WO2017158757A1 - Light emitting device, electronic apparatus, and method for manufacturing light emitting device - Google Patents

Light emitting device, electronic apparatus, and method for manufacturing light emitting device Download PDF

Info

Publication number
WO2017158757A1
WO2017158757A1 PCT/JP2016/058315 JP2016058315W WO2017158757A1 WO 2017158757 A1 WO2017158757 A1 WO 2017158757A1 JP 2016058315 W JP2016058315 W JP 2016058315W WO 2017158757 A1 WO2017158757 A1 WO 2017158757A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
emitting device
electrode
layer
Prior art date
Application number
PCT/JP2016/058315
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 健二
Original Assignee
パイオニア株式会社
東北パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 東北パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2016/058315 priority Critical patent/WO2017158757A1/en
Priority to JP2018505134A priority patent/JP6776329B2/en
Publication of WO2017158757A1 publication Critical patent/WO2017158757A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a light emitting device, an electronic device, and a method for manufacturing the light emitting device.
  • the substrate of the light emitting device may be curved.
  • the light emitting device described in Patent Document 1 includes a substrate, a light emitting unit, and a protective layer.
  • the substrate has flexibility, and specifically includes a metal or an alloy.
  • the substrate has a first surface and a second surface. The second surface is on the opposite side of the first surface.
  • the light emitting unit is on the first surface of the substrate.
  • the protective layer is on the first surface of the substrate and covers the light emitting unit.
  • the protective layer has a glass layer. The substrate and the glass layer are convexly curved toward the outside of the first surface.
  • a glass substrate may be used for the substrate of the light emitting device.
  • a substance that deteriorates the light emitting portion for example, water
  • the lifetime of a light emission part is long.
  • the flexibility of the glass substrate is low. For this reason, when a glass substrate is used as the substrate of the light emitting device, it is difficult to curve the substrate with a large curvature.
  • An example of a problem to be solved by the present invention is to enable a substrate to be bent with a large curvature even when a glass substrate is used as a substrate of a light emitting device.
  • the invention described in claim 1 A light emitting device attached to a mounting surface, A substrate having a first surface and a second surface opposite to the first surface, and made of glass; A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode; With The substrate has a rib mark on the first surface side, The light-emitting device is a light-emitting device attached to the attachment surface so that the substrate is convexly curved toward the outside of the second surface.
  • the invention described in claim 2 A substrate having a first surface and a second surface opposite to the first surface, and made of glass; A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode; With The substrate has a rib mark on the first surface side, The substrate is a light emitting device that is curved convexly toward the outside of the second surface.
  • the invention according to claim 8 provides: A mounting surface; A light emitting device attached to the mounting surface; With The light emitting device A substrate having a first surface and a second surface opposite to the first surface, and made of glass; A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode; With The substrate has a rib mark on the first surface side, The light-emitting device is an electronic device attached to the attachment surface so that the substrate is curved convexly toward the outside of the second surface.
  • the invention according to claim 9 is: A method of manufacturing a light emitting device attached to a mounting surface, A base material made of glass having a first surface and a second surface opposite to the first surface is prepared, and each of the first electrode, the second electrode, the first electrode, and the second electrode A step of forming a plurality of light emitting portions including an organic layer therebetween on one of the first surface and the second surface of the substrate; Forming a rib mark on the first surface side to separate the base material into a plurality of substrates so that each substrate has the light emitting part; and Including The light emitting device includes the substrate and the light emitting unit, The light-emitting device is a method for manufacturing a light-emitting device, wherein the substrate is attached to the attachment surface so that the substrate is convexly curved toward the outside of the second surface.
  • FIG. 4 is a diagram for explaining a manufacturing method of the light emitting device shown in FIGS. 1 to 3;
  • A) is a table showing the results of a bending strength test when the substrate shown in FIGS. 1 to 3 is convexly convex toward the outside of the second surface, and
  • FIGS. 5 is a table showing the results of a bending strength test in the case where the substrate shown in (1) is curved convexly toward the outside of the first surface.
  • FIG. 9 is a view for explaining a method of manufacturing the light emitting device shown in FIGS. 1 is a plan view of a light emitting device according to Example 1.
  • FIG. It is the figure which expanded (alpha) shown in FIG. It is the figure which removed the insulating layer and the partition from FIG.
  • FIG. 12 is a cross-sectional view taken along the line AA in FIG. 6 is a plan view of a light emitting device according to Example 2.
  • FIG. It It is the figure which removed the 2nd conductive layer from FIG. It is the figure which removed the organic layer from FIG. It is AA sectional drawing of FIG.
  • FIG. 1 is a plan view of a light emitting device 10 according to the first embodiment.
  • FIG. 2 is a side view of the light emitting device 10 shown in FIG.
  • FIG. 3 is a diagram illustrating the electronic apparatus according to the first embodiment.
  • the light emitting device 10 includes a substrate 100 and a light emitting region 141.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the second surface 104 is on the opposite side of the first surface 102.
  • the substrate 100 is made of glass.
  • the light emitting region 141 is on the first surface 102 of the substrate 100.
  • the light emitting region 141 includes a light emitting unit 140.
  • the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the organic layer 120 is between the first electrode 110 and the second electrode 130.
  • the substrate 100 has a rib mark 106.
  • the rib mark 106 is on the first surface 102 side. As shown in FIG. 3, the light emitting device 10 is attached to the attachment surface 22 so that the substrate 100 is curved convexly toward the outside of the second surface 104. Details will be described below.
  • the substrate 100 is a glass substrate.
  • the shape of the first surface 102 of the substrate 100 is a rectangle. Specifically, the first surface 102 has a first side 102a, a second side 102b, a third side 102c, and a fourth side 102d.
  • the second side 102b is on the opposite side of the first side 102a.
  • the third side 102c is between the first side 102a and the second side 102b.
  • the fourth side 102d is on the opposite side of the third side 102c.
  • the thickness T1 of the substrate 100 is, for example, not less than 40 ⁇ m and not more than 200 ⁇ m.
  • the substrate 100 has a rib mark 106.
  • the rib mark 106 is on the first surface 102 side of the substrate 100.
  • the rib mark 106 is located along each of the first side 102a, the second side 102b, the third side 102c, and the fourth side 102d.
  • T ⁇ b> 1 indicates the thickness of the substrate 100
  • T ⁇ b> 2 indicates the depth of the rib mark 106.
  • T2 / T1 ⁇ 100 is 20.0% or more and 30.0% or less, preferably 22.5% or more and 27.5% or less. That is, the depth of the rib mark is 20.0% to 30.0%, preferably 22.5% to 27.5% of the thickness of the substrate.
  • the light emitting area 141 is on the first surface 102. As shown in FIGS. 10 to 17 described later, the light emitting region 141 includes a light emitting unit 140. In the example shown in FIG. 1, the shape of the light emitting region 141 is a rectangle.
  • the electronic device includes a light emitting device 10 and a base material 20.
  • the light emitting device 10 illustrated in FIG. 3 is the light emitting device 10 illustrated in FIGS. 1 and 2.
  • the base material 20 has a mounting surface 22.
  • the mounting surface 22 is convexly curved toward the outside.
  • the light emitting device 10 is attached to the base material 20 so that the first surface 102 faces the attachment surface 22 with the light emitting region 141 interposed therebetween.
  • the substrate 100 is curved convexly toward the outside of the second surface 104.
  • FIG. 4 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIGS.
  • the base material 100a is prepared.
  • the base material 100 a has a first surface 102 and a second surface 104.
  • a plurality of light emitting regions 141 are formed on the first surface 102 of the substrate 100a.
  • a scribe line 510 is formed on the first surface 102 of the base material 100 a by the wheel cutter 500.
