WO2023190969A1 - GaN結晶及びGaNウエハ - Google Patents
GaN結晶及びGaNウエハ Download PDFInfo
- Publication number
- WO2023190969A1 WO2023190969A1 PCT/JP2023/013363 JP2023013363W WO2023190969A1 WO 2023190969 A1 WO2023190969 A1 WO 2023190969A1 JP 2023013363 W JP2023013363 W JP 2023013363W WO 2023190969 A1 WO2023190969 A1 WO 2023190969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dislocation
- region
- band
- gan
- gan crystal
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 360
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 412
- 238000000034 method Methods 0.000 claims description 139
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 36
- 238000004519 manufacturing process Methods 0.000 claims description 23
- 239000007791 liquid phase Substances 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 238000001947 vapour-phase growth Methods 0.000 claims description 17
- 238000002360 preparation method Methods 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 238000000862 absorption spectrum Methods 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 abstract description 17
- 150000004767 nitrides Chemical class 0.000 abstract description 13
- 238000004220 aggregation Methods 0.000 abstract description 5
- 230000002776 aggregation Effects 0.000 abstract description 5
- 230000006872 improvement Effects 0.000 abstract description 2
- 229910002601 GaN Inorganic materials 0.000 description 370
- 235000012431 wafers Nutrition 0.000 description 52
- 230000008569 process Effects 0.000 description 36
- 238000009826 distribution Methods 0.000 description 25
- 238000005424 photoluminescence Methods 0.000 description 20
- 230000007547 defect Effects 0.000 description 19
- 230000005284 excitation Effects 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 14
- 238000005259 measurement Methods 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 11
- 239000002184 metal Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 7
- 238000004020 luminiscence type Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 230000010354 integration Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000000644 propagated effect Effects 0.000 description 5
- 238000007665 sagging Methods 0.000 description 5
- 206010039729 Scotoma Diseases 0.000 description 4
- 239000012159 carrier gas Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 229910017855 NH 4 F Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- XZXYQEHISUMZAT-UHFFFAOYSA-N 2-[(2-hydroxy-5-methylphenyl)methyl]-4-methylphenol Chemical compound CC1=CC=C(O)C(CC=2C(=CC=C(C)C=2)O)=C1 XZXYQEHISUMZAT-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229940107816 ammonium iodide Drugs 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052795 boron group element Inorganic materials 0.000 description 1
- 238000005136 cathodoluminescence Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
- H01L21/2003—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
- H01L21/2015—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate the substrate being of crystalline semiconductor material, e.g. lattice adaptation, heteroepitaxy
Definitions
- the present invention relates to GaN (gallium nitride) crystals and GaN wafers.
- GaN wafers obtained from non-polar or semi-polar GaN crystals having a main surface largely inclined with respect to the C-plane are expected to be substrates for nitride semiconductor devices with improved characteristics.
- Nitride semiconductors are also called nitride-based group III-V compound semiconductors, group III nitride-based compound semiconductors, GaN-based semiconductors, etc.
- some or all of the Ga in GaN is Table 13 Contains compounds substituted with Group 13 elements (B, Al, In). Examples include AlN, InN, AlGaN, AlInN, GaInN, and AlGaInN.
- the (10-10) wafer that is, the M-plane wafer
- the semipolar GaN wafers (20-21) wafers, (20-2-1) wafers, (30-31) wafers, and (30-3-1) wafers are attracting particular attention.
- Non-polar or semi-polar GaN wafers are produced by growing bulk GaN crystals by hydride vapor phase epitaxy (HVPE) on the GaN (0001) surface of a C-plane GaN wafer or a C-plane GaN template, with the desired non-polar or semi-polar nature. It can be manufactured by slicing parallel to the plane.
- HVPE hydride vapor phase epitaxy
- the thickness of GaN crystal that can be stably grown in vapor phase on a GaN (0001) surface is usually several mm or less, the area of a nonpolar or semipolar GaN wafer produced by this method is limited. It is extremely difficult to industrially produce large area wafers such as 2-inch wafers (disc-shaped wafers with a diameter of about 50 mm) using this method.
- the tiling method was devised to solve this problem.
- the tiling method uses a set seed.
- a collective seed is a plurality of seeds arranged closely so that their crystal orientations are aligned.
- a bulk GaN crystal forming one continuous layer is epitaxially grown by HVPE on a collective seed consisting of a plurality of seeds (Patent Documents 1 to 5).
- Patent Documents 1 to 5 By using an aggregate seed formed by collecting a plurality of M-plane GaN wafers whose main surfaces are less than a few mm in size in the c-axis direction, it is possible to realize an M-plane GaN wafer with a diameter of about 50 mm.
- a non-polar or semi-polar GaN wafer manufactured by slicing such a bulk GaN crystal has a band-shaped dislocation accumulating region on its main surface, which is a band-shaped exposed region of the reduced crystallinity.
- elements formed directly above the band-like dislocation gathering region are formed on other parts of the same wafer. The characteristics and reliability will be inferior to those of conventional devices.
- the main object of the present invention is to provide a GaN crystal and a GaN wafer in which the width of band-shaped dislocation gathering regions present on the main surface is narrowed.
- Embodiments of the present invention include GaN crystals, GaN wafers, and methods of manufacturing GaN crystals described below.
- a GaN crystal having a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less, having one or more band-shaped dislocation gathering regions on the main surface,
- a GaN crystal that satisfies at least one requirement selected from the group consisting of the following (1), (2), and (3): (1) The maximum effective width of the band-shaped dislocation gathering region is less than 50 ⁇ m; (2) the zonal dislocation accumulating region satisfies at least one of the following requirements (A) and (B); (A) Demarcated by two line segments drawn parallel to the longitudinal direction at positions 15 ⁇ m apart from the center of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region.
- the dislocation density in the region (Y) is less than 3 ⁇ 10 7 cm -2
- (B) Demarcated by two line segments drawn parallel to the longitudinal direction at positions 50 ⁇ m from the center of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region.
- the dislocation density in the region (Z) is less than 2.5 ⁇ 10 7 cm ⁇ 2 ;
- the ratio of the dislocation density D Z to the dislocation density D X defined below (D Z /D X ) is 0.5 or less and/or the ratio of the dislocation density D Z to the dislocation density D Y defined below (D Z /D Y ) is 0.5 or less.
- Dislocation density Dx defined by two line segments drawn parallel to the longitudinal direction at positions 5 ⁇ m from the center of the band-like dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band-like dislocation accumulating region.
- Dislocation density in the region (X) dislocation density D Y From the center of the band-shaped dislocation accumulating region, parallel to the longitudinal direction at positions 15 ⁇ m apart from the center of the band-shaped dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region.
- Dislocation density in the region (Y) demarcated by the two drawn line segments Dislocation density D Z From the center of the band-like dislocation gathering region to the left and right directions perpendicular to the longitudinal direction of the band-like dislocation gathering region, respectively.
- the dislocation density in a region (Z) defined by two line segments drawn parallel to the longitudinal direction at positions of 50 ⁇ m in the left and right directions perpendicular to the longitudinal direction of the region is 1 ⁇ 10 7 cm ⁇ 2
- the band-shaped dislocation gathering region satisfies requirement (B), In requirement (B), two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions 50 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region
- the GaN crystal according to ⁇ 1> wherein the dislocation density in the defined region (Z) is 1.0 ⁇ 10 6 cm ⁇ 2 or more and less than 2.5 ⁇ 10 7 cm ⁇ 2 .
- ⁇ 4> The GaN crystal according to any one of ⁇ 1> to ⁇ 3>, which satisfies (1).
- ⁇ 5> The GaN crystal according to any one of ⁇ 1> to ⁇ 4>, which satisfies (2).
- ⁇ 6> The GaN crystal according to any one of ⁇ 1> to ⁇ 5>, which satisfies (3).
- ⁇ 7> The GaN crystal according to any one of ⁇ 1> to ⁇ 3>, which satisfies all of (1), (2), and (3).
- ⁇ 8> The GaN crystal according to any one of ⁇ 1> to ⁇ 7>, wherein the main surface has an area of 10 cm 2 or more.
- ⁇ 9> The GaN crystal according to any one of ⁇ 1> to ⁇ 8>, wherein the dislocation density in a region other than the band-shaped dislocation accumulating region of the main surface is 1 ⁇ 10 6 cm ⁇ 2 or less.
- ⁇ 10> The GaN crystal according to any one of ⁇ 1> to ⁇ 9>, wherein the carbon concentration in the crystal is 1 ⁇ 10 17 cm ⁇ 3 or less.
- ⁇ 11> The absorption coefficient according to any one of ⁇ 1> to ⁇ 10>, which has an absorption coefficient of 1 cm -1 or more at a wavelength of 445 nm, and no NH peak is observed at 3050 to 3300 cm -1 in the infrared absorption spectrum.
- GaN crystal. ⁇ 12> A GaN crystal having a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less, The area of the main surface is 10 cm 2 or more, A rectangular area where, when a rectangular area of 210 ⁇ m x 100 ⁇ m is set at any location on the main surface and the dislocation density in the rectangle is calculated, the dislocation density in the rectangle exceeds 1 x 10 7 cm -2.
- ⁇ 13> The GaN crystal according to ⁇ 12>, wherein the carbon concentration in the crystal is 1 ⁇ 10 17 cm ⁇ 3 or less.
- ⁇ 14> The GaN crystal according to ⁇ 12> or ⁇ 13>, which has an absorption coefficient of 1 cm -1 or more at a wavelength of 445 nm, and no NH peak is observed at 3050 to 3300 cm -1 in the infrared absorption spectrum.
- ⁇ 15> A GaN wafer made of the GaN crystal according to any one of ⁇ 1> to ⁇ 14>.
- ⁇ 16> ⁇ 10-10 ⁇ wafer, ⁇ 10-11 ⁇ wafer, ⁇ 10-1-1 ⁇ wafer, ⁇ 20-21 ⁇ wafer, ⁇ 20-2-1 ⁇ wafer, ⁇ 30-31 ⁇ wafer or ⁇ 30-3-1 ⁇ wafer, the GaN wafer according to ⁇ 15>.
- a method for producing a GaN crystal comprising at least a vapor phase growth step of growing a GaN crystal by an HVPE method using a crystal as a seed crystal, and the liquid phase growth step includes a meltback step.
- the (000-1) plane is formed at the edge portion formed by the intersection of the (000-1) side end of the main surface of the tiling GaN seed and the (000-1) end.
- a method for producing a GaN crystal the method comprising the step of removing an edge portion so that the GaN crystal is not exposed.
- GaN crystals and GaN wafers are provided in which the width of band-shaped dislocation gathering regions present on the main surface is narrowed.
- FIG. 1 is a perspective view showing an example of an M-plane GaN crystal according to an embodiment.
- 2(a) is a plan view of the M-plane GaN crystal shown in FIG. 1
- FIG. 2(b) is a cross-sectional view of the M-plane GaN crystal shown in FIG. 1.
- FIG. 3 is a plan view showing an example of an M-plane GaN crystal according to the embodiment.
- FIG. 4 is a light emission distribution image (SEM-CL image) showing an example of an M-plane GaN crystal according to a reference example.
- FIG. 5 is an integrated profile of image brightness obtained from FIG. 4.
- FIG. 6 is a light emission distribution image (SEM-CL image) showing an example of an M-plane GaN crystal according to a reference example.
- FIG. 7 is an emission distribution image (multiphoton excitation PL image) showing an example of the M-plane GaN crystal according to the embodiment.
- FIG. 8 is an integrated profile of image brightness obtained from FIG. 7.
- FIG. 9 is a light emission distribution image (SEM-CL image) showing an example of the M-plane GaN crystal according to the embodiment.
- FIG. 10 is an integrated profile of image brightness obtained from FIG. 9.
- FIG. 11 is a plan view showing an example of the relationship between the band-like dislocation accumulating region and the region (Y).
- FIG. 12 is a plan view showing an example of a method for calculating the dislocation density in the region (Y).
- FIG. 13 is a plan view showing an example of the relationship between the zonal dislocation accumulating region and the region (Z).
- FIG. 14 is a plan view showing an example of the relationship between the band-like dislocation accumulating region and the region (X).
- FIG. 15 is a plan view showing an example of the relationship between the band-like dislocation accumulating region and the region (Z).
- FIG. 16 is a plan view showing an example of a method for calculating the dislocation density in the region (Z).
- FIG. 17 is a plan view showing an example of the relationship between the band-like dislocation accumulating region and the region (X).
- FIG. 18 is a plan view showing an example of the relationship between the band-like dislocation accumulating region and the region (Y).
- FIG. 19 is a drawing showing the relationship between the inclination ⁇ of the main surface of the GaN crystal from the M plane, and its c-axis direction component ⁇ c and a-axis direction component ⁇ a.
- FIG. 20 shows a cross-sectional view of a GaN seed for tiling in which the angle between the front surface and the side surface is an obtuse angle (>90°).
- FIG. 21(a) is a cross-sectional view showing a plurality of GaN seeds for tiling being closely arranged and pasted on the surface of a flat plate
- FIG. FIG. 3 is a cross-sectional view showing a state after flattening the plurality of GaN seeds for tiling shown in a).
- FIG. 22 is a cross-sectional view when a plurality of GaN seeds for tiling that have not been subjected to the "sag treatment" are arranged closely and an unintended difference in the height of the seeds occurs.
- FIG. 23 is a cross-sectional view of a GaN seed for tiling that has been subjected to "sagging treatment.”
- FIG. 24 is a cross-sectional view of a case where a plurality of GaN seeds for tiling that have been subjected to "dripping treatment” are arranged closely and an unintended difference in the height of the seeds occurs.
- FIG. 25 is a conceptual diagram of a vapor phase growth apparatus used in the HVPE method.
- FIG. 26 shows a cross-sectional view of a composite consisting of a collective seed and a bulk GaN crystal grown epitaxially thereon.
- FIG. 27 is a cross-sectional view of the composite shown in FIG. 26 after being processed into a cylindrical shape, and the broken line indicates the slicing position when slicing the composite to obtain the GaN wafer shown in FIG. 1.
- the crystal axis parallel to [0001] and [000-1] is the c-axis
- the crystal axis parallel to ⁇ 10-10> is the m-axis
- the crystal axis parallel to ⁇ 11-20> is the a-axis.
- the crystal plane perpendicular to the c-axis is the C-plane
- the crystal plane perpendicular to the m-axis is the M-plane
- the crystal plane perpendicular to the a-axis is the A-plane. Called.
- the crystal axes, crystal planes, crystal orientations, etc. when referring to crystal axes, crystal planes, crystal orientations, etc., unless otherwise specified, the crystal axes, crystal planes, crystal orientations, etc.
- the crystal plane designation or Miller index attached to the name of a GaN crystal or wafer refers to the main surface of the crystal or wafer that is intended to be used for the formation of semiconductor devices or epitaxial growth of the crystal. It is that of a low-index plane that is parallel or closest to parallel to the surface.
- a GaN wafer whose low index plane parallel or closest to parallel to the main surface is an M-plane, ie, ⁇ 10-10 ⁇ , is called an M-plane wafer or ⁇ 10-10 ⁇ wafer.
- GaN crystal is a concept that includes not only a bulk GaN crystal but also a bulk GaN crystal processed into a specific shape.
- GaN wafer is one form of the above-mentioned “GaN crystal”, and is used to specifically distinguish a bulk GaN crystal processed into a wafer shape.
- GaN Crystal 1.1 GaN Crystal The first embodiment of the present invention relates to a GaN crystal.
- the GaN crystal according to the first embodiment of the present invention is a GaN crystal having a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less, having one or more band-shaped dislocation gathering regions on the main surface,
- the GaN crystal satisfies at least one requirement selected from the group consisting of (1), (2), and (3) below.
- the maximum effective width of the band-shaped dislocation gathering region is less than 50 ⁇ m; (2) the zonal dislocation accumulating region satisfies at least one of the following requirements (A) and (B); (A) the dislocation density D Y is less than 3 ⁇ 10 7 cm ⁇ 2 ; (B) dislocation density DZ is less than 2.5 ⁇ 10 7 cm ⁇ 2 ; (3) The ratio of dislocation density D Z to dislocation density D X (D Z /D X ) is 0.5 or less, and/or the ratio of dislocation density D Z to dislocation density D Y (D Z /D Y ) is 0.5 or less. 5 or less.
- Dislocation density D X , dislocation density D X , and dislocation density D X are each defined as follows.
- Dislocation density Dx defined by two line segments drawn parallel to the longitudinal direction at positions 5 ⁇ m from the center of the band-like dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band-like dislocation accumulating region.
- Dislocation density in the region (X) dislocation density D Y From the center of the band-shaped dislocation accumulating region, parallel to the longitudinal direction at positions 15 ⁇ m apart from the center of the band-shaped dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region.
- Dislocation density in the region (Y) demarcated by the two drawn line segments Dislocation density D Z From the center of the band-like dislocation gathering region to the left and right directions perpendicular to the longitudinal direction of the band-like dislocation gathering region, respectively. Dislocation density in the region (Z) defined by two line segments drawn parallel to the longitudinal direction at a position of 50 ⁇ m
- An example of a GaN crystal according to the first embodiment of the present invention is a GaN crystal having a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less, having one or more band-shaped dislocation gathering regions on the main surface, Satisfying at least one requirement selected from the group consisting of the following (1), (2-1) and (3-1), (1)
- the maximum effective width of the band-shaped dislocation gathering region is less than 50 ⁇ m;
- the zonal dislocation gathering region satisfies at least one of the following requirements (A) and (B-1), (A) the dislocation density D Y is less than 3 ⁇ 10 7 cm ⁇ 2 ; (B-1) Dislocation density D Z is less than 1 ⁇ 10 7 cm ⁇ 2 ; (3-1)
- the ratio of dislocation density D Z to dislocation density D X (D Z /D X ) is 0.5 or less.
- the GaN crystal of this example can be manufactured, for example, by the following method.
- a liquid phase growth step in which bulk GaN crystals are grown by an ammonothermal method on the aggregated seeds obtained by closely arranging a plurality of GaN seeds for tiling, and the bulk GaN crystals obtained in the liquid phase growth step are seeded.
- a method for producing a GaN crystal the method comprising at least a vapor phase growth step of growing a GaN crystal using the HVPE method as a crystal, and the liquid phase growth step includes a meltback step.
- GaN crystal according to the first embodiment of the present invention is a GaN crystal having a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less, having one or more band-shaped dislocation gathering regions on the main surface, Satisfying at least one requirement selected from the group consisting of the following (1), (2-2) and (3): (1) The maximum effective width of the band-shaped dislocation gathering region is less than 50 ⁇ m; (2-2) The band-shaped dislocation gathering region satisfies the following requirement (B-2), (B-2) Dislocation density DZ is 1.0 ⁇ 10 6 cm ⁇ 2 or more and less than 2.5 ⁇ 10 7 cm ⁇ 2 ; (3) The ratio of dislocation density D Z to dislocation density D X (D Z /D X ) is 0.5 or less, and/or the ratio of dislocation density D Z to dislocation density D Y (D Z /D Y ) is 0. 5 or less.
- the GaN crystal of this example can be manufactured, for example, by the following method.
- the method includes at least an aggregate seed preparation step of preparing an aggregate seed obtained by closely arranging a plurality of GaN seeds for tiling, and a vapor phase growth step of growing a GaN crystal on the aggregate seed by an HVPE method.
- the (000-1) plane is not exposed at the edge portion consisting of the intersection of the (000-1) side end of the main surface of the tiling GaN seed and the end of the (000-1) plane.
- a method for manufacturing a GaN crystal including a step of removing edge portions as shown in FIG. Details of the manufacturing method will be described later.
- the present inventors have developed a GaN crystal in which the width of the band-shaped dislocation gathering region is narrowed, specifically, a GaN crystal that satisfies at least one selected from the group consisting of (1), (2), and (3) above. It has been found that this can be obtained, for example, by the production method described below.
- the GaN crystal according to the first embodiment of the present invention satisfies any one selected from the group consisting of (1), (2), and (3), it does not satisfy any two. Even if there is, it may be something that satisfies all of them.
- the GaN crystal of the present invention preferably satisfies at least (1), more preferably satisfies (1) and (2), or (1) and (3), and satisfies (1), (2), and (3). It is more preferable that all of the following are satisfied.
- the GaN crystal according to the first embodiment (hereinafter sometimes referred to as “this embodiment”) has a band-shaped dislocation accumulating region on the main surface.
- the band-like dislocation gathering region is a region in which dislocations have gathered at a relatively high density and extend into a band-like shape.
- the dislocation here refers to the end point of a threading dislocation (edge dislocation, screw dislocation, and mixed dislocation).
- a plurality of band-like dislocation accumulating regions may be arranged periodically on the main surface of the GaN crystal according to this embodiment.
- FIGS. 1 and 2 are a perspective view and a plan view showing an example of such a GaN crystal.
- GaN crystal 10 has a plurality of periodically arranged band-shaped dislocation gathering regions 14 on first main surface 11 .
- the longitudinal direction of the band-like dislocation accumulating region on the main surface may extend in a direction of 0 degrees or more and 20 degrees or less from the c-axis, or 0 degree or more and 20 degrees or less from the a-axis.
- the GaN crystal according to the first embodiment has a band-shaped dislocation gathering region whose longitudinal direction extends in a direction of 0 degrees or more and 20 degrees or less from the c-axis, and in addition, the GaN crystal has a band-shaped dislocation gathering region whose longitudinal direction extends from 0 degrees or more and 20 degrees or less from the a-axis.
- the main surface may have a band-shaped dislocation accumulating region extending in the direction of .
- FIG. 3 is a plan view showing an example of such a GaN crystal.
- the GaN crystal 20 has a disk shape, and in addition to a band-shaped dislocation accumulating region 24-1 extending in a direction perpendicular to the c-axis, a band-shaped dislocation accumulating region 24-1 extending in a direction perpendicular to the a-axis. 24-2 on the first main surface 21.
- the number of band-like dislocation accumulating regions 14 that the GaN crystal 10 has on the first main surface 11 is not limited to three, and may be four or more, but more than six. It is desirable that there is no such thing.
- the diameter of the GaN crystal 10 is 45 to 55 mm
- the number of reduced crystallinity zones 14 is preferably two, more preferably one.
- a band-shaped dislocation gathering region is a region in which dislocations gather at a relatively high density and extends in a band shape. , or when a GaN wafer is fabricated from the bulk GaN crystal. Specifically, of the bulk GaN crystal grown on the aggregated seed, the portion with high defect density that has grown above the boundary between the seed substrates constituting the aggregated seed is located on the surface of the bulk GaN crystal or This appears on the surface of the GaN wafer obtained as band-like dislocation gathering regions. Typically, the defect is caused by poor bonding at the boundary between the plurality of tiling GaN seeds that make up the collective seed.
- band-like dislocation gathering regions may exist on the main surfaces of bulk GaN crystals grown using the tiling method and GaN wafers made from the bulk GaN crystals.
- a bulk GaN crystal grown using a GaN crystal having band-like dislocation gathering regions on the main surface as a seed, and a GaN wafer fabricated from the bulk GaN crystal also have band-like dislocation gathering regions on the main surface. It may happen.
- an emission distribution image of a crystal plane is obtained using a scanning electron microscope - cathodoluminescence (SEM-CL) device, a multiphoton excitation photoluminescence (PL) microscope, a PL imaging device, etc.
- SEM-CL scanning electron microscope - cathodoluminescence
- PL multiphoton excitation photoluminescence
- PL imaging device etc.
- dislocations in the crystal are detected in the emission distribution image. It is observed as a dark spot, that is, a spot whose image brightness is lower than the surrounding area.
- the density of dark spots observed in the above-mentioned luminescence distribution image differs greatly.
- the image brightness in the emission distribution image is lower than in the region outside the zonal dislocation gathering region, and can be distinguished by observation.
- the scotoma density observed by an apparatus capable of scotoma observation is synonymous with the above-mentioned dislocation density.
- high spatial resolution may be required. This is because if the spatial resolution is poor, individual dark spots cannot be separated in the luminescence distribution image, making it impossible to accurately measure the number of dark spots.
- a SEM-CL device has better spatial resolution than a multiphoton excitation PL microscope or a PL imaging device. Therefore, also in this specification, the SEM-CL device and the multiphoton excitation PL microscope can be selectively used as necessary to measure the dark spot density.
- Requirement (1) The GaN crystal according to this embodiment satisfies at least one requirement selected from the group consisting of (1), (2), and (3). Requirement (1) is as follows. (1) The maximum effective width of the band-shaped dislocation accumulating region is less than 50 ⁇ m.
- the maximum effective width of the band-shaped dislocation accumulating region may be less than 50 ⁇ m, but from the viewpoint of improving crystal quality, it is preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
- the maximum effective width of the band-shaped dislocation accumulating region may be 1 ⁇ m or more.
- the maximum effective width of the band-shaped dislocation accumulating region refers to the maximum value of the effective width of the band-shaped dislocation accumulating region existing on the main surface. When a plurality of band-like dislocation accumulating regions exist on the main surface, it refers to the maximum value of their effective widths.
- the effective width of the band-shaped dislocation accumulating region is defined as follows.
- the effective width of the band-like dislocation gathering region that the GaN crystal has on its main surface is investigated by observing the luminescence distribution image obtained using the above-mentioned device capable of observing dark spots.
- integration of image brightness profiles on a virtual line segment drawn in a direction perpendicular to the longitudinal direction to have a length of 180 ⁇ m and including the entire zonal dislocation accumulating region. Find the value.
- the brightness is relatively high and flat in areas outside the band-shaped dislocation accumulating area, while the brightness is relatively low in the band-shaped dislocation accumulating area.
- a baseline is drawn by extrapolating the flat area in the integrated luminance profile.
- the effective width of a band-shaped dislocation accumulating region is defined as the distance between both end points of a region where the image brightness is 80% or less with respect to the image brightness value in the baseline in the integrated brightness profile. is defined as The effective width of the zonal dislocation accumulating region may be determined using a curve obtained by fitting the integrated luminance profile.
- the center of the band-shaped dislocation accumulating region refers to the midpoint between the two end points of the effective width.
- the center of the band-shaped dislocation gathering region observed in the emission distribution image is determined visually.
- FIG. 4 is a light emission distribution image (SEM-CL image) around the band-like dislocation gathering region on the main surface of the GaN crystal of the reference example, and an area of 240 ⁇ m ⁇ 180 ⁇ m was observed. There are scotomas at a high density, and a SEM-CL device is used to measure the scotoma density.
- the longitudinal direction of the band-like dislocation gathering region is parallel to the a-axis.
- FIG. 5 shows the result of integrating the image brightness profile on a line segment with a length of 180 ⁇ m perpendicular to the longitudinal direction. .
- the distance between both endpoints of the region where the image brightness was 80% or less with respect to the image brightness value at the baseline was about 54 ⁇ m.
