System) parts, voltage actuators, solar cells, and the like.
  • the bulk GaN crystal manufactured using the GaN crystal manufacturing method according to the embodiment can be used as a material for a GaN wafer (GaN single crystal substrate). That is, a GaN wafer can be manufactured by manufacturing a bulk GaN crystal using the GaN crystal manufacturing method according to the embodiment and processing the bulk GaN crystal. Depending on the size of the bulk GaN crystal and the size of the GaN wafer to be manufactured, necessary processing can be appropriately selected from grinding, lapping, CMP, etching, slicing, hollowing, laser processing, and the like. When the size of the bulk GaN crystal is sufficiently large, a GaN wafer having an arbitrary plane orientation can be obtained by slicing the bulk GaN crystal in an arbitrary direction.
  • the obtained GaN wafers are ⁇ 10-10 ⁇ wafer, ⁇ 30-3-1 ⁇ wafer, ⁇ 20-2-1 ⁇ wafer, ⁇ 30-3-2 ⁇ wafer, ⁇ 10-1-1 ⁇ wafer, ⁇ 30-31 ⁇ wafer, ⁇ 20-21 ⁇ wafer, ⁇ 30-32 ⁇ wafer, ⁇ 10-11 ⁇ wafer, (0001) wafer or (000-1) wafer.
  • the plane orientation given to the name of the GaN wafer is the orientation of the low index plane that is parallel or most parallel to the main surface that is finished so as to be usable for epitaxial growth among the main surfaces of the wafer.
  • a GaN wafer having a (30-3-1) surface that has been brought to an epi-ready state by CMP processing is called a ⁇ 30-3-1 ⁇ wafer.
  • the actual major surface of a wafer is often tilted slightly from the low index plane assigned to the wafer designation.
  • Such wafers are sometimes referred to as being “off cut”. This angle of inclination is referred to as the off-angle and is typically 5 ° or less and can be 4 ° or less, 3 ° or less, 2 ° or less, or 1 ° or less.
  • the slicing of the bulk GaN crystal can be performed using a wire saw, an inner peripheral slicer or the like.
  • the as-sliced surface of a blank wafer obtained by slicing is planarized by mechanical polishing (grinding and / or lapping), and then subjected to mechanical polishing by one or more processes selected from CMP, dry etching, and wet etching.
  • CMP chemical vapor deposition
  • dry etching dry etching
  • wet etching wet etching
  • a GaN wafer can be preferably used as a substrate for a nitride semiconductor device. That is, various device structures can be formed by growing one or more nitride semiconductor thin films on a GaN wafer using thin film formation techniques such as MOCVD, MBE, pulse deposition, and sputtering. In addition, the GaN wafer can be used as a seed crystal for growing a bulk GaN crystal.
  • the vapor phase growth apparatus includes a quartz first reaction tube having a first zone and a second zone inside, and a quartz second reaction tube having a growth zone inside.
  • Cl 2 and metal Ga react to generate GaCl in the first zone
  • GaCl generated in the first zone reacts with Cl 2 to generate GaCl 3 in the second zone
  • GaCl 3 in the growth zone The gaseous gallium chloride containing 3 reacts with NH 3, and the produced GaN grows epitaxially on the GaN seed crystal.
  • the “first main surface” of a GaN substrate refers to the main surface on which a GaN crystal is tried to grow or the main surface used for the growth of the GaN crystal.
  • GaN substrates A to I having different plane orientations shown in Table 1 below were prepared as seed crystals.
  • the GaN substrates A to I are all GaN single crystal substrates, and the fabrication procedure is as follows.
  • A) A bulk GaN crystal was grown on a C-plane GaN / sapphire template by HVPE using hydrogen chloride (HCl).
  • B) The bulk GaN crystal was sliced with a wire saw to obtain an as-sliced substrate having a predetermined plane orientation.
  • C After each main surface of the as-sliced substrate was flattened by mechanical polishing, the damage layer and scratches formed by the mechanical polishing were removed by CMP (chemical mechanical polishing).
  • the plane orientation of the first main surface of the GaN substrate E is (10-10) for convenience, and the plane orientation of the first main surface of the GaN substrate E is (10-10) and ( 30-3-1).
  • the above-mentioned vapor phase growth apparatus whether or not GaN growth from GaCl 3 and NH 3 occurs on each first main surface of the GaN substrates A to I was examined.
  • the conditions were as shown in Table 2 below, and the growth time was 2 hours.
  • the Cl 2 partial pressure in the first zone shown in Table 2 was calculated by the following formula 1.
  • P1 (Cl 2 ) P1 (t) ⁇ F1 (Cl 2 ) / ⁇ F1 (Cl 2 ) + F1 (N 2 ) ⁇ Equation 1
  • P1 (Cl 2) Cl 2 partial pressure in the first zone.
  • P1 (t) Total pressure in the first zone (1 atm).
  • F1 (Cl 2 ) The flow rate of Cl 2 supplied to the first zone.
  • F1 (N 2 ) Flow rate of carrier gas (N 2 ) supplied to the first zone.
  • the Cl 2 partial pressure in the second zone shown in Table 2 was calculated by the following formula 2.
  • P2 (Cl 2 ) P2 (t) ⁇ F2 (Cl 2 ) / ⁇ F1 (N 2 ) + F2 (Cl 2 ) + F2 (N 2 ) ⁇ Equation 2
  • P2 (Cl 2) Cl 2 partial pressure in the second zone.
  • P2 (t) Total pressure in the second zone (1 atm).
  • F1 (N 2 ) Flow rate of carrier gas (N 2 ) supplied to the first zone.
  • F2 (Cl 2) flow rate of the supplied Cl 2 in the second zone.
  • F2 (N 2 ) Flow rate of carrier gas (N 2 ) supplied to the second zone.
  • PG (NH 3 ) PG (t) ⁇ FG (NH 3 ) / ⁇ F1 (N 2 ) + F2 (Cl 2 ) + F2 (N 2 ) + FG (NH 3 ) + FG (N 2 ) ⁇ Formula 3
  • PG (NH 3 ) NH 3 partial pressure in the growth zone.
  • PG (t) total pressure in the growth zone (1 atm).
  • F1 (N 2 ) Flow rate of carrier gas (N 2 ) supplied to the first zone.
  • F2 (Cl 2) flow rate of the supplied Cl 2 in the second zone.
  • F2 (N 2 ) Flow rate of carrier gas (N 2 ) supplied to the second zone.
  • FG (NH 3 ) Flow rate of NH 3 supplied to the growth zone.
  • FG (N 2 ) Flow rate of carrier gas (N 2 ) supplied to the growth zone.
  • the GaN substrates A to E in which the angle formed between the normal direction of the first main surface and the [0001] direction of the GaN substrate is 95 ° or more, GaN having a thickness exceeding 100 ⁇ m on the first main surface. It turns out that the layer is growing.
  • the GaN substrates F to I having the angle of 80 ° or less, the growth of GaN on the first main surface could not be recognized.
  • the growth rate of GaN calculated from the thickness and growth time of the GaN layer grown on each first main surface was 88 ⁇ m / h for GaN substrate A, but 100 ⁇ m / h for GaN substrates B to D. On the GaN substrate E, it exceeded 200 ⁇ m / h. In the calculation of the growth rate, when the thickness of the GaN layer was not uniform within the layer, the maximum thickness (thickness at the position where the thickness was maximum) was used. From the X-ray rocking curve measurement, it was confirmed that each GaN layer grown on the GaN substrates A to E was a single crystal layer formed by epitaxial growth. The X-ray rocking curve measurement was performed using an X-ray diffractometer using CuK ⁇ as a radiation source (the same applies to the X-ray rocking curve measurement in other experiments). The results obtained in Experiment 1 are summarized in Table 3.
  • the GaN substrates J and K are GaN single crystal substrates, and were produced by the same method as the GaN substrates A to I described above.
  • the GaN substrate J was a (10-10) substrate (M-plane substrate) having an off angle of + 1 ° in the [0001] direction and 3 ° in the a-axis direction.
  • the GaN substrate K was a (10-10) substrate (M-plane substrate) having an off angle of + 3 ° in the [0001] direction and 3 ° in the a-axis direction.
  • FIG. 12 is a graph showing the results shown in Table 8. As shown in FIG. 12, the growth rate of GaN is substantially proportional to the product of the GaCl 3 partial pressure and the NH 3 partial pressure in the growth zone, and the GaN growth rate is adjusted by adjusting the partial pressure of the source gas. It turned out to be controllable.
  • Experiment 5 Using the same vapor phase growth apparatus as in Experiment 1, a GaN layer is grown from GaCl 3 and NH 3 on each of the first main surfaces of five types of GaN substrates (single crystal substrates) having different first main surface orientations. It was. The growth temperature was 1280 ° C. Table 9 shows the results of measuring the concentrations of oxygen (O) and silicon (Si) contained in the GaN layer grown on each GaN substrate by SIMS (Secondary Ion Mass Spectroscopy).
  • O oxygen
  • Si silicon
  • silicon was detected from any GaN layer. Since silicon was not intentionally added, the detected silicon is presumed to be derived from quartz which is a material of the reaction tube.
  • the silicon concentration of the GaN layer grown on the nonpolar or semipolar GaN surface is less than 2 ⁇ 10 17 atoms / cm 3 and the concentration in the GaN layer grown on the (000-1) surface is 8 ⁇ 10 17 atoms / cm 3. Or less than one-fourth. This suggests that growth on nonpolar or semipolar GaN surfaces is advantageous for controlling the carrier concentration by oxygen doping.
  • a GaN substrate L made of a GaN single crystal grown by an ammonothermal method was prepared.
  • the GaN substrate L is a (10-10) substrate (M-plane substrate) having an off angle of + 5 ° in the [0001] direction, and the angle formed between the normal direction of the first main surface and the [0001] direction. was 85 °.
  • the GaCl 3 partial pressure is 4.8 ⁇ 10 ⁇ 3 atm
  • the NH 3 partial pressure is 2 ⁇ 10 ⁇ 1 atm
  • the temperature is 1230 ° C. Whether or not GaN grows on the first main surface of L was examined.
  • the GaN layer grew at a rate of 40 ⁇ m / h.
  • X-ray rocking curve measurement confirmed that this GaN layer was a single crystal layer formed by epitaxial growth.
  • the measured FWHM (Full Width at Half Maximum) of the X-ray rocking curve of the (100) plane was 30 arcsec.
  • the GaN substrate M is a (10-10) substrate (M-plane substrate) without offcut, and the angle formed between the normal direction of the first main surface and the [0001] direction was 90 °.
  • the GaN substrate N is a (10-10) substrate (M-plane substrate) having an off angle of ⁇ 5 ° in the [0001] direction, and the normal direction of the first main surface and the [0001] direction are formed. The angle was 95 °.
  • GaN was grown on the first main surfaces of the GaN substrates M and N under the three conditions shown in Table 10 below.
  • Table 10 also shows the measurement result of the GaN growth rate under each condition and the FWHM of the (100) plane X-ray rocking curve measured in the grown GaN layer.
  • a monochromatic CL (Cathodoluminescence) image at a wavelength of 364 nm on the surface of the grown GaN layer was obtained at a temperature of 83K.
  • the surface of the GaN layer grown on the GaN substrate M under the conditions 2 or 3 shown in Table 10 has a region where stacking faults are concentrated.
  • Experiment 8 As a seed crystal, a GaN substrate O made of a GaN single crystal grown by an ammonothermal method was prepared.
  • the GaN substrate O is a (10-1-1) substrate, and the angle formed by the normal direction of the first main surface and the [0001] direction was 118 °.
  • GaN was grown on the first main surface of the GaN substrate O under the three conditions shown in Table 11 below. Table 11 also shows the measurement result of the growth rate of GaN under each condition and the FWHM of the (101) plane X-ray rocking curve measured with the grown GaN layer.
  • the (202) X-ray rocking curve of the GaN layer grown on the GaN substrate O under the condition 1 shown in Table 11 is converted into an X-ray diffractometer having a higher angular resolution [Panalytical X'Pert manufactured by Spectris Co., Ltd. Pro MRD].
  • a 1/2 ° divergence slit, a condensing mirror, a Ge (440) 4 crystal monochromator, and a cross slit of w0.2 mm ⁇ h1 mm were used.
  • the 0D mode of PIXcel3D registered trademark
  • the angular resolution of the optical system was 5-6 arcsec.
  • the X-ray beam size on the GaN layer surface was set to be 0.2 mm ⁇ 5 mm when the X-ray incident angle was 90 ° (the X-ray incident direction was orthogonal to the GaN layer surface). At the time of measurement, the direction in which the beam size was 5 mm and the X-ray incident surface were orthogonal to each other.
  • X-ray rocking curve measurement was first performed at seven measurement points on a straight line passing through the approximate center of the GaN layer surface and parallel to the a-axis. The pitch between measurement points was 1 mm. In each measurement, the X-ray incident surface was parallel to the a axis. That is, the ⁇ scan was performed by making X-rays incident on the surface of the GaN layer from a direction orthogonal to the c-axis. Between the seven measurement points on the straight line parallel to the a-axis, the maximum value of the FWHM of the (202) plane X-ray rocking curve was 26.8 arcsec, the minimum value was 14.9 arcsec, and the average value was 18.1 arcsec. .
  • measurement was performed at seven measurement points on a straight line passing through the approximate center of the GaN layer surface and orthogonal to the a-axis.
  • the pitch between measurement points was 1 mm.
  • the X-ray incident surface was perpendicular to the a axis. That is, the ⁇ scan was performed by making X-rays incident on the surface of the GaN layer from a direction orthogonal to the a-axis.
  • the maximum value of the FWHM of the (202) plane X-ray rocking curve was 18.9 arcsec, the minimum value was 13.3 arcsec, and the average value was 15.0 arcsec. .
  • Experiment 9 in order to investigate whether SAG (Selective Area Growth) of a GaN crystal using GaCl 3 and NH 3 as raw materials is possible, a first (000-1) substrate having the same quality as the GaN substrate A described above is used. On the first main surface of the GaN substrate P having a pattern mask disposed on the main surface and a (10-10) substrate having an off angle of ⁇ 5 ° in the [0001] direction with the same quality as the GaN substrate E described above A GaN substrate Q provided with a pattern mask was prepared.
  • a pattern mask disposed on each of the first main surfaces of the GaN substrate P and the GaN substrate Q is formed on an SiN x thin film having a thickness of 80 nm deposited by a plasma CVD method, using an ordinary photolithography and etching technique. It was formed by providing circular openings with a diameter of 5 ⁇ m, which were closely arranged at a pitch.
  • GaN was grown from GaCl 3 and NH 3 on the first main surfaces of the GaN substrate P and the GaN substrate Q.
  • the GaCl 3 partial pressure and the NH 3 partial pressure in the growth zone were 2.2 ⁇ 10 ⁇ 3 atm and 9.0 ⁇ 10 ⁇ 2 atm, respectively.
  • SAG was observed on both the GaN substrate P and the GaN substrate Q and at any growth temperature. That is, a GaN island was formed on the circular opening of the pattern mask by a short growth.
  • FIGS. 13 (a) and 13 (b) show a planar SEM image and a bird's-eye view SEM image of a GaN island formed by SAG on the GaN substrate P when the growth temperature is 1230 ° C., respectively.
  • FIGS. 15A and 15B show a planar SEM image and a bird's-eye view SEM image of a GaN island formed by SAG on the GaN substrate Q at a growth temperature of 1050 ° C., respectively.
  • FIGS. 16A and 16B show a planar SEM image and a bird's-eye view SEM image of a GaN island formed by SAG on the GaN substrate Q at a growth temperature of 1230 ° C., respectively.
  • the ⁇ hkil ⁇ facet with l> 0 is a facet whose angle formed by the normal direction and the [0001] direction is less than 90 °, and includes (0001) facet.
  • the upper part of the GaN island grown on the GaN substrate P has a hexagonal column shape terminated with a flat top surface, and the top surface has (000-1) facets, hexagons. The side of the pillar was ⁇ 10-11 ⁇ facet.
  • the orientation of the top surface was confirmed by a method for examining whether or not the top surface was etched with KOH.
  • GaN it is known that the (0001) surface is not substantially etched by KOH, whereas the (000-1) surface is easily etched by KOH.
  • the upper part of the GaN island grown on the GaN substrate P has a hexagonal column shape terminated by a flat top surface, and the top surface has (000-1) facets, hexagons.
  • the side of the pillar was ⁇ 10-10 ⁇ facet.
  • a chamfer which is a ⁇ 10-1-1 ⁇ facet was formed between the (000-1) facet, the top surface and the ⁇ 10-10 ⁇ facet.
  • the shape of the GaN island formed on the opening of the pattern mask by SAG is called a quasi-equilibrium crystal shape, and the facets appearing on the surface are formed from GaCl 3 and NH 3 to GaN crystals. It shows the stability surface in the system where the Even when a bulk GaN crystal grows from GaCl 3 and NH 3 , it is predicted that facets observed in GaN islands appear on the surface.
  • the GaN islands are formed on the GaN substrate P and the GaN substrate Q, if the GaN crystal is further grown, coalescence between the GaN islands occurs at a temperature of 1050 ° C. or a temperature of 1230 ° C.
  • a GaN layer covering the entire main surface was formed. On both of the GaN substrate P and the GaN substrate Q, the upper surface of the formed GaN layer had high flatness.
  • FIG. 17 and FIG. 18 show SEM images of GaN islands formed on these substrates with a short growth time under such conditions.
  • FIG. 17 is a bird's-eye view SEM image of a GaN island grown at a temperature of 1050 ° C.
  • FIG. 17A shows an island grown on the GaN substrate P
  • FIG. 17B shows an island grown on the GaN substrate Q. Respectively.
  • a clear facet was not observed on the surface of the GaN island grown from GaCl and NH 3 on the GaN substrate P at a temperature of 1050 ° C.
  • the surface of the GaN island grown from GaCl and NH 3 on the GaN substrate Q at a temperature of 1050 ° C. has (000-1) facets, ⁇ 10-1-1 ⁇ facets. In addition to ⁇ 10-10 ⁇ facets, ⁇ 10-11 ⁇ facets were also observed.
  • FIG. 18 is a bird's-eye view SEM image of a GaN island grown at a temperature of 1230 ° C.
  • FIG. 18A shows an island grown on the GaN substrate P
  • FIG. 18B shows an island grown on the GaN substrate Q. Respectively.
  • the (000-1) facet appears on the surface of the GaN island grown from GaCl and NH 3 at a temperature of 1230 ° C., and the nonpolar ⁇ 10 ⁇ 10 ⁇ facets and semipolar ⁇ 10-1-1 ⁇ facets were not observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本発明は、GaClおよびNHを原料に用い、非極性または半極性GaN表面上でGaNを気相から成長させることを含む、GaN結晶の新規な製造方法を提供する。(i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ170°未満の角度を成す非極性または半極性表面を有する、種結晶準備ステップと、(ii)該GaN種結晶の該非極性または半極性表面を含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法の発明が提供される。