  • the rib mark 106 is formed along the scribe line 510.
  • the depth T2 (FIG. 2) of the rib mark 106 can be adjusted by the depth of the scribe line 510.
  • the base material 100a is divided along the scribe line 510 by applying, for example, a human force to the plurality of substrates 100.
  • T2 / T1 ⁇ 100 is 20.0% or more and 30.0% or less, preferably 22.5% or more and 27.5% or less.
  • T2 / T1 ⁇ 100 is small, the depth at which the force is divided is increased, so that there is a high possibility that a minute chip is generated on the second surface side of the scribe line 510. When it is bent, cracks due to the minute chips are likely to occur, which causes a decrease in the bending strength of the substrate 100.
  • a scribe line 510 is formed on the first surface 102 of the substrate 100 by the wheel cutter 500, and the possibility that the substrate 100 is divided before applying a force is increased. For this reason, the handleability of a process falls. In this way, a plurality of light emitting devices 10 (FIGS. 1 to 3) are manufactured.
  • FIG. 5A is a table showing the results of a bending strength test in the case where the substrate 100 shown in FIGS. 1 to 3 is curved convexly toward the outer side of the second surface 104.
  • FIG. 5B is a table showing the results of a bending strength test in the case where the substrate 100 shown in FIGS. 1 to 3 is curved convexly toward the outside of the first surface 102.
  • ten substrates 100 were tested.
  • the thickness of the substrate 100 was 120 ⁇ m.
  • the depth T2 of the rib mark 106 is 22.5% or more and 27.5% or less of the thickness T1 of the substrate 100.
  • a load was applied to the first surface 102 side so that the substrate 100 was curved convexly toward the outside of the second surface 104. The load when the substrate 100 was broken and the displacement of the substrate 100 when the substrate 100 was broken were measured. Based on the measured displacement, the curvature radius of the substrate 100 when the substrate 100 was cracked was calculated.
  • 10 substrates 100 were tested.
  • the thickness of the substrate 100 was 120 ⁇ m.
  • the depth T2 of the rib mark 106 is 22.5% or more and 27.5% or less of the thickness T1 of the substrate 100.
  • a load was applied to the second surface 104 side so that the substrate 100 curved convexly toward the outside of the first surface 102. The load when the substrate 100 was broken and the displacement of the substrate 100 when the substrate 100 was broken were measured. Based on the measured displacement, the curvature radius of the substrate 100 when the substrate 100 was cracked was calculated.
  • the average radius of curvature when the substrate 100 was convexly curved toward the outside of the second surface 104 was 13.89 mm.
  • the average radius of curvature when the substrate 100 is convexly convex toward the outside of the first surface 102 was 21.57 mm. From these comparisons, the bending strength of the substrate 100 is greater when the substrate 100 is curved convex toward the outside of the second surface 104 than when the substrate 100 is curved convex toward the outside of the first surface 102. It is also expensive.
  • the substrate 100 is made of glass.
  • the substrate 100 has a rib mark 106 on the first surface 102 side.
  • the light emitting device 10 is attached to the attachment surface 22 so that the substrate 100 is convexly curved toward the outside of the second surface 104.
  • the bending strength of the substrate 100 is high when the substrate 100 is curved convexly toward the outside of the second surface 104.
  • substrate 100 can be curved with a big curvature.
  • the substrate 100 may not be curved as shown in FIG. 2, or may be curved as shown in FIG.
  • FIG. 6 is a plan view of the light emitting device 10 according to the second embodiment, and corresponds to FIG. 1 of the first embodiment.
  • FIG. 7 is a side view of the light emitting device 10 shown in FIG. 6 and corresponds to FIG. 2 of the first embodiment.
  • FIG. 8 is a diagram illustrating an electronic apparatus according to the second embodiment, and corresponds to FIG. 3 of the first embodiment.
  • the light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
  • the light emitting region 141 may be on the second surface 104.
  • the substrate 100 has a rib mark 106.
  • the rib mark 106 is on the first surface 102 side.
  • the light emitting device 10 is attached to the base material 20 so that the light emitting region 141 faces the attachment surface 22 with the substrate 100 interposed therebetween. Thereby, the substrate 100 is curved convexly toward the outside of the second surface 104.
  • FIG. 9 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIGS.
  • a plurality of light emitting regions 141 are formed on the second surface 104 of the substrate 100a.
  • a scribe line 510 is formed on the first surface 102 of the substrate 100 by the wheel cutter 500.
  • the rib mark 106 is formed along the scribe line 510.
  • the depth T2 of the rib mark 106 (FIG. 7) can be adjusted by the depth of the scribe line 510.
  • the base material 100 a is separated into a plurality of substrates 100 along the scribe line 510. In this way, a plurality of light emitting devices 10 (FIGS. 6 to 8) are manufactured.
  • the substrate 100 can be bent with a large curvature, as in the first embodiment.
  • FIG. 10 is a plan view of the light emitting device 10 according to the first embodiment.
  • FIG. 11 is an enlarged view of ⁇ shown in FIG. 12 is a diagram in which the insulating layer 150 and the partition wall 160 are removed from FIG. 13 is a cross-sectional view taken along the line AA in FIG.
  • the light emitting device 10 is a display.
  • the light emitting region 141 is on the first surface 102 of the substrate 100.
  • the light emitting device 10 may be either bottom emission or top emission.
  • the light emitting device 10 is top emission, light from the plurality of light emitting units 140 is emitted from the second surface 104 of the substrate 100.
  • the light emitting device 10 is top emission, the light from the plurality of light emitting units 140 is emitted from above the first surface 102 of the substrate 100.
  • the light emitting device 10 includes a substrate 100, a light emitting region 141 (a plurality of light emitting portions 140), an insulating layer 150, a plurality of partition walls 160, a covering layer 170, a plurality of organic layers 220, a plurality of second conductive layers 230, and a plurality of conductive layers. 302 (first terminal 112, first wiring 114 and first conductive layer 210) and a plurality of conductive layers 304 (second terminal 132 and second wiring 134).
  • each conductive layer 302 has a first terminal 112, a first wiring 114, and a first conductive layer 210.
  • the first terminal 112 is one end of the conductive layer 302.
  • the first conductive layer 210 is a part of the conductive layer 302.
  • the first wiring 114 is a part of the conductive layer 302 and is between the first terminal 112 and the first conductive layer 210.
  • Each conductive layer 304 has a second terminal 132 and a second wiring 134.
  • the second terminal 132 is one end of the conductive layer 304.
  • the second wiring 134 is a part of the conductive layer 304.
  • a potential is applied to the first terminal 112.
  • the potential of the first terminal 112 is applied to the first conductive layer 210 through the first wiring 114.
  • a potential is applied to the second terminal 132.
  • the potential of the second terminal 132 is applied to the second conductive layer 230 through the second wiring 134.
  • the electric resistance of the conductive layer 180 is lower than the electric resistance of the conductive layer 302 and the electric resistance of the conductive layer 304. Thereby, a voltage drop between the first terminal 112 and the first conductive layer 210 and a voltage drop between the second terminal 132 and the second conductive layer 230 can be suppressed.
  • the conductive layer 180 is positioned so as not to overlap the light emitting unit 140. For this reason, the conductive layer 180 does not need to have translucency.
  • the conductive layer 180 is made of, for example, Al or Ag.
  • the conductive layer 180 includes, for example, a Mo alloy layer on the top surface of the conductive layer 302 or the top surface of the conductive layer 304, an Al alloy layer on the Mo alloy layer, and a Mo alloy layer on the Al alloy layer. Also good.
  • the plurality of first conductive layers 210 are arranged in the first direction (Y direction in the figure).