- the solid line indicates the actual measured value of the integrated luminance
- the broken line indicates the result of fitting the curve of the actual measured value.
- FIG. 6 is a light emission distribution image (SEM-CL image) around the band-shaped dislocation gathering region on the main surface of the GaN crystal of the reference example, and is an example of such a case.
- FIG. 7 is a light emission distribution image (multiphoton excitation PL image) around the band-shaped dislocation gathering region on the main surface of the GaN crystal of the example, and is an example of such a case.
- FIG. 8 is an integrated image brightness profile obtained for the multiphoton excitation PL image in FIG. 7, and there is no region where the image brightness is 80% or less of the image brightness value in the baseline.
- the brightness on the +c side is darker overall, and accordingly, in FIG. 8, the integrated brightness value on the +c side is low, but this occurs in the outer peripheral region of the field of view of the multiphoton excitation PL image. It is thought to be an artifact.
- the integrated image brightness profile is flattened as necessary.
- FIG. 9 is an example of a light emission distribution image (SEM-CL image) around the band-shaped dislocation gathering region on the main surface of the GaN crystal according to the embodiment.
- FIG. 10 is an integrated profile of image brightness obtained for the SEM-CL image in FIG. It was 32 ⁇ m.
- the FWHM of the X-ray rocking curve has been evaluated using a commercially available X-ray diffraction device to evaluate the zonal dislocation gathering region that occurs above the boundary between the assembled seeds used in the tiling method. I was concerned.
- the so-called spatial resolution of XRC FWHM is determined by the spacing between measurement points in XRC measurement, but as the width of the zonal dislocation aggregation region becomes smaller, the spatial resolution of XRC measurement using a general X-ray diffraction device It becomes difficult to accurately measure the width of the region. In other words, when the width of the band-shaped dislocation accumulating region is small, the conventional XRC measurement cannot be said to be an appropriate evaluation method.
- By observing the emission distribution image using an apparatus capable of dark spot observation it is possible to quantitatively evaluate the width of the zonal dislocation gathering region even when the width of the zonal dislocation gathering region is small.
- Requirement (2) is as follows. (2) The band-shaped dislocation accumulating region satisfies at least one of the following requirements (A) and (B). (A) Demarcated by two line segments drawn parallel to the longitudinal direction at positions 15 ⁇ m apart from the center of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density (dislocation density D Y ) in the region (Y) is less than 3 ⁇ 10 7 cm ⁇ 2 .
- (B) Demarcated by two line segments drawn parallel to the longitudinal direction at positions 50 ⁇ m from the center of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region.
- the dislocation density (dislocation density D Z ) in the region (Z) is less than 2.5 ⁇ 10 7 cm ⁇ 2 .
- Requirement (A) requires that the dislocation density D Y be less than 3 ⁇ 10 7 cm ⁇ 2 .
- the region (Y) is defined by a rectangle whose center coincides with the center of the band dislocation accumulating region and whose length in the direction perpendicular to the longitudinal direction of the band dislocation accumulating region is 30 ⁇ m. I can say that.
- FIG. 11 is a schematic diagram showing an example of the relationship between band-shaped dislocation accumulating regions on the main surface of a GaN crystal and regions (Y). In FIG. 11, the longitudinal direction of the band-shaped dislocation gathering region is parallel to the a-axis.
- Region (Y) 601 is two line segments drawn parallel to the longitudinal direction at positions 15 ⁇ m apart from the center 400 of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. It is marked with 501.
- the dislocations that make up the band-like dislocation gathering region are not observed only directly above the bonding surfaces of the grouping seeds.
- dislocations propagate to the periphery of the bonding surface of the aggregated seeds, resulting in a high density distribution of dislocations over the peripheral region directly above the bonding surface of the aggregated seeds. It turns out. Therefore, a low dislocation density D Y means that not only the number of dislocations generated at the joint between the aggregated seeds is reduced, but also the number of dislocations propagated to the periphery of the joint is reduced.
- the dislocation density D Y should be less than 3 ⁇ 10 7 cm ⁇ 2 , but from the viewpoint of further improving crystal quality, it is preferably less than 1 ⁇ 10 7 cm ⁇ 2 , and more preferably less than 5 ⁇ 10 6 cm ⁇ 2 . Preferably, less than 1 ⁇ 10 6 cm ⁇ 2 is more preferable.
- the dislocation density D Y can be calculated by measuring the dark spot density observed in a luminescence distribution image obtained using a device capable of observing dark spots.
- the dislocation density is the dislocation density calculated for multiple observation areas for the same band dislocation accumulating area, with the longitudinal length of the band dislocation accumulating area in the region (Y) set to a specific length as the observation area. Calculated by averaging. To explain the calculation method using a specific example, when the length in the longitudinal direction of the band-like dislocation gathering region of the observation area is set to 210 ⁇ m, the observation area is defined by a rectangle of 210 ⁇ m ⁇ 30 ⁇ m.
- FIG. 12 is a schematic diagram showing the specific example described above. In FIG. 12, three different observation areas of 210 ⁇ m ⁇ 30 ⁇ m are set for the same band-shaped dislocation gathering region.
- Requirement (B) requires that the dislocation density D Z be less than 2.5 ⁇ 10 7 cm ⁇ 2 .
- the region (Z) is defined by a rectangle whose center coincides with the center of the band dislocation accumulating region and whose length in the direction perpendicular to the longitudinal direction of the band dislocation accumulating region is 100 ⁇ m. I can say that.
- requirement (B) is requirement (B-1) or requirement (B-2).
- FIG. 13 is a schematic diagram showing an example of the relationship between the band-shaped dislocation gathering region on the main surface of the GaN crystal and the region (Z).
- the longitudinal direction of the band-shaped dislocation gathering region is parallel to the a-axis.
- Region (Z) 602 is two line segments drawn parallel to the longitudinal direction at positions 50 ⁇ m apart from the center 400 of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. It is delineated by 502.
- the dislocation density D Z may be less than 1 ⁇ 10 7 cm ⁇ 2 , but from the viewpoint of further improving crystal quality, it is preferably less than 8 ⁇ 10 6 cm ⁇ 2 , and 5 ⁇ It is more preferably less than 10 6 cm ⁇ 2 , and even more preferably less than 1 ⁇ 10 6 cm ⁇ 2 .
- FIG. 15 is a schematic diagram showing an example of the relationship between the band-shaped dislocation gathering region on the main surface of the GaN crystal and the region (Z).
- the longitudinal direction of the band-shaped dislocation gathering region is parallel to the a-axis.
- Region (Z) 602 is two line segments drawn parallel to the longitudinal direction at positions 50 ⁇ m apart from the center 400 of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. It is delineated by 502.
- the band-like dislocation gathering region originates from defects that occur at the boundaries between the grouping seeds used in the tiling method, the dislocations that make up the band-like dislocation gathering region are not observed only directly above the bonding surfaces of the grouping seeds.
- dislocations propagate to the periphery of the bonding surface of the aggregated seeds, resulting in a high density distribution of dislocations over the peripheral region directly above the bonding surface of the aggregated seeds. It turns out.
- the fact that the dislocation density is less than 2.5 ⁇ 10 7 cm ⁇ 2 in the region (Z) including the center of the band-shaped dislocation gathering region means that dislocations generated at the junction between the gathered seeds are reduced and This means that dislocations propagated to the periphery of the joint are also reduced.
- the dislocation density D Z may be 1.0 ⁇ 10 6 cm ⁇ 2 or more and less than 2.5 ⁇ 10 7 cm ⁇ 2 , but from the viewpoint of further improvement of crystal quality, 2 .2 ⁇ 10 7 cm ⁇ 2 is preferred, and less than 2 ⁇ 10 7 cm ⁇ 2 is more preferred.
- the dislocation density D Z is preferably 2 ⁇ 10 6 cm ⁇ 2 or more, more preferably 5 ⁇ 10 6 cm ⁇ 2 or more.
- the dislocation density DZ can be calculated by measuring the density of dark spots observed in a luminescence distribution image obtained using a device capable of observing dark spots.
- the dislocation density is the dislocation density calculated for multiple observation areas for the same band-shaped dislocation accumulating area, with the longitudinal length of the band-shaped dislocation accumulating area in the region (Z) set to a specific length as the observation area. Calculated by averaging. To explain the calculation method using a specific example, when the length in the longitudinal direction of the band-like dislocation gathering region of the observation area is set to 210 ⁇ m, the observation area is defined by a rectangle of 210 ⁇ m ⁇ 100 ⁇ m.
- FIG. 16 is a schematic diagram showing the specific example described above. In FIG. 16, three different observation areas of 210 ⁇ m ⁇ 100 ⁇ m are set for the same band-shaped dislocation gathering region.
- the GaN crystal has a band-shaped dislocation accumulating region that satisfies at least either of the above conditions (A) and (B). It may also have a band-like dislocation gathering region. For example, having a band dislocation accumulating region that satisfies condition (A), having a band dislocation accumulating region that satisfies condition (A) and condition (B-1) at the same time, and having a band dislocation accumulating region that satisfies condition (B-1). It is preferable to have a band-like dislocation accumulating region that satisfies condition (B-2).
- Requirement (3) is as follows. (3-1) The ratio of the dislocation density D X and the dislocation density D Z ( D Z / D It is 0.5 or less.
- Requirement (3) may be the following requirement (3-1).
- (3-1) The ratio of dislocation density D X to dislocation density D Z (D Z /D X ) is 0.5 or less.
- D Z /D X The ratio of dislocation density D X to dislocation density D Z (D Z /D X ) is 0.5 or less.
- the ratio D Z /D X between dislocation density D It is preferably 0.40 or less, more preferably 0.35 or less.
- FIG. 14 is a schematic diagram showing an example of the relationship between the band-shaped dislocation accumulating regions on the main surface of the GaN crystal and the region (X).
- the longitudinal direction of the band-like dislocation gathering region is parallel to the a-axis.
- Region (X) 603 is two line segments drawn parallel to the longitudinal direction of the band dislocation accumulating region at positions 5 ⁇ m apart from the center 400 of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. It is marked with 503.
- the ratio of dislocation density D X to dislocation density D Z (D Z / D is 0.5 or less.
- the band-like dislocation gathering region originates from defects that occur at the boundaries between the grouping seeds used in the tiling method, the dislocations that make up the band-like dislocation gathering region are not observed only directly above the bonding surfaces of the grouping seeds.
- dislocations propagate to the periphery of the bonding surface of the aggregated seeds, resulting in a high density distribution of dislocations over the peripheral region directly above the bonding surface of the aggregated seeds. It turns out.
- the ratio D Z / D X and/or of the dislocation density D The fact that the ratio D Z /D Y of the dislocation density D Y in the region (Y ) including the center of the band dislocation accumulating region to the dislocation density D Z in the region ( Z ) including the center of the band dislocation accumulating region is small; This means that not only the number of dislocations that occur at the joint between the aggregated seeds is reduced, but also the number of dislocations that propagate to the periphery of the joint is reduced.
- At least one of the ratio D Z /D X between the dislocation density D X and the dislocation density D Z and the ratio D Z /D Y between the dislocation density D Y and the dislocation density D Z is 0.5 or less.
- the ratio D Z /D between the dislocation density D X and the dislocation density D Z and the ratio D Z / D between the dislocation density D Y and the dislocation density D Z It is preferable that at least one of Y is 0.45 or less, and the ratio D Z / D between the dislocation density D X and the dislocation density D Z and the ratio D Z / D between the dislocation density D Y and the dislocation density D Z It is more preferable that at least one of Y is 0.40 or less, and the ratio D Z / D X between the dislocation density D X and the dislocation density D Z and the ratio D Z /D X between the dislocation density D Y and the dislocation density D Z It is more preferable
- FIG. 17 is a schematic diagram showing an example of the relationship between band-like dislocation accumulating regions on the main surface of a GaN crystal and region (X).
- the longitudinal direction of the band-shaped dislocation gathering region is parallel to the a-axis.
- Region (X) 603 is two line segments drawn parallel to the longitudinal direction of the band dislocation accumulating region at positions 5 ⁇ m apart from the center 400 of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. It is marked with 503.
- FIG. 18 is a schematic diagram showing an example of the relationship between band-like dislocation accumulating regions on the main surface of a GaN crystal and regions (Y).
- the longitudinal direction of the band-shaped dislocation gathering region is parallel to the a-axis.
- Region (Y) 601 is two line segments drawn parallel to the longitudinal direction at positions 15 ⁇ m apart from the center 400 of the band dislocation accumulating region in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. It is marked with 501.
- the GaN crystal has a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less. That is, at least one of the first main surface and the second main surface of the GaN crystal has an angle between the normal to the main surface and the m-axis of 0 degrees or more and 20 degrees or less. At least one of the first main surface and the second main surface of the GaN crystal may be inclined at an angle between the normal to the main surface and the m-axis of more than 5°.
- the direction of inclination is not limited, preferably, when the angle between the normal to the main surface and the m-axis is decomposed into a c-axis direction component and an a-axis direction component, the absolute value of the c-axis direction component is in the a-axis direction. Make it larger than the absolute value of the component.
- the relationship between the inclination of the main surface of the GaN crystal from the M-plane and its c-axis direction component and a-axis direction component is as shown in FIG.
- the inclination of the main surface of the GaN crystal from the M-plane is the inclination ⁇ of the normal vector N to the main surface from the m-axis.
- the normal vector N is decomposed into an A-plane parallel component N//A and a C-plane parallel component N//C.
- the A-plane parallel component N//A is an orthogonal projection of the normal vector N on the A-plane
- the C-plane parallel component N//C is an orthogonal projection of the normal vector N on the C-plane.
- the inclination of the A-plane parallel component N//A with respect to the m-axis is the c-axis direction component ⁇ c of the inclination ⁇
- the inclination of the C-plane parallel component N//C with respect to the m-axis is the a-axis direction component ⁇ a of the inclination ⁇ .
- the absolute value of the a-axis direction component is preferably 5° or less, more preferably less than 2°, and even more preferably less than 1°.
- the absolute value of the c-axis direction component is usually 45 degrees or less, preferably less than 30 degrees, and more preferably less than 20 degrees.
- the c-axis direction component may be positive or negative, but is preferably negative.
- the fact that the c-axis direction component is positive means that the A-plane parallel component N//A of the normal vector to the first principal surface is tilted toward the [0001] side with respect to the m-axis.
- the fact that the c-axis direction component is negative means that the A-plane parallel component N//A of the normal vector to the first principal surface is tilted toward the [000-1] side with respect to the m-axis.
- Preferred examples of GaN crystals tilted at an angle greater than 5° between the normal to the main surface and the m-axis include ⁇ 10-11 ⁇ crystals, ⁇ 10-1-1 ⁇ crystals, and ⁇ 20-21 ⁇ crystals. ⁇ crystal, ⁇ 20-2-1 ⁇ crystal, ⁇ 30-31 ⁇ crystal, and ⁇ 30-3-1 ⁇ crystal.
- the c-axis direction component of the angle between the normal to the main surface and the m-axis is positive, and ⁇ 10- 1-1 ⁇ crystal, ⁇ 20-2-1 ⁇ crystal, and ⁇ 30-3-1 ⁇ crystal, the c-axis direction component of the angle between the normal to the main surface and the m-axis is negative.
- the absolute value of the c-axis direction component of the inclination of the first main surface with respect to the M plane is 2 to 5°, and the absolute value of the a-axis direction component is less than 1°.
- the "first principal surface” refers to the principal surface scheduled to be used for epitaxial growth of a nitride semiconductor when manufacturing a nitride semiconductor device using a GaN substrate, i.e. It is the “front face”.
- the first principal surface is mirror-finished and its root mean square (RMS) roughness measured by AFM is preferably less than 2 nm in a measurement range of 2 ⁇ m x 2 ⁇ m, and may be less than 1 nm or less than 0.5 nm.
- the “second principal surface” is the “back surface” facing in the opposite direction to the "first principal surface", and may be mirror-finished or matte-finished.
- main surface is used to collectively refer to “first main surface” and “second main surface” without distinguishing them.
- the area of the main surface is preferably 10 cm 2 or more.
- the productivity of manufacturing devices using the GaN wafer is improved.
- the area of the main surface is more preferably 15 cm 2 or more, and even more preferably 20 cm 2 or more.
- the upper limit of the area of the main surface is not particularly limited, but is usually 300 cm 2 or less.
- the dislocation density in the rectangle exceeds 1 x 10 7 cm -2 .
- no rectangular regions are present on the main surface.
- the dislocation density in a region other than the band-shaped dislocation gathering region of the main surface is 1 ⁇ 10 6 cm ⁇ 2 or less.
- the crystal quality of the GaN crystal is excellent.
- the dislocation density in the region other than the band-shaped dislocation accumulating region on the main surface is more preferably 8 ⁇ 10 5 cm ⁇ 2 or less, and even more preferably 5 ⁇ 10 5 cm ⁇ 2 or less.
- the lower limit of the dislocation density is not particularly limited, but is usually 1 ⁇ 10 3 cm ⁇ 2 or more.
- the GaN crystal according to the present embodiment has a main surface where the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less, and the area of the main surface is 10 cm 2 or more, and when a rectangular area of 210 ⁇ m x 100 ⁇ m is set at any location on the main surface and the dislocation density in the rectangle is calculated, the dislocation density in the rectangle is 1 x 10 7 cm -
- the GaN crystal may have one or more band-shaped dislocation gathering regions on the main surface.
- a rectangular region of 210 ⁇ m x 100 ⁇ m is set at any location on the main surface, and when the dislocation density in the rectangle is calculated, the dislocation density in the rectangle exceeds 1 ⁇ 10 7 cm -2 It is impossible to find any rectangular area on the main surface such that .
- the dislocation density in the rectangular region is It exceeds 1 ⁇ 10 7 cm ⁇ 2 .
- a GaN crystal in which a rectangular region does not exist on the main surface means a GaN crystal with excellent crystal quality in which the band-shaped dislocation accumulating region has a sufficiently narrow width.
- the dislocation density in the rectangle is 5 x 10
- a method similar to that described above for the dislocation density D Y can be applied. Note that a region up to 1 mm inward from the outer periphery of the GaN crystal can be excluded from the "arbitrary location on the main surface".
- FIG. 1 is a perspective view showing an example of a GaN crystal according to the present embodiment.
- FIG. 2(a) is a plan view of the GaN crystal 10 shown in FIG.
- FIG. 2(b) is a cross-sectional view of the GaN crystal 10 shown in FIG. 1, showing a cut surface formed when cutting along a plane perpendicular to the a-axis.
- GaN crystal 10 is an M-plane wafer having a disk shape, and has a first main surface 11 and a second main surface 12 opposite to the first main surface. There is.
- the first main surface 11 and the second main surface 12 are connected via a side surface 13.
- the first major surface 11 and the second major surface 12 are preferably parallel to each other.
- the GaN crystal according to this embodiment may be various modifications of the GaN crystal 10 shown in FIGS. 1 and 2.
- the main surface of the GaN crystal according to the first embodiment may have a shape other than a circle, for example, may be rectangular (square, rectangle).
- the diameter DW of the GaN crystal according to this embodiment is usually 10 mm or more, and may be 20 mm or more, or 45 mm or more, and is typically 50 to 55 mm (about 2 inches), 100 to 105 mm (about 4 inches). ), 150 to 155 mm (approximately 6 inches), etc.
- GaN crystal 10 has a thickness that allows it to be handled as a free-standing wafer. In the case of a disk-shaped GaN crystal with a diameter of 45 to 55 mm (approximately 2 inches), the minimum thickness necessary to handle it as a free-standing wafer is 150 to 200 ⁇ m, and the preferable thickness is 250 ⁇ m or more, more preferably 280 ⁇ m or more. be.
- the preferred thickness is also larger.
- the thickness of the GaN crystal 10 it is usually 1 mm or less, and preferably 400 ⁇ m or less in the case of a wafer with a diameter of 45 to 55 mm.
- the carbon concentration in the crystal is preferably 1 ⁇ 10 17 cm ⁇ 3 or less. It is preferable that the carbon concentration in the crystal is within the above range, since there is no possibility that carbon contained in the crystal will adversely affect the performance of a semiconductor device obtained using the GaN crystal.
- the carbon concentration in the crystal is more preferably 8 ⁇ 10 16 cm ⁇ 3 or less, even more preferably 5 ⁇ 10 16 cm ⁇ 3 or less, particularly preferably 2 ⁇ 10 16 cm ⁇ 3 or less, and 5 ⁇ 10 15 cm ⁇ 3 or less. Particularly preferably 3 or less.
- the carbon concentration in the crystal can be measured using secondary ion mass spectrometry (SIMS).
- the carbon concentration in the crystal usually exceeds 1 ⁇ 10 17 cm ⁇ 3 without intentional carbon doping. It can be assumed that this is not the case.
- the carbon concentration of a GaN crystal obtained by growing an m-plane seed crystal using the HVPE method without intentionally doping carbon was measured by SIMS. However, it was less than 2 ⁇ 10 16 cm ⁇ 3 .
- the GaN crystal is obtained by crystal growth using an acidic ammonothermal method, the carbon concentration in the crystal will exceed 1 ⁇ 10 17 cm ⁇ 3 without intentional carbon doping. You can think that it will never become a thing.
- the carbon concentration of a GaN crystal obtained by crystal growth using an acidic ammonothermal method in which m-plane seed crystals were not intentionally doped with carbon was measured using SIMS. When measured, it was about 7 ⁇ 10 15 cm ⁇ 3 to 2 ⁇ 10 16 cm ⁇ 3 .
- the GaN crystal according to this embodiment may have an absorption coefficient of 1 cm -1 or more at a wavelength of 445 nm, and may have no NH peak observed at 3050 to 3300 cm -1 in the infrared absorption spectrum.
- the fact that the GaN crystal has an absorption coefficient of 1 cm -1 or more at a wavelength of 445 nm and no N-H peak is observed in the infrared absorption spectrum from 3050 to 3300 cm -1 means that such a GaN crystal can be used by the ammonothermal method. This means that it is not manufactured by.
- a GaN crystal obtained by crystal growth using the HVPE method usually has an absorption coefficient of 1 cm -1 or more at a wavelength of 445 nm, and an N-H peak at 3050 to 3300 cm -1 in the infrared absorption spectrum. This is a GaN crystal that is not observed.
- the GaN crystal according to this embodiment can be used as a substrate for manufacturing various nitride semiconductor devices.
- a device structure is formed by vapor phase epitaxial growth of one or more nitride semiconductors on the GaN crystal according to this embodiment.
- MOCVD method, MBE method, pulsed evaporation method, etc. suitable for forming a thin film can be preferably used.
- nitride semiconductor devices include light emitting devices such as light emitting diodes and laser diodes, electronic devices such as rectifiers, bipolar transistors, field effect transistors, and HEMTs (High Electron Mobility Transistors), temperature sensors, pressure sensors, radiation sensors, These include semiconductor sensors such as visible-ultraviolet light detectors, SAW (Surface Acoustic Wave) devices, vibrators, resonators, oscillators, MEMS (Micro Electro Mechanical System) parts, voltage actuators, and solar cells.
- light emitting devices such as light emitting diodes and laser diodes
- electronic devices such as rectifiers, bipolar transistors, field effect transistors, and HEMTs (High Electron Mobility Transistors)
- temperature sensors such as temperature sensors, pressure sensors, radiation sensors, These include semiconductor sensors such as visible-ultraviolet light detectors, SAW (Surface Acoustic Wave) devices, vibrators, resonators, oscillators, MEMS (Micro Electro Mechanical System) parts, voltage actuators, and solar cells.
- the second embodiment of the present invention relates to a GaN crystal manufacturing method.
- the GaN crystal manufacturing method according to the second embodiment includes at least the following liquid phase growth step and vapor phase growth step.
- GaN wafers can be manufactured by providing a wafer manufacturing process as needed.
- ⁇ Liquid phase growth process A process in which bulk GaN crystals are grown by an ammonothermal method on the aggregated seeds obtained by closely arranging multiple tiling GaN seeds
- ⁇ Vapor phase growth process In a liquid phase growth process A step of growing a bulk GaN crystal by the HVPE method using the obtained bulk GaN crystal as a seed crystal.
- ⁇ Wafer manufacturing process A process of manufacturing a GaN wafer in which the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less from the bulk GaN crystal obtained in the vapor phase growth process.
- a method for producing a GaN crystal includes a liquid phase growth step of growing a bulk GaN crystal by an ammonothermal method on a set of seeds obtained by closely arranging a plurality of GaN seeds for tiling; and a vapor phase growth step of growing a GaN crystal by HVPE using the bulk GaN crystal obtained in the liquid phase growth step as a seed crystal, and the liquid phase growth step includes a meltback step.
- the liquid phase growth process may further independently include the following steps 1 to 5.
- Step 1 GaN crystal is grown in the [000-1] direction on the (000-1) surface of the C-plane GaN seed by the ammonothermal method.
- Step 2 An M-plane GaN seed is produced from the GaN crystal grown in the [000-1] direction in step 1 above.
- Step 3 A bulk GaN crystal is grown by an ammonothermal method on the M-plane GaN seed prepared in step 2 above.
- Step 4 A tiling GaN seed is produced from the bulk GaN crystal grown in step 3 above.
- Step 5 Using the GaN seeds for tiling produced in step 4 above, aggregate seeds are produced, and bulk GaN crystals are grown on the obtained aggregate seeds by an ammonothermal method.
- the liquid phase growth process can include steps 5' to 6' instead of step 5, in addition to the following steps 1 to 4 described above.
- Step 5' The GaN seeds for tiling produced in step 4 above are subjected to a drooping process.
- Step 6' A bulk GaN crystal is grown by a tiling method using the GaN seed for tiling which has been subjected to the drooping treatment in step 5'. In either case, the following step 7 can be further included.
- Step 7 A GaN wafer having a desired plane orientation is produced from the bulk GaN crystal grown in step 5 or step 6'.
- the method for producing a GaN crystal includes: an aggregate seed preparation step of preparing an aggregate seed obtained by closely arranging a plurality of GaN seeds for tiling; forming a GaN crystal on the aggregate seed by an HVPE method;
- the aggregate seed preparation step includes at least a vapor phase growth step of growing the seeds, and the gathering seed preparation step is performed from the intersection of the (000-1) side end of the main surface of the tiling GaN seed and the (000-1) end of the (000-1) plane.
- the method includes a step of removing the edge portion so that the (000-1) plane is not exposed.
- Step 1 a TiW alloy is used to form a growth mask with a stripe pattern (line & space pattern) on the (000-1) surface (nitrogen polar surface) of a normal C-plane GaN wafer. Use as a seed.
- the stripe direction of the growth mask is parallel to the a-axis of GaN, and the width of the opening is, for example, 100 ⁇ m.
- the sides of the C-plane GaN wafer are not covered with the growth mask.
- International Publication No. 2014/129544 and International Publication No. 2015/020161 for the crystal growth apparatus and crystal growth conditions used when growing a GaN crystal on the C-plane GaN seed by the ammonothermal method.