Description

GaN結晶の製造方法
 本発明は、主としてGaN(窒化ガリウム)結晶の製造方法に関する。
 GaN結晶の気相成長におけるGa(ガリウム)源としてGaCl(三塩化ガリウム)を用いる方法が、かねてから提案されている。
 気体GaClは、固体GaClを気化させることによって発生させ得る(特許文献1)。
 より純度の高い気体GaClは、金属GaとCl(塩素ガス)を反応させてGaCl(一塩化ガリウム)を生成させ、そのGaClを更にClと反応させる方法で得られることが示されている(特許文献2、特許文献3)。
 特許文献2には、GaClおよびNH(アンモニア)を原料に用いて、サファイア(0001)基板上でGaNを気相から成長させ得たとの実験結果が記載されているが、成長したGaN結晶の方位は明らかではない。
 特許文献3には、GaClおよびNHを原料に用いて、GaN(000-1)基板上でGaNを気相から成長させ得たとの実験結果が記載されている。
 GaClを原料に用いた、非極性または半極性GaN表面上でのGaN成長は、本発明者等が知る限り未だ試みられていない。
国際公開第2007/143743号パンフレット 国際公開第2011/142402号パンフレット 国際公開第2015/037232号パンフレット
 本発明の主たる目的は、GaClおよびNHを原料に用い、非極性または半極性GaN表面上でGaNを気相から成長させることを含む、GaN結晶の新規な製造方法を提供することにある。
 本発明の目的には、GaClおよびNHを原料に用い、GaNを気相から成長させることを含む、GaN結晶の新規な製造方法を提供することが含まれる。
 本発明者等は、GaClおよびNHを原料に用い、非極性または半極性GaN表面上でGaNを気相から成長させることを試みた。そして、非極性または半極性GaN表面が特定の方位を有するとき、その上でGaNが成長可能であることを見出した。本発明の一側面は、かかる知見に基づいて成されたものである。
 本発明の実施形態には以下が含まれる。
(1)(i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ170°未満の角度を成す非極性または半極性表面を有する、種結晶準備ステップと、(ii)該GaN種結晶の該非極性または半極性表面を含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
(2)前記非極性または半極性表面が前記GaN種結晶の[0001]方向と成す角度が85°以上かつ90°未満、90°以上かつ93°未満、93°以上かつ97°未満、97°以上かつ102°未満、102°以上かつ107°未満、107°以上かつ112°未満、112°以上かつ122°未満、または、122°以上かつ132°未満である、前記(1)に記載のGaN結晶製造方法。
(3)前記非極性または半極性表面が前記GaN種結晶の[0001]方向と成す角度が87°以下または93°以上である、前記(1)または(2)に記載のGaN結晶製造方法。
(4)前記成長ステップにおける前記非極性または半極性表面上でのGaNの成長レートが1μm/h以上である、前記(1)~(3)のいずれかに記載のGaN結晶製造方法。
(5)前記成長レートが50μm/h以上である、前記(4)に記載のGaN結晶製造方法。
(6)前記成長レートが150μm/h未満である、前記(4)または(5)に記載のGaN結晶製造方法。
(7)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(1)~(4)のいずれかに記載のGaN結晶製造方法。
(8)前記成長ステップでは、GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(1)~(4)のいずれかに記載のGaN結晶製造方法。
(9)前記非極性または半極性表面と前記GaN種結晶のC面との交線の方向が、a軸方向±15°である、前記(1)~(8)のいずれかに記載のGaN結晶製造方法。
(10)前記交線の方向が、a軸方向±3°である、前記(9)に記載のGaN結晶製造方法。
(11)前記非極性または半極性表面の法線と平行または最も平行に近い前記GaN種結晶の低指数方位が<10-10>、<30-3-1>、<20-2-1>、<30-3-2>または<10-1-1>である、前記(1)~(10)のいずれかに記載のGaN結晶製造方法。
(12)前記GaN種結晶がGaN基板の少なくとも一部であり、前記非極性または半極性表面が該GaN基板の主表面である、前記(1)~(11)のいずれかに記載のGaN結晶製造方法。
(13)前記GaN基板がGaN単結晶基板である、前記(12)に記載のGaN結晶製造方法。
(14)前記GaN基板が、ベース基板と該ベース基板上に成長したGaN単結晶層とを有するテンプレート基板である、前記(12)に記載のGaN結晶製造方法。
(15)前記GaN基板が、ベース基板と該ベース基板に接合されたGaN単結晶層とを有するGaN層接合基板である、前記(12)に記載のGaN結晶製造方法。
(16)前記成長ステップでは、前記非極性または半極性表面上における最大成長高さが300μm以上のバルクGaN結晶を成長させる、前記(12)~(15)のいずれかに記載のGaN結晶製造方法。
(17)前記バルクGaN結晶の最大成長高さが300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、または、100mm以上かつ200mm未満である、前記(16)に記載のGaN結晶製造方法。
(18){10-10}ファセットおよび{10-1-1}ファセットから選ばれる一以上のファセットを有するGaN種結晶を準備する種結晶準備ステップ、および、前記GaN種結晶の、前記一以上のファセットを含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップを含む、GaN結晶の製造方法。
(19)前記GaN種結晶は、c軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、0.1以上かつ10以下である、前記(18)に記載のGaN結晶製造方法。
(20)前記一以上のファセットの各々がアズグロン表面である、前記(18)または(19)に記載のGaN結晶製造方法。
(21)前記GaN種結晶が更に(000-1)ファセットを有する、前記(18)~(20)のいずれかに記載のGaN結晶製造方法。
(22)前記成長ステップでは前記(000-1)ファセット上にもGaNを成長させる、前記(21)に記載のGaN結晶製造方法。
(23)前記成長ステップにおける、前記一以上のファセットの各々の上でのGaNの成長レートが1μm/h以上である、前記(18)~(22)のいずれかに記載のGaN結晶製造方法。
(24)前記成長レートが50μm/h以上である、前記(23)に記載のGaN結晶製造方法。
(25)前記成長レートが150μm/h未満である、前記(23)または(24)に記載のGaN結晶製造方法。
(26)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(18)~(23)のいずれかに記載のGaN結晶製造方法。
(27)前記成長ステップでは、GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(18)~(23)および(26)のいずれかに記載のGaN結晶製造方法。
(28)前記成長ステップにおいて、GaNの成長を断続的に繰り返す、前記(1)~(27)のいずれかに記載のGaN結晶製造方法。
(29)金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、前記(1)~(28)のいずれかに記載のGaN結晶製造方法。
(30)前記成長ステップにおけるGaNの成長温度が1200℃以上である、前記(1)~(29)のいずれかに記載のGaN結晶製造方法。
(31)前記(1)~(30)のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造する結晶製造ステップと、該結晶製造ステップで製造したGaN結晶を加工して少なくともひとつのGaNウエハを形成する結晶加工ステップとを有する、GaNウエハの製造方法。
(32)前記結晶加工ステップで形成されるGaNウエハが、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハおよび(000-1)ウエハから選ばれるGaNウエハを含む、前記(31)に記載のGaNウエハ製造方法。
(33)(i){20-2-1}ウエハであるGaNウエハを準備する種結晶準備ステップと、(ii)該GaNウエハ上にGaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
(34)前記成長ステップにおけるGaNの成長レートが1μm/h以上である、前記(33)に記載のGaN結晶製造方法。
(35)前記成長レートが1μm/h以上かつ50μm/h未満、50μm/h以上かつ100μm/h未満、または、100μm/h以上かつ150μm/h未満である、前記(34)に記載のGaN結晶製造方法。
(36)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaNウエハに供給する、前記(33)または(34)に記載のGaN結晶製造方法。
(37)前記成長ステップでは、前記GaNウエハに供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(33)、(34)または(36)に記載のGaN結晶製造方法。
(38)前記成長ステップでは(201)面X線ロッキングカーブのFWHMが100arcsec未満の部分を含むGaN結晶が前記GaNウエハ上に形成される、前記(33)~(37)のいずれかに記載のGaN結晶製造方法。
(39)金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、前記(33)~(38)のいずれかに記載のGaN結晶製造方法。
(40)前記成長ステップにおけるGaNの成長温度が1200℃以上である、前記(33)~(39)のいずれかに記載のGaN結晶製造方法。
(41)前記(33)~(40)のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造した後、該GaN結晶を加工してGaN{20-21}ウエハを形成する、GaNウエハの製造方法。
(42)(i){10-10}ウエハであるGaNウエハを準備する種結晶準備ステップと、(ii)該GaNウエハ上にGaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
(43)前記成長ステップにおけるGaNの成長レートが1μm/h以上である、前記(42)に記載のGaN結晶製造方法。
(44)前記成長レートが1μm/h以上かつ50μm/h未満、50μm/h以上かつ100μm/h未満、または、100μm/h以上かつ150μm/h未満である、前記(43)に記載のGaN結晶製造方法。
(45)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaNウエハに供給する、前記(42)または(43)に記載のGaN結晶製造方法。
(46)前記成長ステップでは、前記GaNウエハに供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(42)、(43)または(45)に記載のGaN結晶製造方法。
(47)前記成長ステップでは(100)面X線ロッキングカーブのFWHMが100arcsec未満の部分を含むGaN結晶が前記GaNウエハ上に形成される、前記(42)~(46)のいずれかに記載のGaN結晶製造方法。
(48)金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、前記(42)~(47)のいずれかに記載のGaN結晶製造方法。
(49)前記成長ステップにおけるGaNの成長温度が1200℃以上である、前記(42)~(48)のいずれかに記載のGaN結晶製造方法。
(50)前記(42)~(49)のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造した後、該GaN結晶を加工してGaN{10-10}ウエハを形成する、GaNウエハの製造方法。
(51)(i){10-10}表面を有するGaN種結晶を準備する種結晶準備ステップと、(ii)該{10-10}表面上にGaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
(52)前記成長ステップにおける前記{10-10}表面上でのGaNの成長レートが1μm/h以上である、前記(51)に記載のGaN結晶製造方法。
(53)前記成長レートが1μm/h以上かつ50μm/h未満、50μm/h以上かつ100μm/h未満、または、100μm/h以上かつ150μm/h未満である、前記(52)に記載のGaN結晶製造方法。
(54)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(51)または(52)に記載のGaN結晶製造方法。
(55)前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(51)、(52)または(54)に記載のGaN結晶製造方法。
(56)前記成長ステップでは(100)面X線ロッキングカーブのFWHMが100arcsec未満の部分を含むGaN結晶が前記{10-10}表面上に形成される、前記(51)~(55)のいずれかに記載のGaN結晶製造方法。
(57)金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、前記(51)~(56)のいずれかに記載のGaN結晶製造方法。
(58)前記成長ステップにおけるGaNの成長温度が1200℃以上である、前記(51)~(57)のいずれかに記載のGaN結晶製造方法。
(59)前記(51)~(58)のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造した後、該GaN結晶を加工して少なくともひとつのGaNウエハを形成する、GaNウエハの製造方法。
 本発明者等は、GaClおよびNHを原料に用い、極性または非極性GaN表面上におけるGaNのSAG(Selective Area Growth)を試みた。そして、SAGが可能であること、および、SAGの初期において特定形状のGaNアイランドが形成されることを見出した。本発明の一側面は、かかる知見に基づいて成されたものである。
 本発明の実施形態には、更に、以下が含まれる。
(60)(i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と175°以上180°以下の角度を成す極性表面を有する、種結晶準備ステップと、(ii){10-10}ファセットを側面とする六角柱部分を含むGaN結晶を、GaClおよびNHを原料に用いて、該GaN種結晶の、該極性表面を含む表面上に気相から成長させる成長ステップと、を含むGaN結晶製造方法。
(61)前記六角柱部分が(000-1)ファセットで終端されている、前記(60)に記載のGaN結晶製造方法。
(62)前記六角柱部分が前記{10-10}ファセットと前記(000-1)ファセットの間に{10-1-1}ファセットであるチャンファーを有する、前記(61)に記載のGaN結晶製造方法。
(63)前記GaN種結晶がGaN基板の少なくとも一部であり、前記極性表面が該GaN基板の主表面である、前記(60)~(62)のいずれかに記載のGaN結晶製造方法。
(64)前記GaN基板がGaN単結晶基板である、前記(63)に記載のGaN結晶製造方法。
(65)前記GaN基板が、ベース基板と該ベース基板上に成長したGaN単結晶層とを有するテンプレート基板である、前記(63)に記載のGaN結晶製造方法。
(66)前記GaN基板が、ベース基板と該ベース基板に接合されたGaN単結晶層とを有するGaN層接合基板である、前記(63)に記載のGaN結晶製造方法。
(67)前記成長ステップでは、前記極性表面上における最大成長高さが300μm以上のバルクGaN結晶を成長させる、前記(63)~(66)のいずれかに記載のGaN結晶製造方法。
(68)前記バルクGaN結晶の最大成長高さが300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、または、100mm以上かつ200mm未満である、前記(67)に記載のGaN結晶製造方法。
(69){10-10}ファセットを側面とする六角柱部分を含み、[000-1]側に成長端を有するGaN結晶を、GaClおよびNHを原料に用いて気相から成長させる成長ステップを含む、GaN結晶製造方法。
(70)前記六角柱部分が(000-1)ファセットで終端されている、前記(69)に記載のGaN結晶製造方法。
(71)前記六角柱部分が前記{10-10}ファセットと前記(000-1)ファセットの間に{10-1-1}ファセットであるチャンファーを有する、前記(70)に記載のGaN結晶製造方法。
(72)前記GaN結晶を、三次元形状を有するGaN種結晶上に成長させる、前記(69)~(71)のいずれかに記載のGaN結晶製造方法。
(73)前記三次元形状を有するGaN種結晶が、{10-1-1}ファセットを側面とする六角錐部分を有する、前記(72)に記載のGaN結晶製造方法。
(74)前記三次元形状を有するGaN種結晶が、前記六角錐部分の[0001]側に配置された、{10-10}ファセットを側面とする六角柱部分を有する、前記(73)に記載のGaN結晶製造方法。