  • Each first conductive layer 210 extends in a second direction (specifically, the X direction in the drawing) that intersects the first direction (specifically, orthogonal to the first direction).
  • the insulating layer 150 is on the first surface 102 and the first conductive layer 210 of the substrate 100.
  • the insulating layer 150 includes a photosensitive resin (for example, polyimide).
  • the insulating layer 150 has a plurality of openings 152.
  • the plurality of openings 152 are arranged in an m ⁇ n matrix including m rows arranged in the second direction (X direction in the drawing) and n columns arranged in the first direction (Y direction in the drawing). Yes.
  • the planar shape of each opening 152 is a rectangle. As shown in FIG.
  • each opening 152 in each opening 152, a part of the first conductive layer 210 (first electrode 110) and a part of the second conductive layer 230 (second electrode 130) overlap each other. Thereby, the region surrounded by the edge of the opening 152 functions as the light emitting unit 140. That is, the insulating layer 150 defines the light emitting unit 140.
  • the insulating layer 150 has an opening 154.
  • the second conductive layer 230 is connected to the second wiring 134 through the opening 154.
  • the partition 160 is on the insulating layer 150.
  • the partition 160 includes a photosensitive resin (for example, polyimide).
  • the plurality of partition walls 160 are arranged in the second direction (X direction in the figure).
  • Each partition wall 160 extends in the first direction (Y direction in the figure).
  • the width of the upper surface of the partition wall 160 is wider than the width of the lower surface of the partition wall 160 in the cross section perpendicular to the first direction (the Y direction in FIGS. 10 to 12). More specifically, in the cross section perpendicular to the first direction (the Y direction in FIGS. 10 to 12), the partition wall 160 has a first side surface and a second side surface.
  • the second side surface is on the opposite side of the first inner surface.
  • the first side surface of the partition wall 160 is inclined so that the upper end of the first side surface is located outside the lower end of the first side surface.
  • the second side surface of the partition wall 160 is inclined so that the upper end of the second side surface is located outside the lower end of the second side surface.
  • the organic layer 220 is on the first surface 102 of the substrate 100, on the first conductive layer 210, and on the insulating layer 150.
  • the plurality of organic layers 220 are arranged in the second direction (the X direction in FIGS. 10 to 12).
  • the organic layers 220 adjacent to each other are opposed to each other with the partition wall 160 interposed therebetween.
  • a part of the organic layer 220 overlaps a part of the first conductive layer 210 (first electrode 110). This part of the organic layer 220 functions as the organic layer 120 of the light emitting unit 140.
  • the organic layer 222 is on the upper surface of the partition wall 160.
  • the material included in the organic layer 222 is the same as the material included in the organic layer 220.
  • the organic layer 220 and the organic layer 222 are formed by depositing an organic layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the organic layer is separated into the organic layer 220 and the organic layer 222 by the partition 160.
  • the organic layer 220 has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the total thickness of the organic layer 220 is, for example, not less than 50 nm and not more than 200 nm. Holes move in the hole injection layer and the hole transport layer.
  • the thickness of the hole injection layer is, for example, not less than 50 nm and not more than 100 nm.
  • the thickness of the hole transport layer is thinner than the thickness of the hole injection layer.
  • the thickness of the hole transport layer is, for example, 20 nm or more and 50 nm or less.
  • the color of light from the light emitting layer is, for example, red, green, or blue.
  • electrons are transported.
  • the thickness of the electron transport layer is, for example, 5 nm or more and 100 nm or less.
  • the electron injection layer is made of an alkali metal compound (for example, LiF), a metal oxide (for example, aluminum oxide) or a metal complex (for example, lithium 8-hydroxyquinolate (Liq)).
  • the thickness of the electron injection layer is, for example, not less than 0.1 nm and not more than 10 nm.
  • One of the hole injection layer and the hole transport layer may be omitted.
  • One of the electron transport layer and the electron injection layer may be omitted.
  • the hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are formed by, for example, a coating process. Specifically, for example, the hole injection layer, the hole transport layer, and the light emitting layer are formed by a coating process.
  • the electron transport layer and the electron injection layer are formed by vapor deposition.
  • each second conductive layer 230 is on the organic layer 120. As shown in FIG. 11, the plurality of second conductive layers 230 are arranged in the second direction (X direction in the figure). Each second conductive layer 230 extends in the first direction (Y direction in the figure). The second conductive layers 230 adjacent to each other face each other across the partition wall 160. As shown in FIG. 13, a part of the second conductive layer 230 overlaps a part of the first conductive layer 210 (first electrode 110). This part of the second conductive layer 230 functions as the second electrode 130 of the light emitting unit 140.
  • the second conductive layer 232 is on the upper surface of the partition wall 160.
  • the material included in the second conductive layer 232 is the same as the material included in the second conductive layer 230.
  • the second conductive layer 230 and the second conductive layer 232 are formed by depositing a conductive layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the conductive layer is separated into the second conductive layer 230 and the second conductive layer 232 by the partition wall 160.
  • the first conductive layer 210 is a conductive layer having translucency. In this case, the second conductive layer 230 does not need to have translucency.
  • the second conductive layer 230 is a conductive layer having translucency. In this case, the first conductive layer 210 does not need to have translucency.
  • the first conductive layer 210 and the second conductive layer 230 are light-transmitting conductive layers
  • the first conductive layer 210 and the second conductive layer 230 include, for example, a metal oxide, and more specifically, for example, It contains ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide) or ZnO (Zinc Oxide).
  • the first conductive layer 210 and the second conductive layer 230 are non-translucent conductive layers
  • the first conductive layer 210 and the second conductive layer 230 include, for example, Al, Au, Ag, Pt, Mg, Sn, A metal selected from the first group consisting of Zn and In or an alloy of a metal selected from the first group is included.
  • the covering layer 170 covers the second conductive layer 230 and the plurality of partition walls 160. Thereby, the coating layer 170 seals the plurality of light emitting units 140 and the plurality of partition walls 160.
  • the covering layer 170 includes, for example, an insulating material, more specifically, for example, a metal oxide.
  • the covering layer 170 includes, for example, a titanium oxide layer and an aluminum oxide layer. In this case, the aluminum oxide layer is on the titanium oxide layer or below the titanium oxide layer.
  • the thickness of the covering layer 170 is, for example, not less than 50 nm and not more than 300 nm.
  • the covering layer 200 is formed by, for example, ALD (Atomic Layer Deposition).
  • the covering layer 170 may be formed by, for example, CVD (Chemical Vapor Deposition) or sputtering.
  • the covering layer 170 includes, for example, a SiO 2 layer or a SiN layer.
  • the film thickness of the coating layer 170 is, for example, not less than 10 nm and not more than 1000 nm.
  • the covering layer 170 may be covered with a resin layer.
  • the resin layer is provided to protect the covering layer 170.
  • the resin layer contains, for example, an epoxy resin or an acrylic resin.
  • the substrate 100 has the rib mark 106 on the first surface 102 side.
  • the light emitting region 141 (light emitting unit 140) is on the first surface 102 of the substrate 100.
  • the light emitting device 10 and the second surface 104 are attached to the attachment surface 22 (FIG. 3) so as to bend outwardly from the first side 102a to the second side 102b. For this reason, the board
  • the light emitting region 141 (light emitting unit 140) may be on the second surface 104 of the substrate 100.
  • FIG. 14 is a plan view of the light emitting device 10 according to the second embodiment.
  • FIG. 15 is a diagram in which the second conductive layer 230 is removed from FIG.
  • FIG. 16 is a diagram in which the organic layer 220 is removed from FIG. 17 is a cross-sectional view taken along the line AA in FIG.
  • the light emitting device 10 is a light emitting panel.