- GaN crystals grow in the [000-1] direction at the positions of each opening of the growth mask, with the height extending along the c-axis direction.
- a wall-like structure whose thickness direction is the m-axis direction is formed.
- the wall height the size of the grown GaN crystal in the c-axis direction
- GaN crystal growth also occurs on the sides of the C-plane GaN seed. GaN crystals grow from all sides of the C-plane GaN seed and extend in the [000-1] direction, forming a peripheral wall structure surrounding the plurality of wall-like GaN crystals growing on the (000-1) surface of the seed.
- Step 2 In step 1 above, the GaN crystal grown in a wall shape on the (000-1) surface of the C-plane GaN seed is removed from the seed and processed to obtain an M-plane GaN seed.
- the M-plane GaN seed is a plate-shaped crystal having a main surface substantially parallel to the M-plane. After both main surfaces of the M-plane GaN seed are flattened by lapping, they are finished by CMP to remove the damaged layer.
- Step 3 A GaN crystal is grown by an ammonothermal method on the M-plane GaN seed prepared in step 2 above.
- the GaN crystal grows to cover the entire surface of the M-plane GaN seed.
- the growth direction of the GaN crystal on the main surface of the M-plane GaN seed is the m-axis direction.
- Step 4 By slicing the GaN crystal grown in step 3 above parallel to the M-plane and cutting off the edges of the obtained GaN crystal plate with a dicing saw, the long side is perpendicular to the c-axis and the short side is aligned to the a-axis. GaN seeds for tiling having orthogonal rectangular main surfaces are produced.
- the main surface of the GaN seed for tiling may be slightly inclined from the M plane by adjusting the slice angle.
- the side surface of the GaN seed for tiling is a cut surface formed when a GaN crystal plate is cut with a dicing saw.
- the orientation of the cut surface is checked using X-ray diffraction, and if the deviation from the designed orientation exceeds 0.1°, the workpiece direction is adjusted and the cutting is performed again. By repeating the operation, it is possible to keep the deviation of the side surface of the tiling GaN seed from the designed orientation to within 0.1°.
- the back surface refers to the main surface on the opposite side of the two main surfaces of the GaN seed for tiling, when the main surface on the side used for epitaxial growth of the bulk GaN crystal is the front surface (also referred to below). The same shall apply). The reason for this is to prevent the angle between the front surface and the side surface from becoming an obtuse angle in the GaN seed for tiling.
- the thickness of the dicing saw blade decreases toward the tip, so when cutting by applying the blade to the GaN seed for tiling from the front side, the blade will be cut as shown in the cross-sectional view in Figure 20.
- the angle between the front surface and the side surface (cut surface) tends to be an obtuse angle (>90°). Setting the angle between the front surface and the side surface to be a right angle or an acute angle prevents gaps from forming between the front surfaces of adjacent seeds when multiple GaN seeds for tiling are closely arranged. can.
- the GaN crystal plate obtained by cutting with a dicing saw is preferably subjected to lapping treatment and wet etching treatment in order to remove the damaged layer on the end face, which is the cut surface of the dicing saw.
- the end face of the GaN crystal plate becomes the bonding surface between adjacent seeds when GaN crystal plates are closely arranged as GaN seeds for tiling, but when cutting with a dicing saw, a damaged layer is formed on the end face that is the cut surface. may be formed. If a damaged layer remains on the end face, the joint between adjacent seeds may become defective, and crystal defects may occur due to the joint.
- the melt-back process (temperature Since the effect of removing the damaged layer on the bonding surface by reversing the process (processing to dissolve the GaN crystal layer on the seed surface) is relatively small, lapping and wet etching of the end face can remove the damaged layer on the end face. It is considered that the crystal defects at the junction are more effectively reduced.
- both main surfaces of the GaN seed for tiling are flattened. Specifically, after grinding and/or lapping, the damaged layer is removed by CMP. Planarization is performed on the back surface first, and then on the front surface. the main surface is the back side). In particular, when flattening the front surface, a plurality of seeds 100 are tightly arranged and fixed on the flat surface of the plate P, as shown in the cross-sectional view in FIG. 21(a). (Attach the back side of the plate to the plate P). As a result, as shown in the cross-sectional view of FIG. 21(b), in the GaN seeds 100 for tiling after planarization, the variation in thickness between the seeds becomes extremely small, and the portions where the seeds contact each other are covered.
- Edge roll-off on the processed surface is suppressed.
- the angle between the front surface and the side surface of the GaN seeds for tiling is not obtuse
- the front surface is flattened
- the effect of suppressing edge roll-off is preferably expressed.
- Step 5 A plurality of GaN seeds for tiling, whose front surfaces have been flattened while being closely arranged on the flat surface of the plate, are placed with the front surface facing up in the same arrangement as when they were fixed on the plate. and fixed to a metal plate made of molybdenum or the like to form an aggregate seed. Molybdenum and tungsten are preferably used as the material for the metal plate. Multiple holes are drilled in the metal plate, and holes are drilled in the tile seed to match the hole positions. Place the tiling seeds on the metal plate and tie it with wire to secure it. In this state, a GaN layer crystal is epitaxially grown on the aggregated seed by an ammonothermal method to obtain a bulk crystal.
- an advantage of using a metal plate as the fixing plate is that there is no restriction on the size of the fixing plate.
- the size of the obtained aggregated seeds is also limited by the size of the tiling GaN seeds used as the fixing plate. become.
- metal plates of any size can be easily prepared, there are no restrictions on size.
- it has been confirmed that good GaN crystals can be obtained even when the aforementioned metal plate is used as a fixing plate for GaN seeds for M-plane or S-plane tiling. There is.
- the process of epitaxially growing the GaN crystal layer on the aggregated seeds using the ammonothermal method includes a melt-back process (a process in which the temperature is reversed to melt the GaN crystal layer on the surface of the seeds).
- a melt-back process a process in which the temperature is reversed to melt the GaN crystal layer on the surface of the seeds.
- the GaN layer at the joint between the plurality of tiling GaN seeds that make up the aggregated seed is partially melted, and the damaged layer on the joint surface caused by dicing is removed, resulting in a bonding process. becomes good.
- Step 5' A sagging process is performed on a plurality of GaN seeds for tiling whose front surfaces have been flattened while being closely arranged on the flat surface of the plate.
- "Dragging treatment” means that the (000-1) plane is This refers to removing the edge portion so that it is not exposed. Typically, by removing the edge portion, the principal surface of the seed and the (000-1) plane are connected in a curved line. This state is sometimes expressed as "edge sagging.” Preferably, in the edge portion, the edge portion is removed so that the (000-1) plane is not exposed in a region of 1 to 20 ⁇ m in the depth direction from the surface.
- the edge portion be removed by polishing. It is preferable that the above treatment is performed simultaneously by placing a plurality of GaN seeds for tiling, whose front surfaces have been flattened, arranged closely on the flat surface of the plate, on one plate.
- FIG. 22 shows a case where an unintended height difference between the seeds occurs when the seeds that are not subjected to the above-mentioned "hanging process" are joined together.
- the (000-1) plane is exposed at the edge portion of the main surface of the seed 101 on the (000-1) side. In such a case, defects occur above and around the joint, starting from the exposed (000-1) plane.
- FIG. 23 an edge portion consisting of the intersection of the (000-1) side end of the main surface of the seed 103 and the end of the (000-1) plane is shown so that the (000-1) plane is not exposed.
- FIG. 24 shows a case where an unintended height difference between the seeds occurs when the seeds that have been subjected to the "dripping process" are joined together. Unlike the case in FIG. 22, in FIG. 24, the edge portion on the (000-1) side of the main surface of the seed 103 is removed by "sagging processing", so there is an unintended height difference between the seeds 103 and 104. Even if , the (000-1) plane is not exposed in the boundary region.
- Step 6' A plurality of GaN seeds for tiling, whose front surfaces have been flattened while being closely arranged on the flat surface of the plate, are placed with the front surface facing up in the same arrangement as when they were fixed on the plate. are densely arranged on the susceptor of the HVPE device to form an aggregate seed. Bulk GaN crystal is epitaxially grown on this aggregated seed using the HVPE method.
- the bulk GaN crystal obtained in the above liquid phase growth step is used as a seed crystal to grow a bulk GaN crystal by the HVPE method.
- the bulk GaN crystal obtained in the above-mentioned liquid phase growth process can be processed by a known method to use as a seed for crystal growth in the HVPE method. For example, a grown bulk GaN crystal is sliced parallel to the seeds into a wafer shape. At this time, it is preferable to adjust the slicing direction so that the main surface of the wafer is inclined at a specific angle in the [000-1] direction with respect to the M plane.
- the main surface of the wafer is preferably inclined at 0.1 to 10 degrees in the [000-1] direction with respect to the M plane, more preferably 1 to 8 degrees, and even more preferably 4 to 6 degrees. After slicing, both main surfaces of the wafer are flattened to obtain an M-plane GaN wafer.
- GaN crystal by the HVPE method can be performed using a vapor phase growth apparatus whose conceptual diagram is shown in FIG. However, in this step, it is preferable that all or substantially all (99% or more) of the carrier gas be nitrogen gas.
- the following steps are performed: (a) temperature raising step, (b) preliminary growth step, and (c) main growth mode. It is preferable to perform a two-stage growth method that includes the growth steps in this order.
- (a) Temperature raising step In the temperature raising step, the susceptor temperature is raised from room temperature to T1 without supplying gallium chloride to the seeds. T1 is preferably 830°C or higher and 870°C or lower.
- the temperature increase rate is preferably 12° C./min or more and 30° C./min or less. The temperature increase rate may be constant over the entire period of the temperature increase step, or may be changed during the temperature increase step.
- Atmospheric gases that can be introduced into the growth furnace in the temperature raising step include hydrogen gas, ammonia, nitrogen gas, etc., and it is preferable to introduce at least both ammonia and nitrogen gas.
- the volumetric flow rate of ammonia introduced into the growth furnace is preferably 15% or more of the total volumetric flow rate of all gases introduced into the growth furnace.
- the susceptor temperature is raised from T1 to T2 while supplying gallium chloride and ammonia to the seed to epitaxially grow a GaN crystal.
- T2 is preferably 940°C or higher and 1200°C or lower.
- the temperature increase rate is preferably 6° C./min or more and 24° C./min or less.
- the pressure inside the growth reactor in the preliminary growth step is 1.0 ⁇ 10 5 Pa
- the GaCl partial pressure is preferably 2.0 ⁇ 10 2 Pa or more and 5.0 ⁇ 10 2 Pa or less
- the ammonia partial pressure is Preferably it is 9.3 ⁇ 10 3 Pa or more and 1.2 ⁇ 10 4 Pa or less.
- all or substantially all (99% or more) of the carrier gas supplied into the growth reactor is nitrogen gas.
- (c) Main growth step In the main growth step, gallium chloride and ammonia are supplied onto the seed while maintaining the susceptor temperature at T2 to grow a thick GaN crystal.
- the pressure inside the growth furnace in the main growth step is preferably 50 kPa or more and 120 kPa or less.
- the GaCl partial pressure is preferably 1.5 ⁇ 10 2 Pa or more and 5.0 ⁇ 10 2 Pa or less
- the ammonia partial pressure is Preferably it is 1.0 ⁇ 10 3 Pa or more and 1.2 ⁇ 10 4 Pa or less.
- the decomposition products of quartz constituting the growth furnace etc. are transferred to the seed surface before the start of the main growth step. This prevents it from being adsorbed to the surface.
- quartz decomposition products adsorb to the seed surface and reduce wettability to GaN, thereby delaying the occurrence of the step-flow growth mode of GaN.
- Wafer fabrication process In the wafer fabrication process, a GaN wafer in which the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less is fabricated from the bulk GaN crystal obtained in the above-mentioned vapor phase growth process. .
- the bulk GaN crystal obtained in the vapor phase growth step is sliced to obtain a GaN wafer in which the angle between the normal to the main surface and the m-axis is 0 degrees or more and 20 degrees or less.
- the slicing direction may be parallel to the front surface of the GaN seed for tiling, or may be inclined with respect to the front surface.
- a planarization process is performed on the main surface of the GaN wafer.
- the damaged layer is removed by CMP.
- the GaN wafer 10 shown in FIG. 1 can be obtained by processing the composite shown in FIG. 26 into a cylindrical shape by peripheral grinding or core drilling, and then slicing it at the position of the broken line shown in FIG. 27.
- the band-shaped dislocation concentration region 305 in the bulk GaN crystal 300 is exposed on the main surface 11 of the GaN crystal 10 and becomes the band-shaped dislocation gathering region 14.
- the present invention will be described in comparison with a conventional method in which a plurality of tiling GaN seeds are grown using the HVPE method.
- a plurality of GaN seeds for tiling whose front surfaces have been flattened while being closely arranged on the flat surface of the plate, are placed in the same arrangement as when fixed on the plate. Construct the collective seeds by placing them close together, face up, on the susceptor of the HVPE device.
- a known method tilting method is to epitaxially grow a bulk GaN crystal on this aggregated seed using the HVPE method and slice the obtained bulk GaN crystal to obtain a nonpolar or semipolar GaN wafer.
- the method of the present invention differs from conventional tiling methods in that it includes the step of growing bulk GaN crystals by ammonothermal methods at least on aggregated seeds.
- band-shaped dislocation gathering regions widely existed on the main surface due to defective joints between the plurality of tiling GaN seeds that constitute the gathering seeds.
- crystals are not grown directly on the aggregated seeds by the HVPE method, but crystals are grown once on the aggregated seeds by the ammonothermal method.
- the ammonothermal method has the characteristic that crystals with better crystal quality can be obtained than the HVPE method, the quality of the crystal that grows around the joint of the aggregated seed is good, and the GaN crystal obtained using this as a seed is It is thought that the width of the band-shaped dislocation accumulating region was narrowed due to the defect in the area. Further, it is also preferable to include a meltback step in the step of epitaxially growing the GaN layer crystal on the aggregated seed by the ammonothermal method.
- the GaN layer at the joint between the plurality of tiling GaN seeds that make up the aggregated seed is partially melted, and the damaged layer on the joint surface caused by dicing is removed, resulting in tiling.
- the bonding between the GaN seeds becomes better. Therefore, it is possible to further narrow the width of the band-shaped dislocation accumulating region resulting from a defective joint.
- a plurality of GaN seeds for tiling whose front surface has been flattened while being closely arranged on the flat surface of the plate, are placed on the flat surface of the plate without performing "drip treatment". Construct the aggregated seeds by placing them close together on the susceptor of the HVPE device, front side up, in the same arrangement as when they were fixed above. Bulk GaN crystals were epitaxially grown on this aggregated seed using the HVPE method, and the obtained bulk GaN crystals were sliced to obtain nonpolar or semipolar GaN wafers.
- the method of the present invention is characterized in that at least a plurality of GaN seeds for tiling are closely arranged on the flat surface of the plate and the front surface is flattened, and the "drip treatment" is performed.
- the conventional method the (000-1) plane was exposed in the boundary area of the seeds due to an unintended height difference between the plurality of tiling GaN seeds that make up the aggregated seed. ) planes were the starting point, and the number of defects increased, and band-shaped dislocation gathering regions existed widely on the main surface.
- "sag processing" is performed on a plurality of tiling GaN seeds.
- Example 1 A C-plane GaN wafer was prepared, and a stripe pattern growth mask was formed on the (000-1) plane (nitrogen polar surface) using a TiW alloy. The stripe direction was parallel to the a-axis of GaN, and the width of the opening was 100 ⁇ m.
- a GaN crystal was grown by an ammonothermal method on the (000-1) surface of a C-plane GaN wafer on which such a growth mask was formed. Polycrystalline GaN was used as the feedstock, and ammonium fluoride (NH 4 F) and ammonium iodide (NH 4 I) were used as the mineralizers.
- NH 4 F ammonium fluoride
- NH 4 I ammonium iodide
- the amount of mineralizer charged is such that the molar ratio of NH 4 F and NH 4 I to NH 3 sealed in the growth container is 0.5 to 1.5% and 1.5 to 3.5%, respectively. and the molar ratio of NH 4 F to NH 4 I was determined to be 0.2 to 0.5.
- the growth conditions were: the average temperature in the growth container (the average value of the temperatures of the crystal growth zone and raw material melting zone) was 590 to 630°C, the temperature difference between the crystal growth zone and the raw material melting zone was 5 to 20°C, and the temperature difference in the growth container was 590 to 630°C.
- the pressure was 200-220 MPa. After a total of 100 days of growth with two growth container changes in between, each opening of the growth mask was positioned so that the c-axis direction was the height direction and the m-axis direction was the thickness direction. Wall-shaped GaN crystals were grown.
- the GaN crystal grown into the wall shape described above was removed from the C-plane GaN wafer and processed into a flat plate (M-plane GaN seed) having a main surface substantially parallel to the M-plane. Both main surfaces of the M-plane GaN seeds were flattened by lapping and then finished by CMP to remove the damaged layer.
- a GaN crystal was again grown on this M-plane GaN seed by the ammonothermal method.
- the amount of mineralizer charged was set so that the molar ratio of fluorine atoms and iodine atoms to NH 3 was each 1.0%.
- the average temperature inside the growth container was set to 600 to 611°C, and the temperature difference between the crystal growth zone and the raw material melting zone was set to 9 to 13°C.
- the pressure inside the growth container was the same as that for the first ammonothermal growth.
- a plate-shaped GaN seed for tiling with a thickness of about 330 ⁇ m was produced in the following procedure.
- the GaN crystal was sliced parallel to the M plane using a multi-wire saw.
- the edges of the sliced GaN crystal plates were cut off using a dicing saw to make the main surface into a rectangle whose long sides were parallel to the a-axis and whose short sides were perpendicular to the a-axis.
- the saw blade was always applied to the GaN crystal plate from the back side.
- the deviation from the design direction for both the long and short sides of the rectangle was set to be 0.1° or less.
- lapping and wet etching were performed on the end face of the cut GaN crystal plate.
- each main surface of the GaN crystal plate was flattened to complete a GaN seed for tiling. Specifically, after grinding and/or lapping were performed in this order, the damaged layer was removed by CMP. The order of flattening was the back surface first and the front surface last.
- the front surface is the main surface that will be used later for epitaxial growth of bulk GaN crystal by HVPE method.
- the front surface was flattened by pasting five GaN crystal plates closely arranged in the c-axis direction on the flat surface of the plate with wax. Specifically, the five GaN crystal plates are arranged so that the [0001] side edge of any two adjacent GaN crystal plates is in contact with the other [000-1] side edge of the plate. By arranging them in a row on a flat surface, the [0001] directions of all five sheets were made to match.
- GaN seeds for tiling which were obtained by flattening the front surfaces while being closely arranged with each other, were fixed on a metal plate made of molybdenum or the like with the front surfaces facing up. . There were many holes in the metal plate, and holes were drilled in the tiling seed to match the hole positions. The metal plate and tiling seeds were tied and fixed with metal wire such as platinum.
- a bulk GaN crystal was epitaxially grown on this aggregated seed by an ammonothermal method. The growth temperature was 600 to 610°C, and the growth time was 27 days. At the initial stage of growth, a melt-back process (a process in which the temperature is reversed to melt the GaN layer on the surface) was performed.
- the grown bulk GaN crystal was sliced parallel to the seeds into wafers. At this time, the slicing direction was adjusted so that the main surface of the wafer was inclined at 5° in the [000-1] direction with respect to the M plane. After slicing, both main surfaces of the wafer were flattened to obtain a 45 mm x 26 mm off-angled M-plane GaN wafer.
- This off-angled M-plane GaN wafer was epitaxially grown using the HVPE method. The growth temperature was 1050°C and the growth time was 10 hours. Only nitrogen gas was used as the carrier gas supplied into the reactor during the growth of the bulk GaN crystal. Note that intentional carbon doping was not performed in the epitaxial growth by the HVPE method.
- the grown M-plane bulk GaN crystal with off-angles was evaluated by the following method.
- the observation area of the multiphoton excitation PL image is 240 ⁇ m x 180 ⁇ m, which has a length of 240 ⁇ m in the longitudinal direction of the band-like dislocation gathering region, includes the entire band-like dislocation gathering region, and has a length of 180 ⁇ m in the direction perpendicular to the longitudinal direction.
- the area of Multiphoton excitation PL images of an area of 240 ⁇ m x 180 ⁇ m were obtained for the same band-shaped dislocation gathering region at three different locations so that the observation regions did not overlap.
- the observation conditions are as follows.
- ⁇ Excitation laser Yb femtosecond laser ⁇ Pulse width ⁇ 100 fs, repetition frequency 76MHz ⁇ Wavelength 1035nm (uses 3-photon excitation or more) ⁇ Set the average power to several mW to several tens of mW through the acousto-optic element ⁇ Objective lens magnification 50x (NA 0.80)
- the image brightness profile with a length of 180 ⁇ m in the direction perpendicular to the longitudinal direction of the band-shaped dislocation gathering region is An integration profile of image brightness integrated over 240 ⁇ m was created. In the integration profile, a baseline was drawn visually. In all the integrated profiles obtained from multiphoton excitation PL images obtained at three different locations, there was no region where the image brightness was 80% or less of the image brightness value at the baseline. In other words, the effective width of the zonal dislocation gathering region could not be determined. As a result, the maximum effective width of the band-shaped dislocation gathering region of the off-angled M-plane bulk GaN crystal of Example 1 was less than 50 ⁇ m.
- ⁇ Dislocation density> From the 240 ⁇ m x 180 ⁇ m multi-photon excitation PL images obtained at three different locations, which were used to calculate the effective width of the band-shaped dislocation gathering region mentioned above, the density of dark spots in a specific area was measured and the dislocation density was calculated. did.
- ⁇ Dislocation density of region (X) Two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions 5 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density in the region (X) defined by is calculated as follows.
- the observation area (X2) and observation area (X3) were determined in the same manner.
- the number of dark spots in the region was measured and divided by the area of the region to calculate the dislocation density.
- the average of the dislocation densities in the observed regions (X1) to (X3) was defined as the dislocation density in region (X).
- the dislocation density in region (X) was 7.0 ⁇ 10 5 cm ⁇ 2 .
- ⁇ Dislocation density of region (Y) Two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions of 15 ⁇ m in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density in the region (Y) defined by is calculated. Calculation of dislocation density in region (X) except that the observation area was a rectangle of 210 ⁇ m x 30 ⁇ m, with the length in the longitudinal direction of the band-like dislocation gathering region being 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction being 30 ⁇ m. A similar method was used. The dislocation density in region (Y) was 3.4 ⁇ 10 5 cm ⁇ 2 .
- ⁇ Dislocation density of region (Z) Two line segments drawn parallel to the longitudinal direction from the center of the band-shaped dislocation accumulating region at positions 50 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region.
- the dislocation density in the region (Y) defined by is calculated. Calculation of dislocation density in region (X) except that the observation area was a rectangle of 210 ⁇ m x 100 ⁇ m, with the length in the longitudinal direction of the band-shaped dislocation gathering region being 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction being 100 ⁇ m. A similar method was used.
- the dislocation density in region (Z) was 2.3 ⁇ 10 5 cm ⁇ 2 .
- Example 2 The (000-1) main surface of five GaN seeds for tiling, which were obtained by the same procedure as in Example 1 and whose front surfaces were flattened while closely aligned with each other, was A ⁇ sagging process'' was performed to remove the side edges. Specifically, the edge portion was polished so that the (000-1) plane of the edge portion was not exposed for about 10 ⁇ m in the depth direction from the main surface. The sagging treatment was performed by placing five tiling GaN seeds radially on one plate and polishing them at the same time.
- SEM-CL images of an area of 240 ⁇ m x 180 ⁇ m were obtained for the same band-shaped dislocation gathering region at three different locations so that the observed regions did not overlap. This was performed for two band-like dislocation gathering regions, and a total of six SEM-CL images were obtained.
- the observation conditions are as follows. ⁇ Electron gun acceleration voltage 3kV, irradiation current 100pA, observation magnification 500x ⁇ Cathode luminescence: Mono-CL3 manufactured by Gatan ⁇ Panchromatic CL observation mode, detector voltage ⁇ 1300V
- the image brightness profile with a length of 180 ⁇ m in the direction perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region is compared to the image intensity profile with a length of 240 ⁇ m in the longitudinal direction of the band-shaped dislocation accumulating region.
- a baseline was drawn visually.
- the maximum effective width was 29 ⁇ m.
- the maximum effective width of the band-shaped dislocation accumulating region of the M-plane GaN wafer of Example 1 was less than 50 ⁇ m.
- ⁇ Dislocation density> From the 240 ⁇ m x 180 ⁇ m SEM-CL images obtained at three different locations, which were used to calculate the effective width of the band-shaped dislocation gathering region described above, the density of dark spots in specific areas was measured and the dislocation density was calculated. .
- ⁇ Dislocation density of region (X) Two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions 5 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density in the region (X) defined by is calculated as follows.
- the observation region (X1) was determined so that the center in the direction perpendicular to the longitudinal direction coincided with the center of the zonal dislocation gathering region.
- the GaN crystal of Example 1 it was not possible to determine the effective width of the band-like dislocation gathering region, so the center of the band-like dislocation gathering region was determined visually from the SEM-CL image.
- the observation area (X2) and observation area (X3) were determined in the same manner.
- the number of dark spots in the region was measured and divided by the area of the region to calculate the dislocation density.
- the average of the dislocation densities in the observed regions (X1) to (X3) was defined as the dislocation density in region (X).
- the dislocation density in region (X) was 5.9 ⁇ 10 7 cm ⁇ 2 .
- ⁇ Dislocation density of region (Y) Two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions of 15 ⁇ m in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density in the region (Y) defined by is calculated. Calculation of dislocation density in region (X) except that the observation area was a rectangle of 210 ⁇ m x 30 ⁇ m, with the length in the longitudinal direction of the band-like dislocation gathering region being 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction being 30 ⁇ m. A similar method was used. The dislocation density in region (Y) was 5.0 ⁇ 10 7 cm ⁇ 2 .
- ⁇ Dislocation density of region (Z) Two line segments drawn parallel to the longitudinal direction from the center of the band-shaped dislocation accumulating region at positions 50 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region. The dislocation density in the region (Z) defined by is calculated. Calculation of dislocation density in region (X) except that the observation area was a rectangle of 210 ⁇ m x 100 ⁇ m, with the length in the longitudinal direction of the band-like dislocation gathering region being 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction being 100 ⁇ m. A similar method was used. The dislocation density in region (Z) was 1.8 ⁇ 10 7 cm ⁇ 2 .
- ⁇ Ratio of dislocation density DZ to dislocation density DX ( DZ / DX ) The ratio (D Z /D X ) of the dislocation density (Dz) in the region (Z) to the dislocation density (Dx) in the region ( X ) was 0.31.