(75)前記三次元形状を有するGaN種結晶が、{10-10}ファセットを側面とする六角柱部分を有し、該六角柱部分の[000-1]側が(000-1)表面で終端している、前記(72)に記載のGaN結晶製造方法。
(76)前記三次元形状を有するGaN種結晶が、{10-10}ファセットを側面とする六角柱部分と、その[000-1]側に配置された、(000-1)ファセットを頂面とし{10-1-1}ファセットを側面とする六角錐台部分とを有している、前記(75)に記載のGaN結晶製造方法。
(77)前記三次元形状を有するGaN種結晶が、(000-1)ファセットを頂面、(0001)ファセットを底面、{10-1-1}ファセットを側面とする、六角錐台形状を有している、前記(72)に記載のGaN結晶製造方法。
(78)前記GaN種結晶は、c軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、0.1以上かつ10以下である、前記(72)~(77)のいずれかに記載のGaN結晶製造方法。
(79)前記成長ステップにおいて、前記GaN結晶の成長を断続的に繰り返す、前記(60)~(78)のいずれかに記載のGaN結晶製造方法。
(80)金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、前記(60)~(79)のいずれかに記載のGaN結晶製造方法。
(81)前記成長ステップにおけるGaNの成長温度が1200℃以上である、前記(60)~(80)のいずれかに記載のGaN結晶製造方法。
(82)前記(60)~(81)のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造する結晶製造ステップと、該結晶製造ステップで製造したGaN結晶を加工して少なくともひとつのGaNウエハを形成する結晶加工ステップとを有する、GaNウエハの製造方法。
(83)前記結晶加工ステップで形成されるGaNウエハが、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハおよび(000-1)ウエハから選ばれるGaNウエハを含む、前記(82)に記載のGaNウエハ製造方法。
 また、本発明の別の側面は、GaN基板表面が特定の半極性表面を有する場合に関するものであり、本発明の実施形態には更に以下が含まれる。
(84)(i)半極性表面を有するGaN種結晶を準備するステップであって、該半極性表面の法線の方向と平行または最も平行に近い該GaN種結晶の低指数方位が<10-1-1>である、種結晶準備ステップと、(ii)該GaN種結晶の該半極性表面を含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶製造方法。
(85)前記半極性表面の法線の方向が、前記GaN種結晶の<10-1-1>との間で5°以下の角度を成す、前記(84)に記載のGaN結晶製造方法。
(86)前記半極性表面が{10-1-1}表面である、前記(84)に記載のGaN結晶製造方法。
(87)前記GaN種結晶がGaN{10-1-1}ウエハである、前記(84)~(86)のいずれかに記載のGaN結晶製造方法。
(88)前記成長ステップにおける前記半極性表面上でのGaNの成長レートが1μm/h以上である、前記(84)~(87)のいずれかに記載のGaN結晶製造方法。
(89)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(84)~(88)のいずれかに記載のGaN結晶製造方法。
(90)前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(84)~(89)のいずれかに記載のGaN結晶製造方法。
(91)前記成長ステップでは(101)面X線ロッキングカーブのFWHMが50arcsec未満の部分を含むGaN結晶が前記半極性表面上に形成される、前記(84)~(87)のいずれかに記載のGaN結晶製造方法。
(92)前記成長ステップでは(202)面X線ロッキングカーブのFWHMが30arcsec未満の部分を含むGaN結晶が前記半極性表面上に形成される、前記(84)~(87)のいずれかに記載のGaN結晶製造方法。
(93)前記成長ステップでは(202)面X線ロッキングカーブのFWHMが20arcsec未満の部分を含むGaN結晶が前記半極性表面上に形成される、前記(92)に記載のGaN結晶製造方法。
(94)前記成長ステップにおける前記半極性表面上でのGaNの成長レートが50μm/h以上である、前記(91)に記載のGaN結晶製造方法。
(95)前記成長ステップにおける前記半極性表面上でのGaNの成長レートが100μm/h以上である、前記(94)に記載のGaN結晶製造方法。
(96)前記成長ステップにおける前記半極性表面上でのGaNの成長レートが200μm/h以上である、前記(92)または(93)に記載のGaN結晶製造方法。
(97)前記成長ステップでは、前記半極性表面上における最大成長高さが300μm以上のバルクGaN結晶を成長させる、前記(87)に記載のGaN結晶製造方法。
(98)前記バルクGaN結晶の最大成長高さが300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、または、100mm以上かつ200mm未満である、前記(97)に記載のGaN結晶製造方法。
(99){10-1-1}ファセットを有するGaN種結晶を準備する種結晶準備ステップ、および、該GaN種結晶の、該{10-1-1}ファセットを含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップを含む、GaN結晶の製造方法。
(100)前記GaN種結晶は、c軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、0.1以上かつ10以下である、前記(99)に記載のGaN結晶製造方法。
(101)前記{10-1-1}ファセットがアズグロン表面である、前記(99)または(100)に記載のGaN結晶製造方法。
(102)前記GaN種結晶が更に(000-1)ファセットを有する、前記(99)~(101)のいずれかに記載のGaN結晶製造方法。
(103)前記成長ステップでは前記(000-1)ファセット上にもGaNを成長させる、前記(102)に記載のGaN結晶製造方法。
(104)前記GaN種結晶が{10-10}ファセットを有さない、前記(99)~(103)のいずれかに記載のGaN結晶製造方法。
(105)前記成長ステップにおける前記{10-1-1}ファセット上でのGaNの成長レートが1μm/h以上である、前記(99)~(104)のいずれかに記載のGaN結晶製造方法。
(106)前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(99)~(105)のいずれかに記載のGaN結晶製造方法。
(107)前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(99)~(106)のいずれかに記載のGaN結晶製造方法。
(108)前記成長ステップでは、(202)面X線ロッキングカーブのFWHMが30arcsec未満の部分を含むGaN結晶が、前記{10-1-1}ファセット上に形成される、前記(99)~(107)のいずれかに記載のGaN結晶製造方法。
(109)前記成長ステップでは、(202)面X線ロッキングカーブのFWHMが20arcsec未満の部分を含むGaN結晶が、前記{10-1-1}ファセット上に形成される、前記(108)に記載のGaN結晶製造方法。
(110)前記成長ステップにおいて、GaNの成長を断続的に繰り返す、前記(84)~(109)のいずれかに記載のGaN結晶製造方法。
(111)前記成長ステップでは、金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、前記(84)~(110)のいずれかに記載のGaN結晶製造方法。
(112)前記成長ステップにおけるGaNの成長温度が1200℃以上である、前記(84)~(111)のいずれかに記載のGaN結晶製造方法。
(113)前記(84)~(112)のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造する結晶製造ステップと、該結晶製造ステップで製造したGaN結晶を加工して少なくともひとつのGaNウエハを形成する結晶加工ステップとを有する、GaNウエハの製造方法。
(114)前記結晶加工ステップで形成されるGaNウエハが、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハおよび(000-1)ウエハから選ばれるGaNウエハを含む、前記(113)に記載のGaNウエハ製造方法。
 また、本発明の実施形態には、更に以下が含まれる。
(115)(i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ180°以下の角度を成す主表面および該主表面上に配置されたパターンマスクを有する、GaN種結晶準備ステップと、(ii)該GaN種結晶の該主表面上に、該パターンマスクを通して、かつ、GaClおよびNHを原料に用いて、GaNを気相から成長させるSAG(Selective Area Growth)ステップと、を含むGaN結晶の製造方法。
(116)前記パターンマスクがアモルファス無機薄膜を含む、前記(115)に記載の製造方法。
(117)前記アモルファス無機薄膜がケイ素化合物を含む、前記(116)に記載の製造方法。
(118)前記アモルファス無機薄膜がSiNを含む、前記(117)に記載の製造方法。
(119)前記パターンマスクがドット形開口を有し、前記SAGステップでは該ドット形開口上にGaNアイランドが形成される、前記(115)~(118)のいずれかに記載の製造方法。
(120)前記パターンマスクが第一ドット形開口および第二ドット形開口を含む複数のドット形開口を有し、前記SAGステップでは該第一ドット形開口上および該第二ドット形開口上にそれぞれGaNアイランドが形成される、前記(119)に記載の製造方法。
(121)前記SAGステップでは、更に、前記第一ドット形開口上に形成されたGaNアイランドと、前記第二ドット形開口上に形成されたGaNアイランドとがコアレスする、前記(120)に記載の製造方法。
(122)前記SAGステップでは、前記主表面を覆うGaN層が形成されるまでGaNの成長を続ける、前記(115)~(121)のいずれかに記載の製造方法。
(123)前記SAGステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(115)~(122)のいずれかに記載の製造方法。
(124)前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(115)~(122)のいずれかに記載の製造方法。
(125)前記GaN種結晶がGaN基板の少なくとも一部である、前記(115)~(124)のいずれかに記載の製造方法。
(126)前記GaN基板がGaN単結晶基板である、前記(125)に記載の製造方法。
(127)前記主表面の法線の方向が前記GaN種結晶の[0001]方向と175°以上の角度を成す、前記(115)~(126)のいずれかに記載の製造方法。
(128)(i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と175°以上かつ180°以下の角度を成す極性表面および該極性表面上に配置されドット形開口が設けられたパターンマスクを有する、GaN種結晶準備ステップと、(ii)該GaN種結晶の該極性表面上に、該パターンマスクを通して、かつ、GaClおよびNHを原料に用いてGaNを気相から成長させるSAG(Selective Area Growth)ステップと、を含み、該SAGステップでは該ドット形開口上に、六角柱部分を含むGaNアイランドが形成される、GaN結晶の製造方法。
(129)前記六角柱部分の側面が{10-10}ファセットである、前記(128)に記載の製造方法。
(130)前記六角柱部分が(000-1)ファセットで終端されている、前記(129)に記載の製造方法。
(131)前記六角柱部分が、前記{10-10}ファセットと前記(000-1)ファセットの間に、{10-1-1}ファセットであるチャンファーを有する、前記(130)に記載の製造方法。
(132)前記GaN種結晶がGaN基板の少なくとも一部である、前記(128)~(131)のいずれかに記載の製造方法。
(133)前記GaN種結晶がGaN単結晶基板である、前記(132)に記載の製造方法。
(134)前記GaN単結晶基板が、オフカットされた(000-1)ウエハである、前記(133)に記載の製造方法。
(135)前記パターンマスクがアモルファス無機薄膜を含む、前記(128)~(134)のいずれかに記載の製造方法。
(136)前記アモルファス無機薄膜がケイ素化合物を含む、前記(135)に記載の製造方法。
(137)前記アモルファス無機薄膜がSiNを含む、前記(136)に記載の製造方法。
(138)前記SAGステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、前記(128)~(137)のいずれかに記載の製造方法。
(139)前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、前記(128)~(138)のいずれかに記載の製造方法。
 本発明の一実施形態によれば、GaClおよびNHを原料に用いて、非極性または半極性GaN表面上で気相からGaNを成長させることを含む、GaN結晶の新規な製造方法が提供される。
 本発明の他の一実施形態によれば、GaClおよびNHを原料に用いて気相から特定形状のGaN結晶を成長させることを含む、GaN結晶の新規な製造方法が提供される。
図1は、実施形態に係るGaN結晶製造方法のフローチャートを示す。 図2は、実施形態に係るGaN結晶製造方法で使用し得るGaN基板の一例を示す斜視図である。 図3は、第一主表面を表面として有するGaN単結晶を、該GaN単結晶のC面と該第一主表面との交線に平行な方向から見たところを示す。 図4は、GaN種結晶の形状例を示す斜視図である。 図5は、GaN種結晶の形状例を示す斜視図である。 図6は、GaN種結晶の形状例を示す斜視図である。 図7は、GaN種結晶の形状例を示す斜視図である。 図8は、GaN種結晶の形状例を示す斜視図である。 図9は、GaN種結晶の形状例を示す斜視図(a)及び断面図(b)である。 図10は、実施形態に係るGaN結晶製造方法で使用し得る結晶成長装置の模式図である。 図11は、実施形態に係るGaN結晶製造方法で使用し得る結晶成長装置の模式図である。 図12は、成長ゾーンにおけるGaCl分圧とNH分圧との積と、GaNの成長レートとの関係を示すグラフである。 図13は、SAGによりGaN基板上に形成されたGaNアイランドのSEM像を示し、図13(a)は平面像、図13(b)は鳥瞰像である(写真)。 図14は、SAGによりGaN基板上に形成されたGaNアイランドのSEM像を示し、図14(a)は平面像、図14(b)は鳥瞰像である(写真)。 図15は、SAGによりGaN基板上に形成されたGaNアイランドのSEM像を示し、図15(a)は平面像、図15(b)は鳥瞰像である(写真)。 図16は、SAGによりGaN基板上に形成されたGaNアイランドのSEM像を示し、図16(a)は平面像、図16(b)は鳥瞰像である(写真)。 図17(a)は、SAGによりGaN(000-1)基板上に形成されたGaNアイランドの鳥瞰SEM像であり、図17(b)は、SAGによりGaN(10-10)基板上に形成されたGaNアイランドの鳥瞰SEM像である(写真)。 図18(a)は、SAGによりGaN(000-1)基板上に形成されたGaNアイランドの鳥瞰SEM像であり、図18(b)は、SAGによりGaN(10-10)基板上に形成されたGaNアイランドの鳥瞰SEM像である(写真)。
 GaNは、六方晶系に属するウルツ鉱型の結晶構造を備える。GaNでは、[0001]および[000-1]に平行な結晶軸がc軸、<10-10>に平行な結晶軸がm軸、<11-20>に平行な結晶軸がa軸と呼ばれる。c軸に直交する結晶面はC面(C-plane)、m軸に直交する結晶面はM面(M-plane)、a軸に直交する結晶面はA面(A-plane)と呼ばれる。
 c軸に直交するGaN表面には、(0001)表面(ガリウム極性表面)と(000-1)表面(窒素極性表面)とがある。これらの表面は極性表面とも呼ばれる。
 c軸に平行なGaN表面、すなわち{10-10}表面や{11-20}表面のようにミラー指数{hkil}のlが0(ゼロ)であるGaN表面は、非極性表面と呼ばれる。
 極性表面でも非極性表面でもないGaN結晶表面は、半極性表面と呼ばれる。
 本明細書において、結晶軸、結晶表面、結晶方位等に言及する場合には、特に断らない限り、GaNの結晶軸、結晶表面、結晶方位等を意味するものとする。
1.GaN結晶の製造方法
 実施形態に係るGaN結晶製造方法は、図1にフローチャートを示すように、次の2つのステップを含む。
(S1)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ170°未満の角度を成す非極性または半極性表面を有する、種結晶準備ステップ。
(S2)種結晶準備ステップで準備したGaN種結晶の、該非極性または半極性表面を含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップ。