  • the light emitting region 141 (light emitting unit 140) is on the first surface 102 of the substrate 100.
  • the light emitting device 10 includes a substrate 100, a second terminal 132, an organic layer 220, a second conductive layer 230, and a conductive layer 302 (first electrode 110 and first terminal 112).
  • the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the organic layer 120 is on the first electrode 110.
  • the second electrode 130 is on the organic layer 120.
  • the first electrode 110 is a part of the conductive layer 302.
  • the first electrode 110 functions as an anode of the light emitting unit 140.
  • the conductive layer 302 is a transparent electrode having optical transparency. Light from the organic layer 120 is emitted to the outside through the first electrode 110.
  • the conductive layer 302 is made of a material containing metal, for example, a metal oxide, more specifically, for example, ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
  • the organic layer 120 is a part of the organic layer 220, specifically, a portion overlapping the first electrode 110.
  • the organic layer 220 has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • the second electrode 130 is a part of the second conductive layer 230, specifically, a part overlapping the first electrode 110.
  • the second electrode 130 functions as a cathode of the light emitting unit 140.
  • the second conductive layer 230 includes a metal layer made of a metal selected from the first group consisting of Al, Au, Ag, Pt, Sn, Zn, and In, or an alloy of a metal selected from the first group. It is out.
  • first terminals 112 and two second terminals 132 there are two first terminals 112 and two second terminals 132 on the substrate 100.
  • the two first terminals 112 are part of the conductive layer 302 and are on opposite sides of the first electrode 110.
  • One first terminal 112 is positioned along the third side 102c, and the other first terminal 112 is positioned along the fourth side 102d.
  • the two second terminals 132 are on opposite sides of the conductive layer 302.
  • One second terminal 132 is positioned along the first side 102a, and the other second terminal 132 is positioned along the second side 102b.
  • the first terminal 112 and the second terminal 132 are provided to supply power to the light emitting unit 140.
  • a conductive member such as a lead terminal or a bonding wire is connected to the first terminal 112 and the second terminal 132.
  • the substrate 100 has the rib mark 106 on the first surface 102 side.
  • the light emitting region 141 (light emitting unit 140) is on the first surface 102 of the substrate 100.
  • the light emitting device 10 and the second surface 104 are attached to the attachment surface 22 (FIG. 3) so as to bend outwardly from the first side 102a to the second side 102b. For this reason, the board
  • the light emitting region 141 (light emitting unit 140) may be on the second surface 104 of the substrate 100.

Abstract

A light emitting device (10) is provided with a substrate (100) and a light emitting region (141). The substrate (100) has a first surface (102) and a second surface (104). The second surface (104) is on the reverse side of the first surface (102). The substrate (100) is formed of glass. The light emitting region (141) is on the first surface (102) of the substrate (100). The substrate (100) has a rib mark (106). The rib mark (106) is on the first surface (102) side. The light emitting device (10) is attached to an attaching surface (22) such that the substrate (100) is bent to protrude toward the outer side of the second surface (104).

Description

発光装置、電子機器及び発光装置の製造方法LIGHT EMITTING DEVICE, ELECTRONIC DEVICE, AND METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE
 本発明は、発光装置、電子機器及び発光装置の製造方法に関する。 The present invention relates to a light emitting device, an electronic device, and a method for manufacturing the light emitting device.
 湾曲した取付面に発光装置を取り付けるため、発光装置の基板を湾曲させることがある。例えば、特許文献1に記載の発光装置は、基板、発光部及び保護層を有している。基板は、可撓性を有し、具体的には金属又は合金を含んでいる。基板は、第1面及び第2面を有している。第2面は、第1面の反対側にある。発光部は、基板の第1面上にある。保護層は、基板の第1面上にあり、発光部を覆っている。保護層は、ガラス層を有している。基板及びガラス層は、第1面の外側に向かって凸に湾曲している。 In order to attach the light emitting device to the curved mounting surface, the substrate of the light emitting device may be curved. For example, the light emitting device described in Patent Document 1 includes a substrate, a light emitting unit, and a protective layer. The substrate has flexibility, and specifically includes a metal or an alloy. The substrate has a first surface and a second surface. The second surface is on the opposite side of the first surface. The light emitting unit is on the first surface of the substrate. The protective layer is on the first surface of the substrate and covers the light emitting unit. The protective layer has a glass layer. The substrate and the glass layer are convexly curved toward the outside of the first surface.
特開2013-134808号公報JP 2013-134808 A
 発光装置の基板にガラス基板を用いることがある。発光部を劣化させる物質(例えば、水)は、ガラス基板を透過しにくい。このため、ガラス基板を有する発光装置では、発光部の寿命が長い。一方、ガラス基板の可撓性は低い。このため、発光装置の基板にガラス基板を用いた場合、基板を大きな曲率で湾曲させることが難しい。 A glass substrate may be used for the substrate of the light emitting device. A substance that deteriorates the light emitting portion (for example, water) is difficult to pass through the glass substrate. For this reason, in the light-emitting device which has a glass substrate, the lifetime of a light emission part is long. On the other hand, the flexibility of the glass substrate is low. For this reason, when a glass substrate is used as the substrate of the light emitting device, it is difficult to curve the substrate with a large curvature.
 本発明が解決しようとする課題としては、発光装置の基板にガラス基板を用いても、基板を大きな曲率で湾曲させることを可能にすることが一例として挙げられる。 An example of a problem to be solved by the present invention is to enable a substrate to be bent with a large curvature even when a glass substrate is used as a substrate of a light emitting device.
 請求項1に記載の発明は、
 取付面に取り付けられる発光装置であって、
 第1面及び前記第1面とは反対側の第2面を有し、ガラスからなる基板と、
 前記第1面上又は前記第2面上の一方にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む発光部と、
を備え、
 前記基板は、前記第1面側にリブマークを有し、
 前記発光装置は、前記基板が前記第2面の外側に向かって凸に湾曲するように前記取付面に取り付けられる発光装置である。
The invention described in claim 1
A light emitting device attached to a mounting surface,
A substrate having a first surface and a second surface opposite to the first surface, and made of glass;
A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
With
The substrate has a rib mark on the first surface side,
The light-emitting device is a light-emitting device attached to the attachment surface so that the substrate is convexly curved toward the outside of the second surface.
 請求項2に記載の発明は、
 第1面及び前記第1面とは反対側の第2面を有し、ガラスからなる基板と、
 前記第1面上又は前記第2面上の一方にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む発光部と、
を備え、
 前記基板は、前記第1面側にリブマークを有し、
 前記基板は、前記第2面の外側に向かって凸に湾曲している発光装置である。
The invention described in claim 2
A substrate having a first surface and a second surface opposite to the first surface, and made of glass;
A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
With
The substrate has a rib mark on the first surface side,
The substrate is a light emitting device that is curved convexly toward the outside of the second surface.
 請求項8に記載の発明は、
 取付面と、
 前記取付面に取り付けられた発光装置と、
を備え、
 前記発光装置は、
  第1面及び前記第1面とは反対側の第2面を有し、ガラスからなる基板と、
  前記第1面上又は前記第2面上の一方にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む発光部と、
を備え、
 前記基板は、前記第1面側にリブマークを有し、
 前記発光装置は、前記基板が前記第2面の外側に向かって凸に湾曲するように前記取付面に取り付けられている電子機器である。
The invention according to claim 8 provides:
A mounting surface;
A light emitting device attached to the mounting surface;
With
The light emitting device
A substrate having a first surface and a second surface opposite to the first surface, and made of glass;
A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
With
The substrate has a rib mark on the first surface side,
The light-emitting device is an electronic device attached to the attachment surface so that the substrate is curved convexly toward the outside of the second surface.