- ⁇ Ratio of dislocation density D Z to dislocation density D Y (D Z /D Y ) The ratio (D Z /D Y ) of the dislocation density (D Z ) in the region ( Z ) to the dislocation density (D Y ) in the region ( Y ) was 0.36.
- Comparative example 1 In a comparative example, a bulk GaN crystal was epitaxially grown using an ammonothermal method on a set of five tiling GaN seeds obtained by flattening the front surface while closely arranging each other. Off-angled M-plane GaN of the comparative example was grown in the same manner as in the example except that the bulk GaN crystal was grown by the HVPE method on the aggregated seed without performing the "sag treatment". A crystal was produced. The produced M-plane GaN crystal with off-angles was processed into a wafer shape. The obtained M-plane GaN wafer was evaluated as follows.
- the observation area of the SEM-CL image has a length of 240 ⁇ m in the longitudinal direction of the band-shaped dislocation gathering region, includes the entire band-like dislocation gathering region, and has a length of 180 ⁇ m in the direction perpendicular to the longitudinal direction. It was defined as an area.
- SEM-CL images of an area of 240 ⁇ m x 180 ⁇ m were obtained for the same zonal dislocation gathering region at two different locations so that the observed regions did not overlap. This was performed for three band-shaped dislocation gathering regions, and a total of six SEM-CL images of a region of 240 ⁇ m ⁇ 180 ⁇ m were obtained.
- the observation conditions are as follows.
- the image brightness profile with a length of 180 ⁇ m in the direction perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region is integrated for a longitudinal length of 240 ⁇ m of the band-like dislocation accumulating region.
- An integrated profile of image brightness was created.
- a baseline was drawn visually.
- Four of the integrated profiles had an effective width of 50 ⁇ m or more, which is the width of a region where the image brightness was 80% or less of the image brightness value in the baseline.
- the maximum effective width of the strip dislocation gathering region of the M-plane GaN wafer of Comparative Example 1 was 50 ⁇ m or more.
- ⁇ Dislocation density> From the 240 ⁇ m x 180 ⁇ m SEM-CL images obtained at six different locations, which were used to calculate the effective width of the band-shaped dislocation gathering region, the density of dark spots in a specific region was measured, and the dislocation density was calculated.
- ⁇ Dislocation density of region (X) Two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions 5 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density in the region (X) defined by is calculated as follows.
- observation area in which the length in the longitudinal direction of the band-shaped dislocation gathering region is 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction is 10 ⁇ m, is defined as the observation area.
- the observation region (X1) was determined so that the center in the direction perpendicular to the longitudinal direction coincided with the center of the zonal dislocation gathering region.
- the observation area (X2) and observation area (X3) were determined in the same manner.
- the dislocation density in region (X) was 4.7 ⁇ 10 7 cm ⁇ 2 .
- ⁇ Dislocation density of region (Y) Two line segments drawn parallel to the longitudinal direction from the center of the band dislocation accumulating region at positions of 15 ⁇ m in the left and right directions perpendicular to the longitudinal direction of the band dislocation accumulating region. The dislocation density in the region (Y) defined by is calculated. Calculation of dislocation density in region (X) except that the observation area was a rectangle of 210 ⁇ m x 30 ⁇ m, with the length in the longitudinal direction of the band-like dislocation gathering region being 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction being 30 ⁇ m. A similar method was used. The dislocation density in region (Y) was 4.2 ⁇ 10 7 cm ⁇ 2 .
- ⁇ Dislocation density of region (Z) Two line segments drawn parallel to the longitudinal direction from the center of the band-shaped dislocation accumulating region at positions 50 ⁇ m each in the left and right directions perpendicular to the longitudinal direction of the band-shaped dislocation accumulating region. The dislocation density in the region (Z) defined by is calculated. Calculation of dislocation density in region (X) except that the observation area was a rectangle of 210 ⁇ m x 100 ⁇ m, with the length in the longitudinal direction of the band-shaped dislocation gathering region being 210 ⁇ m and the length in the direction perpendicular to the longitudinal direction being 100 ⁇ m. A similar method was used. The dislocation density in region (Z) was 2.7 ⁇ 10 7 cm ⁇ 2 .
- ⁇ Ratio of dislocation density DZ to dislocation density DX ( DZ / DX )
- the ratio (D Z /D X ) of the dislocation density (Dz) in the region (Z) to the dislocation density (Dx) in the region ( X ) was 0.57.
- ⁇ Ratio of dislocation density DZ to dislocation density DY ( DZ / DY )
- the ratio (D Z /D Y ) of the dislocation density (D Z ) in the region ( Z ) to the dislocation density (D Y ) in the region ( Y ) was 0.64.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Recrystallisation Techniques (AREA)
Abstract
主表面の法線とm軸との間の角度が0度以上20度以下であるGaN結晶であって、(1)~(3)からなる群より選択される少なくとも1つの要件を満たす帯状転位集合領域を該主表面上に有するGaN結晶及びGaNウエハは主表面に存在する帯状転位集合領域の幅が狭く、窒化物半導体デバイスの歩留りの向上に寄与する:(1)最大有効幅が50μm未満;(2)要件(A)及び要件(B)の少なくとも一方を満たす:(A)中心から15μmの幅の転位密度(DY)が3×107cm-2未満(B)中心から50μmの幅の転位密度(DZ)が2.5×107cm-2未満;(3)DX(中心から5μmの幅の転位密度DXに対するDZの比(DZ/DX)が0.5以下及び/又はDZ/DYが0.5以下。
Description
本発明は、GaN(窒化ガリウム)結晶及びGaNウエハに関する。
C面に対し大きく傾斜した主表面を有する非極性又は半極性GaN結晶から得られるGaNウエハが、特性の改善された窒化物半導体デバイス用の基板として期待されている。窒化物半導体は、窒化物系III-V族化合物半導体、III族窒化物系化合物半導体、GaN系半導体、などとも呼ばれ、GaNの他に、GaNのGaの一部又は全部が、他の周期表13族元素(B、Al、In)に置換された化合物を含む。一例を挙げれば、AlN、InN、AlGaN、AlInN、GaInN、AlGaInN等である。
非極性GaNウエハの中で特に注目されているのは、(10-10)ウエハ、すなわちM面ウエハである。半極性GaNウエハの中で特に注目されているのは、(20-21)ウエハ、(20-2-1)ウエハ、(30-31)ウエハ及び(30-3-1)ウエハである。
非極性GaNウエハの中で特に注目されているのは、(10-10)ウエハ、すなわちM面ウエハである。半極性GaNウエハの中で特に注目されているのは、(20-21)ウエハ、(20-2-1)ウエハ、(30-31)ウエハ及び(30-3-1)ウエハである。
非極性又は半極性GaNウエハは、C面GaNウエハ又はC面GaNテンプレートのGaN(0001)表面上にハイドライド気相成長(HVPE)法で成長させたバルクGaN結晶を、所望する非極性又は半極性面に平行にスライスする方法で製造することができる。ただし、GaN(0001)表面上に安定的に気相成長させ得るGaN結晶の厚さは、通常、数mm以下であることから、この方法で作製される非極性又は半極性GaNウエハの面積は限られている。この方法で2インチウエハ(直径約50mmの円盤形ウエハ)のような大面積ウエハを工業的に生産することは極めて困難である。
この問題を解決するために考案されたのがタイリング法である。タイリング法では、集合シードを用いる。集合シードとは、複数のシードを結晶方位が揃うように密に並べたものである。複数のシードからなる集合シード上に、ひとつの連続した層をなすバルクGaN結晶がHVPE法でエピタキシャル成長される(特許文献1~5)。主表面のc軸方向のサイズが数mm足らずのM面GaNウエハを複数枚集めて構成した集合シードを用いることにより、直径約50mmのM面GaNウエハを実現することが可能となる。
タイリング法を用いて成長されたバルクGaN結晶では、隣接するシード間の境界の上方で成長した部分の結晶性が低くなる。かかるバルクGaN結晶をスライスして製造される非極性又は半極性GaNウエハは、この結晶性低下部が帯状に露出した領域である帯状転位集合領域を、その主表面に有している。
主表面に帯状転位集合領域を有する非極性又は半極性GaNウエハを用いて窒化物半導体デバイスを製造する場合、帯状転位集合領域の直上に形成された素子は、同じウエハ上の他の部分に形成された素子に比べ、特性や信頼性の点で劣ったものとなるであろう。従って、帯状転位集合領域の幅を狭くすることができれば、かかる非極性又は半極性GaNウエハを用いて製造される窒化物半導体デバイスの歩留りが向上するであろう。
そこで、本発明では、主表面に存在する帯状転位集合領域の幅を狭くしたGaN結晶及びGaNウエハを提供することを、主たる目的とする。
主表面に帯状転位集合領域を有する非極性又は半極性GaNウエハを用いて窒化物半導体デバイスを製造する場合、帯状転位集合領域の直上に形成された素子は、同じウエハ上の他の部分に形成された素子に比べ、特性や信頼性の点で劣ったものとなるであろう。従って、帯状転位集合領域の幅を狭くすることができれば、かかる非極性又は半極性GaNウエハを用いて製造される窒化物半導体デバイスの歩留りが向上するであろう。
そこで、本発明では、主表面に存在する帯状転位集合領域の幅を狭くしたGaN結晶及びGaNウエハを提供することを、主たる目的とする。
本発明の実施形態には、以下に記載のGaN結晶、GaNウエハ、及びGaN結晶の製造方法が含まれる。
<1> 主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、GaN結晶:
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2)該帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす、
(A)該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度が3×107cm-2未満である、
(B)該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が2.5×107cm-2未満である;
(3)下記で定義される転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は下記で定義される転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
転位密度Dx:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度
転位密度DY:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度
転位密度DZ:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度
<2> 要件(B)において該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が1×107cm-2未満である<1>に記載のGaN結晶。
<3> (2)該帯状転位集合領域が要件(B)を満たし、
要件(B)において該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が1.0×106cm-2以上2.5×107cm-2未満である<1>に記載のGaN結晶。
<4> (1)を満たす、<1>~<3>のいずれかに記載のGaN結晶。
<5> (2)を満たす、<1>~<4>のいずれかに記載のGaN結晶。
<6> (3)を満たす、<1>~<5>のいずれかに記載のGaN結晶。
<7> (1)、(2)及び(3)のいずれも満たす、<1>~<3>のいずれかに記載のGaN結晶。
<8> 前記主表面の面積が10cm2以上である、<1>~<7>のいずれかに記載のGaN結晶。
<9> 前記主表面の帯状転位集合領域以外の領域における転位密度が1×106cm-2以下である、<1>~<8>のいずれかに記載のGaN結晶。
<10> 結晶中の炭素濃度が1×1017cm-3以下である、<1>~<9>のいずれかに記載のGaN結晶。
<11> 波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されない、<1>~<10>のいずれかに記載のGaN結晶。
<12> 主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
該主表面の面積が10cm2以上であり、
該主面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しない、GaN結晶。
<13> 結晶中の炭素濃度が1×1017cm-3以下である、<12>に記載のGaN結晶。
<14> 波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されない、<12>又は<13>に記載のGaN結晶。
<15> <1>~<14>のいずれかに記載のGaN結晶からなる、GaNウエハ。
<16> {10-10}ウエハ、{10-11}ウエハ、{10-1-1}ウエハ、{20-21}ウエハ、{20-2-1}ウエハ、{30-31}ウエハ又は{30-3-1}ウエハである、<15>に記載のGaNウエハ。
<17> 複数のタイリング用GaNシードを密に並べることにより得られた集合シード上にアモノサーマル法によりバルクGaN結晶を成長させる液相成長工程及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いてHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記液相成長工程がメルトバック工程を含む、GaN結晶の製造方法。
<18> 複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程及び前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む、GaN結晶の製造方法。
<1> 主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、GaN結晶:
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2)該帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす、
(A)該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度が3×107cm-2未満である、
(B)該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が2.5×107cm-2未満である;
(3)下記で定義される転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は下記で定義される転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
転位密度Dx:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度
転位密度DY:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度
転位密度DZ:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度
<2> 要件(B)において該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が1×107cm-2未満である<1>に記載のGaN結晶。
<3> (2)該帯状転位集合領域が要件(B)を満たし、
要件(B)において該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が1.0×106cm-2以上2.5×107cm-2未満である<1>に記載のGaN結晶。
<4> (1)を満たす、<1>~<3>のいずれかに記載のGaN結晶。
<5> (2)を満たす、<1>~<4>のいずれかに記載のGaN結晶。
<6> (3)を満たす、<1>~<5>のいずれかに記載のGaN結晶。
<7> (1)、(2)及び(3)のいずれも満たす、<1>~<3>のいずれかに記載のGaN結晶。
<8> 前記主表面の面積が10cm2以上である、<1>~<7>のいずれかに記載のGaN結晶。
<9> 前記主表面の帯状転位集合領域以外の領域における転位密度が1×106cm-2以下である、<1>~<8>のいずれかに記載のGaN結晶。
<10> 結晶中の炭素濃度が1×1017cm-3以下である、<1>~<9>のいずれかに記載のGaN結晶。
<11> 波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されない、<1>~<10>のいずれかに記載のGaN結晶。
<12> 主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
該主表面の面積が10cm2以上であり、
該主面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しない、GaN結晶。
<13> 結晶中の炭素濃度が1×1017cm-3以下である、<12>に記載のGaN結晶。
<14> 波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されない、<12>又は<13>に記載のGaN結晶。
<15> <1>~<14>のいずれかに記載のGaN結晶からなる、GaNウエハ。
<16> {10-10}ウエハ、{10-11}ウエハ、{10-1-1}ウエハ、{20-21}ウエハ、{20-2-1}ウエハ、{30-31}ウエハ又は{30-3-1}ウエハである、<15>に記載のGaNウエハ。
<17> 複数のタイリング用GaNシードを密に並べることにより得られた集合シード上にアモノサーマル法によりバルクGaN結晶を成長させる液相成長工程及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いてHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記液相成長工程がメルトバック工程を含む、GaN結晶の製造方法。
<18> 複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程及び前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む、GaN結晶の製造方法。
主表面に存在する帯状転位集合領域の幅を狭くしたGaN結晶及びGaNウエハが提供される。
GaN結晶では、[0001]及び[000-1]に平行な結晶軸がc軸、<10-10>に平行な結晶軸がm軸、<11-20>に平行な結晶軸がa軸と呼ばれる。また、c軸に直交する結晶面がC面(C-plane)、m軸に直交する結晶面がM面(M-plane)、a軸に直交する結晶面がA面(A-plane)と呼ばれる。
以下において、結晶軸、結晶面、結晶方位等に言及する場合には、特に断らない限り、GaN結晶の結晶軸、結晶面、結晶方位等を意味するものとする。
GaN結晶又はウエハの名称に付される結晶面の名称又はミラー指数は、当該結晶又はウエハの2つの主表面のうち、半導体デバイスの形成や結晶のエピタキシャル成長に使用することが意図された側の主表面と平行又は最も平行に近い低指数面のそれである。
例えば、かかる主表面と平行又は最も平行に近い低指数面がM面すなわち{10-10}であるGaNウエハは、M面ウエハ又は{10-10}ウエハと呼ばれる。
通常は、ミラー指数{hkml}における整数h、k、m及びlの絶対値がいずれも3以下である結晶面が、低指数面とされる。
なお、本明細書において「GaN結晶」とは、バルクGaN結晶のみならず、バルクGaN結晶を特定の形状に加工したものをも含む概念である。本明細書において、「GaNウエハ」は、前記「GaN結晶」の一形態であるが、バルクGaN結晶をウエハ状に加工したものを特に区別して呼称する場合に用いる。
以下、適宜図面を参照しながら、本発明を実施形態に即して説明する。
以下において、結晶軸、結晶面、結晶方位等に言及する場合には、特に断らない限り、GaN結晶の結晶軸、結晶面、結晶方位等を意味するものとする。
GaN結晶又はウエハの名称に付される結晶面の名称又はミラー指数は、当該結晶又はウエハの2つの主表面のうち、半導体デバイスの形成や結晶のエピタキシャル成長に使用することが意図された側の主表面と平行又は最も平行に近い低指数面のそれである。
例えば、かかる主表面と平行又は最も平行に近い低指数面がM面すなわち{10-10}であるGaNウエハは、M面ウエハ又は{10-10}ウエハと呼ばれる。
通常は、ミラー指数{hkml}における整数h、k、m及びlの絶対値がいずれも3以下である結晶面が、低指数面とされる。
なお、本明細書において「GaN結晶」とは、バルクGaN結晶のみならず、バルクGaN結晶を特定の形状に加工したものをも含む概念である。本明細書において、「GaNウエハ」は、前記「GaN結晶」の一形態であるが、バルクGaN結晶をウエハ状に加工したものを特に区別して呼称する場合に用いる。
以下、適宜図面を参照しながら、本発明を実施形態に即して説明する。
1.GaN結晶
1.1 GaN結晶
本発明の第一実施形態はGaN結晶に関する。
本発明の第一実施形態に係るGaN結晶は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、GaN結晶である。
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2)該帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす、
(A)転位密度DYが3×107cm-2未満である、
(B)転位密度DZが2.5×107cm-2未満である;
(3)転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
1.1 GaN結晶
本発明の第一実施形態はGaN結晶に関する。
本発明の第一実施形態に係るGaN結晶は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、GaN結晶である。
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2)該帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす、
(A)転位密度DYが3×107cm-2未満である、
(B)転位密度DZが2.5×107cm-2未満である;
(3)転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
転位密度DX、転位密度DX、転位密度DXはそれぞれ以下のように定義される。
転位密度Dx:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度
転位密度DY:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度
転位密度DZ:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度
転位密度Dx:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度
転位密度DY:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度
転位密度DZ:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度
本発明の第一実施形態に係るGaN結晶の一例は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2-1)及び(3-1)からなる群より選択される少なくとも1つの要件を満たす、
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2-1)該帯状転位集合領域が下記要件(A)及び要件(B-1)の少なくとも一方を満たす、
(A)転位密度DYが3×107cm-2未満である、
(B-1)転位密度DZが1×107cm-2未満である;
(3-1)転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下である。
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2-1)及び(3-1)からなる群より選択される少なくとも1つの要件を満たす、
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2-1)該帯状転位集合領域が下記要件(A)及び要件(B-1)の少なくとも一方を満たす、
(A)転位密度DYが3×107cm-2未満である、
(B-1)転位密度DZが1×107cm-2未満である;
(3-1)転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下である。
この例のGaN結晶は例えば以下の方法で製造することができる。
複数のタイリング用GaNシードを密に並べることにより得られた集合シード上にアモノサーマル法によりバルクGaN結晶を成長させる液相成長工程及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いてHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記液相成長工程がメルトバック工程を含む、GaN結晶の製造方法。