 上記種結晶準備ステップ(S1)で準備するGaN種結晶は、2以上の非極性または半極性表面を有し得るが、その場合、該2以上の非極性または半極性表面の少なくともひとつで、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ170°未満の角度を成すという条件が充たされていればよい。
 実施形態に係るGaN結晶製造方法は、上記の種結晶準備ステップおよび成長ステップに加え、更に他のステップを有していてもよい。
 以下、図面を参照しながらより詳細に説明する。
1.1.GaN種結晶
[1]GaN基板
 実施形態に係るGaN結晶製造方法では、GaN種結晶を用いる。該GaN種結晶は、GaN基板またはGaN基板の一部であり得る。
 図2は、実施形態に係るGaN結晶製造方法で種結晶として用い得るGaN基板の一例を示す斜視図である。図2を参照すると、GaN基板10は一方側の主表面である第一主表面11と、反対側の主表面である第二主表面12とを有している。第一主表面と第二主表面は、側面13を介してつながっている。
 GaN基板10の第一主表面11および第二主表面12は矩形であるが、限定されるものではなく、円形、六角形、その他任意の形状であり得る。第一主表面11と第二主表面12は、通常、互いに平行である。
 第一主表面11の面積は、通常1cm以上であり、好ましくは2cm以上、より好ましくは4cm以上、より好ましくは10cm以上である。第一主表面11の面積は10cm以上かつ40cm未満、40cm以上かつ60cm未満、60cm以上かつ120cm未満、120cm以上かつ180cm未満、または180cm以上であり得る。
 GaN基板10の厚さtは、通常200μm以上、好ましくは250μm以上、より好ましくは300μm以上であり、第一主表面11の面積に応じて更に厚くすることもできる。
 GaN基板10の、少なくとも第一主表面11を含む部分は、GaN単結晶で構成されている。つまり、第一主表面11は、GaN単結晶の表面である。
 図3は、GaN基板10の、第一主表面11を含む部分を構成するGaN単結晶1を、該GaN単結晶1のC面と該第一主表面との交線に平行な方向から見たところを示している。第一主表面11はGaN単結晶1の表面である。図3において、GaN単結晶1のC面と第一主表面11との交線は紙面に垂直である。
 第一主表面11の法線の方向Dnは、GaN単結晶1の[0001]方向と角度θを成している。該角度θは、85°以上かつ170°未満である。該角度θは、85°以上かつ90°未満、90°以上かつ93°未満、93°以上かつ97°未満、97°以上かつ102°未満、102°以上かつ107°未満、107°以上かつ112°未満、112°以上かつ122°未満、122°以上かつ132°未満等であり得る。
 好適例において、第一主表面11の法線の方向DnがGaN単結晶1の[0001]方向と成す角度θは、87°以下または93°以上である。該角度θが90°±約2°の範囲内であると、後述する成長ステップで第一主表面上にGaNをエピタキシャル成長させたときに、品質が相対的に低いGaN結晶が形成される傾向があるからである。
 第一主表面11の法線の方向DnとGaN単結晶1の[0001]方向とは、GaN単結晶1のC面と第一主表面11との交線を回転軸として前者を回転させると、後者と重なり合う関係にある。
 該交線の方向は、限定するものではないが、好ましくはa軸方向±15°であり、より好ましくはa軸方向±5°、より好ましくはa軸方向±3°、より好ましくはa軸方向±2°、より好ましくはa軸方向±1°である。
 好適例において、第一主表面11の法線の方向と平行または最も平行に近いGaN単結晶1の低指数方位は、<10-10>、<30-3-1>、<20-2-1>、<30-3-2>または<10-1-1>であり得る。
 ここでは、ミラー指数<hkil>における整数h、k、iおよびlの絶対値がいずれも3以下である結晶方位を、低指数方位というものとする。
 第一主表面11の法線の方向がGaN単結晶1の<10-10>に平行なとき、該法線の方向とGaN単結晶1の[0001]方向とが成す角度は90°であり、第一主表面11とGaN単結晶1のC面との交線の方向はa軸方向である。
 第一主表面11の法線の方向がGaN単結晶1の<30-3-1>に平行なとき、該法線の方向とGaN単結晶1の[0001]方向とが成す角度は100.1°であり、第一主表面11とGaN単結晶1のC面との交線の方向はa軸方向である。
 第一主表面11の法線の方向がGaN単結晶1の<20-2-1>に平行なとき、該法線の方向とGaN単結晶1の[0001]方向とが成す角度は104.9°であり、第一主表面11とGaN単結晶1のC面との交線の方向はa軸方向である。
 第一主表面11の法線の方向がGaN単結晶1の<30-3-2>に平行なとき、該法線の方向とGaN単結晶1の[0001]方向とが成す角度は109.5°であり、第一主表面11とGaN単結晶1のC面との交線の方向はa軸方向である。
 第一主表面11の法線の方向がGaN単結晶1の<10-1-1>に平行なとき、該法線の方向とGaN単結晶1の[0001]方向とが成す角度は118°であり、第一主表面11とGaN単結晶1のC面との交線の方向はa軸方向である。
 第一主表面11の法線の方向がGaN単結晶1の<20-2-3>に平行なとき、該法線の方向とGaN単結晶1の[0001]方向とが成す角度は128.6°であり、第一主表面11とGaN単結晶1のC面との交線の方向はa軸方向である。
 GaN基板10は、好ましくは、GaN単結晶基板である。
 HVPE法、フラックス法、昇華法等、様々な方法で成長させたバルクGaN単結晶を、任意の方向にスライスすることにより、様々な面方位を有するGaN単結晶基板を作製し得ることが知られている。例えば国際公開第2008/059875号には、互いに隣接させて配置した複数の矩形基板上に成長させたバルクGaN結晶から切り出した、大面積の非極性または半極性GaN単結晶基板が開示されている。
 GaN基板10は、ベース基板と該ベース基板上にエピタキシャル成長したGaN単結晶層とから構成されるテンプレート基板であってもよい。その場合、第一主表面11に該当するのは該GaN単結晶層の表面である。
 ベース基板は、典型的には、サファイア基板、スピネル基板、AlN基板、SiC基板、Si基板等のような、GaNとは組成の異なる材料からなる単結晶基板(ヘテロ基板)である。エピタキシャル成長の方法は、MOVPE法やHVPE法のような気相成長方法でもよいし、フラックス法でもよい。
 GaN基板10は、ベース基板と該ベース基板に接合されたGaN単結晶層とから構成されるGaN層接合基板であってもよい。その場合、第一主表面11に該当するのは該GaN単結晶層の表面である。
 GaN層接合基板は、ベース基板にバルクGaN単結晶を接合させた後に、GaN単結晶層がベース基板側に残るように該バルクGaN単結晶を切断する方法で形成される。ベース基板は各種の単結晶基板であり得る他、金属基板、セラミック基板、多結晶GaN基板等であってもよい。
 好ましくは、GaN基板10の第一主表面11は、機械研磨(グラインディング、ラッピング等)により平坦化された後、該機械研磨により導入された結晶欠陥を除去するために、ドライエッチングおよび/またはCMP(化学的機械的ポリシング)を含む仕上げ加工を施された表面である。
 一例において、GaN基板10の第一主表面11は、アズグロンGaN表面であり得る。
 一例において、GaN基板10の第一主表面11上には、SAG(Selective Area Growth)を発生させるためのパターンマスクを配置することができる。パターンマスクの材料は、例えば、SiNである。SiN薄膜上では、GaClとNHからのGaNの気相成長が阻害される。他の材料からなるアモルファス無機薄膜、例えば酸化ケイ素や酸窒化ケイ素の薄膜も、パターンマスクの材料として使用できる可能性がある。
 パターンマスクには、円形や正多角形のようなドット形の開口を設けることができる。ドット形開口は、例えば、最密配置することができる。最密配置では、各開口が、正三角形格子の格子位置(正三角形の頂点)に配置される。
 パターンマスクには線状の開口を設けることもできる。よって、パターンマスクはストライプマスクであってもよい。
[2]三次元形状のGaN種結晶
 実施形態に係るGaN結晶製造方法で用いるGaN種結晶は、三次元形状を有するGaN結晶であってもよい。三次元形状のGaN種結晶では、そのc軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、好ましくは、0.1以上かつ10以下である。該比率は、0.2以上、更には0.3以上であってもよく、また、5以下、更には3以下であってもよい。
 実施形態に係るGaN結晶製造方法で用い得る三次元形状のGaN種結晶の形状例を図4~9に示す。
 図4に示すGaN種結晶は、{10-10}ファセットを側面とする六角柱部分と、{10-1-1}ファセットを側面とする第一の六角錐部分と、{10-11}ファセットを側面とする第二の六角錐部分とを有している。該第一の六角錐部分は該六角柱部分の[000-1]側に、該第二の六角錐部分は該六角柱部分の[0001]側に、それぞれ配置されている。
 図4に示すGaN種結晶は、Naフラックス法、アモノサーマル法等の液相成長法により製造することができる。
 図5に示すGaN種結晶は、{10-10}ファセットを側面とする六角柱部分と、その[000-1]側に配置された、{10-1-1}ファセットを側面とする六角錐部分とを有している。六角柱部分の[0001]側は、(0001)表面で終端している。
 図5に示すGaN種結晶は、例えば、図4に示すGaN種結晶から、第二の六角錐部分を切断または研磨によって除去することにより製造することができる。
 図6に示すGaN種結晶は、{10-10}ファセットを側面とする六角柱部分と、その[0001]側に配置された、{10-11}ファセットを側面とする六角錐部分とを有している。六角柱部分の[000-1]側は、(000-1)表面で終端している。
 図6に示すGaN種結晶は、例えば、図4に示すGaN種結晶から、第一の六角錐部分を切断または研磨によって除去することにより製造することができる。
 図7は、種結晶準備ステップで準備されるGaN種結晶の、更に他の一例を示す斜視図である。
 図7に示すGaN種結晶は、{10-10}ファセットを側面とする六角柱部分と、その[000-1]側に配置された、(000-1)ファセットを頂面とし{10-1-1}ファセットを側面とする六角錐台部分とを有している。六角柱部分の[0001]側は、(0001)表面で終端している。
 図7に示すGaN種結晶は、例えば特開2013-212978号公報に開示された結晶成長方法を用いて製造することができる。
 図8に示すGaN種結晶は、(000-1)ファセットを頂面、(0001)ファセットを底面、{10-1-1}ファセットを側面とする、六角錐台形状を有している。
 図8に示すGaN種結晶は、例えば特開2013-212978号公報に開示された結晶成長方法を用いて製造することができる。
 図9は、特開2013-212978号公報に開示された結晶成長方法を用いて製造することができるGaN種結晶を示しており、図9(a)は斜視図、図9(b)は当該結晶の長手方向に直交する平面で切断したときの断面図である。
 図4~図9に例示する各GaN種結晶において、{10-10}ファセットおよび{10-1-1}ファセットはアズグロン表面であり得る。あるいは、これらのファセットは、エッチングされた表面であってもよい。
1.2.気相成長装置
 実施形態に係るGaN結晶製造方法では、GaClおよびNHからGaNを成長させるために、第一ゾーン、第二ゾーンおよび成長ゾーンを備える気相成長装置を好ましく用いることができる。第一ゾーンでは、Clと金属Gaが反応してGaClが生成する。第二ゾーンでは、第一ゾーンで生成したGaClがClと反応してGaClが生成する。成長ゾーンでは、GaClを含む気体塩化ガリウムとNHとが反応し、生成するGaNがGaN種結晶上にエピタキシャル成長する。
 前述の第一ゾーン、第二ゾーンおよび成長ゾーンを有する気相成長装置の一例を図10に模式的に示す。
 図10を参照すると、気相成長装置100は第一反応管110および第二反応管120を有している。第一ゾーンZ1および第二ゾーンZ2は第一反応管110内に設けられ、成長ゾーンZ3は第二反応管120内に設けられている。
 第一反応管110および第二反応管120は、限定するものではないが、石英で形成することができる。
 第一反応管110内の第一ゾーンZ1には、金属Gaが設置されている。金属Gaを入れる容器は、例えば石英ボートである。
 第一反応管110は、第一ゾーンZ1の上流側に設けられた第一Cl供給口111と、第一ゾーンZ1の下流側に設けられた第二Cl供給口112を有している。 第二ゾーンZ2は、第二Cl供給口112の位置から始まり、下流側に向かって延びている。
 第一反応管110の外部には外部加熱手段(図示せず)が配置され、第一ゾーンZ1と第二ゾーンZ2は該外部加熱手段によりそれぞれ独立に加熱できるようになっている。外部加熱手段としては、抵抗ヒーター、誘導ヒーター、ランプヒーター等が例示される。
 第一ゾーンZ1では、第一Cl供給口111から導入されるClが金属Gaと反応し、気体塩化ガリウムを生じる。該気体塩化ガリウムの主成分は、次の反応により生じるGaClである。
 Ga(l)+1/2Cl(g)→GaCl(g)
上記反応式において、(l)、(s)および(g)はそれぞれ物質が液体(liquid)、固体(solid)および気体(gas)であることを示す(以下においても同様とする)。
 第二ゾーンZ2では、第二Cl供給口112から導入されるClが、第一ゾーンZ1から輸送される気体塩化ガリウムと反応する。主要な反応は次のGaCl生成反応である。
 GaCl(g)+Cl(g)→GaCl(g)
 第一反応管110は下流側の末端にガス出口113を有している。第一反応管110の下流部分は第二反応管120の内部に挿入されており、第一反応管内で生成した塩化ガリウムはガス出口113を通して第二反応管120内に輸送される。
 第二反応管120は、成長ゾーンZ3の上流側に設けられたNH供給口121と、成長ゾーンZ3の下流側に設けられた排気口122とを有している。第一反応管110のガス出口113は、成長ゾーンZ3よりも上流側に位置している。
 成長ゾーンZ3には、GaN種結晶を置くためのサセプタ130が設置される。サセプタ130は、例えばカーボンで形成される。
 第二反応管120の外部には、サセプタ130上に設置されるGaN種結晶を該サセプタごと加熱するための外部加熱手段(図示せず)が配置される。外部加熱手段としては、抵抗ヒーター、誘導ヒーター、ランプヒーター等が例示される。一例では、外部加熱手段に代えて、または外部加熱手段に加えて、抵抗ヒーターをサセプタ130の内部に設けることができる。
 成長ゾーンZ3において、GaClを含む気体塩化ガリウムとNHが反応し、GaNが生成する。生成するGaNはGaN種結晶上にエピタキシャル成長する。
 成長ステップで使用する気相成長装置は、図10に示す気相成長装置と同じ基本構成を備えつつ、様々な変更が加えられたものであり得る。かかる気相成長装置の一例を図11に示す。図11においては、図10に示す気相成長装置が備える構成と対応する構成に、同じ符号を付与している。
 図10の装置では第一反応管110がL字管で、ガス出口113を含む下流部分のみが第二反応管120の内部に挿入されているのに対し、図11の装置では第一反応管110が直管で、その全体が第二反応管120の内部に設置されている。
 図11の装置が図10の装置と異なる点はそれだけではない。
 例えば、図11の気相成長装置100では、第一反応管110内の第一ゾーンZ1と第二ゾーンZ2の間に、上流側から下流側に向かって流路の断面積を漸減させる漏斗形管114が設けられている。その目的は、下流側の流路抵抗を増加させることによって第一ゾーンZ1におけるCl分圧を高め、同ゾーンにおけるGaClの生成効率を向上させることにある。
 更に、図11の気相成長装置100では、第二ゾーンZ2内にバッフル115を設けることで、GaClの生成効率の改善を図っている。バッフルの設置によって流路長が延長され、GaClとClが第二ゾーン内に滞留する時間が長くなる他、ガス流が乱れることによりGaClとClの混合が促進される効果が期待できる。
 好適例では、図10および図11に示すいずれの気相成長装置100においても、第一反応管110のガス出口113を二重管構造とし、内管から塩化ガリウムガス、外管からバリアガスが放出されるよう構成することができる。これは、ガス出口113から出る塩化ガリウムガス流をバリアガス流で包囲して、成長ゾーンZ3に到達する前に塩化ガリウムがNHと反応することを防ぐためである。バリアガスには不活性ガスであるN(窒素ガス)または希ガス(Ar等)を用いる。
 その他、図10または図11の気相成長装置100において、第一反応管110および第二反応管120には、キャリアガス専用のガス供給口を適宜設けることができる。キャリアガスには不活性ガスであるN(窒素ガス)または希ガス(Ar等)を用いる。
 図10に示す気相成長装置において、L字型の第一反応管110は、直線部分の一方が鉛直、他方が水平となるように配置してもよいし、あるいは、直線部分の両方が水平となるように配置してもよい。
 図11に示す気相成長装置において、第一反応管110および第二反応管120の方向は、鉛直と水平のいずれであってもよく、また、傾斜していてもよい。
 図10または図11の気相成長装置において、サセプタ130を回転させる機構は適宜設けることができる。