 請求項9に記載の発明は、
 取付面に取り付けられる発光装置の製造方法であって、
 第1面及び前記第1面とは反対側の第2面を有していてガラスからなる基材を準備し、各々が第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む複数の発光部を前記基材の前記第1面上又は前記第2面上の一方に形成する工程と、
 前記第1面側にリブマークを形成することにより、前記基材を複数の基板に分離して各基板が前記発光部を有するようにする工程と、
を含み、
 前記発光装置は、前記基板及び前記発光部を備え、
 前記発光装置は、前記基板が前記第2面の外側に向かって凸に湾曲するように前記取付面に取り付けられる、発光装置の製造方法である。
The invention according to claim 9 is:
A method of manufacturing a light emitting device attached to a mounting surface,
A base material made of glass having a first surface and a second surface opposite to the first surface is prepared, and each of the first electrode, the second electrode, the first electrode, and the second electrode A step of forming a plurality of light emitting portions including an organic layer therebetween on one of the first surface and the second surface of the substrate;
Forming a rib mark on the first surface side to separate the base material into a plurality of substrates so that each substrate has the light emitting part; and
Including
The light emitting device includes the substrate and the light emitting unit,
The light-emitting device is a method for manufacturing a light-emitting device, wherein the substrate is attached to the attachment surface so that the substrate is convexly curved toward the outside of the second surface.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置の平面図である。It is a top view of the light-emitting device concerning a 1st embodiment. 図1に示した発光装置の側面図である。It is a side view of the light-emitting device shown in FIG. 第1の実施形態に係る電子機器を示す図である。It is a figure which shows the electronic device which concerns on 1st Embodiment. 図1~図3に示した発光装置の製造方法を説明するための図である。FIG. 4 is a diagram for explaining a manufacturing method of the light emitting device shown in FIGS. 1 to 3; (a)は、図1~図3に示した基板が第2面の外側に向かって凸に湾曲した場合の曲げ強度試験の結果を示す表であり、(b)は、図1~図3に示した基板が第1面の外側に向かって凸に湾曲した場合の曲げ強度試験の結果を示す表である。(A) is a table showing the results of a bending strength test when the substrate shown in FIGS. 1 to 3 is convexly convex toward the outside of the second surface, and (b) is a table showing FIGS. 5 is a table showing the results of a bending strength test in the case where the substrate shown in (1) is curved convexly toward the outside of the first surface. 第2の実施形態に係る発光装置の平面図である。It is a top view of the light-emitting device concerning a 2nd embodiment. 図6に示した発光装置10の側面図である。It is a side view of the light-emitting device 10 shown in FIG. 第2の実施形態に係る電子機器を示す図である。It is a figure which shows the electronic device which concerns on 2nd Embodiment. 図6~図8に示した発光装置の製造方法を説明するための図である。FIG. 9 is a view for explaining a method of manufacturing the light emitting device shown in FIGS. 実施例1に係る発光装置の平面図である。1 is a plan view of a light emitting device according to Example 1. FIG. 図10に示したαを拡大した図である。It is the figure which expanded (alpha) shown in FIG. 図11から絶縁層及び隔壁を取り除いた図である。It is the figure which removed the insulating layer and the partition from FIG. 図11のA-A断面図である。FIG. 12 is a cross-sectional view taken along the line AA in FIG. 実施例2に係る発光装置の平面図である。6 is a plan view of a light emitting device according to Example 2. FIG. 図14から第2導電層を取り除いた図である。It is the figure which removed the 2nd conductive layer from FIG. 図15から有機層を取り除いた図である。It is the figure which removed the organic layer from FIG. 図14のA-A断面図である。It is AA sectional drawing of FIG.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
(第1の実施形態)
 図1は、第1の実施形態に係る発光装置10の平面図である。図2は、図1に示した発光装置10の側面図である。図3は、第1の実施形態に係る電子機器を示す図である。発光装置10は、基板100及び発光領域141を備えている。基板100は、第1面102及び第2面104を有している。第2面104は、第1面102の反対側にある。基板100は、ガラスからなる。図1及び図2に示す例において、発光領域141は、基板100の第1面102上にある。後述する図10~図17に示すように、発光領域141は、発光部140を含んでいる。発光部140は、第1電極110、有機層120及び第2電極130を有している。有機層120は、第1電極110と第2電極130の間にある。基板100は、リブマーク106を有している。リブマーク106は、第1面102側にある。図3に示すように、発光装置10は、基板100が第2面104の外側に向かって凸に湾曲するように取付面22に取り付けられる。以下、詳細に説明する。
(First embodiment)
FIG. 1 is a plan view of a light emitting device 10 according to the first embodiment. FIG. 2 is a side view of the light emitting device 10 shown in FIG. FIG. 3 is a diagram illustrating the electronic apparatus according to the first embodiment. The light emitting device 10 includes a substrate 100 and a light emitting region 141. The substrate 100 has a first surface 102 and a second surface 104. The second surface 104 is on the opposite side of the first surface 102. The substrate 100 is made of glass. In the example shown in FIGS. 1 and 2, the light emitting region 141 is on the first surface 102 of the substrate 100. As shown in FIGS. 10 to 17 described later, the light emitting region 141 includes a light emitting unit 140. The light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130. The organic layer 120 is between the first electrode 110 and the second electrode 130. The substrate 100 has a rib mark 106. The rib mark 106 is on the first surface 102 side. As shown in FIG. 3, the light emitting device 10 is attached to the attachment surface 22 so that the substrate 100 is curved convexly toward the outside of the second surface 104. Details will be described below.
 基板100は、ガラス基板である。基板100の第1面102の形状は、矩形である。具体的には、第1面102は、第1辺102a、第2辺102b、第3辺102c及び第4辺102dを有している。第2辺102bは、第1辺102aの反対側にある。第3辺102cは、第1辺102aと第2辺102bの間にある。第4辺102dは、第3辺102cの反対側にある。基板100の厚さT1は、例えば40μm以上200μm以下である。 The substrate 100 is a glass substrate. The shape of the first surface 102 of the substrate 100 is a rectangle. Specifically, the first surface 102 has a first side 102a, a second side 102b, a third side 102c, and a fourth side 102d. The second side 102b is on the opposite side of the first side 102a. The third side 102c is between the first side 102a and the second side 102b. The fourth side 102d is on the opposite side of the third side 102c. The thickness T1 of the substrate 100 is, for example, not less than 40 μm and not more than 200 μm.
 基板100は、リブマーク106を有している。リブマーク106は、基板100の第1面102側にある。リブマーク106は、第1辺102a、第2辺102b、第3辺102c及び第4辺102dの各辺に沿って位置している。図2において、T1は、基板100の厚さを示し、T2は、リブマーク106の深さを示す。T2/T1×100は、20.0%以上30.0%以下、好ましくは22.5%以上27.5%以下である。即ち、前記リブマークの深さは、前記基板の厚さの20.0%以上30.0%以下、好ましくは22.5%以上27.5%以下である。 The substrate 100 has a rib mark 106. The rib mark 106 is on the first surface 102 side of the substrate 100. The rib mark 106 is located along each of the first side 102a, the second side 102b, the third side 102c, and the fourth side 102d. In FIG. 2, T <b> 1 indicates the thickness of the substrate 100, and T <b> 2 indicates the depth of the rib mark 106. T2 / T1 × 100 is 20.0% or more and 30.0% or less, preferably 22.5% or more and 27.5% or less. That is, the depth of the rib mark is 20.0% to 30.0%, preferably 22.5% to 27.5% of the thickness of the substrate.