複数のタイリング用GaNシードを密に並べることにより得られた集合シード上にアモノサーマル法によりバルクGaN結晶を成長させる液相成長工程及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いてHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記液相成長工程がメルトバック工程を含む、GaN結晶の製造方法。
本発明の第一実施形態に係るGaN結晶の他の例は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2-2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2-2)該帯状転位集合領域が下記要件(B-2)を満たす、
(B-2)転位密度DZが1.0×106cm-2以上2.5×107cm-2未満である;
(3)転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2-2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2-2)該帯状転位集合領域が下記要件(B-2)を満たす、
(B-2)転位密度DZが1.0×106cm-2以上2.5×107cm-2未満である;
(3)転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
この例のGaN結晶は例えば以下の方法で製造することができる。
複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程及び前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む、GaN結晶の製造方法。
製造方法についての詳細は後述する。
複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程及び前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む、GaN結晶の製造方法。
製造方法についての詳細は後述する。
本発明者らの検討の結果、集合シードを構成する複数のタイリング用GaNシードの境界の上方及び周辺において成長するGaN結晶層の品質が悪いために、境界の上方及び周辺において欠陥が増加した領域、すなわち帯状転位集合領域が発生し得ることを見出した。この知見に基づけば、集合シードを構成する複数のタイリング用GaNシードの境界の上方及び周辺において高品質のGaN結晶層を一度形成させることで、従来よりも帯状転位集合領域の発生を抑制し、帯状転位集合領域の幅を狭くしたGaN結晶を実現し得る。
また、本発明者らの検討の結果、集合シードを構成する複数のタイリング用GaNシードの境界において、シードのエッジ部分で(000-1)面が露出していると、境界の上方及び周辺において欠陥が増加した領域、すなわち帯状転位集合領域が発生し得ることを見出した。この知見に基づけば、集合シードを構成する複数のタイリング用GaNシードのエッジ部分で(000-1)面が露出しないようにすることで、従来よりも帯状転位集合領域の発生を抑制し、帯状転位集合領域の幅を狭くしたGaN結晶を実現し得る。
本発明者らは、帯状転位集合領域の幅を狭くしたGaN結晶、具体的には、上記の(1)、(2)及び(3)からなる群より選択される少なくとも1つを満たすGaN結晶は、例えば後述する製造方法により、得ることができることを見出した。
本発明の第一実施形態に係るGaN結晶は(1)、(2)及び(3)からなる群より選択されるいずれか1つを満たすものであっても、いずれか2つを満たすものであっても、全てを満たすものであってもよい。本発明のGaN結晶は少なくとも(1)を満たすことが好ましく、(1)及び(2)、又は(1)及び(3)を満たすことがより好ましく、(1)、(2)及び(3)の全てを満たすことがさらに好ましい。
1.2.帯状転位集合領域
第一実施形態(以下、「本実施形態」と称することがある。)に係るGaN結晶は、帯状転位集合領域を主表面上に有する。帯状転位集合領域とは、転位が相対的に高い密度で集合した領域が帯状に伸びた領域である。ここでいう転位とは、貫通転位(刃状転位、螺旋転位及び混合転位)の端点のことである。
本実施形態に係るGaN結晶の主表面には、複数の帯状転位集合領域が、周期的に配置されていてもよい。図1及び図2はかかるGaN結晶の一例を示す斜視図及び平面図である。GaN結晶10は、周期的に配置された複数の帯状転位集合領域14を第一主表面11上に有している。
第一実施形態(以下、「本実施形態」と称することがある。)に係るGaN結晶は、帯状転位集合領域を主表面上に有する。帯状転位集合領域とは、転位が相対的に高い密度で集合した領域が帯状に伸びた領域である。ここでいう転位とは、貫通転位(刃状転位、螺旋転位及び混合転位)の端点のことである。
本実施形態に係るGaN結晶の主表面には、複数の帯状転位集合領域が、周期的に配置されていてもよい。図1及び図2はかかるGaN結晶の一例を示す斜視図及び平面図である。GaN結晶10は、周期的に配置された複数の帯状転位集合領域14を第一主表面11上に有している。
主表面上の帯状転位集合領域は、その長手方向がc軸から0度以上20度以下、又はa軸から0度以上20度以下の方向に延びていてもよい。
また、第一実施形態に係るGaN結晶は、その長手方向がc軸から0度以上20度以下の方向に延びる帯状転位集合領域に加えて、その長手方向がa軸から0度以上20度以下の方向に延びる帯状転位集合領域を主表面上に有するものであってもよい。
また、第一実施形態に係るGaN結晶は、その長手方向がc軸から0度以上20度以下の方向に延びる帯状転位集合領域に加えて、その長手方向がa軸から0度以上20度以下の方向に延びる帯状転位集合領域を主表面上に有するものであってもよい。
図3は、かかるGaN結晶の一例を示す平面図である。
図3を参照すると、GaN結晶20は円盤の形状を有しており、c軸に直交する方向に延びる帯状転位集合領域24-1の他に、a軸に直交する方向に延びる帯状転位集合領域24-2を、第一主表面21上に有している。
図3を参照すると、GaN結晶20は円盤の形状を有しており、c軸に直交する方向に延びる帯状転位集合領域24-1の他に、a軸に直交する方向に延びる帯状転位集合領域24-2を、第一主表面21上に有している。
再び図2を参照すると、GaN結晶10が第一主表面11に有する帯状転位集合領域14の数は3本に限定されるものではなく、4本以上であってもよいが、6本を超えないことが望ましい。GaN結晶10の直径が45~55mmの場合、結晶性低下帯14の数は好ましくは2本、より好ましくは1本である。
帯状転位集合領域は、転位が相対的に高い密度で集合した領域が帯状に伸びた領域であり、後述の集合シードを用いる方法でバルクGaN結晶を成長させた場合に、そのバルクGaN結晶の表面、又はそのバルクGaN結晶からGaNウエハを作製した場合に観察される。具体的にいうと、集合シード上に成長したバルクGaN結晶のうち、集合シードを構成するシード基板間の境界の上方に成長した、欠陥密度の高い部分が、該バルクGaN結晶の表面、又は加工して得られるGaNウエハの表面に帯状転位集合領域として現れる。典型的には、集合シードを構成する複数のタイリング用GaNシード間の境界において接合が不良であることに起因して発生する欠陥に由来する。後述するように、タイリング法を用いて成長されたバルクGaN結晶、及びバルクGaN結晶から作られるGaNウエハの主表面には、帯状転位集合領域が存在しうる。それだけでなく、主表面に帯状転位集合領域を有するGaN結晶をシードに用いて成長させたバルクGaN結晶、及びそのバルクGaN結晶から作製したGaNウエハも、主表面に帯状転位集合領域を有するものとなる場合がある。
走査電子顕微鏡-カソードルミネッセンス(SEM-CL)装置や多光子励起フォトルミネッセンス(PL)顕微鏡、PLイメージング装置などを用いて結晶面の発光分布像を取得すると、発光分布像において、結晶中の転位は暗点、すなわち周囲よりも画像輝度が低い点として観察される。帯状転位集合領域と他の領域との境界では、上述した発光分布像で観察される暗点の密度が大きく異なる。帯状転位集合領域では、発光分布像における画像輝度が、帯状転位集合領域外の領域に比べて低く、観察によって区別できる。ここで、暗点観察が可能な装置によって観察される暗点密度は、上記の転位密度と同義である。
なお、結晶中の転位が高密度で存在する領域の暗点密度を正確に計測するためには、高い空間分解能が必要となる場合がある。空間分解能が劣ると、発光分布像中で個別の暗点が分離できず、正確な暗点の個数が計測できないためである。一般的に、SEM-CL装置は多光子励起PL顕微鏡やPLイメージング装置よりも空間分解能に優れる。このため、本明細書においても、暗点密度を計測するために、必要に応じてSEM-CL装置と多光子励起PL顕微鏡とを使い分けることができる。
なお、結晶中の転位が高密度で存在する領域の暗点密度を正確に計測するためには、高い空間分解能が必要となる場合がある。空間分解能が劣ると、発光分布像中で個別の暗点が分離できず、正確な暗点の個数が計測できないためである。一般的に、SEM-CL装置は多光子励起PL顕微鏡やPLイメージング装置よりも空間分解能に優れる。このため、本明細書においても、暗点密度を計測するために、必要に応じてSEM-CL装置と多光子励起PL顕微鏡とを使い分けることができる。
1.3.要件(1)
本実施形態に係るGaN結晶は(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす。
要件(1)は以下のとおりである。
(1)帯状転位集合領域の最大有効幅が50μm未満である。
本実施形態に係るGaN結晶は(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす。
要件(1)は以下のとおりである。
(1)帯状転位集合領域の最大有効幅が50μm未満である。
要件(1)として、帯状転位集合領域の最大有効幅は50μm未満であればよいが、結晶品質向上の観点から、40μm以下が好ましく、30μm以下がより好ましく、20μm以下がさらに好ましい。帯状転位集合領域の最大有効幅は1μm以上であればよい。
本明細書において、帯状転位集合領域の最大有効幅とは、主表面上に存在する帯状転位集合領域の有効幅における最大値をいう。主表面上に複数の帯状転位集合領域が存在する場合には、それらの有効幅のうちの最大値をいう。
本明細書において、帯状転位集合領域の有効幅は、以下のように定義される。
本明細書において、帯状転位集合領域の最大有効幅とは、主表面上に存在する帯状転位集合領域の有効幅における最大値をいう。主表面上に複数の帯状転位集合領域が存在する場合には、それらの有効幅のうちの最大値をいう。
本明細書において、帯状転位集合領域の有効幅は、以下のように定義される。
GaN結晶が主表面に有する帯状転位集合領域の有効幅は、上記の暗点観察可能な装置を用いて得られた発光分布像を観察することにより調べる。帯状転位集合領域の長手方向240μmの区間について、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmとなるように引いた仮想線分上の画像輝度プロファイルの積算値を求める。積算された輝度プロファイルにおいて、帯状転位集合領域外の領域では相対的に輝度が高く、フラットな領域である一方、帯状転位集合領域では相対的に輝度が低い。積算された輝度プロファイルにおけるフラットな領域を外挿してベースラインを引く。本明細書において、帯状転位集合領域の有効幅は、前記積算された輝度プロファイルにおいて、ベースラインにおける画像輝度の値に対して、80%以下の画像輝度である領域の両方の端点の間の距離として定義される。帯状転位集合領域の有効幅を決定する際には、前記積算された輝度プロファイルをフィッティングして得た曲線を用いて行いてもよい。本明細書において、帯状転位集合領域の中心は、前記の有効幅の2つの端点の中点をいう。なお、後述するように、前記積算された輝度プロファイルにおいて、ベースラインにおける画像輝度の値に対して80%以下の画像輝度である領域が存在せず、帯状転位集合領域の有効幅を決定できない場合には、発光分布像で観察される帯状転位集合領域の中心を目視で決定する。
図4は、参考例のGaN結晶の主面上における帯状転位集合領域周辺の発光分布像(SEM-CL像)であり、240μm×180μmの領域を観察したものである。暗点が高密度で存在しており、暗点密度の計測のためにSEM-CL装置を用いている。図4において、帯状転位集合領域の長手方向はa軸に平行な方向である。図4のSEM-CL像において、帯状転位集合領域の長手方向240μmの区間について、該長手方向に対して垂直な長さ180μmの線分上の画像輝度プロファイルを積算した結果が、図5である。図5において、ベースラインにおける画像輝度の値に対して、80%以下の画像輝度である領域の両方の端点の間の距離は約54μmであった。なお、図4において実線は積算された輝度の実測値を示し、破線は実測値の曲線をフィッティングした結果を示す。
帯状転位集合領域の有効幅を算出する際に、前記の240μm×180μmの領域で積算された輝度プロファイルにおいて、帯状転位集合領域外の領域に相当するフラットな領域が存在せず、積算された輝度プロファイルの範囲内でベースラインが得られない場合がある。このような場合は、典型的には、集合シードの接合部から伝播した欠陥に由来する転位が広範囲にわたり高密度で分布している状況において見られる。このような状況は、帯状転位集合領域が広範囲に存在することを意味するから、このような場合には帯状転位集合領域の有効幅が50μm以上であると判断する。図6は、参考例のGaN結晶の主面上における帯状転位集合領域周辺の発光分布像(SEM-CL像)であり、こうした場合の一例である。
別の場合には、帯状転位集合領域の幅を算出する際に、前記の積算された輝度プロファイルにおいて、ベースラインにおける画像輝度の値に対して、80%以下の画像輝度である領域が存在しない場合がある。このような場合は、典型的には、集合シードの接合部から伝播した欠陥に由来する転位の発生が効果的に抑制され、実質的に帯状転位集合領域の幅が非常に狭い状況において観察される。このような状況は、帯状転位集合領域が非常に狭いことを意味するから、このような場合には帯状転位集合領域の有効幅が50μm未満であると判断する。図7は、実施例のGaN結晶の主面上における帯状転位集合領域周辺の発光分布像(多光子励起PL像)であり、こうした場合の一例である。図8は、図7の多光子励起PL像について得た積算された画像輝度プロファイルであり、ベースラインにおける画像輝度の値に対して、80%以下の画像輝度である領域が存在しない。なお、図7は、+c側の輝度が全体的に暗くなっており、これに伴い図8は+c側の積算輝度の数値が低いが、これは多光子励起PL像の視野の外周領域で生じるアーティファクトであると考えられる。このような場合は、必要に応じて積算された画像輝度プロファイルを平坦化処理する。
図9は、実施形態に係るGaN結晶の主面上における帯状転位集合領域周辺の発光分布像(SEM-CL像)の一例である。図10は、図9のSEM-CL像について得た画像輝度の積算プロファイルであり、ベースラインにおける輝度の値に対して、80%以下の輝度である領域の両方の端点の間の距離は約32μmであった。
従来、タイリング法で用いる集合シード間の境界上部において生じる帯状転位集合領域の評価としては、市販のX線回折装置を用いて、X線ロッキングカーブ(XRC)のFWHMを評価することが通常行われていた。XRCのFWHMのいわゆる空間分解能は、XRC測定の測定箇所の間隔によって決まるが、帯状転位集合領域の幅が小さくなるにつれ、一般的なX線回折装置を用いたXRC測定の空間分解能では帯状転位集合領域の幅を正確に測定することが難しくなる。つまり、帯状転位集合領域の幅が小さい場合には、従来のXRC測定は適切な評価方法とは言えない。暗点観察が可能な装置による発光分布像観察によれば、帯状転位集合領域の幅が小さい場合でも帯状転位集合領域の幅を定量的に評価することができる。
1.4.要件(2)
要件(2)は以下のとおりである。
(2)帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす。
(A)該帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度(転位密度DY)が3×107cm-2未満である。
(B)該帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度(転位密度DZ)が2.5×107cm-2未満である。
要件(2)は以下のとおりである。
(2)帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす。
(A)該帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度(転位密度DY)が3×107cm-2未満である。
(B)該帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度(転位密度DZ)が2.5×107cm-2未満である。
要件(A)は、転位密度DYが3×107cm-2未満であることを要する。前記領域(Y)は、その中心が帯状転位集合領域の中心と一致し、かつ帯状転位集合領域の長手方向に対して垂直な方向の長さが30μmである四角形で画される領域であるともいえる。図11は、GaN結晶の主面上の帯状転位集合領域と、領域(Y)の関係の一例を示す模式図である。図11において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(Y)601は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分501で画されている。
帯状転位集合領域がタイリング法で用いる集合シード間の境界において発生する欠陥に由来する場合、帯状転位集合領域を構成する転位は、集合シードの接合面の直上だけで観察されるのではない。集合シード上でGaN結晶層が成長する過程で、集合シードの接合面の周辺部にまで転位が伝播するために、結果として、集合シードの接合面直上の周辺領域にわたって転位が高密度で分布することになる。したがって、転位密度DYが低いことは、集合シード間の接合部において発生する転位が低減されているとともに、接合部の周辺に伝播した転位をも低減されていることを意味する。
転位密度DYは、3×107cm-2未満であればよいが、結晶品質のさらなる向上の観点から、1×107cm-2未満が好ましく、5×106cm-2未満がより好ましく、1×106cm-2未満がさらに好ましい。転位密度DYは、小さければ小さいほどよいが、その下限は通常1×103cm-2である。
転位密度DYは、暗点観察が可能な装置を用いて取得した発光分布像中に観察される暗点密度を計測することにより算出することができる。転位密度は、前記領域(Y)における帯状転位集合領域の長手方向の長さを特定の長さに設定して観察領域とし、同一の帯状転位集合領域について、複数の観察領域について算出した転位密度を平均することで算出する。具体例を挙げて算出方法を説明すると、観察領域の帯状転位集合領域の長手方向における長さを210μmと設定する場合、観察領域は210μm×30μmの長方形で画されることになる。同一の帯状転位集合領域について、210μm×30μmの観察領域をそれぞれ観察領域の重複がないように2乃至3領域設定し、それぞれの観察領域について算出した転位密度を平均して、領域(Y)における転位密度(転位密度DY)とする。主面上に帯状転位集合領域が複数存在する場合は、上記のように測定領域の面積を決め、複数の帯状転位集合領域それぞれに対して、観察領域の重複がないように2乃至3の測定領域を設定し、設定したすべての測定領域について算出した転位密度を平均して、領域(Y)における転位密度とする。図12は、上述した具体例の場合を示す模式図である。図12では、同一の帯状転位集合領域について、異なる3つの210μm×30μmの観察領域を設定している。
要件(B)は、転位密度DZが2.5×107cm-2未満であることを要する。前記領域(Z)は、その中心が帯状転位集合領域の中心と一致し、かつ帯状転位集合領域の長手方向に対して垂直な方向の長さが100μmである四角形で画される領域であるともいえる。
要件(B)は要件(B-1)又は要件(B-2)であることが好ましい。
要件(B-1)は、転位密度DZが1×107cm-2未満であることを要する。
図13は、GaN結晶の主面上の帯状転位集合領域と、領域(Z)の関係の一例を示す模式図である。図13において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(Z)602は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分502で画されている。
要件(B-1)において、転位密度DZは、1×107cm-2未満であればよいが、結晶品質のさらなる向上の観点から、8×106cm-2未満が好ましく、5×106cm-2未満がより好ましく、1×106cm-2未満がさらに好ましい。転位密度DZは、小さければ小さいほどよいが、その下限は通常1×104cm-2である。
図13は、GaN結晶の主面上の帯状転位集合領域と、領域(Z)の関係の一例を示す模式図である。図13において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(Z)602は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分502で画されている。
要件(B-1)において、転位密度DZは、1×107cm-2未満であればよいが、結晶品質のさらなる向上の観点から、8×106cm-2未満が好ましく、5×106cm-2未満がより好ましく、1×106cm-2未満がさらに好ましい。転位密度DZは、小さければ小さいほどよいが、その下限は通常1×104cm-2である。
要件(B-2)は、転位密度DZが1.0×106cm-2以上2.5×107cm-2未満であることを要する。図15は、GaN結晶の主面上の帯状転位集合領域と、領域(Z)の関係の一例を示す模式図である。図15において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(Z)602は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分502で画されている。
帯状転位集合領域がタイリング法で用いる集合シード間の境界において発生する欠陥に由来する場合、帯状転位集合領域を構成する転位は、集合シードの接合面の直上だけで観察されるのではない。集合シード上でGaN結晶層が成長する過程で、集合シードの接合面の周辺部にまで転位が伝播するために、結果として、集合シードの接合面直上の周辺領域にわたって転位が高密度で分布することになる。したがって、帯状転位集合領域の中心を含む前記領域(Z)において転位密度が2.5×107cm-2未満であることは、集合シード間の接合部において発生する転位が低減されているとともに、接合部の周辺に伝播した転位をも低減されていることを意味する。
要件(B-2)において、転位密度DZは、1.0×106cm-2以上2.5×107cm-2未満であればよいが、結晶品質のさらなる向上の観点から、2.2×107cm-2未満が好ましく、2×107cm-2未満がより好ましい。転位密度DZは、2×106cm-2以上が好ましく、5×106cm-2以上がより好ましい。
転位密度DZは、暗点観察が可能な装置を用いて取得した発光分布像中に観察される暗点密度を計測することにより算出することができる。転位密度は、前記領域(Z)における帯状転位集合領域の長手方向の長さを特定の長さに設定して観察領域とし、同一の帯状転位集合領域について、複数の観察領域について算出した転位密度を平均することで算出する。具体例を挙げて算出方法を説明すると、観察領域の帯状転位集合領域の長手方向における長さを210μmと設定する場合、観察領域は210μm×100μmの長方形で画されることになる。同一の帯状転位集合領域について、210μm×100μmの観察領域をそれぞれ観察領域の重複がないように2乃至3領域設定し、それぞれの観察領域について算出した転位密度を平均して、転位密度DZとする。主面上に帯状転位集合領域が複数存在する場合は、上記のように測定領域の面積を決め、複数の帯状転位集合領域それぞれに対して、観察領域の重複がないように2乃至3の測定領域を設定し、設定したすべての測定領域について算出した転位密度を平均して、転位密度DZとする。図16は、上述した具体例の場合を示す模式図である。図16では、同一の帯状転位集合領域について、異なる3つの210μm×100μmの観察領域を設定している。
要件(2)として、GaN結晶は、前記条件(A)及び条件(B)の少なくともいずれかを満たす帯状転位集合領域を有していればよいが、条件(A)及び条件(B)を同時に充たす帯状転位集合領域を有していてもよい。例えば、条件(A)を満たす帯状転位集合領域を有すること、条件(A)及び条件(B-1)を同時に満たす帯状転位集合領域を有すること、条件(B-1)を満たす帯状転位集合領域を有すること、又は条件(B-2)を満たす帯状転位集合領域を有することが好ましい。
1.5.要件(3)
要件(3)は以下のとおりである。
(3-1)転位密度DX及び転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
要件(3)は以下のとおりである。
(3-1)転位密度DX及び転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
要件(3)は以下の要件(3-1)であってもよい。
(3-1)転位密度DX及び転位密度DZの比(DZ/DX)が0.5以下である。
帯状転位集合領域がタイリング法で用いる集合シード間の境界において発生する欠陥に由来する場合、帯状転位集合領域を構成する転位は、集合シードの接合面の直上だけで観察されるのではない。集合シード上でGaN結晶層が成長する過程で、集合シードの接合面の周辺部にまで転位が伝播するために、結果として、集合シードの接合面直上の周辺領域にわたって転位が高密度で分布することになる。したがって、帯状転位集合領域の中心を含む前記領域(X)における転位密度DXと帯状転位集合領域の中心を含む前記領域(Z)における転位密度DZとの比DZ/DXが小さいことは、集合シード間の接合部において発生する転位が低減されているとともに、接合部の周辺に伝播した転位をも低減されていることを意味する。
(3-1)転位密度DX及び転位密度DZの比(DZ/DX)が0.5以下である。
帯状転位集合領域がタイリング法で用いる集合シード間の境界において発生する欠陥に由来する場合、帯状転位集合領域を構成する転位は、集合シードの接合面の直上だけで観察されるのではない。集合シード上でGaN結晶層が成長する過程で、集合シードの接合面の周辺部にまで転位が伝播するために、結果として、集合シードの接合面直上の周辺領域にわたって転位が高密度で分布することになる。したがって、帯状転位集合領域の中心を含む前記領域(X)における転位密度DXと帯状転位集合領域の中心を含む前記領域(Z)における転位密度DZとの比DZ/DXが小さいことは、集合シード間の接合部において発生する転位が低減されているとともに、接合部の周辺に伝播した転位をも低減されていることを意味する。
要件(3-1)において、転位密度DXと転位密度DZとの比DZ/DXは0.5以下であればよいが、結晶品質のさらなる向上の観点から、0.45以下が好ましく、0.40以下がより好ましく、0.35以下がさらに好ましい。
転位密度DX及び転位密度DZの算出方法は、要件(2)における、転位密度DYの算出方法と同じように行うことができる。図14は、GaN結晶の主面上の帯状転位集合領域と、領域(X)の関係の一例を示す模式図である。図14において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(X)603は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分503で画されている。
要件(3)において、転位密度DX及び転位密度DZの比(DZ/DX)が0.5以下及び/又は転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
帯状転位集合領域がタイリング法で用いる集合シード間の境界において発生する欠陥に由来する場合、帯状転位集合領域を構成する転位は、集合シードの接合面の直上だけで観察されるのではない。集合シード上でGaN結晶層が成長する過程で、集合シードの接合面の周辺部にまで転位が伝播するために、結果として、集合シードの接合面直上の周辺領域にわたって転位が高密度で分布することになる。したがって、帯状転位集合領域の中心を含む前記領域(X)における転位密度DXと帯状転位集合領域の中心を含む前記領域(Z)における転位密度DZとの比DZ/DX及び/又は帯状転位集合領域の中心を含む前記領域(Y)における転位密度DYと帯状転位集合領域の中心を含む前記領域(Z)における転位密度DZとの比DZ/DYが小さいことは、集合シード間の接合部において発生する転位が低減されているとともに、接合部の周辺に伝播した転位をも低減されていることを意味する。
要件(3)において、転位密度DXと転位密度DZとの比DZ/DXと、転位密度DYと転位密度DZとの比DZ/DYの少なくとも一方が0.5以下であればよいが、結晶品質のさらなる向上の観点から、転位密度DXと転位密度DZとの比DZ/DXと、転位密度DYと転位密度DZとの比DZ/DYの少なくとも一方が0.45以下であることが好ましく、転位密度DXと転位密度DZとの比DZ/DXと、転位密度DYと転位密度DZとの比DZ/DYの少なくとも一方が0.40以下であることがより好ましく、転位密度DXと転位密度DZとの比DZ/DXと、転位密度DYと転位密度DZとの比DZ/DYの少なくとも一方が0.35以下であることがさらに好ましい。また、転位密度DXと転位密度DZとの比DZ/DXと、転位密度DYと転位密度DZとの比DZ/DYの両方が0.5以下であることも好ましく、両方が0.45以下であってもよく、両方が0.40以下であってもよく、両方が0.35以下であってもよい。
転位密度DX及び転位密度DYの算出方法は、要件(2)における、前記領域(Z)における転位密度の算出方法と同じように行うことができる。図17は、GaN結晶の主面上の帯状転位集合領域と、領域(X)の関係の一例を示す模式図である。図17において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(X)603は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分503で画されている。図18は、GaN結晶の主面上の帯状転位集合領域と、領域(Y)の関係の一例を示す模式図である。図18において、帯状転位集合領域の長手方向は、a軸と平行な方向である。領域(Y)601は、帯状転位集合領域の中心400から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分501で画されている。
1.6.主面
本実施形態において、GaN結晶は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有する。すなわち、GaN結晶の第一主表面と第二主表面のうち、少なくとも一方は、主表面の法線とm軸との間の角度が0度以上20度以下である。
GaN結晶の第一主表面と第二主表面のうち、少なくとも一方は、主表面の法線とm軸との間の角度が5°を超える角度で傾斜していてもよい。傾斜方向は限定されないが、好ましくは、主表面の法線とm軸との間の角度をc軸方向成分とa軸方向成分とに分解したとき、c軸方向成分の絶対値がa軸方向成分の絶対値より大きくなるようにする。
本実施形態において、GaN結晶は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有する。すなわち、GaN結晶の第一主表面と第二主表面のうち、少なくとも一方は、主表面の法線とm軸との間の角度が0度以上20度以下である。
GaN結晶の第一主表面と第二主表面のうち、少なくとも一方は、主表面の法線とm軸との間の角度が5°を超える角度で傾斜していてもよい。傾斜方向は限定されないが、好ましくは、主表面の法線とm軸との間の角度をc軸方向成分とa軸方向成分とに分解したとき、c軸方向成分の絶対値がa軸方向成分の絶対値より大きくなるようにする。
GaN結晶の主表面のM面からの傾斜と、そのc軸方向成分及びa軸方向成分との関係は、図19に示す通りである。
GaN結晶の主表面のM面からの傾斜とは、換言すれば、該主表面の法線ベクトルNの、m軸からの傾斜θである。該傾斜θをc軸方向成分とa軸方向成分に分解するには、該法線ベクトルNをA面平行成分N//AとC面平行成分N//Cに分解する。A面平行成分N//AはA面上における法線ベクトルNの正射影であり、C面平行成分N//CはC面上における法線ベクトルNの正射影である。A面平行成分N//Aのm軸に対する傾斜が、傾斜θのc軸方向成分θcであり、C面平行成分N//Cのm軸に対する傾斜が、傾斜θのa軸方向成分θaである。
GaN結晶の主表面のM面からの傾斜とは、換言すれば、該主表面の法線ベクトルNの、m軸からの傾斜θである。該傾斜θをc軸方向成分とa軸方向成分に分解するには、該法線ベクトルNをA面平行成分N//AとC面平行成分N//Cに分解する。A面平行成分N//AはA面上における法線ベクトルNの正射影であり、C面平行成分N//CはC面上における法線ベクトルNの正射影である。A面平行成分N//Aのm軸に対する傾斜が、傾斜θのc軸方向成分θcであり、C面平行成分N//Cのm軸に対する傾斜が、傾斜θのa軸方向成分θaである。