 以上、GaClおよびNHを原料に用いたGaNの気相成長に好ましく用い得る気相成長装置の例を説明したが、実施形態にかかるGaN結晶製造方法に使用し得る気相成長装置は上記説明したものに限定されない。例えば、特許文献1に開示されるような、固体GaClを気化させて気体GaClを発生させるタイプの気相成長装置を使用することも可能である。
1.3.GaNの気相成長
 図10または図11に示す気相成長装置100を用い、次の手順によって、GaN種結晶上にGaNを気相成長させることができる。
 まず、第二反応管120内に配置されたサセプタ130上に、GaN種結晶をセットする。
 第一反応管110の第一ゾーンZ1内には、金属ガリウムを入れた石英ボートを設置する。
 次いで、第一反応管110内および第二反応管120内にキャリアガスを流し、これらの反応管内部の雰囲気をキャリアガス雰囲気とする。前述の通り、キャリアガスには不活性ガスであるNまたは希ガスを用いる。バリアガスも、このタイミングで流し始めてよい。
 キャリアガスは、Cl供給口やNH供給口を通して反応管内に導入できる他、反応管に適宜設けられる不活性ガス専用の供給口を通して反応管内に導入できる。
 更に、NH供給口121を通して、第二反応管120内へのNH供給を開始する。NHは、必要な場合には、キャリアガスとともに第二反応管120内に導入する。
 NHの供給開始後、外部加熱手段(図示せず)を用いて、GaN種結晶を所定の成長温度に加熱する。
 成長温度は、通常900℃以上である。後述の実験結果が示すように、1200℃以上、更には1300℃以上という成長温度でも、実用に足る成長レートでGaNを成長させることが可能である。
 成長温度に特段の上限は無いが、反応管をはじめとする部品の熱劣化に起因して気相成長装置の不具合が発生することを防ぐために、成長温度は1500℃未満とすることが好ましく、1400℃未満とすることがより好ましい。
 第二反応管120内の圧力(成長ゾーンの圧力)は、第二反応管の排気口122に接続した外部の排気手段(例えば、ファン)を用いて、例えば0.8~1.2atmの範囲内の一定の値となるように調整する。
 第一反応管は、GaN種結晶が所定の成長温度に達する前に、外部加熱手段(図示せず)を用いて所定の温度となるように加熱しておく。
 第一ゾーンZ1の温度を400℃以上とすることにより、該ゾーンで生成する塩化ガリウム種の殆どをGaClとすることができる(特許文献2の図5を参照)。
 GaClの生成速度を高くする観点から、第一ゾーンZ1の温度は、好ましくは500℃以上、より好ましくは700℃以上である。熱劣化による第一反応管の短寿命化を防ぐ観点から、第一ゾーンZ1の温度は好ましくは1000℃以下、より好ましくは900℃以下、より好ましくは850℃以下である。
 第二ゾーンZ2は、少なくとも、第一ゾーンZ1から供給されるGaClが反応管壁上に析出しない温度に加熱する。
 第二ゾーンZ2の温度を200℃以上とすることにより、該ゾーンで生成する塩化ガリウム種の殆どをGaClとすることができる(特許文献2の図6を参照)。
 第二ゾーンZ2の温度は200℃未満でもよく、なぜなら、生成する塩化ガリウム種の殆どがGaClまたは(GaClで表される三塩化ガリウムの二量体だからである。この二量体は、高温に加熱された成長ゾーンZ3ではGaClに変化する。
 GaClの生成速度を高くする観点から、第二ゾーンZ2の温度は、好ましくは500℃以上、より好ましくは700℃以上である。熱劣化による第一反応管の短寿命化を防ぐ観点から、第二ゾーンZ2の温度は好ましくは1000℃以下、より好ましくは900℃以下、より好ましくは850℃以下である。
 ガス流を安定化させる観点からは、第二ゾーンZ2の温度を第一ゾーンZ1の温度と同じとすることが好ましい。
 GaN種結晶が所定の成長温度に達したら、直ちに、第一Cl供給口111および第二Cl供給口112のそれぞれから第一反応管110内にClを供給し、塩化ガリウムを生成させる。Clは、必要に応じて、キャリアガスとともに第一反応管110内に導入する。キャリアガスには不活性ガスであるNまたは希ガスを用いる。
 第一反応管110内で生じる塩化ガリウムが第二反応管120の成長ゾーンに到達すると、GaN種結晶上においてGaNのエピタキシャル成長が始まる。
 第一反応管110に供給するClの流量および第二反応管120に供給するNHの流量は、第一ゾーンZ1と第二ゾーンZ2の各々における全圧とCl分圧、および、成長ゾーンZ3における全圧とGaCl分圧とNH分圧が、それぞれ所望の範囲内となるように設定する。
 第一ゾーンZ1では、例えば、Cl分圧を1.0×10-3atm以上、全圧を0.8~1.2atmとする。
 第二ゾーンZ2では、例えば、Cl分圧を2.0×10-3atm以上、全圧を0.8~1.2atmとする。
 成長ゾーンZ3では、例えばGaCl分圧を9.0×10-3~1.0×10-1atm、NH分圧を5.0×10-2~2.5×10-1atm、全圧を0.8~1.2atmとする。
 成長ゾーンZ3におけるGaCl分圧とは、別の言い方をすれば、GaN種結晶に供給するGaClの分圧である。
 成長ゾーンZ3におけるGaCl分圧は、9.0×10-3atmより低くてもよく、例えば、1.5×10-3atm以上2.4×10-3atm未満、2.4×10-3atm以上4.1×10-3atm未満、または4.1×10-3atm以上9.0×10-3atm未満であり得る。
 GaNの成長レートは、GaN種結晶に供給するGaClおよびNHの分圧で制御することができる。例えば、成長ゾーンZ3におけるGaCl分圧とNH分圧との積は、9.5×10-5atm以上3.2×10-4atm未満、3.2×10-4atm以上7.0×10-4atm未満、7.0×10-4atm以上9.8×10-4atm未満、または9.8×10-4atm以上に設定し得る。
 GaNの成長を終了させるときは、第一反応管110へのClの供給を停止することにより、成長ゾーンZ3への塩化ガリウムの供給を停止する。同時に、GaN種結晶の加熱を停止し、該第二反応管の反応管温度を室温まで降下させる。成長したGaNの分解を防ぐために、降温中も第二反応管120内にはNHとキャリアガスを流す。
 GaN種結晶の表面のうち、その上でGaClおよびNHからGaNを成長させることが可能なのは、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ180°以下の角度を成す表面である。かかる表面上でのGaNの成長レートは1μm/h以上であり得る。
 該成長レートは、1μm/h以上かつ5μm/h未満、5μm/h以上かつ10μm/h未満、10μm/h以上かつ15μm/h未満、15μm/h以上かつ20μm/h未満、20μm/h以上かつ25μm/h未満、25μm/h以上かつ50μm/h未満、50μm/h以上かつ75μm/h未満、75μm/h以上かつ100μm/h未満、100μm/h以上かつ125μm/h未満、125μm/h以上かつ150μm/h未満、150μm/h以上かつ175μm/h未満、175μm/h以上かつ200μm/h未満、200μm/h以上かつ250μm/h未満、250μm/h以上かつ300μm/h未満、300μm/h以上400μm/h未満、400μm/h以上500μm/h未満、500μm/h以上かつ2000μm/h未満等に設定し得る。
 あるGaN表面上におけるGaNの成長レートは、該GaN表面上にGaN結晶層を成長させ、該GaN結晶層の厚さを成長時間で除算することにより調べることができる。
 図10または図11に示すタイプの結晶成長装置を用いる場合は、第一反応管へのCl供給を開始した時から該Cl供給を停止した時までを成長時間とすることができる。他のタイプの結晶成長装置を用いる場合は、成長チャンバー内へのGaClの供給開始から供給停止までの時間を成長時間とすることができる。
 一般的な傾向として、成長レートが低い程、成長するGaN結晶の結晶性は良好である。従って、GaNの成長レートは好ましくは150μm/h未満であり、より好ましくは125μm/h未満である。
 例外は、GaNの{10-1-1}表面上にGaN結晶を成長させる場合であり、200μm/h以上のレートで成長させたGaN結晶が、約100μm/hのレートで成長させたGaN結晶と同等以上の品質を有し得る。
 このことから、GaN{10-1-1}ウエハのように、法線の方向と平行または最も平行に近い低指数方位が<10-1-1>である半極性表面を有するGaN種結晶の使用は、高品質のGaN結晶を効率よく製造するうえで特に有利であることが理解される。
 GaN種結晶としてGaN基板を用いる場合、該GaN基板上に成長させるGaNは、該GaN基板の厚さ以下の厚さを有する膜であってもよいし、あるいは、該GaN基板の主表面上における最大成長高さが該GaN基板の厚さを超えるバルク結晶であってもよい。
 ここでいう成長高さとは、下地GaN表面を基準面としたときの、該下地GaN表面上に成長したバルクGaN結晶の高さのことであり、言い換えれば、該下地GaN表面から該バルクGaN結晶の上面までの距離のことである。最大成長高さは、該成長高さが最大である位置における成長高さである。
 GaN基板上にバルクGaN結晶を成長させる場合、該GaN基板の主表面上におけるその最大成長高さは、300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、100mm以上かつ200mm未満等であり得る。
 GaClおよびNHを原料とするGaNの気相エピタキシャル成長がその上で起こり得る表面を、GaN種結晶が2以上有する場合には、かかる表面の各々の上で、GaNを前述の成長レートで成長させることができる。
 例えば、図4あるいは図5に示すGaN種結晶を用いる場合には、6個の{10-10}ファセットおよび6個の{10-1-1}ファセットの各々の上に、1μm/h以上の成長レートでGaNを成長させることができる。
 例えば、図7に示すGaN種結晶を用いる場合には、6個の{10-10}ファセット、6個の{10-1-1}ファセットおよび(000-1)ファセットの各々の上に、1μm/h以上の成長レートでGaNを成長させることができる。
 GaN種結晶上でのGaNの成長は、断続的に繰り返すことができる。換言すれば、GaNの成長は複数回に分けて行うことができる。この場合の2回目以降の成長は一般に再成長と呼ばれる。
 GaNの成長がN回に分けて行われる場合、n回目の成長と(n+1)回目の成長で使用される結晶成長装置および/または結晶成長条件は同じであってもよいし、異なっていてもよい[ここで、Nは2以上の整数であり、nは1以上(N-1)以下の整数である]。また、(n+1)回目の成長の前に、n回目の成長で形成された結晶の表面に対し、エッチングを含むクリーニング処理を施し得る。
 一例においては、キャリアガスに微量の酸素ガス(O)を添加する、あるいは、微量の酸素ガスを添加した不活性ガスを他のガスとともに第二反応管120に導入することによって、成長させるGaNを酸素でドープすることができる。GaN中で酸素(О)はドナーとして作用しn型キャリアを発生させるので、酸素ドープされたGaNはn型導電性を示す。
2.用途
 実施形態に係るGaN結晶製造方法は、窒化物半導体デバイス用のGaN膜の形成、バルクGaN結晶の製造等、様々な用途に用いることができる。
 窒化物半導体デバイスは、デバイス構造の主要部に窒化物半導体を用いた半導体デバイスである。窒化物半導体は窒化物系III-V族化合物半導体、III族窒化物系化合物半導体、GaN系半導体、などとも呼ばれ、GaNを含む他に、GaNのGaの一部または全部が、他の周期表13族元素(B、Al、In等)に置換された化合物を含む。具体的には、AlN、InN、AlGaN、AlInN、GaInN、AlGaInN等が例示される。
 窒化物半導体デバイスの具体例としては、発光ダイオード、レーザダイオードなどの発光デバイス、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High Electron Mobility Transistor)などの電子デバイス、温度センサ、圧力センサ、放射線センサ、可視-紫外光検出器などの半導体センサ、SAW(Surface Acoustic Wave)デバイス、振動子、共振子、発振器、MEMS(Micro Electro Mechanical System)部品、電圧アクチュエータ、太陽電池などがある。
 実施形態に係るGaN結晶製造方法を用いて製造されるバルクGaN結晶は、GaNウエハ(GaN単結晶基板)の材料として用いることができる。すなわち、実施形態に係るGaN結晶製造方法を用いてバルクGaN結晶を製造し、そのバルクGaN結晶を加工することによって、GaNウエハを製造することができる。
 バルクGaN結晶のサイズと、製造すべきGaNウエハのサイズに応じて、研削、ラッピング、CMP、エッチング、スライス、くり抜き、レーザー加工等の中から、必要な加工を適宜選択することができる。
 バルクGaN結晶のサイズが十分に大きいときは、これを任意の方向にスライスすることにより、任意の面方位を有するGaNウエハを得ることができる。得られるGaNウエハは、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハまたは(000-1)ウエハであり得る。
 注記すると、GaNウエハの呼称に付される面方位は、当該ウエハが有する主表面のうち、エピタキシャル成長に使用できるように仕上げられた主表面と平行または最も平行に近い低指数面の方位である。例えば、CMP処理によってエピ-レディ状態(epi-ready state)とされた(30-3-1)表面を有するGaNウエハは、{30-3-1}ウエハと呼ばれる。
 ウエハの実際の主表面は、しばしば、そのウエハの呼称に付された低指数面から僅かに傾斜させられる。そのようなウエハは「オフカットされている」と称されることがある。この傾斜の角度はオフ角と呼ばれ、通常5°以下であり、4°以下、3°以下、2°以下または1°以下であり得る。
 バルクGaN結晶のスライスは、ワイヤーソー、内周刃スライサー等を用いて行うことができる。通常は、スライスにより得られたブランクウエハのアズスライス表面を機械研磨(研削および/またはラッピング)により平坦化し、次いで、CMP、ドライエッチングおよびウエットエッチングから選ばれる一以上の処理により、該機械研磨により表面に形成されたダメージ層を除去する。
 GaNウエハは、窒化物半導体デバイスのための基板として好ましく用いることができる。すなわち、MOCVD、MBE、パルス蒸着、スパッタリング等の薄膜形成技術を用いて、GaNウエハ上に一以上の窒化物半導体薄膜を成長させることにより、各種のデバイス構造を形成することができる。
 その他、GaNウエハは、バルクGaN結晶を成長させるための種結晶として使用することができる。
3.実験結果
 以下に記す実験では、図10および図11に示す装置と同じタイプの気相成長装置を用いた。すなわち、内部に第一ゾーンおよび第二ゾーンを設けた石英製の第一反応管と、内部に成長ゾーンを設けた石英製の第二反応管とを備える気相成長装置である。前述の通り、第一ゾーンではClと金属Gaが反応してGaClが生成し、第二ゾーンでは第一ゾーンで生成したGaClがClと反応してGaClが生成し、成長ゾーンではGaClを含む気体塩化ガリウムとNHとが反応し、生成するGaNがGaN種結晶上にエピタキシャル成長する。
 以下においてガス流量に言及する場合、特に断らない限り、標準状態に換算した体積流量(「sccm」等の単位で表される流量)を意味する。
 以下において、GaN基板の「第一主表面」とは、その上にGaN結晶を成長させようと試みた主表面、または、GaN結晶の成長に使用した主表面のことをいう。
3.1.実験1
 種結晶として、下記表1に示す、面方位の異なる9種類のGaN基板A~Iを準備した。
 GaN基板A~Iは、いずれもGaN単結晶基板であり、その作製手順は下記の通りである。
(a)C面GaN/サファイア・テンプレート上に、塩化水素(HCl)を用いたHVPE法でバルクGaN結晶を成長させた。
(b)該バルクGaN結晶をワイヤーソーでスライスし、所定の面方位を有するアズスライス基板を得た。
(c)該アズスライス基板の各主表面を機械研磨により平坦化した後、CMP(化学機械研磨)によって該機械研磨により形成されたダメージ層とスクラッチを除去した。
Figure JPOXMLDOC01-appb-T000001
 表1で、GaN基板Eの第一主表面の面方位を(10-10)としているのは便宜のためであり、GaN基板Eの第一主表面の面方位は(10-10)と(30-3-1)の略中間であった。
 前述の気相成長装置を用いて、GaN基板A~Iの各第一主表面上でGaClとNHからのGaNの成長が起こるか否かを調べた。条件は下記表2に示す通りとし、成長時間は2時間とした。
Figure JPOXMLDOC01-appb-T000002
 表2に示す第一ゾーンのCl分圧は下記式1により算出した。
 P1(Cl2)=P1(t)×F1(Cl2)/{F1(Cl2)+F1(N2)} ・・・式1
 上記式1において:
  P1(Cl2):第一ゾーンのCl分圧。
  P1(t):第一ゾーンの全圧(1atm)。
  F1(Cl2):第一ゾーンに供給するClの流量。
  F1(N2):第一ゾーンに供給するキャリアガス(N)の流量。
 表2に示す第二ゾーンのCl分圧は、下記式2により算出した。
  P2(Cl2)=P2(t)×F2(Cl2)/{F1(N2)+F2(Cl2)+F2(N2)} ・・・式2
 上記式2において:
  P2(Cl2):第二ゾーンのCl分圧。
  P2(t):第二ゾーンの全圧(1atm)。
  F1(N2):第一ゾーンに供給するキャリアガス(N)の流量。
  F2(Cl2):第二ゾーンに供給するClの流量。
  F2(N2):第二ゾーンに供給するキャリアガス(N)の流量。