 発光領域141は、第1面102上にある。後述する図10~図17に示すように、発光領域141は、発光部140を含んでいる。図1に示す例において、発光領域141の形状は、矩形である。 The light emitting area 141 is on the first surface 102. As shown in FIGS. 10 to 17 described later, the light emitting region 141 includes a light emitting unit 140. In the example shown in FIG. 1, the shape of the light emitting region 141 is a rectangle.
 図3に示すように、電子機器は、発光装置10及び基材20を備えている。図3に示す発光装置10は、図1及び図2に示した発光装置10である。基材20は、取付面22を有している。取付面22は、外側に向けて凸に湾曲している。発光装置10は、第1面102が発光領域141を挟んで取付面22に対向するように基材20に取り付けられている。これにより、基板100は、第2面104の外側に向かって凸に湾曲する。 As shown in FIG. 3, the electronic device includes a light emitting device 10 and a base material 20. The light emitting device 10 illustrated in FIG. 3 is the light emitting device 10 illustrated in FIGS. 1 and 2. The base material 20 has a mounting surface 22. The mounting surface 22 is convexly curved toward the outside. The light emitting device 10 is attached to the base material 20 so that the first surface 102 faces the attachment surface 22 with the light emitting region 141 interposed therebetween. As a result, the substrate 100 is curved convexly toward the outside of the second surface 104.
 図4は、図1~図3に示した発光装置10の製造方法を説明するための図である。まず、基材100aを準備する。基材100aは、第1面102及び第2面104を有している。次いで、基材100aの第1面102上に複数の発光領域141を形成する。次いで、図4に示すように、ホイールカッタ500により基材100aの第1面102にスクライブライン510を形成する。これにより、スクライブライン510に沿ってリブマーク106が形成される。リブマーク106の深さT2(図2)は、スクライブライン510の深さによって調整することができる。次いで、スクライブライン510に沿って、基材100aを複数の基板100に例えば人による力を加えることで分断する。T2/T1×100は、20.0%以上30.0%以下、好ましくは22.5%以上27.5%以下である。T2/T1×100が小さい場合、力を加えて分断する深さが大きくなるため、スクライブライン510の第2面側に微小な欠けが生じる可能性が高くなる。湾曲した場合、この微小な欠けを起因とした割れが発生しやすくなり基板100の曲げ強度の低下の要因となる。また、T2/T1×100が大きい場合はホイールカッタ500により基板100の第1面102にスクライブライン510を形成し、力を加える前に基板100が分断する可能性が高くなる。このため、工程のハンドリング性が低下する。このようにして、複数の発光装置10(図1~図3)が製造される。 FIG. 4 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIGS. First, the base material 100a is prepared. The base material 100 a has a first surface 102 and a second surface 104. Next, a plurality of light emitting regions 141 are formed on the first surface 102 of the substrate 100a. Next, as shown in FIG. 4, a scribe line 510 is formed on the first surface 102 of the base material 100 a by the wheel cutter 500. As a result, the rib mark 106 is formed along the scribe line 510. The depth T2 (FIG. 2) of the rib mark 106 can be adjusted by the depth of the scribe line 510. Next, the base material 100a is divided along the scribe line 510 by applying, for example, a human force to the plurality of substrates 100. T2 / T1 × 100 is 20.0% or more and 30.0% or less, preferably 22.5% or more and 27.5% or less. When T2 / T1 × 100 is small, the depth at which the force is divided is increased, so that there is a high possibility that a minute chip is generated on the second surface side of the scribe line 510. When it is bent, cracks due to the minute chips are likely to occur, which causes a decrease in the bending strength of the substrate 100. Further, when T2 / T1 × 100 is large, a scribe line 510 is formed on the first surface 102 of the substrate 100 by the wheel cutter 500, and the possibility that the substrate 100 is divided before applying a force is increased. For this reason, the handleability of a process falls. In this way, a plurality of light emitting devices 10 (FIGS. 1 to 3) are manufactured.
 図5(a)は、図1~図3に示した基板100が第2面104の外側に向かって凸に湾曲した場合の曲げ強度試験の結果を示す表である。図5(b)は、図1~図3に示した基板100が第1面102の外側に向かって凸に湾曲した場合の曲げ強度試験の結果を示す表である。 FIG. 5A is a table showing the results of a bending strength test in the case where the substrate 100 shown in FIGS. 1 to 3 is curved convexly toward the outer side of the second surface 104. FIG. 5B is a table showing the results of a bending strength test in the case where the substrate 100 shown in FIGS. 1 to 3 is curved convexly toward the outside of the first surface 102.
 図5(a)では、10個の基板100(試験番号1~10)について試験した。基板100の厚さは、120μmとした。いずれの試験番号においても、リブマーク106の深さT2は、基板100の厚さT1の22.5%以上27.5%以下とした。各試験番号において、第1面102側に荷重を与えて基板100が第2面104の外側に向かって凸に湾曲するようにした。基板100が割れた際の荷重及び基板100が割れた際の基板100の変位を測定した。測定した変位に基づいて、基板100が割れた際の基板100の曲率半径を算出した。 In FIG. 5A, ten substrates 100 (test numbers 1 to 10) were tested. The thickness of the substrate 100 was 120 μm. In any test number, the depth T2 of the rib mark 106 is 22.5% or more and 27.5% or less of the thickness T1 of the substrate 100. In each test number, a load was applied to the first surface 102 side so that the substrate 100 was curved convexly toward the outside of the second surface 104. The load when the substrate 100 was broken and the displacement of the substrate 100 when the substrate 100 was broken were measured. Based on the measured displacement, the curvature radius of the substrate 100 when the substrate 100 was cracked was calculated.
 図5(b)では、10個の基板100(試験番号1~10)について試験した。基板100の厚さは、120μmとした。いずれの試験番号においても、リブマーク106の深さT2は、基板100の厚さT1の22.5%以上27.5%以下とした。各試験番号において、第2面104側に荷重を与えて基板100が第1面102の外側に向かって凸に湾曲するようにした。基板100が割れた際の荷重及び基板100が割れた際の基板100の変位を測定した。測定した変位に基づいて、基板100が割れた際の基板100の曲率半径を算出した。 In FIG. 5B, 10 substrates 100 (test numbers 1 to 10) were tested. The thickness of the substrate 100 was 120 μm. In any test number, the depth T2 of the rib mark 106 is 22.5% or more and 27.5% or less of the thickness T1 of the substrate 100. In each test number, a load was applied to the second surface 104 side so that the substrate 100 curved convexly toward the outside of the first surface 102. The load when the substrate 100 was broken and the displacement of the substrate 100 when the substrate 100 was broken were measured. Based on the measured displacement, the curvature radius of the substrate 100 when the substrate 100 was cracked was calculated.
 図5(a)に示すように、基板100が第2面104の外側に向かって凸に湾曲した場合の曲率半径の平均は、13.89mmであった。これに対して、図5(b)に示すように、基板100が第1面102の外側に向かって凸に湾曲した場合の曲率半径の平均は、21.57mmであった。これらの比較より、基板100の曲げ強度は、基板100が第2面104の外側に向かって凸に湾曲した場合の方が基板100が第1面102の外側に向かって凸に湾曲した場合よりも高いといえる。 As shown in FIG. 5A, the average radius of curvature when the substrate 100 was convexly curved toward the outside of the second surface 104 was 13.89 mm. On the other hand, as shown in FIG. 5B, the average radius of curvature when the substrate 100 is convexly convex toward the outside of the first surface 102 was 21.57 mm. From these comparisons, the bending strength of the substrate 100 is greater when the substrate 100 is curved convex toward the outside of the second surface 104 than when the substrate 100 is curved convex toward the outside of the first surface 102. It is also expensive.