a軸方向成分の絶対値は5°以下、更には2°未満、更には1°未満であることが好ましい。a軸方向成分の絶対値が小さい程、主表面上に表面の平坦性の高い窒化物半導体薄膜を成長させることが容易となる。
一方、c軸方向成分の絶対値は通常45°以下、好ましくは30°未満、より好ましくは20°未満である。c軸方向成分の絶対値が45°を超えると、半極性ウエハとしての利点が失われる傾向がある。c軸方向成分は正であっても負であってもよいが、好ましくは負である。ここで、c軸方向成分が正であるとは、第一主表面の法線ベクトルのA面平行成分N//Aが、m軸に対し[0001]側に傾いていることを意味し、c軸方向成分が負であるとは、第一主表面の法線ベクトルのA面平行成分N//Aが、m軸に対し[000-1]側に傾いていることを意味している。
主表面の法線とm軸との間の角度が5°を超える角度で傾斜したGaN結晶の好適例には、{10-11}結晶、{10-1-1}結晶、{20-21}結晶、{20-2-1}結晶、{30-31}結晶及び{30-3-1}結晶が含まれる。
{10-11}結晶、{20-21}結晶、及び{30-31}結晶においては、主表面の法線とm軸との間の角度のc軸方向成分が正であり、{10-1-1}結晶、{20-2-1}結晶、及び{30-3-1}結晶においては、主表面の法線とm軸との間の角度のc軸方向成分が負である。
主表面の法線とm軸との間の角度が5°を超える角度で傾斜したGaN結晶の好適例には、{10-11}結晶、{10-1-1}結晶、{20-21}結晶、{20-2-1}結晶、{30-31}結晶及び{30-3-1}結晶が含まれる。
{10-11}結晶、{20-21}結晶、及び{30-31}結晶においては、主表面の法線とm軸との間の角度のc軸方向成分が正であり、{10-1-1}結晶、{20-2-1}結晶、及び{30-3-1}結晶においては、主表面の法線とm軸との間の角度のc軸方向成分が負である。
特に好ましい例においては、第一主表面のM面に対する傾斜のc軸方向成分の絶対値が2~5°、かつ、a軸方向成分の絶対値が1°未満である。
本実施形態に係るGaN結晶において、「第一主面」は、GaN基板に用いて窒化物半導体デバイスを製造する際に、窒化物半導体のエピタキシャル成長に使用されることが予定された主面、すなわち「おもて面」である。第一主面は鏡面仕上げされ、AFMで測定されるその根二乗平均(RMS)粗さは、測定範囲2μm×2μmにおいて好ましくは2nm未満であり、1nm未満又は0.5nm未満であってもよい。
「第二主面」は、「第一主面」と反対方向を向いた「裏面」であり、鏡面仕上げされていてもよいし、艶消し仕上げされていてもよい。
本明細書において、特に断る場合を除き、「主表面」は「第一主面」と「第二主面」を区別せずに総称する場合に用いる。
「第二主面」は、「第一主面」と反対方向を向いた「裏面」であり、鏡面仕上げされていてもよいし、艶消し仕上げされていてもよい。
本明細書において、特に断る場合を除き、「主表面」は「第一主面」と「第二主面」を区別せずに総称する場合に用いる。
本実施形態に係るGaN結晶において、前記主表面の面積は10cm2以上であることが好ましい。このようなGaN結晶からGaNウエハを得る場合に、GaNウエハを用いたデバイス製造の生産性が向上する。同様の観点から、主表面の面積は15cm2以上がより好ましく、20cm2以上がさらに好ましい。主表面の面積の上限は特に限定はないが、通常300cm2以下ある。また、該主表面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しないことが好ましい。
本実施形態に係るGaN結晶において、前記主表面の帯状転位集合領域以外の領域における転位密度が1×106cm-2以下であることが好ましい。この場合には、GaN結晶の結晶品質に優れる。同様の観点から、主表面の帯状転位集合領域以外の領域における転位密度は、8×105cm-2以下がより好ましく、5×105cm-2以下がさらに好ましい。転位密度の下限は特に限定はないが、通常1×103cm-2以上である。
1.7.GaN結晶
別の側面において、本実施形態に係るGaN結晶は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有し、該主表面の面積が10cm2以上であり、該主表面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しないGaN結晶である。当該GaN結晶は、1つ以上の帯状転位集合領域を前記主表面上に有するものであってもよい。
別の側面において、本実施形態に係るGaN結晶は、主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有し、該主表面の面積が10cm2以上であり、該主表面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しないGaN結晶である。当該GaN結晶は、1つ以上の帯状転位集合領域を前記主表面上に有するものであってもよい。
当該GaN結晶は、主面上の任意の場所において、210μm×100μmの長方形領域を設定し、前記長方形中の転位密度を算出したとき、前記長方形中の転位密度が1×107cm-2超となるような長方形領域を、前記主面上に1つも見出すことができないものである。
例えば、帯状転位集合領域の幅が十分に低減されていない従来のGaN結晶の場合、前述した210μm×100μmの長方形領域を帯状転位集合領域を覆うように設定したときには、当該長方形領域の転位密度は1×107cm-2を超えるものとなる。すなわち、該主面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しないGaN結晶とは、帯状転位集合領域の幅が十分狭い、結晶品質に優れたGaN結晶であることを意味する。
同様の観点から、上記GaN結晶は、主面上の任意の場所において、210μm×100μmの長方形領域を設定し、前記長方形中の転位密度を算出したとき、前記長方形中の転位密度が5×106cm-2超となるような長方形領域が主表面上に存在しないことが好ましく、前記長方形中の転位密度が1×106cm-2超となるような長方形領域が主表面上に存在しないことがより好ましく、前記長方形中の転位密度が5×105cm-2超となるような長方形領域が主表面上に存在しないものであることがさらに好ましい。
前記長方形中の転位密度の算出には、転位密度DYについて上記で説明したものと同様の方法を適用することができる。
なお、前記「主面上の任意の場所」から、GaN結晶の外周縁から内側に1mmまでの領域を除くことができる。
例えば、帯状転位集合領域の幅が十分に低減されていない従来のGaN結晶の場合、前述した210μm×100μmの長方形領域を帯状転位集合領域を覆うように設定したときには、当該長方形領域の転位密度は1×107cm-2を超えるものとなる。すなわち、該主面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しないGaN結晶とは、帯状転位集合領域の幅が十分狭い、結晶品質に優れたGaN結晶であることを意味する。
同様の観点から、上記GaN結晶は、主面上の任意の場所において、210μm×100μmの長方形領域を設定し、前記長方形中の転位密度を算出したとき、前記長方形中の転位密度が5×106cm-2超となるような長方形領域が主表面上に存在しないことが好ましく、前記長方形中の転位密度が1×106cm-2超となるような長方形領域が主表面上に存在しないことがより好ましく、前記長方形中の転位密度が5×105cm-2超となるような長方形領域が主表面上に存在しないものであることがさらに好ましい。
前記長方形中の転位密度の算出には、転位密度DYについて上記で説明したものと同様の方法を適用することができる。
なお、前記「主面上の任意の場所」から、GaN結晶の外周縁から内側に1mmまでの領域を除くことができる。
1.8.具体例、その他
図1は、本実施形態に係るGaN結晶の一例を示す斜視図である。図2(a)は、図1に示すGaN結晶10の平面図である。図2(b)は、図1に示すGaN結晶10の断面図であって、a軸に直交する平面で切断したときに形成される切断面を示している。
図1及び図2を参照すると、GaN結晶10は円盤の形状を有するM面ウエハであり、第一主表面11と、該第一主表面の反対側の第二主表面12とを有している。第一主表面11と第二主表面12は、側面13を介してつながっている。第一主表面11と第二主表面12は、好ましくは、互いに平行である。
図1は、本実施形態に係るGaN結晶の一例を示す斜視図である。図2(a)は、図1に示すGaN結晶10の平面図である。図2(b)は、図1に示すGaN結晶10の断面図であって、a軸に直交する平面で切断したときに形成される切断面を示している。
図1及び図2を参照すると、GaN結晶10は円盤の形状を有するM面ウエハであり、第一主表面11と、該第一主表面の反対側の第二主表面12とを有している。第一主表面11と第二主表面12は、側面13を介してつながっている。第一主表面11と第二主表面12は、好ましくは、互いに平行である。
本実施形態に係るGaN結晶は、図1及び図2に示すGaN結晶10を様々に変形したものであり得る。
第一実施形態に係るGaN結晶は、主表面が円以外の形状であってもよく、例えば、矩形(正方形、長方形)であってもよい。
第一実施形態に係るGaN結晶は、主表面が円以外の形状であってもよく、例えば、矩形(正方形、長方形)であってもよい。
本実施形態に係るGaN結晶の直径DWは、通常10mm以上であり、20mm以上、あるいは45mm以上であってもよく、典型的には50~55mm(約2インチ)、100~105mm(約4インチ)、150~155mm(約6インチ)等である。
GaN結晶10は、自立ウエハとして取り扱い得る厚さを有している。直径45~55mm(約2インチ)の円盤形GaN結晶の場合、自立ウエハとして取り扱い得るために必要な最低限の厚さは150~200μmであり、好ましい厚さは250μm以上、更には280μm以上である。直径がより大きい場合は、好ましい厚さもより大きくなる。
GaN結晶10の厚さに特に上限は無いが、通常は1mm以下であり、直径45~55mmのウエハの場合には、好ましくは400μm以下である。
GaN結晶10は、自立ウエハとして取り扱い得る厚さを有している。直径45~55mm(約2インチ)の円盤形GaN結晶の場合、自立ウエハとして取り扱い得るために必要な最低限の厚さは150~200μmであり、好ましい厚さは250μm以上、更には280μm以上である。直径がより大きい場合は、好ましい厚さもより大きくなる。
GaN結晶10の厚さに特に上限は無いが、通常は1mm以下であり、直径45~55mmのウエハの場合には、好ましくは400μm以下である。
本実施形態に係るGaN結晶は、結晶中の炭素濃度が1×1017cm-3以下であることが好ましい。結晶中の炭素濃度が上記範囲内であると、結晶中に含まれる炭素がGaN結晶を用いて得られた半導体デバイスの性能に悪影響を及ぼす恐れがなくなるため好ましい。結晶中の炭素濃度は、8×1016cm-3以下がより好ましく、5×1016cm-3以下がさらに好ましく、2×1016cm-3以下が殊更に好ましく、5×1015cm-3以下が特に好ましい。結晶中の炭素濃度は、二次イオン質量分析法(SIMS)を用いて測定することができる。GaN結晶が、HVPE法によって結晶成長して得られたものである場合、通常、意図的に炭素ドーピングすることなしには、結晶中の炭素濃度が1×1017cm-3を超えるものとなることはないと考えてよい。参考までに、発明者らが過去に実施した実験結果によれば、m面種結晶を意図的に炭素ドープしていないHVPE法で結晶成長させて得たGaN結晶の炭素濃度をSIMSで測定したところ、2×1016cm-3以下であった。また、GaN結晶が、酸性アモノサーマル法によって結晶成長して得られたものである場合、意図的に炭素ドーピングすることなしには、結晶中の炭素濃度が1×1017cm-3を超えるものとなることはないと考えてよい。参考までに、発明者らが過去に実施した実験結果によれば、m面種結晶を意図的に炭素ドープしていない酸性アモノサーマル法で結晶成長させて得たGaN結晶の炭素濃度をSIMSで測定したところ、7×1015cm-3~2×1016cm-3程度であった。
本実施形態に係るGaN結晶は、波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されないものであってもよい。波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されないGaN結晶であることは、そのようなGaN結晶がアモノサーマル法によって製造されたものではないことを意味する。例えば、HVPE法を用いて結晶成長して得られたGaN結晶は、通常波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されないGaN結晶である。
2.用途
本実施形態に係るGaN結晶は、各種の窒化物半導体デバイスを製造するための基板として使用することができる。通常は、本実施形態に係るGaN結晶上に一種以上の窒化物半導体を気相エピタキシャル成長させて、デバイス構造を形成する。エピタキシャル成長法として、薄膜の形成に適したMOCVD法、MBE法、パルス蒸着法などを好ましく用いることができる。
本実施形態に係るGaN結晶は、各種の窒化物半導体デバイスを製造するための基板として使用することができる。通常は、本実施形態に係るGaN結晶上に一種以上の窒化物半導体を気相エピタキシャル成長させて、デバイス構造を形成する。エピタキシャル成長法として、薄膜の形成に適したMOCVD法、MBE法、パルス蒸着法などを好ましく用いることができる。
窒化物半導体デバイスの具体例としては、発光ダイオード、レーザダイオードなどの発光デバイス、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(High Electron Mobility Transistor)などの電子デバイス、温度センサ、圧力センサ、放射線センサ、可視-紫外光検出器などの半導体センサ、SAW(Surface Acoustic Wave)デバイス、振動子、共振子、発振器、MEMS(Micro Electro Mechanical System)部品、電圧アクチュエータ、太陽電池などがある。
3.GaN結晶の製造方法
本発明の第二実施形態は、GaN結晶の製造方法に関する。
第二実施形態に係るGaN結晶の製造方法は、少なくとも、次の液相成長工程及び気相成長工程を含んでいる。必要に応じて、ウエハ作製工程を設けてGaNウエハを製造することができる。
・液相成長工程:複数のタイリング用GaNシードを密に並べることにより得られた集合シード上に、アモノサーマル法によりバルクGaN結晶を成長させる工程
・気相成長工程:液相成長工程で得られたバルクGaN結晶を種結晶として用いて、HVPE法によりバルクGaN結晶を成長させる工程
・ウエハ作製工程:気相成長工程で得られたバルクGaN結晶から、主表面の法線とm軸との間の角度が0度以上20度以下であるGaNウエハを作製する工程
好ましい態様の一例では、GaN結晶の製造方法は、複数のタイリング用GaNシードを密に並べることにより得られた集合シード上に、アモノサーマル法によりバルクGaN結晶を成長させる液相成長工程;及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いて、HVPE法によりGaN結晶を成長させる気相成長工程;を少なくとも含み、前記液相成長工程がメルトバック工程を含む。
本発明の第二実施形態は、GaN結晶の製造方法に関する。
第二実施形態に係るGaN結晶の製造方法は、少なくとも、次の液相成長工程及び気相成長工程を含んでいる。必要に応じて、ウエハ作製工程を設けてGaNウエハを製造することができる。
・液相成長工程:複数のタイリング用GaNシードを密に並べることにより得られた集合シード上に、アモノサーマル法によりバルクGaN結晶を成長させる工程
・気相成長工程:液相成長工程で得られたバルクGaN結晶を種結晶として用いて、HVPE法によりバルクGaN結晶を成長させる工程
・ウエハ作製工程:気相成長工程で得られたバルクGaN結晶から、主表面の法線とm軸との間の角度が0度以上20度以下であるGaNウエハを作製する工程
好ましい態様の一例では、GaN結晶の製造方法は、複数のタイリング用GaNシードを密に並べることにより得られた集合シード上に、アモノサーマル法によりバルクGaN結晶を成長させる液相成長工程;及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いて、HVPE法によりGaN結晶を成長させる気相成長工程;を少なくとも含み、前記液相成長工程がメルトバック工程を含む。
3.1.液相成長工程
前記液相成長工程は、さらに、以下のステップ1~5をそれぞれ独立に含みうる。
ステップ1:C面GaNシードの(000-1)表面上に、アモノサーマル法によりGaN結晶を[000-1]方向に成長させる。
ステップ2:上記ステップ1で[000-1]方向に成長したGaN結晶から、M面GaNシードを作製する。
ステップ3:上記ステップ2で作製したM面GaNシード上に、アモノサーマル法によりバルクGaN結晶を成長させる。
ステップ4:上記ステップ3で成長させたバルクGaN結晶から、タイリング用GaNシードを作製する。
ステップ5:上記ステップ4で作製したタイリング用GaNシードを用いて、集合シードを作製し、得られた集合シード上に、アモノサーマル法によりバルクGaN結晶を成長させる。
または、上記液相成長工程は、上記の以下のステップ1~ステップ4に加えて、ステップ5の代わりに、ステップ5’~ステップ 6’を含むことができる。
ステップ5’:上記ステップ4で作製したタイリング用GaNシードに垂れ処理を行う。
ステップ6’:上記ステップ5’で垂れ処理を行ったタイリング用GaNシードを用いて、タイリング法によりバルクGaN結晶を成長させる。
いずれの場合もさらに以下のステップ7を含むことができる。
ステップ7:上記ステップ5又は上記ステップ6’で成長させたバルクGaN結晶から、所望の面方位を持つGaNウエハを作製する。
好ましい態様の一例では、GaN結晶の製造方法は、複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程;前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程;を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む。
前記液相成長工程は、さらに、以下のステップ1~5をそれぞれ独立に含みうる。
ステップ1:C面GaNシードの(000-1)表面上に、アモノサーマル法によりGaN結晶を[000-1]方向に成長させる。
ステップ2:上記ステップ1で[000-1]方向に成長したGaN結晶から、M面GaNシードを作製する。
ステップ3:上記ステップ2で作製したM面GaNシード上に、アモノサーマル法によりバルクGaN結晶を成長させる。
ステップ4:上記ステップ3で成長させたバルクGaN結晶から、タイリング用GaNシードを作製する。
ステップ5:上記ステップ4で作製したタイリング用GaNシードを用いて、集合シードを作製し、得られた集合シード上に、アモノサーマル法によりバルクGaN結晶を成長させる。
または、上記液相成長工程は、上記の以下のステップ1~ステップ4に加えて、ステップ5の代わりに、ステップ5’~ステップ 6’を含むことができる。
ステップ5’:上記ステップ4で作製したタイリング用GaNシードに垂れ処理を行う。
ステップ6’:上記ステップ5’で垂れ処理を行ったタイリング用GaNシードを用いて、タイリング法によりバルクGaN結晶を成長させる。
いずれの場合もさらに以下のステップ7を含むことができる。
ステップ7:上記ステップ5又は上記ステップ6’で成長させたバルクGaN結晶から、所望の面方位を持つGaNウエハを作製する。
好ましい態様の一例では、GaN結晶の製造方法は、複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程;前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程;を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む。
以下に液相成長工程における各ステップの詳細を説明する。
(ステップ1)
ステップ1では、通常のC面GaNウエハの(000-1)表面(窒素極性表面)上に、TiW合金を用いてストライプパターン(ライン&スペースパターン)の成長マスクを形成したものを、C面GaNシードとして使用する。成長マスクのストライプ方向はGaNのa軸に平行とし、開口部の幅は例えば100μmとする。C面GaNウエハの側面は成長マスクで覆わないようにする。
該C面GaNシード上にアモノサーマル法でGaN結晶を成長させる際に用いる結晶成長装置及び結晶成長条件については、国際公開第2014/129544号及び国際公開第2015/020161号を参照されたい。
(ステップ1)
ステップ1では、通常のC面GaNウエハの(000-1)表面(窒素極性表面)上に、TiW合金を用いてストライプパターン(ライン&スペースパターン)の成長マスクを形成したものを、C面GaNシードとして使用する。成長マスクのストライプ方向はGaNのa軸に平行とし、開口部の幅は例えば100μmとする。C面GaNウエハの側面は成長マスクで覆わないようにする。
該C面GaNシード上にアモノサーマル法でGaN結晶を成長させる際に用いる結晶成長装置及び結晶成長条件については、国際公開第2014/129544号及び国際公開第2015/020161号を参照されたい。
適切な条件を用いることにより、C面GaNシードの(000-1)表面上では、成長マスクの各開口部の位置でGaN結晶が[000-1]方向に成長し、c軸方向を高さ方向、m軸方向を厚さ方向とする壁状構造を形成する。
例えば、途中で成長容器交換を行いながら、トータルで100日間の成長を行うことによって、壁の高さ(成長したGaN結晶のc軸方向のサイズ)は20mmにも達し得る。
GaN結晶の成長は、C面GaNシードの側面上でも生じる。C面GaNシードの全ての側面からGaN結晶が成長して[000-1]方向に延び、シードの(000-1)表面上に成長する複数の壁状GaN結晶を取り囲む周壁構造を形成する。
例えば、途中で成長容器交換を行いながら、トータルで100日間の成長を行うことによって、壁の高さ(成長したGaN結晶のc軸方向のサイズ)は20mmにも達し得る。
GaN結晶の成長は、C面GaNシードの側面上でも生じる。C面GaNシードの全ての側面からGaN結晶が成長して[000-1]方向に延び、シードの(000-1)表面上に成長する複数の壁状GaN結晶を取り囲む周壁構造を形成する。
(ステップ2)
上記ステップ1において、C面GaNシードの(000-1)表面上に壁状に成長したGaN結晶を、該シードから取り外し、加工して、M面GaNシードを得る。M面GaNシードは、M面に略平行な主表面を有する板状の結晶である。
M面GaNシードの主表面は、両方ともラッピングにより平坦化した後、ダメージ層を除去するためにCMP仕上げする。
上記ステップ1において、C面GaNシードの(000-1)表面上に壁状に成長したGaN結晶を、該シードから取り外し、加工して、M面GaNシードを得る。M面GaNシードは、M面に略平行な主表面を有する板状の結晶である。
M面GaNシードの主表面は、両方ともラッピングにより平坦化した後、ダメージ層を除去するためにCMP仕上げする。
(ステップ3)
上記ステップ2で作製したM面GaNシード上に、アモノサーマル法でGaN結晶を成長させる。GaN結晶は、M面GaNシードの表面全体を覆うように成長する。M面GaNシードの主表面上におけるGaN結晶の成長方向はm軸方向となる。
上記ステップ2で作製したM面GaNシード上に、アモノサーマル法でGaN結晶を成長させる。GaN結晶は、M面GaNシードの表面全体を覆うように成長する。M面GaNシードの主表面上におけるGaN結晶の成長方向はm軸方向となる。
(ステップ4)
上記ステップ3で成長させたGaN結晶をM面に平行にスライスし、得られたGaN結晶板の縁部をダイシング・ソーで切り落とすことにより、長辺がc軸に直交し短辺がa軸に直交する長方形の主表面を有する、タイリング用GaNシードを作製する。
タイリング用GaNシードの主表面は、スライス角度を調整することにより、M面から僅かに傾斜させてもよい。
タイリング用GaNシードの側面は、GaN結晶板をダイシング・ソーで切断した際に形成される切断面である。切断する度に、形成された切断面の方位をX線回折法で確認し、設計方位からのズレが0.1°を超えていた場合にはワークの方向を調整し、再び切断を行うという操作を繰り返すことで、タイリング用GaNシードの側面の設計方位からのズレを0.1°以内に収めることが可能である。
上記ステップ3で成長させたGaN結晶をM面に平行にスライスし、得られたGaN結晶板の縁部をダイシング・ソーで切り落とすことにより、長辺がc軸に直交し短辺がa軸に直交する長方形の主表面を有する、タイリング用GaNシードを作製する。
タイリング用GaNシードの主表面は、スライス角度を調整することにより、M面から僅かに傾斜させてもよい。
タイリング用GaNシードの側面は、GaN結晶板をダイシング・ソーで切断した際に形成される切断面である。切断する度に、形成された切断面の方位をX線回折法で確認し、設計方位からのズレが0.1°を超えていた場合にはワークの方向を調整し、再び切断を行うという操作を繰り返すことで、タイリング用GaNシードの側面の設計方位からのズレを0.1°以内に収めることが可能である。
ダイシング・ソーでGaN結晶板を切断する際には、次のステップ5で裏面となる側からソー・ブレードを当てるようにすることが望ましい。裏面とは、タイリング用GaNシードの2つの主表面のうち、バルクGaN結晶のエピタキシャル成長に用いる側の主表面をおもて面とした場合の、その反対側の主表面をいう(以下においても同様とする)。
その理由は、タイリング用GaNシードにおいて、おもて面と側面とがなす角度が鈍角となることを防止するためである。ダイシング・ソーのブレードは先端に向かって厚さが減少しているので、ブレードをおもて面側からタイリング用GaNシードに当てて切断した場合には、図20に断面図を示すように、おもて面と側面(切断面)とがなす角度が鈍角(>90°)となり易い。
おもて面と側面とがなす角度を直角又は鋭角とすると、複数のタイリング用GaNシードを密に並べたときに、隣接するシードのおもて面同士の間に隙間が生じることを防止できる。
その理由は、タイリング用GaNシードにおいて、おもて面と側面とがなす角度が鈍角となることを防止するためである。ダイシング・ソーのブレードは先端に向かって厚さが減少しているので、ブレードをおもて面側からタイリング用GaNシードに当てて切断した場合には、図20に断面図を示すように、おもて面と側面(切断面)とがなす角度が鈍角(>90°)となり易い。
おもて面と側面とがなす角度を直角又は鋭角とすると、複数のタイリング用GaNシードを密に並べたときに、隣接するシードのおもて面同士の間に隙間が生じることを防止できる。
ダイシング・ソーで切断して得たGaN結晶板は、ダイシング・ソーの切断面である端面のダメージ層を除去するため、ラッピング処理及びウェットエッチング処理を行うことが望ましい。GaN結晶板の端面は、GaN結晶板をタイリング用GaNシードとして密に並べる際に、隣接するシード間の接合面となるが、ダイシング・ソーによる切断時に、切断面である端面はダメージ層が形成される場合がある。端面にダメージ層が残っていると、隣接するシード間の接合部の接合が不良となり、接合部由来の結晶欠陥を生じる場合がある。発明者らによる検討の結果、M面又はS面を主面とするタイリング用GaNシードの場合に、前述のラッピング処理及びウェットエッチング処理が特に有用であることが見いだされた。この理由としては、M面又はS面を主面とするタイリング用GaNシードの場合は、C面を主面とするタイリング用GaNシードの場合と比較した場合、後述するメルトバック工程(温度を逆転させて、シード表面のGaN結晶層を溶解させる処理)による接合面のダメージ層の除去効果が相対的に小さいために、端面のラッピング処理及びウェットエッチング処理を行うことで、端面のダメージ層がより効果的に除去され、接合部の結晶欠陥がより効果的に低減されるものと考えられる。
通常、タイリング用GaNシードの両主表面には、平坦化加工を施す。具体的には、研削及び/又はラッピングを行った後、CMPでダメージ層を除去する。
平坦化加工は、裏面が先、おもて面が後、という順番で行う(前述の通り、次のステップ5でバルクGaN結晶のエピタキシャル成長に用いる側の主表面がおもて面、その反対側の主表面が裏面である)。特に、おもて面の平坦化加工の際には、図21(a)に断面図を示すように、複数のシード100を密に並べた状態でプレートPの平坦面上に固定する(シードの裏面をプレートPに貼り付ける)。それによって、図21(b)に断面図を示すように、平坦化加工後のタイリング用GaNシード100において、シード間の厚さのバラツキが極めて小さくなるとともに、シード同士が接する部分での被加工面(おもて面)のエッジロールオフが抑制される。
特に、タイリング用GaNシードのおもて面と側面とがなす角度が鈍角とならないようにした場合には、複数の該シードを密に並べてそのおもて面を平坦化加工する際に、隣接するシードのおもて面同士の間の隙間が小さくなるので、エッジロールオフ抑制効果が好ましく発現する。
平坦化加工は、裏面が先、おもて面が後、という順番で行う(前述の通り、次のステップ5でバルクGaN結晶のエピタキシャル成長に用いる側の主表面がおもて面、その反対側の主表面が裏面である)。特に、おもて面の平坦化加工の際には、図21(a)に断面図を示すように、複数のシード100を密に並べた状態でプレートPの平坦面上に固定する(シードの裏面をプレートPに貼り付ける)。それによって、図21(b)に断面図を示すように、平坦化加工後のタイリング用GaNシード100において、シード間の厚さのバラツキが極めて小さくなるとともに、シード同士が接する部分での被加工面(おもて面)のエッジロールオフが抑制される。
特に、タイリング用GaNシードのおもて面と側面とがなす角度が鈍角とならないようにした場合には、複数の該シードを密に並べてそのおもて面を平坦化加工する際に、隣接するシードのおもて面同士の間の隙間が小さくなるので、エッジロールオフ抑制効果が好ましく発現する。
(ステップ5)
プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、該プレート上に固定したときと同じ配置で、おもて面を上にして、モリブデン等の金属製板に固定して集合シードを構成する。金属製板の材質としては、モリブデンやタングステンが好適に用いられる。金属製板には複数の穴を開けており、その穴位置に合わせてタイルシードに穴を開ける。金属板にタイリング用シードを乗せ、ワイヤーで縛って固定する。この状態で、アモノサーマル法で集合シード上にGaN層結晶をエピタキシャル成長させ、バルク結晶を得る。前述のように固定用プレートとして金属製板を用いることの利点として、固定用プレートの大きさの制約がない点が挙げられる。例えば固定用プレートとして、タイリング用GaNシードと同様に、M面のGaNシードを用いる場合、固定用プレートとして用いるタイリング用GaNシードの大きさによって、得られる集合シードの大きさも制約を受けることになる。これに対し、金属製板は任意の大きさのものを準備することが容易であるため、大きさによる制約がない。また、本発明者らによる検討の結果、M面又はS面のタイリング用GaNシードの固定用プレートとして前述の金属製板を用いた場合でも、良好なGaN結晶が得られることを確認している。好ましくは、アモノサーマル法で集合シード上にGaN結晶層をエピタキシャル成長させる工程において、メルトバック工程(温度を逆転させて、シード表面のGaN結晶層を溶解させる処理)を含む。メルトバック工程を含む場合、集合シードを構成する複数のタイリング用GaNシード間の接合部のGaN層が部分的に溶解し、ダイシングによって生じた接合面のダメージ層が除去されることにより、接合が良好となる。この結果、接合部に由来する帯状転位集合領域が狭いGaN結晶を得ることができる。
プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、該プレート上に固定したときと同じ配置で、おもて面を上にして、モリブデン等の金属製板に固定して集合シードを構成する。金属製板の材質としては、モリブデンやタングステンが好適に用いられる。金属製板には複数の穴を開けており、その穴位置に合わせてタイルシードに穴を開ける。金属板にタイリング用シードを乗せ、ワイヤーで縛って固定する。この状態で、アモノサーマル法で集合シード上にGaN層結晶をエピタキシャル成長させ、バルク結晶を得る。前述のように固定用プレートとして金属製板を用いることの利点として、固定用プレートの大きさの制約がない点が挙げられる。例えば固定用プレートとして、タイリング用GaNシードと同様に、M面のGaNシードを用いる場合、固定用プレートとして用いるタイリング用GaNシードの大きさによって、得られる集合シードの大きさも制約を受けることになる。これに対し、金属製板は任意の大きさのものを準備することが容易であるため、大きさによる制約がない。また、本発明者らによる検討の結果、M面又はS面のタイリング用GaNシードの固定用プレートとして前述の金属製板を用いた場合でも、良好なGaN結晶が得られることを確認している。好ましくは、アモノサーマル法で集合シード上にGaN結晶層をエピタキシャル成長させる工程において、メルトバック工程(温度を逆転させて、シード表面のGaN結晶層を溶解させる処理)を含む。メルトバック工程を含む場合、集合シードを構成する複数のタイリング用GaNシード間の接合部のGaN層が部分的に溶解し、ダイシングによって生じた接合面のダメージ層が除去されることにより、接合が良好となる。この結果、接合部に由来する帯状転位集合領域が狭いGaN結晶を得ることができる。
(ステップ5’)
プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードについて、垂れ処理を行う。「垂れ処理」とは、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去することをいう。典型的には、エッジ部分が除去されることで、シードの主面と(000-1)面は曲線を描いて接続される。この状態を「エッジが垂れる」と表現する場合がある。
好ましくは、前記エッジ部分において、表面から深さ方向に1~20μmの領域において、(000-1)面が露出しないようにエッジ部分を除去する。5~15μm程度がより好ましく、8~12μm程度がさらに好ましい。エッジ部分の除去は、研磨加工により行うことが好ましい。
上記の処理は、プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを1つのプレートに設置し、同時に行うことが好ましい。
本発明者らの検討によれば、タイリング用GaNシードを並べたとき、各シードの高さに意図しない差が生じた場合に、主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分の(000-1)面が露出した場合、露出した(000-1)面が欠陥の起点となって、接合部上方及び周辺の欠陥が増加することが見いだされた。上述のように、シードの主面の(000-1)側のエッジが垂れるようにエッジ部分を除去することで、端シードを並べたときに(000-1)面の露出が抑制され、接合部由来の欠陥、すなわち帯状転位集合領域の幅を狭くすることが可能となる。
プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードについて、垂れ処理を行う。「垂れ処理」とは、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去することをいう。典型的には、エッジ部分が除去されることで、シードの主面と(000-1)面は曲線を描いて接続される。この状態を「エッジが垂れる」と表現する場合がある。
好ましくは、前記エッジ部分において、表面から深さ方向に1~20μmの領域において、(000-1)面が露出しないようにエッジ部分を除去する。5~15μm程度がより好ましく、8~12μm程度がさらに好ましい。エッジ部分の除去は、研磨加工により行うことが好ましい。
上記の処理は、プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを1つのプレートに設置し、同時に行うことが好ましい。
本発明者らの検討によれば、タイリング用GaNシードを並べたとき、各シードの高さに意図しない差が生じた場合に、主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分の(000-1)面が露出した場合、露出した(000-1)面が欠陥の起点となって、接合部上方及び周辺の欠陥が増加することが見いだされた。上述のように、シードの主面の(000-1)側のエッジが垂れるようにエッジ部分を除去することで、端シードを並べたときに(000-1)面の露出が抑制され、接合部由来の欠陥、すなわち帯状転位集合領域の幅を狭くすることが可能となる。
図を参照しながら、具体的に説明する。図22は、前記の「垂れ処理」を行わないシード同士を接合させた際に、意図しないシード同士の高さの差が生じた場合を示している。図22では、シード101とシード102の意図しない高さの差により、シード101の主面の(000-1)側のエッジ部分において、(000-1)面が露出している。このような場合、露出した(000-1)面を起点として、接合部接合部上方及び周辺の欠陥が発生する。
図23は、シード103の主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去した場合(「垂れ処理」を実施した場合)を示している。図23中の斜線部が除去されたエッジ部分である。
図24は、「垂れ処理」を実施したシード同士を接合させた際に、意図しないシード同士の高さの差が生じた場合を示している。図22の場合と異なり、図24では「垂れ処理」によりシード103の主面の(000-1)側のエッジ部分が除去されているために、シード103とシード104の意図しない高さの差が存在していても、境界領域で(000-1)面が露出しない。
図23は、シード103の主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去した場合(「垂れ処理」を実施した場合)を示している。図23中の斜線部が除去されたエッジ部分である。
図24は、「垂れ処理」を実施したシード同士を接合させた際に、意図しないシード同士の高さの差が生じた場合を示している。図22の場合と異なり、図24では「垂れ処理」によりシード103の主面の(000-1)側のエッジ部分が除去されているために、シード103とシード104の意図しない高さの差が存在していても、境界領域で(000-1)面が露出しない。
(ステップ6’)
プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、該プレート上に固定したときと同じ配置で、おもて面を上にして、HVPE装置のサセプター上に密に並べることにより、集合シードを構成する。この集合シード上に、HVPE法でバルクGaN結晶をエピタキシャル成長させる。
プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、該プレート上に固定したときと同じ配置で、おもて面を上にして、HVPE装置のサセプター上に密に並べることにより、集合シードを構成する。この集合シード上に、HVPE法でバルクGaN結晶をエピタキシャル成長させる。
3.2.気相成長工程
気相成長工程では、上述の液相成長工程で得られたバルクGaN結晶を種結晶として用いて、HVPE法によりバルクGaN結晶を成長させる。
HVPE法での結晶成長に用いるシードとするため、上述の液相成長工程で得られたバルクGaN結晶を公知の方法で加工することができる。例えば、成長させたバルクGaN結晶を、シード平行にスライスしてウエハ形状にする。このとき、ウエハの主表面がM面に対し[000-1]方向に特定の角度だけ傾斜するよう、スライス方向を調節することが好ましい。角度は、ウエハの主表面がM面に対し[000-1]方向に0.1~10度傾斜することが好ましく、1~8度がより好ましく、4~6度がさらに好ましい。スライス後、ウエハの両方の主表面を平坦化加工することにより、M面GaNウエハを得る。
気相成長工程では、上述の液相成長工程で得られたバルクGaN結晶を種結晶として用いて、HVPE法によりバルクGaN結晶を成長させる。
HVPE法での結晶成長に用いるシードとするため、上述の液相成長工程で得られたバルクGaN結晶を公知の方法で加工することができる。例えば、成長させたバルクGaN結晶を、シード平行にスライスしてウエハ形状にする。このとき、ウエハの主表面がM面に対し[000-1]方向に特定の角度だけ傾斜するよう、スライス方向を調節することが好ましい。角度は、ウエハの主表面がM面に対し[000-1]方向に0.1~10度傾斜することが好ましく、1~8度がより好ましく、4~6度がさらに好ましい。スライス後、ウエハの両方の主表面を平坦化加工することにより、M面GaNウエハを得る。
HVPE法によるGaN結晶の成長は、図25に概念図を示す気相成長装置を用いて行うことができる。ただし、このステップでは、キャリアガスの全部又は略全部(99%以上)を窒素ガスとすることが好ましい。
HVPE法でGaN結晶を成長させる際には、初期段階においてステップフロー成長モードをできるだけ早く発生させるために、以下に説明する(a)昇温ステップ、(b)予備成長ステップ、及び(c)メイン成長ステップをこの順に含む二段階成長法を行うことが好ましい。
(a)昇温ステップ
昇温ステップでは、シードに塩化ガリウムを供給することなく、サセプター温度を室温からT1まで上昇させる。T1は好ましくは830℃以上、870℃以下である。昇温レートは、好ましくは12℃/min以上、30℃/min以下である。昇温レートは昇温ステップの全期間にわたって一定としてもよいし、途中で変更してもよい。
昇温ステップにおいて成長炉内に導入し得る雰囲気ガスは、水素ガス、アンモニア、窒素ガス等であり、少なくともアンモニアと窒素ガスの両方を導入することが好ましい。成長炉内に導入するアンモニアの体積流量は、成長炉内に導入する全てのガスの体積流量の総和の15%以上とすることが好ましい。
(a)昇温ステップ
昇温ステップでは、シードに塩化ガリウムを供給することなく、サセプター温度を室温からT1まで上昇させる。T1は好ましくは830℃以上、870℃以下である。昇温レートは、好ましくは12℃/min以上、30℃/min以下である。昇温レートは昇温ステップの全期間にわたって一定としてもよいし、途中で変更してもよい。
昇温ステップにおいて成長炉内に導入し得る雰囲気ガスは、水素ガス、アンモニア、窒素ガス等であり、少なくともアンモニアと窒素ガスの両方を導入することが好ましい。成長炉内に導入するアンモニアの体積流量は、成長炉内に導入する全てのガスの体積流量の総和の15%以上とすることが好ましい。
(b)予備成長ステップ
予備成長ステップでは、シードに塩化ガリウム及びアンモニアを供給してGaN結晶をエピタキシャル成長させながら、サセプター温度をT1からT2まで上昇させる。T2は好ましくは940℃以上、1200℃以下である。昇温レートは、好ましくは6℃/min以上、24℃/min以下である。
予備成長ステップにおける成長炉内圧力を1.0×105Paとした場合、GaCl分圧は好ましくは2.0×102Pa以上、5.0×102Pa以下であり、アンモニア分圧は好ましくは9.3×103Pa以上、1.2×104Pa以下である。
予備成長ステップ及び次のメイン成長ステップにおいては、成長炉内に供給するキャリアガスの全て、あるいは略全て(99%以上)を窒素ガスとする。
予備成長ステップでは、シードに塩化ガリウム及びアンモニアを供給してGaN結晶をエピタキシャル成長させながら、サセプター温度をT1からT2まで上昇させる。T2は好ましくは940℃以上、1200℃以下である。昇温レートは、好ましくは6℃/min以上、24℃/min以下である。
予備成長ステップにおける成長炉内圧力を1.0×105Paとした場合、GaCl分圧は好ましくは2.0×102Pa以上、5.0×102Pa以下であり、アンモニア分圧は好ましくは9.3×103Pa以上、1.2×104Pa以下である。
予備成長ステップ及び次のメイン成長ステップにおいては、成長炉内に供給するキャリアガスの全て、あるいは略全て(99%以上)を窒素ガスとする。
(c)メイン成長ステップ
メイン成長ステップでは、サセプター温度をT2に保ちながらシード上に塩化ガリウム及びアンモニアを供給して、GaN結晶を厚膜に成長させる。メイン成長ステップにおける成長炉内圧力は、好ましくは50kPa以上、120kPa以下である。
メイン成長ステップにおける成長炉内圧力を1.0×105Paとした場合、GaCl分圧は好ましくは1.5×102Pa以上、5.0×102Pa以下であり、アンモニア分圧は好ましくは1.0×103Pa以上、1.2×104Pa以下である。
メイン成長ステップでは、サセプター温度をT2に保ちながらシード上に塩化ガリウム及びアンモニアを供給して、GaN結晶を厚膜に成長させる。メイン成長ステップにおける成長炉内圧力は、好ましくは50kPa以上、120kPa以下である。
メイン成長ステップにおける成長炉内圧力を1.0×105Paとした場合、GaCl分圧は好ましくは1.5×102Pa以上、5.0×102Pa以下であり、アンモニア分圧は好ましくは1.0×103Pa以上、1.2×104Pa以下である。
二段階成長法によれば、メイン成長ステップにおけるサセプター温度T2よりも低い温度T1で結晶成長を開始させることにより、成長炉等を構成する石英の分解生成物がメイン成長ステップの開始前にシード表面に吸着することが防止される。本発明者等は、石英の分解生成物はシード表面に吸着してGaNに対する濡れ性を低下させ、GaNのステップフロー成長モードの発生を遅らせる働きがあると考えている。
3.3.ウエハ作製工程
ウエハ作製工程では、上述の気相成長工程で得られたバルクGaN結晶から、主表面の法線とm軸との間の角度が0度以上20度以下であるGaNウエハを作製する。
前記気相成長工程において得たバルクGaN結晶をスライスして、主表面の法線とm軸との間の角度が0度以上20度以下であるGaNウエハを得る。スライス方向は、タイリング用GaNシードのおもて面に平行としてもよいし、該面に対して傾斜させてもよい。
GaNウエハの主表面には、平坦化加工を行う。具体的には、研削及び/又はラッピングを行った後、CMPでダメージ層を除去する。
例えば、図26に示す複合体を、外周研削加工又はコアドリル加工によって円筒状に加工した後、図27に示す破線の位置でスライスすることにより、図1に示すGaNウエハ10が得られる。このとき、バルクGaN結晶300中の帯状転位集中部305がGaN結晶10の主表面11に露出して、帯状転位集合領域14となる。
ウエハ作製工程では、上述の気相成長工程で得られたバルクGaN結晶から、主表面の法線とm軸との間の角度が0度以上20度以下であるGaNウエハを作製する。
前記気相成長工程において得たバルクGaN結晶をスライスして、主表面の法線とm軸との間の角度が0度以上20度以下であるGaNウエハを得る。スライス方向は、タイリング用GaNシードのおもて面に平行としてもよいし、該面に対して傾斜させてもよい。
GaNウエハの主表面には、平坦化加工を行う。具体的には、研削及び/又はラッピングを行った後、CMPでダメージ層を除去する。
例えば、図26に示す複合体を、外周研削加工又はコアドリル加工によって円筒状に加工した後、図27に示す破線の位置でスライスすることにより、図1に示すGaNウエハ10が得られる。このとき、バルクGaN結晶300中の帯状転位集中部305がGaN結晶10の主表面11に露出して、帯状転位集合領域14となる。
比較のために、従来の方法である複数のタイリング用GaNシードをHVPE法で成長を行った場合と対比させて、本発明について説明する。
従来の方法では、プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、該プレート上に固定したときと同じ配置で、おもて面を上にして、HVPE装置のサセプター上に密に並べることにより、集合シードを構成する。この集合シード上に、HVPE法でバルクGaN結晶をエピタキシャル成長させ、得られたバルクGaN結晶をスライスして非極性又は半極性GaNウエハを得る方法(タイリング法)が知られていた。本発明の方法は、少なくとも集合シード上でアモノサーマル法によりバルクGaN結晶を成長させる工程を有する点で、従来のタイリング法と異なっている。従来のタイリング法では、集合シードを構成する複数のタイリング用GaNシード間の接合部の不良に由来して、帯状転位集合領域が主表面上に広く存在していた。一方、本発明の方法では、集合シード上で直接HVPE法により結晶成長させるのではなく、一度集合シード上にアモノサーマル法により結晶成長させる。アモノサーマル法はHVPE法よりも結晶品質の優れた結晶が得られる特徴があるため、集合シードの接合部周辺で成長する結晶の品質が良好となり、これをシードとして得られるGaN結晶は、接合部の不良に由来する帯状転位集合領域の幅が狭いものとなったと考えられる。また、アモノサーマル法で集合シード上にGaN層結晶をエピタキシャル成長させる工程において、メルトバック工程を含むことも好ましい。メルトバック工程を含む場合、集合シードを構成する複数のタイリング用GaNシード間の接合部のGaN層が部分的に溶解し、ダイシングにより生じる接合面のダメージ層が除去されることにより、タイリング用GaNシード間の接合が良好となる。このため、接合部の不良に由来する帯状転位集合領域の幅をさらに狭いものとすることが可能となる。
従来の方法では、プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、該プレート上に固定したときと同じ配置で、おもて面を上にして、HVPE装置のサセプター上に密に並べることにより、集合シードを構成する。この集合シード上に、HVPE法でバルクGaN結晶をエピタキシャル成長させ、得られたバルクGaN結晶をスライスして非極性又は半極性GaNウエハを得る方法(タイリング法)が知られていた。本発明の方法は、少なくとも集合シード上でアモノサーマル法によりバルクGaN結晶を成長させる工程を有する点で、従来のタイリング法と異なっている。従来のタイリング法では、集合シードを構成する複数のタイリング用GaNシード間の接合部の不良に由来して、帯状転位集合領域が主表面上に広く存在していた。一方、本発明の方法では、集合シード上で直接HVPE法により結晶成長させるのではなく、一度集合シード上にアモノサーマル法により結晶成長させる。アモノサーマル法はHVPE法よりも結晶品質の優れた結晶が得られる特徴があるため、集合シードの接合部周辺で成長する結晶の品質が良好となり、これをシードとして得られるGaN結晶は、接合部の不良に由来する帯状転位集合領域の幅が狭いものとなったと考えられる。また、アモノサーマル法で集合シード上にGaN層結晶をエピタキシャル成長させる工程において、メルトバック工程を含むことも好ましい。メルトバック工程を含む場合、集合シードを構成する複数のタイリング用GaNシード間の接合部のGaN層が部分的に溶解し、ダイシングにより生じる接合面のダメージ層が除去されることにより、タイリング用GaNシード間の接合が良好となる。このため、接合部の不良に由来する帯状転位集合領域の幅をさらに狭いものとすることが可能となる。
また、従来の方法では、プレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードを、「垂れ処理」を実施せずに、該プレート上に固定したときと同じ配置で、おもて面を上にして、HVPE装置のサセプター上に密に並べることにより、集合シードを構成する。この集合シード上に、HVPE法でバルクGaN結晶をエピタキシャル成長させ、得られたバルクGaN結晶をスライスして非極性又は半極性GaNウエハを得ていた。本発明の方法は、少なくともプレートの平坦面上に密に並べた状態でおもて面の平坦化を行った複数のタイリング用GaNシードに対して「垂れ処理」を実施している点で、従来の方法と異なっている。従来の方法では、集合シードを構成する複数のタイリング用GaNシード間の意図しない高さの差に伴い、シードの境界領域で(000-1)面が露出していたために、(000-1)面が起点となって欠陥が増加し、帯状転位集合領域が主表面上に広く存在していた。一方、本発明の方法では、複数のタイリング用GaNシードに対して「垂れ処理」を実施する。「垂れ処理」を実施したシード同士を接合させた際に、意図しないシード同士の高さの差が生じたとしても、シードの主面の(000-1)側のエッジ部分が除去されているために、シード間の境界領域で(000-1)面が露出しない。このため、(000-1)面が起点となる欠陥の発生が抑制され、帯状転位集合領域の幅が低減されたGaN結晶を得ることが可能となる。
以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
4.実験結果
4.1.1.実施例1
C面GaNウエハを準備し、その(000-1)面(窒素極性表面)上にTiW合金を用いてストライプパターンの成長マスクを形成した。ストライプ方向はGaNのa軸に平行とし、開口部の幅は100μmとした。
かかる成長マスクを形成したC面GaNウエハの(000-1)表面上に、アモノサーマル法でGaN結晶を成長させた。フィードストックには多結晶GaN、鉱化剤にはフッ化アンモニウム(NH4F)及びヨウ化アンモニウム(NH4I)を用いた。
4.実験結果
4.1.1.実施例1
C面GaNウエハを準備し、その(000-1)面(窒素極性表面)上にTiW合金を用いてストライプパターンの成長マスクを形成した。ストライプ方向はGaNのa軸に平行とし、開口部の幅は100μmとした。
かかる成長マスクを形成したC面GaNウエハの(000-1)表面上に、アモノサーマル法でGaN結晶を成長させた。フィードストックには多結晶GaN、鉱化剤にはフッ化アンモニウム(NH4F)及びヨウ化アンモニウム(NH4I)を用いた。
鉱化剤の仕込み量は、成長容器内に封入するNH3に対するNH4F及びNH4Iのモル比が、それぞれ0.5~1.5%及び1.5~3.5%となるように、かつ、NH4Iに対するNH4Fのモル比が0.2~0.5となるように決定した。
成長条件は、成長容器内の平均温度(結晶成長ゾーンと原料溶解ゾーンの温度の平均値)を590~630℃、結晶成長ゾーンと原料溶解ゾーンの温度差を5~20℃、成長容器内の圧力を200~220MPaとした。
途中で2回の成長容器交換を挟みながら、トータルで100日間の成長を行ったところ、成長マスクの各開口部の位置に、c軸方向を高さ方向、m軸方向を厚さ方向とする壁状のGaN結晶が成長した。
成長条件は、成長容器内の平均温度(結晶成長ゾーンと原料溶解ゾーンの温度の平均値)を590~630℃、結晶成長ゾーンと原料溶解ゾーンの温度差を5~20℃、成長容器内の圧力を200~220MPaとした。
途中で2回の成長容器交換を挟みながら、トータルで100日間の成長を行ったところ、成長マスクの各開口部の位置に、c軸方向を高さ方向、m軸方向を厚さ方向とする壁状のGaN結晶が成長した。
上述の壁状に成長したGaN結晶をC面GaNウエハから取り外し、M面に略平行な主表面を有する平坦な板(M面GaNシード)に加工した。M面GaNシードの主表面は、両方ともラッピングにより平坦化した後、ダメージ層を除去するためにCMP仕上げした。
次いで、このM面GaNシード上に、再びアモノサーマル法でGaN結晶を成長させた。この2回目のアモノサーマル成長では、NH3に対するフッ素原子とヨウ素原子のモル比が、それぞれ1.0%となるように、鉱化剤の仕込み量を設定した。また、成長容器内の平均温度を600~611℃、結晶成長ゾーンと原料溶解ゾーンの温度差を9~13℃に設定した。成長容器内の圧力は1回目のアモノサーマル成長と同じとした。
次いで、このM面GaNシード上に、再びアモノサーマル法でGaN結晶を成長させた。この2回目のアモノサーマル成長では、NH3に対するフッ素原子とヨウ素原子のモル比が、それぞれ1.0%となるように、鉱化剤の仕込み量を設定した。また、成長容器内の平均温度を600~611℃、結晶成長ゾーンと原料溶解ゾーンの温度差を9~13℃に設定した。成長容器内の圧力は1回目のアモノサーマル成長と同じとした。
2回目のアモノサーマル成長によってM面GaNシード上に形成されたGaN結晶から、次の手順にて、板状で約330μm厚のタイリング用GaNシードを作製した。
まず、マルチワイヤーソーを用いて該GaN結晶をM面に平行にスライスした。次いで、スライスされたGaN結晶板の縁部をダイシング・ソーで切り落として、その主表面を、長辺がa軸に平行、短辺がa軸に垂直な長方形とした。ダイシング・ソーによる切断の際には、常にGaN結晶板に対し裏面側からソー・ブレードを当てるようにした。該長方形の長辺及び短辺のいずれについても、設計方向からのズレを0.1°以下とした。
その後、ダイシング・ソーによる端面のダメージ層を除去するため、切断したGaN結晶板の端面に対してラッピング処理とウェットエッチング処理を実施した。
まず、マルチワイヤーソーを用いて該GaN結晶をM面に平行にスライスした。次いで、スライスされたGaN結晶板の縁部をダイシング・ソーで切り落として、その主表面を、長辺がa軸に平行、短辺がa軸に垂直な長方形とした。ダイシング・ソーによる切断の際には、常にGaN結晶板に対し裏面側からソー・ブレードを当てるようにした。該長方形の長辺及び短辺のいずれについても、設計方向からのズレを0.1°以下とした。
その後、ダイシング・ソーによる端面のダメージ層を除去するため、切断したGaN結晶板の端面に対してラッピング処理とウェットエッチング処理を実施した。
最後に、GaN結晶板の各主表面に平坦化加工を施して、タイリング用GaNシードを完成させた。具体的には、研削及び/又はラッピングをこの順に行った後、CMPでダメージ層を除去した。
平坦化加工の順番は、裏面を先とし、おもて面を後とした。おもて面は、後にHVPE法によるバルクGaN結晶のエピタキシャル成長に使用する側の主表面である。
おもて面の平坦化加工は、5枚のGaN結晶板をc軸方向に密に並べた状態でプレートの平坦面上にワックスで貼り付けて行った。詳しくいうと、5枚のGaN結晶板を、どの隣り合う2枚のGaN結晶板間でも一方の[0001]側の端と他方の[000-1]側の端が接するように該プレートの該平坦面上に1列に並べることで、5枚全ての[0001]方向が一致するようにした。
平坦化加工の順番は、裏面を先とし、おもて面を後とした。おもて面は、後にHVPE法によるバルクGaN結晶のエピタキシャル成長に使用する側の主表面である。
おもて面の平坦化加工は、5枚のGaN結晶板をc軸方向に密に並べた状態でプレートの平坦面上にワックスで貼り付けて行った。詳しくいうと、5枚のGaN結晶板を、どの隣り合う2枚のGaN結晶板間でも一方の[0001]側の端と他方の[000-1]側の端が接するように該プレートの該平坦面上に1列に並べることで、5枚全ての[0001]方向が一致するようにした。
次に、互いに密に並べた状態でおもて面の平坦化加工を行って得た5枚のタイリング用GaNシードを、おもて面を上にしてモリブデン等の金属板上に固定した。金属板には多数の穴が開いており、この穴位置に合わせてタイリング用シードに穴を開けた。金属板とタイリング用シードを白金等の金属ワイヤーで縛り固定した。
この集合シード上に、アモノサーマル法でバルクGaN結晶をエピタキシャル成長させた。成長温度は600~610℃、成長時間は27日とした。成長初期において、メルトバック処理(温度を逆転させて、表面のGaN層を溶解させる処理)を行った。
この集合シード上に、アモノサーマル法でバルクGaN結晶をエピタキシャル成長させた。成長温度は600~610℃、成長時間は27日とした。成長初期において、メルトバック処理(温度を逆転させて、表面のGaN層を溶解させる処理)を行った。
成長させたバルクGaN結晶を、シード平行にスライスしてウエハにした。このとき、ウエハの主表面がM面に対し[000-1]方向に5°傾斜するよう、スライス方向を調節した。スライス後、ウエハの両方の主表面を平坦化加工することにより、45mm×26mmのオフ角付きM面GaNウエハを得た。
このオフ角付きM面GaNウエハを、HVPE法でエピタキシャル成長した。成長温度は1050℃、成長時間は10時間とした。バルクGaN結晶の成長中に反応炉内に供給するキャリアガスは、窒素ガスのみとした。なお、HVPE法によるエピタキシャル成長において、意図的な炭素ドープは行わなかった。
成長させたオフ角付きM面バルクGaN結晶を、以下の方法で評価した。
このオフ角付きM面GaNウエハを、HVPE法でエピタキシャル成長した。成長温度は1050℃、成長時間は10時間とした。バルクGaN結晶の成長中に反応炉内に供給するキャリアガスは、窒素ガスのみとした。なお、HVPE法によるエピタキシャル成長において、意図的な炭素ドープは行わなかった。
成長させたオフ角付きM面バルクGaN結晶を、以下の方法で評価した。
<帯状転位集合領域の有効幅>
多光子励起PL装置(ニコン製、A1MP+)を用いて、M面バルクGaN結晶の主面上の帯状転位集合領域周辺の発光分布像(多光子励起PL像)を取得した。なお、広域像では、a軸に平行な方向を長手方向とする帯状転位集合領域が観察された。多光子励起PL像の観察領域は、帯状転位集合領域の長手方向に長さ240μm、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmである、240μm×180μmの領域とした。同一の帯状転位集合領域について、観察領域が重ならないように、3つの異なる場所で、240μm×180μmの領域の多光子励起PL像を取得した。
観察条件は以下の通りである。
・励起レーザー:Ybフェムト秒レーザー・パルス幅 <100 fs,繰り返し周波数 76MHz
・波長1035nm(3光子励起以上を使用)
・音響光学素子を通して平均パワーを 数mW~数10 mW に設定
・対物レンズ倍率50倍(NA 0.80)
多光子励起PL装置(ニコン製、A1MP+)を用いて、M面バルクGaN結晶の主面上の帯状転位集合領域周辺の発光分布像(多光子励起PL像)を取得した。なお、広域像では、a軸に平行な方向を長手方向とする帯状転位集合領域が観察された。多光子励起PL像の観察領域は、帯状転位集合領域の長手方向に長さ240μm、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmである、240μm×180μmの領域とした。同一の帯状転位集合領域について、観察領域が重ならないように、3つの異なる場所で、240μm×180μmの領域の多光子励起PL像を取得した。
観察条件は以下の通りである。
・励起レーザー:Ybフェムト秒レーザー・パルス幅 <100 fs,繰り返し周波数 76MHz
・波長1035nm(3光子励起以上を使用)
・音響光学素子を通して平均パワーを 数mW~数10 mW に設定
・対物レンズ倍率50倍(NA 0.80)
次に、3つの異なる場所で取得した多光子励起PL像それぞれについて、帯状転位集合領域の長手方向に対して垂直な方向の長さ180μmの画像輝度プロファイルを、帯状転位集合領域の長手方向長さ240μmについて積算した画像輝度の積算プロファイルを作成した。積算プロファイルにおいて、目視でベースラインを引いた。3つの異なる場所で取得した多光子励起PL像から得た積算プロファイルはいずれも、ベースラインにおける画像輝度の値に対して、80%以下の画像輝度である領域が存在しなかった。つまり、帯状転位集合領域の有効幅を決定できなかった。結果として、実施例1のオフ角付きM面バルクGaN結晶の帯状転位集合領域の最大有効幅は50μm未満であった。
<転位密度>
上述の帯状転位集合領域の有効幅を算出するために用いた、3つの異なる場所で取得した240μm×180μmの多光子励起PL像から、特定領域の暗点の密度を計測し、転位密度を算出した。
・領域(X)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度を以下のように算出した。まず、前記の240μm×180μmの多光子励起PL像において、帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを10μmとする、210μm×10μmの長方形を観察領域とした。そして、長手方向と垂直な方向における中心を帯状転位集合領域の中心と一致するように、観察領域(X1)を決定した。前記の通り、実施例1のGaN結晶は、帯状転位集合領域の有効幅を決定できなかったため、帯状転位集合領域の中心は、多光子励起PL像から目視で決定した。残り2枚の240μm×180μmの多光子励起PL像についても、同様にして、それぞれ観察領域(X2)、観察領域(X3)を決定した。観察領域(X1)~(X3)それぞれについて、領域中の暗点の個数を計測し、領域の面積で除して、転位密度を算出した。最後に、観察領域(X1)~(X3)の転位密度を平均したものを、領域(X)における転位密度とした。領域(X)における転位密度は、7.0×105cm-2であった。
上述の帯状転位集合領域の有効幅を算出するために用いた、3つの異なる場所で取得した240μm×180μmの多光子励起PL像から、特定領域の暗点の密度を計測し、転位密度を算出した。
・領域(X)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度を以下のように算出した。まず、前記の240μm×180μmの多光子励起PL像において、帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを10μmとする、210μm×10μmの長方形を観察領域とした。そして、長手方向と垂直な方向における中心を帯状転位集合領域の中心と一致するように、観察領域(X1)を決定した。前記の通り、実施例1のGaN結晶は、帯状転位集合領域の有効幅を決定できなかったため、帯状転位集合領域の中心は、多光子励起PL像から目視で決定した。残り2枚の240μm×180μmの多光子励起PL像についても、同様にして、それぞれ観察領域(X2)、観察領域(X3)を決定した。観察領域(X1)~(X3)それぞれについて、領域中の暗点の個数を計測し、領域の面積で除して、転位密度を算出した。最後に、観察領域(X1)~(X3)の転位密度を平均したものを、領域(X)における転位密度とした。領域(X)における転位密度は、7.0×105cm-2であった。