 表2において、成長ゾーンのGaCl分圧は、第二ゾーンのCl分圧に等しいと仮定している。
 表2に示す成長ゾーンのNH分圧は、下記式3により算出した。
  PG(NH3)=PG(t)×FG(NH3)/{F1(N2)+F2(Cl2)+F2(N2)+FG(NH3)+FG(N2)} ・・・式3
 上記式3において:
  PG(NH3):成長ゾーンのNH分圧。
  PG(t):成長ゾーンの全圧(1atm)。
  F1(N2):第一ゾーンに供給するキャリアガス(N)の流量。
  F2(Cl2):第二ゾーンに供給するClの流量。
  F2(N2):第二ゾーンに供給するキャリアガス(N)の流量。
  FG(NH3):成長ゾーンに供給するNHの流量。
  FG(N2):成長ゾーンに供給するキャリアガス(N)の流量。
 成長時間の2時間が経過したところで、成長ゾーンへのGaCl供給とGaN基板の加熱を停止し、反応管の温度が室温まで下がった後、GaN基板を気相成長装置から取り出して成長したGaN層の厚さを蛍光顕微鏡で調べた。
 その結果、第一主表面の法線の方向とGaN基板の[0001]方向とが成す角度が95°以上であるGaN基板A~Eでは、第一主表面上に100μmを超える厚さのGaN層が成長していることが分かった。それに対し、該角度が80°以下であるGaN基板F~Iでは、第一主表面上でのGaNの成長を認めることができなかった。
 各々の第一主表面上に成長したGaN層の厚さと成長時間とから算出したGaNの成長レートは、GaN基板Aでは88μm/hだったのに対し、GaN基板B~Dでは100μm/hを超えており、GaN基板E上では200μm/hを超えていた。該成長レートの算出において、GaN層の厚さが層内で一様でない場合には、最大厚さ(厚さ最大である位置における厚さ)を用いた。
 X線ロッキングカーブ測定から、GaN基板A~E上に成長した各GaN層はエピタキシャル成長により形成された単結晶層であることが確認された。該X線ロッキングカーブ測定は、CuKαを線源に用いたX線回折装置を使用して行った(他の実験におけるX線ロッキングカーブ測定も同様である)。
 実験1で得た結果を表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
3.2.実験2
 実験1と同じ気相成長装置を用いて、前記GaN基板A~E上にGaNを成長させた。成長条件は、成長温度を除き、前記表2に示す条件と同じとした。
 その結果、各GaN基板の第一主表面上におけるGaNの成長レートは、下記表4に示す通りであった。
Figure JPOXMLDOC01-appb-T000004
3.3.実験3
 種結晶として、下記表5に示す2種類のGaN基板JおよびKを準備した。
 GaN基板JおよびKは、GaN単結晶基板であり、前述のGaN基板A~Iと同じ方法で作製した。
 GaN基板Jは、[0001]方向に+1°およびa軸方向に3°のオフ角を有する(10-10)基板(M面基板)であった。
 GaN基板Kは、[0001]方向に+3°およびa軸方向に3°のオフ角を有する(10-10)基板(M面基板)であった。
Figure JPOXMLDOC01-appb-T000005
 実験1と同じ気相成長装置を用いて、GaN基板JおよびKの各第一主表面上でGaClとNHからのGaNの成長が起こるか否かを調べた。条件は下記表6に示す通りとし、成長時間は1時間とした。
Figure JPOXMLDOC01-appb-T000006
 表6に示す、各ゾーンにおける各ガス分圧の算出方法は、前記実験1と同じである。
 成長時間の1時間が経過したところで、成長ゾーンへのGaCl供給とGaN基板の加熱を停止し、反応管の温度が室温まで下がった後、GaN基板を気相成長装置から取り出して成長したGaN層の厚さを蛍光顕微鏡で調べた。
 その結果、GaN基板JおよびKの両方で、第一主表面上に100μmを超える厚さのGaN層が成長していることが分かった。
 X線ロッキングカーブ測定から、GaN基板JおよびK上に成長した各GaN層はエピタキシャル成長により形成された単結晶層であることが確認された。
 実験3で得た結果を表7にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
3.4.実験4
 実験1と同じ気相成長装置を用いて、前記GaN基板AおよびEの各第一主表面上に、下記表8に示す4つの条件(条件1~4)でGaNを成長させた。該4つの条件の間では、成長ゾーンにおけるGaCl分圧とNH分圧との積が異なっている。
 表8には、各条件で得られたGaNの成長レートも合わせて示している。
Figure JPOXMLDOC01-appb-T000008
 表8に示す結果をグラフに表したものが図12である。図12が示すように、GaNの成長レートは、成長ゾーンにおけるGaCl分圧とNH分圧との積に略比例しており、原料ガスの分圧を調節することによりGaNの成長レートが制御可能であることが分かった。
3.5.実験5
 実験1と同じ気相成長装置を用いて、第一主表面の方位が異なる5種類のGaN基板(単結晶基板)の各第一主表面上に、GaClとNHからGaN層を成長させた。成長温度は1280℃とした。各GaN基板上に成長したGaN層に含まれる酸素(O)およびケイ素(Si)の濃度を、SIMS(Secondary Ion Mass Spectroscopy)により測定した結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、いずれのGaN層からもケイ素が検出された。ケイ素の意図的な添加は行っていないので、検出されたケイ素は反応管の材料である石英に由来するものと推測される。
 非極性または半極性GaN表面上に成長したGaN層のケイ素濃度は2×1017atms/cm未満で、(000-1)表面上に成長したGaN層における濃度8×1017atms/cmの4分の1以下であった。このことは、非極性または半極性GaN表面上での成長が、酸素ドーピングによるキャリア濃度の制御にとって好都合であることを示唆している。
3.6.実験6
 種結晶として、アモノサーマル法で成長させたGaN単結晶からなるGaN基板Lを準備した。GaN基板Lは、[0001]方向に+5°のオフ角を有する(10-10)基板(M面基板)であり、その第一主表面の法線の方向と[0001]方向とがなす角度は85°であった。
 実験1と同じ気相成長装置を用い、成長ゾーンにおいてGaCl分圧が4.8×10-3atm、NH分圧が2×10-1atm、温度が1230℃という条件で、GaN基板Lの第一主表面上にGaNが成長するか否かを調べた。その結果、GaN層が40μm/hというレートで成長した。X線ロッキングカーブ測定から、このGaN層はエピタキシャル成長により形成された単結晶層であることが確認された。測定された(100)面のX線ロッキングカーブのFWHM(Full Width at Half Maximum)は30arcsecであった。
3.7.実験7
 種結晶として、いずれもアモノサーマル法で成長させたGaN単結晶からなる2種類のGaN基板MおよびNを準備した。
 GaN基板Mは、オフカット無しの(10-10)基板(M面基板)であり、その第一主表面の法線の方向と[0001]方向とがなす角度は90°であった。
 GaN基板Nは、[0001]方向に-5°のオフ角を有する(10-10)基板(M面基板)であり、その第一主表面の法線の方向と[0001]方向とがなす角度は95°であった。
 実験1と同じ気相成長装置を用いて、GaN基板MおよびNの各第一主表面上に、下記表10に示す3つの条件の下でGaNを成長させた。
 表10には、各条件におけるGaNの成長レートの測定結果と、成長したGaN層で測定した(100)面X線ロッキングカーブのFWHMも合わせて示している。
Figure JPOXMLDOC01-appb-T000010
 積層欠陥を観察するために、温度83Kで、成長したGaN層表面の波長364nmにおける単色CL(Cathodoluminescence)像を取得した。試料中央部をc軸方向に約5mmにわたって観察した結果、表10にいう条件2または3でGaN基板M上に成長させたGaN層の表面には、積層欠陥が密集した領域が至る所に存在していたのに対し、同じ条件2または3でGaN基板N上に成長させたGaN層の表面の積層欠陥は比較的少なく、積層欠陥が密集した領域は部分的にしか存在しなかった。
3.8.実験8
 種結晶として、アモノサーマル法で成長させたGaN単結晶からなるGaN基板Oを準備した。
 GaN基板Oは、(10-1-1)基板であり、その第一主表面の法線の方向と[0001]方向とがなす角度は118°であった。
 実験1と同じ気相成長装置を用いて、GaN基板Oの第一主表面上に、下記表11に示す3つの条件の下でGaNを成長させた。
 表11には、各条件におけるGaNの成長レートの測定結果と、成長したGaN層で測定した(101)面X線ロッキングカーブのFWHMも合わせて示している。
Figure JPOXMLDOC01-appb-T000011
 更に、表11にいう条件1でGaN基板O上に成長させたGaN層の(202)X線ロッキングカーブを、より高い角度分解能を持つX線回折装置[スペクトリス(株)製 パナリティカル X’Pert Pro MRD]を用いて測定した。入射側光学系には、1/2°発散スリット、集光ミラー、Ge(440)4結晶モノクロメータおよびw0.2mm×h1mmのクロススリットを用いた。受光光学系には、半導体ピクセル検出器であるPIXcel3D(登録商標)の0Dモードを用いた。光学系の角度分解能は5~6arcsecであった。
 GaN層表面におけるX線のビームサイズは、X線の入射角が90°(X線の入射方向がGaN層表面と直交)の場合に0.2mm×5mmとなるように設定した。測定時には、該ビームサイズが5mmとなる方向とX線入射面とが直交するようにした。
 X線ロッキングカーブ測定は、まず、GaN層表面の略中心を通りa軸に平行な直線上にある7つの測定点において行った。測定点間のピッチは1mmとした。各測定においてX線入射面はa軸と平行とした。つまり、GaN層表面に対し、c軸に直交する方向からX線を入射させて、ωスキャンを行った。
 該a軸に平行な直線上の7つの測定点間において、(202)面X線ロッキングカーブのFWHMの最大値は26.8arcsec、最小値は14.9arcsec、平均値は18.1arcsecであった。
 次に、GaN層表面の略中心を通りa軸と直交する直線上にある7つの測定点で測定を行った。測定点間のピッチは1mmとした。各測定においてX線入射面はa軸と垂直とした。つまり、GaN層表面に対し、a軸に直交する方向からX線を入射させて、ωスキャンを行った。
 該a軸と直交する直線上の7つの測定点間において、(202)面X線ロッキングカーブのFWHMの最大値は18.9arcsec、最小値は13.3arcsec、平均値は15.0arcsecであった。
3.9.実験9
 実験9では、GaClおよびNHを原料に用いたGaN結晶のSAG(Selective Area Growth)が可能かどうかを調べるために、前述のGaN基板Aと同等品質の(000-1)基板の第一主表面上にパターンマスクを配置したGaN基板Pと、前述のGaN基板Eと同等品質の、[0001]方向に-5°のオフ角を有する(10-10)基板の第一主表面上にパターンマスクを配置したGaN基板Qと、を準備した。
 GaN基板PとGaN基板Qの各第一主表面上に配置したパターンマスクは、プラズマCVD法で堆積させた厚さ80nmのSiN薄膜に、通常のフォトリソグラフィおよびエッチングの技法を用いて、10μmピッチで最密配置された直径5μmの円形開口を設けることにより形成した。
 実験1と同じ気相成長装置を用いて、GaN基板PおよびGaN基板Qの各第一主表面上に、GaClとNHからGaNを成長させた。成長ゾーンにおけるGaCl分圧とNH分圧は、それぞれ、2.2×10-3atmおよび9.0×10-2atmとした。成長温度は1050℃と1230℃の2通りとした。
 結果として、GaN基板P上およびGaN基板Q上のいずれにおいても、また、いずれの成長温度においても、SAGが観察された。すなわち、短時間の成長によって、パターンマスクの円形開口上にGaNアイランドが形成された。
 成長温度1050℃のとき、GaN基板P上にSAGにより形成されたGaNアイランドの平面SEM像および鳥瞰SEM像を、図13(a)および(b)にそれぞれ示す。
 成長温度1230℃のとき、GaN基板P上にSAGにより形成されたGaNアイランドの平面SEM像および鳥瞰SEM像を、図14(a)および(b)にそれぞれ示す。
 成長温度1050℃のとき、GaN基板Q上にSAGにより形成されたGaNアイランドの平面SEM像および鳥瞰SEM像を、図15(a)および(b)にそれぞれ示す。
 成長温度1230℃のとき、GaN基板Q上にSAGにより形成されたGaNアイランドの平面SEM像および鳥瞰SEM像を、図16(a)および(b)にそれぞれ示す。
 図13および図15に示すように、温度1050℃で形成されたGaNアイランドの表面には、明瞭な(000-1)ファセットおよび{10-10}ファセットが現れたが、{11-20}ファセットや、l>0である{hkil}ファセットは観察されなかった。ここで、l>0である{hkil}ファセットとは、法線の方向が[0001]方向と成す角度が90°未満のファセットであり、(0001)ファセットを含む。
 図13に示されるように、GaN基板P上に成長したGaNアイランドの上部は、平坦な頂面で終端された六角柱の形をしており、該頂面は(000-1)ファセット、六角柱の側面は{10-11}ファセットであった。該頂面の方位は、該頂面がKOHでエッチングされるか否かを調べる方法で確認した。GaNでは、(0001)表面がKOHでは実質的にエッチングされないのに対し、(000-1)表面はKOHで容易にエッチングされることが知られている。
 図14および図16に示すように、温度1230℃で成長したGaNアイランドの表面には、明瞭な(000-1)ファセット、{10-1-1}ファセットおよび{10-10}ファセットが現れたが、{11-20}ファセットや、l>0である{hkil}ファセットは観察されなかった。
 図14に示されるように、GaN基板P上に成長したGaNアイランドの上部は、平坦な頂面で終端された六角柱の形をしており、該頂面は(000-1)ファセット、六角柱の側面は{10-10}ファセットであった。該(000-1)ファセットと頂面と該{10-10}ファセットの間には、{10-1-1}ファセットであるチャンファー(chamfer)が形成されていた。
 SAGによってパターンマスクの開口部上に形成されたGaNアイランドの形状は、擬平衡結晶形状(quasi-equilibrium crystal shape)と呼ばれるものであり、その表面に現れるファセットは、GaClとNHからGaN結晶が成長する系における安定面を示している。GaClとNHからバルクGaN結晶が成長する場合においても、その表面には、GaNアイランドにおいて観察されたファセットが現れると予測される。
 GaN基板P上およびGaN基板Q上において、GaNアイランドが形成された後、更にGaN結晶を成長させ続けると、温度1050℃でも温度1230℃でも、GaNアイランド間のコアレッセンスが起こり、基板の第一主表面全体を覆うGaN層が形成された。GaN基板P上およびGaN基板Q上のいずれにおいても、形成されたGaN層の上面は高い平坦性を有していた。
 比較のために、GaN基板PおよびGaN基板Qの上に、前述の各実験と同じ気相成長装置を用いるが、第二ゾーンにClを供給しない条件で、GaN結晶を成長させた。第二ゾーンにClを供給しないとき、成長ゾーンに供給されるGa源は、実質的にGaClのみである。かかる条件下、短時間の成長で、これらの基板上に形成されたGaNアイランドのSEM像を図17および図18に示す。
 図17は温度1050℃で成長したGaNアイランドの鳥瞰SEM像であり、図17(a)はGaN基板P上に成長したアイランドを、また、図17(b)はGaN基板Q上に成長したアイランドを、それぞれ示している。
 図17(a)が示すように、温度1050℃でGaN基板P上にGaClとNHから成長したGaNアイランドの表面には、明瞭なファセットが観察されなかった。
 一方、図17(b)が示すように、温度1050℃でGaN基板Q上にGaClとNHから成長したGaNアイランドの表面には、(000-1)ファセット、{10-1-1}ファセットおよび{10-10}ファセットに加え、{10-11}ファセットも観察された。
 図18は温度1230℃で成長したGaNアイランドの鳥瞰SEM像であり、図18(a)はGaN基板P上に成長したアイランドを、また、図18(b)はGaN基板Q上に成長したアイランドを、それぞれ示している。
 図18が示すように、GaN基板P上でもGaN基板Q上でも、温度1230℃でGaClとNHから成長したGaNアイランドの表面には(000-1)ファセットだけが現れ、非極性{10-10}ファセットと半極性{10-1-1}ファセットは観察されなかった。
 以上、本発明を実施形態に即して具体的に説明したが、各実施形態は例として提示されたものであり、本発明の範囲を限定するものではない。本明細書に記載された各実施形態は、発明の趣旨を逸脱しない範囲内で様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。
10 GaN基板
11 第一主表面
12 第二主表面
13 側面
100 気相成長装置
110 第一反応管
111 第一Cl供給口
112 第二Cl供給口
113 ガス出口
114 漏斗形管
115 バッフル
120 第二反応管
121 NH供給口
122 排気口
130 サセプタ
Z1 第一ゾーン
Z2 第二ゾーン
Z3 成長ゾーン