 以上、本実施形態によれば、基板100は、ガラスからなる。基板100は、第1面102側にリブマーク106を有している。発光装置10は、基板100が第2面104の外側に向かって凸に湾曲するように取付面22に取り付けられる。図5に示すように、基板100の曲げ強度は、基板100が第2面104の外側に向かって凸に湾曲した場合に高いものとなる。このため、本実施形態においては、基板100を大きな曲率で湾曲させることができる。 As described above, according to the present embodiment, the substrate 100 is made of glass. The substrate 100 has a rib mark 106 on the first surface 102 side. The light emitting device 10 is attached to the attachment surface 22 so that the substrate 100 is convexly curved toward the outside of the second surface 104. As shown in FIG. 5, the bending strength of the substrate 100 is high when the substrate 100 is curved convexly toward the outside of the second surface 104. For this reason, in this embodiment, the board | substrate 100 can be curved with a big curvature.
 なお、基板100は、発光装置10が取付面22に取り付けられていない場合、図2に示すように湾曲していなくてもよいし、又は図3に示すように湾曲していてもよい。 When the light emitting device 10 is not attached to the attachment surface 22, the substrate 100 may not be curved as shown in FIG. 2, or may be curved as shown in FIG.
(第2の実施形態)
 図6は、第2の実施形態に係る発光装置10の平面図であり、第1の実施形態の図1に対応する。図7は、図6に示した発光装置10の側面図であり、第1の実施形態の図2に対応する。図8は、第2の実施形態に係る電子機器を示す図であり、第1の実施形態の図3に対応する。本実施形態に係る発光装置10は、以下の点を除いて、第1の実施形態に係る発光装置10と同様である。
(Second Embodiment)
FIG. 6 is a plan view of the light emitting device 10 according to the second embodiment, and corresponds to FIG. 1 of the first embodiment. FIG. 7 is a side view of the light emitting device 10 shown in FIG. 6 and corresponds to FIG. 2 of the first embodiment. FIG. 8 is a diagram illustrating an electronic apparatus according to the second embodiment, and corresponds to FIG. 3 of the first embodiment. The light emitting device 10 according to the present embodiment is the same as the light emitting device 10 according to the first embodiment except for the following points.
 図6~図8に示すように、発光領域141は、第2面104上にあってもよい。基板100は、リブマーク106を有している。リブマーク106は、第1面102側にある。図8に示すように、発光装置10は、発光領域141が基板100を挟んで取付面22に対向するように基材20に取り付けられている。これにより、基板100は、第2面104の外側に向かって凸に湾曲している。 As shown in FIGS. 6 to 8, the light emitting region 141 may be on the second surface 104. The substrate 100 has a rib mark 106. The rib mark 106 is on the first surface 102 side. As shown in FIG. 8, the light emitting device 10 is attached to the base material 20 so that the light emitting region 141 faces the attachment surface 22 with the substrate 100 interposed therebetween. Thereby, the substrate 100 is curved convexly toward the outside of the second surface 104.
 図9は、図6~図8に示した発光装置10の製造方法を説明するための図である。基材100aの第2面104上に複数の発光領域141を形成する。次いで、図4に示すように、ホイールカッタ500により基板100の第1面102にスクライブライン510を形成する。これにより、スクライブライン510に沿ってリブマーク106が形成される。リブマーク106の深さT2(図7)は、スクライブライン510の深さによって調整することができる。次いで、スクライブライン510に沿って、基材100aを複数の基板100に分離する。このようにして、複数の発光装置10(図6~図8)が製造される。 FIG. 9 is a diagram for explaining a method of manufacturing the light emitting device 10 shown in FIGS. A plurality of light emitting regions 141 are formed on the second surface 104 of the substrate 100a. Next, as shown in FIG. 4, a scribe line 510 is formed on the first surface 102 of the substrate 100 by the wheel cutter 500. As a result, the rib mark 106 is formed along the scribe line 510. The depth T2 of the rib mark 106 (FIG. 7) can be adjusted by the depth of the scribe line 510. Next, the base material 100 a is separated into a plurality of substrates 100 along the scribe line 510. In this way, a plurality of light emitting devices 10 (FIGS. 6 to 8) are manufactured.
 本実施形態によれば、第1の実施形態と同様にして、基板100を大きな曲率で湾曲させることができる。 According to the present embodiment, the substrate 100 can be bent with a large curvature, as in the first embodiment.
(実施例1)
 図10は、実施例1に係る発光装置10の平面図である。図11は、図10に示したαを拡大した図である。図12は、図11から絶縁層150及び隔壁160を取り除いた図である。図13は、図11のA-A断面図である。本実施例において、発光装置10は、ディスプレイである。発光領域141は、基板100の第1面102上にある。
Example 1
FIG. 10 is a plan view of the light emitting device 10 according to the first embodiment. FIG. 11 is an enlarged view of α shown in FIG. 12 is a diagram in which the insulating layer 150 and the partition wall 160 are removed from FIG. 13 is a cross-sectional view taken along the line AA in FIG. In the present embodiment, the light emitting device 10 is a display. The light emitting region 141 is on the first surface 102 of the substrate 100.
 発光装置10は、ボトムエミッション及びトップエミッションのいずれであってもよい。発光装置10がトップエミッションである場合、複数の発光部140からの光は、基板100の第2面104から出射される。これに対して、発光装置10がトップエミッションである場合、複数の発光部140からの光は、基板100の第1面102の上方から出射される。 The light emitting device 10 may be either bottom emission or top emission. When the light emitting device 10 is top emission, light from the plurality of light emitting units 140 is emitted from the second surface 104 of the substrate 100. On the other hand, when the light emitting device 10 is top emission, the light from the plurality of light emitting units 140 is emitted from above the first surface 102 of the substrate 100.
 発光装置10は、基板100、発光領域141(複数の発光部140)、絶縁層150、複数の隔壁160、被覆層170、複数の有機層220、複数の第2導電層230、複数の導電層302(第1端子112、第1配線114及び第1導電層210)及び複数の導電層304(第2端子132及び第2配線134)を有している。 The light emitting device 10 includes a substrate 100, a light emitting region 141 (a plurality of light emitting portions 140), an insulating layer 150, a plurality of partition walls 160, a covering layer 170, a plurality of organic layers 220, a plurality of second conductive layers 230, and a plurality of conductive layers. 302 (first terminal 112, first wiring 114 and first conductive layer 210) and a plurality of conductive layers 304 (second terminal 132 and second wiring 134).
 図11及び図12に示すように、各導電層302は、第1端子112、第1配線114及び第1導電層210を有している。第1端子112は、導電層302の一端である。第1導電層210は、導電層302の一部である。第1配線114は、導電層302の一部であり、第1端子112と第1導電層210の間にある。各導電層304は、第2端子132及び第2配線134を有している。第2端子132は、導電層304の一端である。第2配線134は、導電層304の一部である。第1端子112には、電位が与えられる。これにより、第1端子112の電位は、第1配線114を介して第1導電層210に与えられる。第2端子132には、電位が与えられる。これにより、第2端子132の電位は、第2配線134を介して第2導電層230に与えられる。 As shown in FIGS. 11 and 12, each conductive layer 302 has a first terminal 112, a first wiring 114, and a first conductive layer 210. The first terminal 112 is one end of the conductive layer 302. The first conductive layer 210 is a part of the conductive layer 302. The first wiring 114 is a part of the conductive layer 302 and is between the first terminal 112 and the first conductive layer 210. Each conductive layer 304 has a second terminal 132 and a second wiring 134. The second terminal 132 is one end of the conductive layer 304. The second wiring 134 is a part of the conductive layer 304. A potential is applied to the first terminal 112. As a result, the potential of the first terminal 112 is applied to the first conductive layer 210 through the first wiring 114. A potential is applied to the second terminal 132. Accordingly, the potential of the second terminal 132 is applied to the second conductive layer 230 through the second wiring 134.