・領域(Y)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを30μmとする、210μm×30μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Y)における転位密度は、3.4×105cm-2であった。
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを30μmとする、210μm×30μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Y)における転位密度は、3.4×105cm-2であった。
・領域(Z)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを100μmとする、210μm×100μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Z)における転位密度は、2.3×105cm-2であった。
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを100μmとする、210μm×100μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Z)における転位密度は、2.3×105cm-2であった。
・転位密度DXに対する転位密度DZの比(DZ/DX)
前記領域(X)における転位密度(Dx)に対する、前記領域(Z)における転位密度(Dz)の比(DZ/DX)は、0.33であった。
前記領域(X)における転位密度(Dx)に対する、前記領域(Z)における転位密度(Dz)の比(DZ/DX)は、0.33であった。
実施例1のGaN結晶は、主表面上に長方形中の転位密度が1×107cm-2超となる210μm×100μmの長方形領域を見出すことができなかった。
4.1.2.実施例2
実施例1と同様の手順で得た、互いに密に並べた状態でおもて面の平坦化加工を行って得た5枚のタイリング用GaNシードについて、主面の(000-1)面側のエッジ部分を除去する「垂れ処理」を行った。具体的には、エッジ部分の(000-1)面が主面から深さ方向に10μm程度にわたって露出しないように、エッジ部分を研磨した。垂れ処理は、1つのプレートに5枚のタイリング用GaNシードを放射状に設置し、同時に研磨することで行った。
実施例1と同様の手順で得た、互いに密に並べた状態でおもて面の平坦化加工を行って得た5枚のタイリング用GaNシードについて、主面の(000-1)面側のエッジ部分を除去する「垂れ処理」を行った。具体的には、エッジ部分の(000-1)面が主面から深さ方向に10μm程度にわたって露出しないように、エッジ部分を研磨した。垂れ処理は、1つのプレートに5枚のタイリング用GaNシードを放射状に設置し、同時に研磨することで行った。
続いて、垂れ処理を実施した5枚のタイリング用GaNシードを、おもて面を上にしてHVPE装置のサセプター上に密に並べ、集合シードを構成した。集合シード内における該5枚のシードの配置は、おもて面の平坦化加工時と同じとした。この集合シード上に、HVPE法でエピタキシャル成長した。成長温度は1050℃、成長時間は10時間とした。バルクGaN結晶の成長中に反応炉内に供給するキャリアガスは、窒素ガスのみとした。なお、HVPE法によるエピタキシャル成長において、意図的な炭素ドープは行わなかった。
成長させたオフ角付きM面バルクGaN結晶を、ウエハ状に加工した。得られたM面GaNウエハについて、以下の方法で評価した。
成長させたオフ角付きM面バルクGaN結晶を、ウエハ状に加工した。得られたM面GaNウエハについて、以下の方法で評価した。
<帯状転位集合領域の有効幅>
SEM-CL装置(日本電子製JSM-7000F)を用いて、M面GaNウエハの主面上の帯状転位集合領域周辺の発光分布像(SEM-CL像)を取得した。なお、広域像では、a軸に平行な方向を長手方向とする2つの帯状転位集合領域が観察された。SEM-CL像の観察領域は、帯状転位集合領域の長手方向に長さ240μm、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmである、240μm×180μmの領域とした。同一の帯状転位集合領域について、観察領域が重ならないように、3つの異なる場所で、240μm×180μmの領域のSEM-CL像を取得した。これを2つの帯状転位集合領域について行い、計6枚のSEM-CL像を取得した。
観察条件は、以下の通りである。
・電子銃加速電圧3kV、照射電流100pA、観察倍率500倍
・カソードルミネッセンス:Gatan社製Mono-CL3
・パンクロマティックCL観察モード、検出器電圧<1300V
SEM-CL装置(日本電子製JSM-7000F)を用いて、M面GaNウエハの主面上の帯状転位集合領域周辺の発光分布像(SEM-CL像)を取得した。なお、広域像では、a軸に平行な方向を長手方向とする2つの帯状転位集合領域が観察された。SEM-CL像の観察領域は、帯状転位集合領域の長手方向に長さ240μm、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmである、240μm×180μmの領域とした。同一の帯状転位集合領域について、観察領域が重ならないように、3つの異なる場所で、240μm×180μmの領域のSEM-CL像を取得した。これを2つの帯状転位集合領域について行い、計6枚のSEM-CL像を取得した。
観察条件は、以下の通りである。
・電子銃加速電圧3kV、照射電流100pA、観察倍率500倍
・カソードルミネッセンス:Gatan社製Mono-CL3
・パンクロマティックCL観察モード、検出器電圧<1300V
次に、6つの異なる場所で取得したSEM-CL像それぞれについて、帯状転位集合領域の長手方向に対して垂直な方向の長さ180μmの画像輝度プロファイルを、帯状転位集合領域の長手方向長さ240μmについて積算した画像輝度の積算プロファイルを作成した。積算プロファイルにおいて、目視でベースラインを引いた。6つの異なる場所で取得したSEM-CL像から得た積算プロファイルの中で、有効幅の最大値は29μmであった。結果として、実施例1のM面GaNウエハの帯状転位集合領域の最大有効幅は50μm未満であった。
<転位密度>
上述の帯状転位集合領域の有効幅を算出するために用いた、3つの異なる場所で取得した240μm×180μmのSEM-CL像から、特定領域の暗点の密度を計測し、転位密度を算出した。
・領域(X)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度を以下のように算出した。まず、前記の240μm×180μmのSEM-CL像において、帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを10μmとする、210μm×10μmの長方形を観察領域とした。そして、長手方向と垂直な方向における中心を帯状転位集合領域の中心と一致するように、観察領域(X1)を決定した。前記の通り、実施例1のGaN結晶は、帯状転位集合領域の有効幅を決定できなかったため、帯状転位集合領域の中心は、SEM-CL像から目視で決定した。残り2枚の240μm×180μmのSEM-CL像についても、同様にして、それぞれ観察領域(X2)、観察領域(X3)を決定した。観察領域(X1)~(X3)それぞれについて、領域中の暗点の個数を計測し、領域の面積で除して、転位密度を算出した。最後に、観察領域(X1)~(X3)の転位密度を平均したものを、領域(X)における転位密度とした。領域(X)における転位密度は、5.9×107cm-2であった。
上述の帯状転位集合領域の有効幅を算出するために用いた、3つの異なる場所で取得した240μm×180μmのSEM-CL像から、特定領域の暗点の密度を計測し、転位密度を算出した。
・領域(X)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度を以下のように算出した。まず、前記の240μm×180μmのSEM-CL像において、帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを10μmとする、210μm×10μmの長方形を観察領域とした。そして、長手方向と垂直な方向における中心を帯状転位集合領域の中心と一致するように、観察領域(X1)を決定した。前記の通り、実施例1のGaN結晶は、帯状転位集合領域の有効幅を決定できなかったため、帯状転位集合領域の中心は、SEM-CL像から目視で決定した。残り2枚の240μm×180μmのSEM-CL像についても、同様にして、それぞれ観察領域(X2)、観察領域(X3)を決定した。観察領域(X1)~(X3)それぞれについて、領域中の暗点の個数を計測し、領域の面積で除して、転位密度を算出した。最後に、観察領域(X1)~(X3)の転位密度を平均したものを、領域(X)における転位密度とした。領域(X)における転位密度は、5.9×107cm-2であった。
・領域(Y)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを30μmとする、210μm×30μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Y)における転位密度は、5.0×107cm-2であった。
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを30μmとする、210μm×30μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Y)における転位密度は、5.0×107cm-2であった。
・領域(Z)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを100μmとする、210μm×100μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Z)における転位密度は、1.8×107cm-2であった。
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを100μmとする、210μm×100μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Z)における転位密度は、1.8×107cm-2であった。
・転位密度DXに対する転位密度DZの比(DZ/DX)
前記領域(X)における転位密度(Dx)に対する、前記領域(Z)における転位密度(Dz)の比(DZ/DX)は、0.31であった。
・転位密度DYに対する転位密度DZの比(DZ/DY)
前記領域(Y)における転位密度(DY)に対する、前記領域(Z)における転位密度(DZ)の比(DZ/DY)は、0.36であった。
前記領域(X)における転位密度(Dx)に対する、前記領域(Z)における転位密度(Dz)の比(DZ/DX)は、0.31であった。
・転位密度DYに対する転位密度DZの比(DZ/DY)
前記領域(Y)における転位密度(DY)に対する、前記領域(Z)における転位密度(DZ)の比(DZ/DY)は、0.36であった。
4.2 比較例1
比較例では、互いに密に並べた状態でおもて面の平坦化加工を行って得た5枚のタイリング用GaNシードからなる集合シード上でアモノサーマル法でバルクGaN結晶をエピタキシャル成長させることなく、また、「垂れ処理」を行うことなく、前記集合シード上にHVPE法で結晶成長させてバルクGaN結晶を得た点を除き、実施例と同様にして比較例のオフ角付きM面GaN結晶を作製した。作製したオフ角付きM面GaN結晶をウエハ状に加工した。得られたM面GaNウエハについて、下記の評価を行った。
<帯状転位集合領域の有効幅>
SEM-CL装置(日本電子製JSM-7000F)を用いて、M面バルクGaN結晶の主面上の帯状転位集合領域周辺の発光分布像(SEM-CL像)を取得した。実施例1の場合に比べて、暗点が高密度で広範囲に存在しており、正確な暗点密度の計測のためにSEM-CL装置を用いた。なお、広域像では、主面上にa軸に平行な方向を長手方向とする3つの帯状転位集合領域が観察された。SEM-CL像の観察領域は、帯状転位集合領域の長手方向に長さ240μm、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmである、240μm×180μmの領域とした。同一の帯状転位集合領域について、観察領域が重ならないように、2つの異なる場所で、240μm×180μmの領域のSEM-CL像を取得した。これを、3つの帯状転位集合領域について行い、計6枚の240μm×180μmの領域のSEM-CL像を取得した。
観察条件は、以下の通りである。
・電子銃加速電圧3kV、照射電流100pA、観察倍率500倍
・カソードルミネッセンス:Gatan社製Mono-CL3
・パンクロマティックCL観察モード、検出器電圧<1300V
比較例では、互いに密に並べた状態でおもて面の平坦化加工を行って得た5枚のタイリング用GaNシードからなる集合シード上でアモノサーマル法でバルクGaN結晶をエピタキシャル成長させることなく、また、「垂れ処理」を行うことなく、前記集合シード上にHVPE法で結晶成長させてバルクGaN結晶を得た点を除き、実施例と同様にして比較例のオフ角付きM面GaN結晶を作製した。作製したオフ角付きM面GaN結晶をウエハ状に加工した。得られたM面GaNウエハについて、下記の評価を行った。
<帯状転位集合領域の有効幅>
SEM-CL装置(日本電子製JSM-7000F)を用いて、M面バルクGaN結晶の主面上の帯状転位集合領域周辺の発光分布像(SEM-CL像)を取得した。実施例1の場合に比べて、暗点が高密度で広範囲に存在しており、正確な暗点密度の計測のためにSEM-CL装置を用いた。なお、広域像では、主面上にa軸に平行な方向を長手方向とする3つの帯状転位集合領域が観察された。SEM-CL像の観察領域は、帯状転位集合領域の長手方向に長さ240μm、該帯状転位集合領域全体を含み、該長手方向に対して垂直な方向に長さ180μmである、240μm×180μmの領域とした。同一の帯状転位集合領域について、観察領域が重ならないように、2つの異なる場所で、240μm×180μmの領域のSEM-CL像を取得した。これを、3つの帯状転位集合領域について行い、計6枚の240μm×180μmの領域のSEM-CL像を取得した。
観察条件は、以下の通りである。
・電子銃加速電圧3kV、照射電流100pA、観察倍率500倍
・カソードルミネッセンス:Gatan社製Mono-CL3
・パンクロマティックCL観察モード、検出器電圧<1300V
次に、取得した6枚のSEM-CL像それぞれについて、帯状転位集合領域の長手方向に対して垂直な方向の長さ180μmの画像輝度プロファイルを、帯状転位集合領域の長手方向長さ240μmについて積算した画像輝度の積算プロファイルを作成した。積算プロファイルにおいて、目視でベースラインを引いた。積算プロファイルのうち4つは、ベースラインにおける画像輝度の値に対して、80%以下の画像輝度である領域の幅である有効幅が50μm以上であった。積算された輝度プロファイルのうち、2つについては、転位が広範囲にわたり高密度で分布していたために帯状転位集合領域外の領域に相当するフラットな領域が存在せず、積算された輝度プロファイルの範囲内でベースラインが得られなかった。結果として、比較例1のM面GaNウエハの帯状転位集合領域の最大有効幅は、50μm以上であった。
<転位密度>
帯状転位集合領域の有効幅を算出するために用いた、6つの異なる場所で取得した240μm×180μmのSEM-CL像から、特定領域の暗点の密度を計測し、転位密度を算出した。
・領域(X)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度を以下のように算出した。まず、前記の240μm×180μmのSEM-CL像において、帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを10μmとする、210μm×10μmの長方形を観察領域とした。そして、長手方向と垂直な方向における中心を帯状転位集合領域の中心と一致するように、観察領域(X1)を決定した。残り2枚の240μm×180μmのSEM-CL像についても、同様にして、それぞれ観察領域(X2)、観察領域(X3)を決定した。観察領域(X1)~(X3)それぞれについて、領域中の暗点の個数を計測し、領域の面積で除して、転位密度を算出した。最後に、観察領域(X1)~(X3)の転位密度を平均したものを、領域(X)における転位密度とした。領域(X)における転位密度は、4.7×107cm-2であった。
帯状転位集合領域の有効幅を算出するために用いた、6つの異なる場所で取得した240μm×180μmのSEM-CL像から、特定領域の暗点の密度を計測し、転位密度を算出した。
・領域(X)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度を以下のように算出した。まず、前記の240μm×180μmのSEM-CL像において、帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを10μmとする、210μm×10μmの長方形を観察領域とした。そして、長手方向と垂直な方向における中心を帯状転位集合領域の中心と一致するように、観察領域(X1)を決定した。残り2枚の240μm×180μmのSEM-CL像についても、同様にして、それぞれ観察領域(X2)、観察領域(X3)を決定した。観察領域(X1)~(X3)それぞれについて、領域中の暗点の個数を計測し、領域の面積で除して、転位密度を算出した。最後に、観察領域(X1)~(X3)の転位密度を平均したものを、領域(X)における転位密度とした。領域(X)における転位密度は、4.7×107cm-2であった。
・領域(Y)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを30μmとする、210μm×30μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Y)における転位密度は、4.2×107cm-2であった。
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを30μmとする、210μm×30μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Y)における転位密度は、4.2×107cm-2であった。
・領域(Z)の転位密度
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを100μmとする、210μm×100μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Z)における転位密度は、2.7×107cm-2であった。
帯状転位集合領域の中心から、帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度を算出した。帯状転位集合領域の長手方向における長さを210μm、長手方向と垂直な方向における長さを100μmとする、210μm×100μmの長方形を観察領域としたこと以外は、領域(X)の転位密度の算出方法と同様の方法を用いた。領域(Z)における転位密度は、2.7×107cm-2であった。
・転位密度DXに対する転位密度DZの比(DZ/DX)
前記領域(X)における転位密度(Dx)に対する、前記領域(Z)における転位密度(Dz)の比(DZ/DX)は、0.57であった。
・転位密度DYに対する転位密度DZの比(DZ/DY)
前記領域(Y)における転位密度(DY)に対する、前記領域(Z)における転位密度(DZ)の比(DZ/DY)は、0.64であった。
前記領域(X)における転位密度(Dx)に対する、前記領域(Z)における転位密度(Dz)の比(DZ/DX)は、0.57であった。
・転位密度DYに対する転位密度DZの比(DZ/DY)
前記領域(Y)における転位密度(DY)に対する、前記領域(Z)における転位密度(DZ)の比(DZ/DY)は、0.64であった。
比較例1のGaN結晶は、主表面上に長方形中の転位密度が1×107cm-2超となる210μm×100μmの長方形領域が見いだされた。
以上、本発明を具体的な実施形態に即して説明したが、各実施形態は例として提示されたものであり、本発明の範囲を限定するものではない。すなわち、本明細書に記載された各実施形態は、その趣旨を逸脱しない範囲内で、様々に変形することができ、かつ、実施可能な範囲内で、他の実施形態により説明された特徴と組み合わせることができる。
10、20、30 GaN結晶
11、21 第一主表面
12 第二主表面
13、23 側面
14、24-1、24-2 帯状転位集合領域
16 主表面
17 測定ライン
100 タイリング用GaNシード
101、102 「垂れ処理」していないタイリング用GaNシード
103、104 「垂れ処理」したタイリング用GaNシード
200 集合シード
300 バルクGaN結晶
305 帯状転位集中部
400 帯状転位集合領域の中心
501 領域(Y)を画する線分
502 領域(Z)を画する線分
503 領域(X)を画する線分
601 領域(Y)
602 領域(Z)
603 領域(X)
P プレート
w 帯状転位集合領域の有効幅
11、21 第一主表面
12 第二主表面
13、23 側面
14、24-1、24-2 帯状転位集合領域
16 主表面
17 測定ライン
100 タイリング用GaNシード
101、102 「垂れ処理」していないタイリング用GaNシード
103、104 「垂れ処理」したタイリング用GaNシード
200 集合シード
300 バルクGaN結晶
305 帯状転位集中部
400 帯状転位集合領域の中心
501 領域(Y)を画する線分
502 領域(Z)を画する線分
503 領域(X)を画する線分
601 領域(Y)
602 領域(Z)
603 領域(X)
P プレート
w 帯状転位集合領域の有効幅
Claims (18)
- 主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
1つ以上の帯状転位集合領域を該主表面上に有し、
以下(1)、(2)及び(3)からなる群より選択される少なくとも1つの要件を満たす、GaN結晶:
(1)該帯状転位集合領域の最大有効幅が50μm未満である;
(2)該帯状転位集合領域が下記要件(A)及び要件(B)の少なくとも一方を満たす、
(A)該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度が3×107cm-2未満である、
(B)該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が2.5×107cm-2未満である;
(3)下記で定義される転位密度DXに対する転位密度DZの比(DZ/DX)が0.5以下及び/又は下記で定義される転位密度DYに対する転位密度DZの比(DZ/DY)が0.5以下である。
転位密度Dx:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ5μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(X)における転位密度
転位密度DY:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ15μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Y)における転位密度
転位密度DZ:該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度 - 要件(B)において該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が1×107cm-2未満である請求項1に記載のGaN結晶。
- (2)該帯状転位集合領域が要件(B)を満たし、
要件(B)において該帯状転位集合領域の中心から、該帯状転位集合領域の長手方向に対して垂直な左右方向にそれぞれ50μmの位置に該長手方向と平行に引かれた2本の線分で画される領域(Z)における転位密度が1.0×106cm-2以上2.5×107cm-2未満である請求項1に記載のGaN結晶。 - (1)を満たす、請求項1に記載のGaN結晶。
- (2)を満たす、請求項1に記載のGaN結晶。
- (3)を満たす、請求項1に記載のGaN結晶。
- (1)、(2)及び(3)のいずれも満たす、請求項1に記載のGaN結晶。
- 前記主表面の面積が10cm2以上である、請求項1に記載のGaN結晶。
- 前記主表面の帯状転位集合領域以外の領域における転位密度が1×106cm-2以下である、請求項1に記載のGaN結晶。
- 結晶中の炭素濃度が1×1017cm-3以下である、請求項1に記載のGaN結晶。
- 波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されない、請求項1に記載のGaN結晶。
- 主表面の法線とm軸との間の角度が0度以上20度以下である主表面を有するGaN結晶であって、
該主表面の面積が10cm2以上であり、
該主面上の任意の場所において、210μm×100μmの長方形領域を設定し、該長方形中の転位密度を算出したとき、該長方形中の転位密度が1×107cm-2超となる長方形領域が該主面上に存在しない、GaN結晶。 - 結晶中の炭素濃度が1×1017cm-3以下である、請求項12に記載のGaN結晶。
- 波長445nmにおける吸収係数が1cm-1以上であり、かつ、赤外吸収スペクトルの3050~3300cm-1にN-Hピークが観察されない、請求項12に記載のGaN結晶。
- 請求項1~14のいずれか1項に記載のGaN結晶からなる、GaNウエハ。
- {10-10}ウエハ、{10-11}ウエハ、{10-1-1}ウエハ、{20-21}ウエハ、{20-2-1}ウエハ、{30-31}ウエハ又は{30-3-1}ウエハである、請求項15に記載のGaNウエハ。
- 複数のタイリング用GaNシードを密に並べることにより得られた集合シード上にアモノサーマル法によりバルクGaN結晶を成長させる液相成長工程及び前記液相成長工程で得られたバルクGaN結晶を種結晶として用いてHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記液相成長工程がメルトバック工程を含む、GaN結晶の製造方法。
- 複数のタイリング用GaNシードを密に並べることにより得られた集合シードを準備する集合シード準備工程及び前記集合シード上にHVPE法によりGaN結晶を成長させる気相成長工程を少なくとも含み、前記集合シード準備工程が、タイリング用GaNシードの主面の(000-1)側の端部と、(000-1)面の端部の交点からなるエッジ部分において、(000-1)面が露出しないようにエッジ部分を除去する工程を含む、GaN結晶の製造方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022060641 | 2022-03-31 | ||
JP2022060642 | 2022-03-31 | ||
JP2022-060641 | 2022-03-31 | ||
JP2022-060642 | 2022-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023190969A1 true WO2023190969A1 (ja) | 2023-10-05 |
Family
ID=88202246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/013363 WO2023190969A1 (ja) | 2022-03-31 | 2023-03-30 | GaN結晶及びGaNウエハ |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202409368A (ja) |
WO (1) | WO2023190969A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011063504A (ja) * | 2009-08-19 | 2011-03-31 | Mitsubishi Chemicals Corp | 窒化物半導体結晶およびその製造方法 |
JP2014076943A (ja) * | 2012-09-21 | 2014-05-01 | Mitsubishi Chemicals Corp | 周期表第13族金属窒化物半導体基板 |
-
2023
- 2023-03-30 TW TW112112330A patent/TW202409368A/zh unknown
- 2023-03-30 WO PCT/JP2023/013363 patent/WO2023190969A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011063504A (ja) * | 2009-08-19 | 2011-03-31 | Mitsubishi Chemicals Corp | 窒化物半導体結晶およびその製造方法 |
JP2014076943A (ja) * | 2012-09-21 | 2014-05-01 | Mitsubishi Chemicals Corp | 周期表第13族金属窒化物半導体基板 |
Also Published As
Publication number | Publication date |
---|---|
TW202409368A (zh) | 2024-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6516036B2 (ja) | 自立GaN基板、GaN単結晶の製造方法、半導体デバイスの製造方法、並びにGaN層接合基板およびその製造方法 | |
US10655244B2 (en) | GaN substrate, method for producing GaN substrate, method for producing GaN crystal, and method for manufacturing semiconductor device | |
KR101488545B1 (ko) | Iii 족 질화물 반도체 결정의 제조 방법, iii 족 질화물 반도체 기판 및 반도체 발광 디바이스 | |
JP5950070B1 (ja) | GaN基板 | |
JP7156027B2 (ja) | 導電性C面GaN基板 | |
TWI598478B (zh) | 氮化鎵基板及氮化物半導體結晶之製造方法 | |
JP6885547B2 (ja) | GaN結晶の製造方法 | |
JP2006315947A (ja) | 窒化物半導体ウエハ及びその製造方法 | |
JP5509680B2 (ja) | Iii族窒化物結晶及びその製造方法 | |
JP5949064B2 (ja) | GaNバルク結晶 | |
WO2016136552A1 (ja) | C面GaN基板 | |
JP2010168274A (ja) | Iii族窒化物半導体の製造方法およびテンプレート基板 | |
CN113166970B (zh) | 氮化物半导体基板的制造方法和层叠结构体 | |
WO2023190969A1 (ja) | GaN結晶及びGaNウエハ | |
US20150102358A1 (en) | Nitride semiconductor multilayer structure, semiconductor light-emitting device, and method for manufacturing nitride semiconductor multilayer structure | |
JP2013075791A (ja) | Iii族窒化物半導体結晶の製造方法、iii族窒化物半導体基板およびiii族窒化物半導体結晶 | |
US20220416015A1 (en) | Semiconductor element and method for manufacturing semiconductor element | |
US11236439B2 (en) | Non-polar or semi-polar GaN wafer | |
JP2014156388A (ja) | 窒化物半導体積層構造およびそれを製造する方法 | |
JP2017088430A (ja) | GaNウエハ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23780977 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024512841 Country of ref document: JP Kind code of ref document: A |