Claims (139)

  1.  (i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ170°未満の角度を成す非極性または半極性表面を有する、種結晶準備ステップと、(ii)該GaN種結晶の該非極性または半極性表面を含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
  2.  前記非極性または半極性表面が前記GaN種結晶の[0001]方向と成す角度が85°以上かつ90°未満、90°以上かつ93°未満、93°以上かつ97°未満、97°以上かつ102°未満、102°以上かつ107°未満、107°以上かつ112°未満、112°以上かつ122°未満、または、122°以上かつ132°未満である、請求項1に記載のGaN結晶製造方法。
  3.  前記非極性または半極性表面が前記GaN種結晶の[0001]方向と成す角度が87°以下または93°以上である、請求項1または2に記載のGaN結晶製造方法。
  4.  前記成長ステップにおける前記非極性または半極性表面上でのGaNの成長レートが1μm/h以上である、請求項1~3のいずれか1項に記載のGaN結晶製造方法。
  5.  前記成長レートが50μm/h以上である、請求項4に記載のGaN結晶製造方法。
  6.  前記成長レートが150μm/h未満である、請求項4または5に記載のGaN結晶製造方法。
  7.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、請求項1~4のいずれか一項に記載のGaN結晶製造方法。
  8.  前記成長ステップでは、GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項1~4および7のいずれか一項に記載のGaN結晶製造方法。
  9.  前記非極性または半極性表面と前記GaN種結晶のC面との交線の方向が、a軸方向±15°である、請求項1~8のいずれか1項に記載のGaN結晶製造方法。
  10.  前記交線の方向が、a軸方向±3°である、請求項9に記載のGaN結晶製造方法。
  11.  前記非極性または半極性表面の法線と平行または最も平行に近い前記GaN種結晶の低指数方位が<10-10>、<30-3-1>、<20-2-1>、<30-3-2>または<10-1-1>である、請求項1~10のいずれか1項に記載のGaN結晶製造方法。
  12.  前記GaN種結晶がGaN基板の少なくとも一部であり、前記非極性または半極性表面が該GaN基板の主表面である、請求項1~11のいずれか1項に記載のGaN結晶製造方法。
  13.  前記GaN基板がGaN単結晶基板である、請求項12に記載のGaN結晶製造方法。
  14.  前記GaN基板が、ベース基板と該ベース基板上に成長したGaN単結晶層とを有するテンプレート基板である、請求項12に記載のGaN結晶製造方法。
  15.  前記GaN基板が、ベース基板と該ベース基板に接合されたGaN単結晶層とを有するGaN層接合基板である、請求項12に記載のGaN結晶製造方法。
  16.  前記成長ステップでは、前記非極性または半極性表面上における最大成長高さが300μm以上のバルクGaN結晶を成長させる、請求項12~15のいずれか1項に記載のGaN結晶製造方法。
  17.  前記バルクGaN結晶の最大成長高さが300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、または、100mm以上かつ200mm未満である、請求項16に記載のGaN結晶製造方法。
  18.  {10-10}ファセットおよび{10-1-1}ファセットから選ばれる一以上のファセットを有するGaN種結晶を準備する種結晶準備ステップ、および、前記GaN種結晶の、前記一以上のファセットを含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップを含む、GaN結晶の製造方法。
  19.  前記GaN種結晶は、c軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、0.1以上かつ10以下である、請求項18に記載のGaN結晶製造方法。
  20.  前記一以上のファセットの各々がアズグロン表面である、請求項18または19に記載のGaN結晶製造方法。
  21.  前記GaN種結晶が更に(000-1)ファセットを有する、請求項18~20のいずれか1項に記載のGaN結晶製造方法。
  22.  前記成長ステップでは前記(000-1)ファセット上にもGaNを成長させる、請求項21に記載のGaN結晶製造方法。
  23.  前記成長ステップにおける、前記一以上のファセットの各々の上でのGaNの成長レートが1μm/h以上である、請求項18~22のいずれか1項に記載のGaN結晶製造方法。
  24.  前記成長レートが50μm/h以上である、請求項23に記載のGaN結晶製造方法。
  25.  前記成長レートが150μm/h未満である、請求項23または24に記載のGaN結晶製造方法。
  26.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、請求項18~23のいずれか一項に記載のGaN結晶製造方法。
  27.  前記成長ステップでは、GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項18~23および26のいずれか一項に記載のGaN結晶製造方法。
  28.  前記成長ステップにおいて、GaNの成長を断続的に繰り返す、請求項1~27のいずれか1項に記載のGaN結晶製造方法。
  29.  金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、請求項1~28のいずれか1項に記載のGaN結晶製造方法。
  30.  前記成長ステップにおけるGaNの成長温度が1200℃以上である、請求項1~29のいずれか1項に記載のGaN結晶製造方法。
  31.  請求項1~30のいずれか1項に記載のGaN結晶製造方法を用いてGaN結晶を製造する結晶製造ステップと、該結晶製造ステップで製造したGaN結晶を加工して少なくともひとつのGaNウエハを形成する結晶加工ステップとを有する、GaNウエハの製造方法。
  32.  前記結晶加工ステップで形成されるGaNウエハが、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハおよび(000-1)ウエハから選ばれるGaNウエハを含む、請求項31に記載のGaNウエハ製造方法。
  33.  (i){20-2-1}ウエハであるGaNウエハを準備する種結晶準備ステップと、(ii)該GaNウエハ上にGaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
  34.  前記成長ステップにおけるGaNの成長レートが1μm/h以上である、請求項33に記載のGaN結晶製造方法。
  35.  前記成長レートが1μm/h以上かつ50μm/h未満、50μm/h以上かつ100μm/h未満、または、100μm/h以上かつ150μm/h未満である、請求項34に記載のGaN結晶製造方法。
  36.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaNウエハに供給する、請求項33または34に記載のGaN結晶製造方法。
  37.  前記成長ステップでは、前記GaNウエハに供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項33、34または36に記載のGaN結晶製造方法。
  38.  前記成長ステップでは(201)面X線ロッキングカーブのFWHMが100arcsec未満の部分を含むGaN結晶が前記GaNウエハ上に形成される、請求項33~37のいずれか1項に記載のGaN結晶製造方法。
  39.  金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、請求項33~38のいずれか1項に記載のGaN結晶製造方法。
  40.  前記成長ステップにおけるGaNの成長温度が1200℃以上である、請求項33~39のいずれか1項に記載のGaN結晶製造方法。
  41.  請求項33~40のいずれか1項に記載のGaN結晶製造方法を用いてGaN結晶を製造した後、該GaN結晶を加工してGaN{20-21}ウエハを形成する、GaNウエハの製造方法。
  42.  (i){10-10}ウエハであるGaNウエハを準備する種結晶準備ステップと、(ii)該GaNウエハ上にGaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
  43.  前記成長ステップにおけるGaNの成長レートが1μm/h以上である、請求項42に記載のGaN結晶製造方法。
  44.  前記成長レートが1μm/h以上かつ50μm/h未満、50μm/h以上かつ100μm/h未満、または、100μm/h以上かつ150μm/h未満である、請求項43に記載のGaN結晶製造方法。
  45.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaNウエハに供給する、請求項42または43に記載のGaN結晶製造方法。
  46.  前記成長ステップでは、前記GaNウエハに供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項42、43または45に記載のGaN結晶製造方法。
  47.  前記成長ステップでは(100)面X線ロッキングカーブのFWHMが100arcsec未満の部分を含むGaN結晶が前記GaNウエハ上に形成される、請求項42~46のいずれか1項に記載のGaN結晶製造方法。
  48.  金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、請求項42~47のいずれか1項に記載のGaN結晶製造方法。
  49.  前記成長ステップにおけるGaNの成長温度が1200℃以上である、請求項42~48のいずれか1項に記載のGaN結晶製造方法。
  50.  請求項42~49のいずれか1項に記載のGaN結晶製造方法を用いてGaN結晶を製造した後、該GaN結晶を加工してGaN{10-10}ウエハを形成する、GaNウエハの製造方法。
  51.  (i){10-10}表面を有するGaN種結晶を準備する種結晶準備ステップと、(ii)該{10-10}表面上にGaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶の製造方法。
  52.  前記成長ステップにおける前記{10-10}表面上でのGaNの成長レートが1μm/h以上である、請求項51に記載のGaN結晶製造方法。
  53.  前記成長レートが1μm/h以上かつ50μm/h未満、50μm/h以上かつ100μm/h未満、または、100μm/h以上かつ150μm/h未満である、請求項52に記載のGaN結晶製造方法。
  54.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、請求項51または52に記載のGaN結晶製造方法。
  55.  前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項51、52または54に記載のGaN結晶製造方法。
  56.  前記成長ステップでは(100)面X線ロッキングカーブのFWHMが100arcsec未満の部分を含むGaN結晶が前記{10-10}表面上に形成される、請求項51~55のいずれか1項に記載のGaN結晶製造方法。
  57.  金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、請求項51~56のいずれか1項に記載のGaN結晶製造方法。
  58.  前記成長ステップにおけるGaNの成長温度が1200℃以上である、請求項51~57のいずれか1項に記載のGaN結晶製造方法。
  59.  請求項51~58のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造した後、該GaN結晶を加工して少なくともひとつのGaNウエハを形成する、GaNウエハの製造方法。
  60.  (i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と175°以上180°以下の角度を成す極性表面を有する、種結晶準備ステップと、(ii){10-10}ファセットを側面とする六角柱部分を含むGaN結晶を、GaClおよびNHを原料に用いて、該GaN種結晶の、該極性表面を含む表面上に気相から成長させる成長ステップと、を含むGaN結晶製造方法。
  61.  前記六角柱部分が(000-1)ファセットで終端されている、請求項60に記載のGaN結晶製造方法。
  62.  前記六角柱部分が前記{10-10}ファセットと前記(000-1)ファセットの間に{10-1-1}ファセットであるチャンファーを有する、請求項61に記載のGaN結晶製造方法。
  63.  前記GaN種結晶がGaN基板の少なくとも一部であり、前記極性表面が該GaN基板の主表面である、請求項60~62のいずれか1項に記載のGaN結晶製造方法。
  64.  前記GaN基板がGaN単結晶基板である、請求項63に記載のGaN結晶製造方法。
  65.  前記GaN基板が、ベース基板と該ベース基板上に成長したGaN単結晶層とを有するテンプレート基板である、請求項63に記載のGaN結晶製造方法。
  66.  前記GaN基板が、ベース基板と該ベース基板に接合されたGaN単結晶層とを有するGaN層接合基板である、請求項63に記載のGaN結晶製造方法。
  67.  前記成長ステップでは、前記極性表面上における最大成長高さが300μm以上のバルクGaN結晶を成長させる、請求項63~66のいずれか1項に記載のGaN結晶製造方法。
  68.  前記バルクGaN結晶の最大成長高さが300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、または、100mm以上かつ200mm未満である、請求項67に記載のGaN結晶製造方法。
  69.  {10-10}ファセットを側面とする六角柱部分を含み、[000-1]側に成長端を有するGaN結晶を、GaClおよびNHを原料に用いて気相から成長させる成長ステップを含む、GaN結晶製造方法。
  70.  前記六角柱部分が(000-1)ファセットで終端されている、請求項69に記載のGaN結晶製造方法。
  71.  前記六角柱部分が前記{10-10}ファセットと前記(000-1)ファセットの間に{10-1-1}ファセットであるチャンファーを有する、請求項70に記載のGaN結晶製造方法。
  72.  前記GaN結晶を、三次元形状を有するGaN種結晶上に成長させる、請求項69~71のいずれか1項に記載のGaN結晶製造方法。
  73.  前記三次元形状を有するGaN種結晶が、{10-1-1}ファセットを側面とする六角錐部分を有する、請求項72に記載のGaN結晶製造方法。
  74.  前記三次元形状を有するGaN種結晶が、前記六角錐部分の[0001]側に配置された、{10-10}ファセットを側面とする六角柱部分を有する、請求項73に記載のGaN結晶製造方法。
  75.  前記三次元形状を有するGaN種結晶が、{10-10}ファセットを側面とする六角柱部分を有し、該六角柱部分の[000-1]側が(000-1)表面で終端している、請求項72に記載のGaN結晶製造方法。
  76.  前記三次元形状を有するGaN種結晶が、{10-10}ファセットを側面とする六角柱部分と、その[000-1]側に配置された、(000-1)ファセットを頂面とし{10-1-1}ファセットを側面とする六角錐台部分とを有している、請求項75に記載のGaN結晶製造方法。
  77.  前記三次元形状を有するGaN種結晶が、(000-1)ファセットを頂面、(0001)ファセットを底面、{10-1-1}ファセットを側面とする、六角錐台形状を有している、請求項72に記載のGaN結晶製造方法。
  78.  前記GaN種結晶は、c軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、0.1以上かつ10以下である、請求項72~77のいずれか1項に記載のGaN結晶製造方法。
  79.  前記成長ステップにおいて、前記GaN結晶の成長を断続的に繰り返す、請求項60~78のいずれかに記載のGaN結晶製造方法。
  80.  金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、請求項60~79のいずれか1項に記載のGaN結晶製造方法。
  81.  前記成長ステップにおけるGaNの成長温度が1200℃以上である、請求項60~80のいずれか1項に記載のGaN結晶製造方法。
  82.  請求項60~81のいずれかに記載のGaN結晶製造方法を用いてGaN結晶を製造する結晶製造ステップと、該結晶製造ステップで製造したGaN結晶を加工して少なくともひとつのGaNウエハを形成する結晶加工ステップとを有する、GaNウエハの製造方法。
  83.  前記結晶加工ステップで形成されるGaNウエハが、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハおよび(000-1)ウエハから選ばれるGaNウエハを含む、請求項82に記載のGaNウエハ製造方法。
  84.  (i)半極性表面を有するGaN種結晶を準備するステップであって、該半極性表面の法線の方向と平行または最も平行に近い該GaN種結晶の低指数方位が<10-1-1>である、種結晶準備ステップと、(ii)該GaN種結晶の該半極性表面を含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップと、を含むGaN結晶製造方法。
  85.  前記半極性表面の法線の方向が、前記GaN種結晶の<10-1-1>との間で5°以下の角度を成す、請求項84に記載のGaN結晶製造方法。
  86.  前記半極性表面が{10-1-1}表面である、請求項84に記載のGaN結晶製造方法。
  87.  前記GaN種結晶がGaN{10-1-1}ウエハである、請求項84~86のいずれか1項に記載のGaN結晶製造方法。
  88.  前記成長ステップにおける前記半極性表面上でのGaNの成長レートが1μm/h以上である、請求項84~87のいずれか1項に記載のGaN結晶製造方法。
  89.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、請求項84~88のいずれか1項に記載のGaN結晶製造方法。
  90.  前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項84~89のいずれか1項に記載のGaN結晶製造方法。
  91.  前記成長ステップでは(101)面X線ロッキングカーブのFWHMが50arcsec未満の部分を含むGaN結晶が前記半極性表面上に形成される、請求項84~87のいずれか1項に記載のGaN結晶製造方法。
  92.  前記成長ステップでは(202)面X線ロッキングカーブのFWHMが30arcsec未満の部分を含むGaN結晶が前記半極性表面上に形成される、請求項84~87のいずれか1項に記載のGaN結晶製造方法。
  93.  前記成長ステップでは(202)面X線ロッキングカーブのFWHMが20arcsec未満の部分を含むGaN結晶が前記半極性表面上に形成される、請求項92に記載のGaN結晶製造方法。
  94.  前記成長ステップにおける前記半極性表面上でのGaNの成長レートが50μm/h以上である、請求項91に記載のGaN結晶製造方法。
  95.  前記成長ステップにおける前記半極性表面上でのGaNの成長レートが100μm/h以上である、請求項94に記載のGaN結晶製造方法。
  96.  前記成長ステップにおける前記半極性表面上でのGaNの成長レートが200μm/h以上である、請求項92または93に記載のGaN結晶製造方法。
  97.  前記成長ステップでは、前記半極性表面上における最大成長高さが300μm以上のバルクGaN結晶を成長させる、請求項87に記載のGaN結晶製造方法。
  98.  前記バルクGaN結晶の最大成長高さが300μm以上かつ500μm未満、500μm以上かつ1mm未満、1mm以上かつ3mm未満、3mm以上かつ5mm未満、5mm以上かつ10mm未満、10mm以上かつ25mm未満、25mm以上かつ50mm未満、50mm以上かつ75mm未満、75mm以上かつ100mm未満、または、100mm以上かつ200mm未満である、請求項97に記載のGaN結晶製造方法。
  99.  {10-1-1}ファセットを有するGaN種結晶を準備する種結晶準備ステップ、および、該GaN種結晶の、該{10-1-1}ファセットを含む表面上に、GaClおよびNHを原料に用いてGaNを気相から成長させる成長ステップを含む、GaN結晶の製造方法。
  100.  前記GaN種結晶は、c軸方向のサイズと、c軸に直交する任意方向のサイズとの比率が、0.1以上かつ10以下である、請求項99に記載のGaN結晶製造方法。
  101.  前記{10-1-1}ファセットがアズグロン表面である、請求項99または100に記載のGaN結晶製造方法。
  102.  前記GaN種結晶が更に(000-1)ファセットを有する、請求項99~101のいずれか1項に記載のGaN結晶製造方法。
  103.  前記成長ステップでは前記(000-1)ファセット上にもGaNを成長させる、請求項102に記載のGaN結晶製造方法。
  104.  前記GaN種結晶が{10-10}ファセットを有さない、請求項99~103のいずれか1項に記載のGaN結晶製造方法。
  105.  前記成長ステップにおける前記{10-1-1}ファセット上でのGaNの成長レートが1μm/h以上である、請求項99~104のいずれか1項に記載のGaN結晶製造方法。
  106.  前記成長ステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、請求項99~105のいずれか1項に記載のGaN結晶製造方法。
  107.  前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項99~106のいずれか1項に記載のGaN結晶製造方法。
  108.  前記成長ステップでは、(202)面X線ロッキングカーブのFWHMが30arcsec未満の部分を含むGaN結晶が、前記{10-1-1}ファセット上に形成される、請求項99~107のいずれか1項に記載のGaN結晶製造方法。
  109.  前記成長ステップでは、(202)面X線ロッキングカーブのFWHMが20arcsec未満の部分を含むGaN結晶が、前記{10-1-1}ファセット上に形成される、請求項108に記載のGaN結晶製造方法。
  110.  前記成長ステップにおいて、GaNの成長を断続的に繰り返す、請求項84~109のいずれか1項に記載のGaN結晶製造方法。
  111.  前記成長ステップでは、金属GaとClを反応させてGaClを生成させ、そのGaClをClと反応させることによって、前記GaClを生成させる、請求項84~110のいずれか1項に記載のGaN結晶製造方法。
  112.  前記成長ステップにおけるGaNの成長温度が1200℃以上である、請求項84~111のいずれか1項に記載のGaN結晶製造方法。
  113.  請求項84~112のいずれか1項に記載のGaN結晶製造方法を用いてGaN結晶を製造する結晶製造ステップと、該結晶製造ステップで製造したGaN結晶を加工して少なくともひとつのGaNウエハを形成する結晶加工ステップとを有する、GaNウエハの製造方法。
  114.  前記結晶加工ステップで形成されるGaNウエハが、{10-10}ウエハ、{30-3-1}ウエハ、{20-2-1}ウエハ、{30-3-2}ウエハ、{10-1-1}ウエハ、{30-31}ウエハ、{20-21}ウエハ、{30-32}ウエハ、{10-11}ウエハ、(0001)ウエハおよび(000-1)ウエハから選ばれるGaNウエハを含む、請求項113に記載のGaNウエハ製造方法。
  115.  (i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と85°以上かつ180°以下の角度を成す主表面および該主表面上に配置されたパターンマスクを有する、GaN種結晶準備ステップと、(ii)該GaN種結晶の該主表面上に、該パターンマスクを通して、かつ、GaClおよびNHを原料に用いて、GaNを気相から成長させるSAG(Selective Area Growth)ステップと、を含むGaN結晶の製造方法。
  116.  前記パターンマスクがアモルファス無機薄膜を含む、請求項115に記載の製造方法。
  117.  前記アモルファス無機薄膜がケイ素化合物を含む、請求項116に記載の製造方法。
  118.  前記アモルファス無機薄膜がSiNを含む、請求項117に記載の製造方法。
  119.  前記パターンマスクがドット形開口を有し、前記SAGステップでは該ドット形開口上にGaNアイランドが形成される、請求項115~118のいずれか1項に記載の製造方法。
  120.  前記パターンマスクが第一ドット形開口および第二ドット形開口を含む複数のドット形開口を有し、前記SAGステップでは該第一ドット形開口上および該第二ドット形開口上にそれぞれGaNアイランドが形成される、請求項119に記載の製造方法。
  121.  前記SAGステップでは、更に、前記第一ドット形開口上に形成されたGaNアイランドと、前記第二ドット形開口上に形成されたGaNアイランドとがコアレスする、請求項120に記載の製造方法。
  122.  前記SAGステップでは、前記主表面を覆うGaN層が形成されるまでGaNの成長を続ける、請求項115~121のいずれか1項に記載の製造方法。
  123.  前記SAGステップでは、GaClを1.5×10-3atm以上の分圧で前記GaN種結晶に供給する、請求項115~122のいずれか1項に記載の製造方法。
  124.  前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項115~122のいずれか1項に記載の製造方法。
  125.  前記GaN種結晶がGaN基板の少なくとも一部である、請求項115~124のいずれか1項に記載の製造方法。
  126.  前記GaN基板がGaN単結晶基板である、請求項125に記載の製造方法。
  127.  前記主表面の法線の方向が前記GaN種結晶の[0001]方向と175°以上の角度を成す、請求項115~126のいずれか1項に記載の製造方法。
  128.  (i)GaN種結晶を準備するステップであって、該GaN種結晶は、法線の方向が該GaN種結晶の[0001]方向と175°以上かつ180°以下の角度を成す極性表面および該極性表面上に配置されドット形開口が設けられたパターンマスクを有する、GaN種結晶準備ステップと、(ii)該GaN種結晶の該極性表面上に、該パターンマスクを通して、かつ、GaClおよびNHを原料に用いてGaNを気相から成長させるSAG(Selective Area Growth)ステップと、を含み、該SAGステップでは該ドット形開口上に、六角柱部分を含むGaNアイランドが形成される、GaN結晶の製造方法。
  129.  前記六角柱部分の側面が{10-10}ファセットである、請求項128に記載の製造方法。
  130.  前記六角柱部分が(000-1)ファセットで終端されている、請求項129に記載の製造方法。
  131.  前記六角柱部分が、前記{10-10}ファセットと前記(000-1)ファセットの間に、{10-1-1}ファセットであるチャンファーを有する、請求項130に記載の製造方法。
  132.  前記GaN種結晶がGaN基板の少なくとも一部である、請求項128~131のいずれか1項に記載の製造方法。
  133.  前記GaN種結晶がGaN単結晶基板である、請求項132に記載の製造方法。
  134.  前記GaN単結晶基板が、オフカットされた(000-1)ウエハである、請求項133に記載の製造方法。
  135.  前記パターンマスクがアモルファス無機薄膜を含む、請求項128~134のいずれか1項に記載の製造方法。
  136.  前記アモルファス無機薄膜がケイ素化合物を含む、請求項135に記載の製造方法。
  137.  前記アモルファス無機薄膜がSiNを含む、請求項136に記載の製造方法。
  138.  前記SAGステップでは、GaClを1.5×10-3atm以上の分圧で前記Ga N種結晶に供給する、請求項128~137のいずれか1項に記載の製造方法。
  139.  前記成長ステップでは、前記GaN種結晶に供給するGaClおよびNHの分圧の積を9.5×10-5atm以上とする、請求項128~138のいずれか1項に記載の製造方法。
PCT/JP2017/007451 2016-03-15 2017-02-27 GaN結晶の製造方法 WO2017159311A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018505773A JP6885547B2 (ja) 2016-03-15 2017-02-27 GaN結晶の製造方法
CN201780016941.6A CN108779580B (zh) 2016-03-15 2017-02-27 GaN结晶的制造方法
US16/130,617 US10961619B2 (en) 2016-03-15 2018-09-13 Method for producing GaN crystal
US17/178,423 US11371140B2 (en) 2016-03-15 2021-02-18 Method for producing GaN crystal

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016050395 2016-03-15
JP2016-050395 2016-03-15
JP2016-173103 2016-09-05
JP2016-173104 2016-09-05
JP2016173104 2016-09-05
JP2016173103 2016-09-05
JP2016-187698 2016-09-27
JP2016187698 2016-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/130,617 Continuation US10961619B2 (en) 2016-03-15 2018-09-13 Method for producing GaN crystal

Publications (1)

Publication Number Publication Date
WO2017159311A1 true WO2017159311A1 (ja) 2017-09-21

Family

ID=59850307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007451 WO2017159311A1 (ja) 2016-03-15 2017-02-27 GaN結晶の製造方法

Country Status (4)

Country Link
US (2) US10961619B2 (ja)
JP (4) JP6885547B2 (ja)
CN (1) CN108779580B (ja)
WO (1) WO2017159311A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176470A1 (ja) * 2018-03-14 2019-09-19 株式会社豊田中央研究所 半導体装置及びその製造方法
WO2020196494A1 (ja) 2019-03-28 2020-10-01 信越化学工業株式会社 Iii族窒化物基板の製造装置及び製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159311A1 (ja) * 2016-03-15 2017-09-21 三菱ケミカル株式会社 GaN結晶の製造方法
CN109563641B (zh) 2016-08-08 2021-08-27 三菱化学株式会社 GaN结晶生长方法和C面GaN基板
TW202106913A (zh) * 2019-04-25 2021-02-16 法商艾勒迪亞公司 使用額外基於氯的前驅物的沉積方法
KR20220006880A (ko) * 2020-07-09 2022-01-18 주식회사루미지엔테크 단결정 기판의 제조 방법
JP7391900B2 (ja) * 2021-02-09 2023-12-05 大陽日酸株式会社 半導体材料ガス反応装置及びガス反応容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142402A1 (ja) * 2010-05-12 2011-11-17 国立大学法人東京農工大学 三塩化ガリウムガスの製造方法及び窒化物半導体結晶の製造方法
JP2012066983A (ja) * 2010-09-27 2012-04-05 Sumitomo Electric Ind Ltd GaN結晶の成長方法およびGaN結晶基板
JP2013170096A (ja) * 2012-02-21 2013-09-02 Mitsubishi Chemicals Corp 第13族窒化物結晶の製造方法
WO2014097931A1 (ja) * 2012-12-17 2014-06-26 三菱化学株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
JP2015013791A (ja) * 2013-06-06 2015-01-22 三菱化学株式会社 周期表第13族金属窒化物半導体結晶の製造方法及び周期表第13族金属窒化物半導体結晶

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396649B2 (ja) * 2006-02-17 2010-01-13 住友電気工業株式会社 GaN結晶基板およびその製造方法
CN1288721C (zh) * 2003-11-26 2006-12-06 南京大学 一种改变氢化物气相横向外延GaN薄膜中倾斜角的方法
DE112006001847B4 (de) * 2005-07-11 2011-02-17 Cree, Inc. Ausrichtung von Laserdioden auf fehlgeschnittenen Substraten
KR101094913B1 (ko) 2006-06-09 2011-12-16 소이텍 Iii-v 족 반도체 물질을 형성하기 위한 제조 공정 시스템
JP4924225B2 (ja) * 2007-06-13 2012-04-25 住友電気工業株式会社 GaN結晶の成長方法
JP5045388B2 (ja) * 2007-11-20 2012-10-10 住友電気工業株式会社 Iii族窒化物半導体結晶の成長方法およびiii族窒化物半導体結晶基板の製造方法
JP4375497B1 (ja) * 2009-03-11 2009-12-02 住友電気工業株式会社 Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法
KR101854419B1 (ko) 2010-03-04 2018-05-03 더 리전츠 오브 더 유니버시티 오브 캘리포니아 c-방향으로 +/-15도 미만의 미스컷들을 갖는 m-면 기판들 위의 준극성 Ⅲ―질화물 광전자 소자들
JP5494259B2 (ja) * 2010-06-08 2014-05-14 住友電気工業株式会社 Iii族窒化物半導体レーザ素子、iii族窒化物半導体レーザ素子を作製する方法
WO2012050888A2 (en) * 2010-09-28 2012-04-19 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication
EP3656895A1 (en) * 2012-01-11 2020-05-27 Osaka University Method for producing group iii nitride crystals
TWI563539B (en) * 2012-01-18 2016-12-21 Sino American Silicon Prod Inc Composite substrate, manufacturing method thereof and light emitting device having the same
JP2013227201A (ja) * 2012-03-29 2013-11-07 Mitsubishi Chemicals Corp 周期表第13族金属窒化物半導体結晶の製造方法および周期表第13族金属窒化物半導体結晶の製造装置
JP2013212945A (ja) * 2012-03-30 2013-10-17 Mitsubishi Chemicals Corp 第13族窒化物結晶の製造方法及び第13族窒化物結晶
US20140167059A1 (en) 2012-08-30 2014-06-19 The Regents Of The University Of California Pec etching of (20-2-1) semipolar gallium nitride for external efficiency enhancement in light emitting diode applications
JP6026351B2 (ja) * 2013-04-26 2016-11-16 東京エレクトロン株式会社 成膜装置のクリーニング方法および成膜装置
EP3059336A4 (en) 2013-09-11 2017-07-12 National University Corporation Tokyo University Of Agriculture and Technology Nitride semiconductor crystal, manufacturing method, and manufacturing apparatus
KR102140789B1 (ko) * 2014-02-17 2020-08-03 삼성전자주식회사 결정 품질 평가장치, 및 그것을 포함한 반도체 발광소자의 제조 장치 및 제조 방법
WO2017159311A1 (ja) * 2016-03-15 2017-09-21 三菱ケミカル株式会社 GaN結晶の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142402A1 (ja) * 2010-05-12 2011-11-17 国立大学法人東京農工大学 三塩化ガリウムガスの製造方法及び窒化物半導体結晶の製造方法
JP2012066983A (ja) * 2010-09-27 2012-04-05 Sumitomo Electric Ind Ltd GaN結晶の成長方法およびGaN結晶基板
JP2013170096A (ja) * 2012-02-21 2013-09-02 Mitsubishi Chemicals Corp 第13族窒化物結晶の製造方法
WO2014097931A1 (ja) * 2012-12-17 2014-06-26 三菱化学株式会社 窒化ガリウム基板、および、窒化物半導体結晶の製造方法
JP2015013791A (ja) * 2013-06-06 2015-01-22 三菱化学株式会社 周期表第13族金属窒化物半導体結晶の製造方法及び周期表第13族金属窒化物半導体結晶

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176470A1 (ja) * 2018-03-14 2019-09-19 株式会社豊田中央研究所 半導体装置及びその製造方法
JP2019161029A (ja) * 2018-03-14 2019-09-19 株式会社豊田中央研究所 半導体装置及びその製造方法
WO2020196494A1 (ja) 2019-03-28 2020-10-01 信越化学工業株式会社 Iii族窒化物基板の製造装置及び製造方法
KR20210142098A (ko) 2019-03-28 2021-11-24 신에쓰 가가꾸 고교 가부시끼가이샤 Iii 족 질화물 기판의 제조 장치 및 제조 방법

Also Published As

Publication number Publication date
US20210172061A1 (en) 2021-06-10
JP2018052797A (ja) 2018-04-05
US10961619B2 (en) 2021-03-30
JP7255817B2 (ja) 2023-04-11
CN108779580B (zh) 2021-11-16
JP2022036135A (ja) 2022-03-04
JPWO2017159311A1 (ja) 2019-03-14
JP2019218263A (ja) 2019-12-26
US11371140B2 (en) 2022-06-28
JP6885547B2 (ja) 2021-06-16
CN108779580A (zh) 2018-11-09
US20190010605A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
US11371140B2 (en) Method for producing GaN crystal
US7976630B2 (en) Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
JP6481706B2 (ja) 窒化ガリウム基板、半導体デバイスの製造方法、および、窒化ガリウム層接合基板の製造方法
KR101060073B1 (ko) 템플레이트 타입의 기판 및 그 제조 방법
JP5560528B2 (ja) Iii族窒化物単結晶インゴットの製造方法、及びiii族窒化物単結晶基板の製造方法
US10570530B2 (en) Periodic table group 13 metal nitride crystals and method for manufacturing periodic table group 13 metal nitride crystals
WO2012042961A1 (ja) GaN結晶の成長方法およびGaN結晶基板
WO2015020161A1 (ja) 自立GaN基板、GaN結晶、GaN単結晶の製造方法および半導体デバイスの製造方法
JP2009126723A (ja) Iii族窒化物半導体結晶の成長方法、iii族窒化物半導体結晶基板の製造方法およびiii族窒化物半導体結晶基板
JP5445105B2 (ja) Iii族窒化物結晶の製造方法及びiii族窒化物結晶
JP2014088272A (ja) 周期表第13族金属窒化物半導体結晶
JP4612403B2 (ja) Iii族窒化物半導体自立基板の製造方法
WO2023190969A1 (ja) GaN結晶及びGaNウエハ
JP6457442B2 (ja) GaN結晶基板
JP2017088430A (ja) GaNウエハ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505773

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766315

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766315

Country of ref document: EP

Kind code of ref document: A1