 導電層302上及び導電層304上の各々には、導電層180がある。導電層180の電気抵抗は、導電層302の電気抵抗及び導電層304の電気抵抗よりも低い。これにより、第1端子112と第1導電層210の間の電圧降下及び第2端子132と第2導電層230の間の電圧降下を抑制することができる。導電層180は、発光部140と重ならないように位置している。このため、導電層180は、透光性を有する必要がない。具体的には、導電層180は、例えばAl又はAgからなる。その他の例として、導電層180は、例えば導電層302の上面上又は導電層304の上面上のMo合金層、Mo合金層上のAl合金層及びAl合金層上のMo合金層を含んでいてもよい。 There is a conductive layer 180 on each of the conductive layer 302 and the conductive layer 304. The electric resistance of the conductive layer 180 is lower than the electric resistance of the conductive layer 302 and the electric resistance of the conductive layer 304. Thereby, a voltage drop between the first terminal 112 and the first conductive layer 210 and a voltage drop between the second terminal 132 and the second conductive layer 230 can be suppressed. The conductive layer 180 is positioned so as not to overlap the light emitting unit 140. For this reason, the conductive layer 180 does not need to have translucency. Specifically, the conductive layer 180 is made of, for example, Al or Ag. As another example, the conductive layer 180 includes, for example, a Mo alloy layer on the top surface of the conductive layer 302 or the top surface of the conductive layer 304, an Al alloy layer on the Mo alloy layer, and a Mo alloy layer on the Al alloy layer. Also good.
 図10に示すように、複数の第1導電層210は、第1方向(図中、Y方向)に並んでいる。各第1導電層210は、第1方向に交わる(具体的には、第1方向に直交する)第2方向(図中、X方向)に延伸している。 As shown in FIG. 10, the plurality of first conductive layers 210 are arranged in the first direction (Y direction in the figure). Each first conductive layer 210 extends in a second direction (specifically, the X direction in the drawing) that intersects the first direction (specifically, orthogonal to the first direction).
 図11~図13に示すように、絶縁層150は、基板100の第1面102上及び第1導電層210上にある。絶縁層150は、感光性樹脂(例えばポリイミド)を含んでいる。図11及び図12に示すように、絶縁層150は、複数の開口152を有する。複数の開口152は、第2方向(図中、X方向)に並ぶm個の行及び第1方向(図中、Y方向)に並ぶn個の列を含むm×nの行列状に並んでいる。各開口152の平面形状は、矩形である。図13に示すように、各開口152内では、第1導電層210の一部(第1電極110)と第2導電層230の一部(第2電極130)が互いに重なっている。これにより、開口152の縁によって囲まれた領域が発光部140として機能する。すなわち、絶縁層150は、発光部140を画定している。 As shown in FIGS. 11 to 13, the insulating layer 150 is on the first surface 102 and the first conductive layer 210 of the substrate 100. The insulating layer 150 includes a photosensitive resin (for example, polyimide). As shown in FIGS. 11 and 12, the insulating layer 150 has a plurality of openings 152. The plurality of openings 152 are arranged in an m × n matrix including m rows arranged in the second direction (X direction in the drawing) and n columns arranged in the first direction (Y direction in the drawing). Yes. The planar shape of each opening 152 is a rectangle. As shown in FIG. 13, in each opening 152, a part of the first conductive layer 210 (first electrode 110) and a part of the second conductive layer 230 (second electrode 130) overlap each other. Thereby, the region surrounded by the edge of the opening 152 functions as the light emitting unit 140. That is, the insulating layer 150 defines the light emitting unit 140.
 図11及び図12に示すように、絶縁層150は、開口154を有する。第2導電層230は、開口154を介して第2配線134に接続している。 As shown in FIGS. 11 and 12, the insulating layer 150 has an opening 154. The second conductive layer 230 is connected to the second wiring 134 through the opening 154.
 図13に示すように、隔壁160は、絶縁層150上にある。隔壁160は、感光性樹脂(例えばポリイミド)を含んでいる。図11に示すように、複数の隔壁160は、第2方向(図中、X方向)に並んでいる。各隔壁160は、第1方向(図中、Y方向)に延伸している。図13に示すように、第1方向(図10~図12のY方向)に垂直な断面において、隔壁160の上面の幅は、隔壁160の下面の幅よりも広い。より詳細には、第1方向(図10~図12のY方向)に垂直な断面において、隔壁160は、第1側面及び第2側面を有している。第2側面は、第1内側面の反対側にある。隔壁160の第1側面は、第1側面の上端が第1側面の下端よりも外側に位置するように傾いている。隔壁160の第2側面は、第2側面の上端が第2側面の下端よりも外側に位置するように傾いている。 As shown in FIG. 13, the partition 160 is on the insulating layer 150. The partition 160 includes a photosensitive resin (for example, polyimide). As shown in FIG. 11, the plurality of partition walls 160 are arranged in the second direction (X direction in the figure). Each partition wall 160 extends in the first direction (Y direction in the figure). As shown in FIG. 13, the width of the upper surface of the partition wall 160 is wider than the width of the lower surface of the partition wall 160 in the cross section perpendicular to the first direction (the Y direction in FIGS. 10 to 12). More specifically, in the cross section perpendicular to the first direction (the Y direction in FIGS. 10 to 12), the partition wall 160 has a first side surface and a second side surface. The second side surface is on the opposite side of the first inner surface. The first side surface of the partition wall 160 is inclined so that the upper end of the first side surface is located outside the lower end of the first side surface. The second side surface of the partition wall 160 is inclined so that the upper end of the second side surface is located outside the lower end of the second side surface.
 図13に示すように、有機層220は、基板100の第1面102上、第1導電層210上及び絶縁層150上にある。基板100の第2面104上では、複数の有機層220は、第2方向(図10~図12のX方向)に並んでいる。互いに隣接する有機層220は、隔壁160を挟んで互いに対向している。図13に示すように、有機層220の一部は、第1導電層210の一部(第1電極110)と重なっている。有機層220のこの一部は、発光部140の有機層120として機能する。 As shown in FIG. 13, the organic layer 220 is on the first surface 102 of the substrate 100, on the first conductive layer 210, and on the insulating layer 150. On the second surface 104 of the substrate 100, the plurality of organic layers 220 are arranged in the second direction (the X direction in FIGS. 10 to 12). The organic layers 220 adjacent to each other are opposed to each other with the partition wall 160 interposed therebetween. As shown in FIG. 13, a part of the organic layer 220 overlaps a part of the first conductive layer 210 (first electrode 110). This part of the organic layer 220 functions as the organic layer 120 of the light emitting unit 140.
 図13に示すように、隔壁160の上面上には、有機層222がある。有機層222に含まれる材料は、有機層220に含まれる材料と同一である。有機層220及び有機層222は、基板100の第1面102上及び隔壁160上に有機層を堆積することにより形成される。この場合、有機層は、隔壁160によって有機層220と有機層222に分離される。 As shown in FIG. 13, the organic layer 222 is on the upper surface of the partition wall 160. The material included in the organic layer 222 is the same as the material included in the organic layer 220. The organic layer 220 and the organic layer 222 are formed by depositing an organic layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the organic layer is separated into the organic layer 220 and the organic layer 222 by the partition 160.
 有機層220は、例えば正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を有している。有機層220全体の厚さは、例えば50nm以上200nm以下である。正孔注入層内及び正孔輸送層内では、正孔が移動する。正孔注入層の厚さは、例えば50nm以上100nm以下である。正孔輸送層の厚さは、正孔注入層の厚さよりも薄い。正孔輸送層の厚さは、例えば20nm以上50nm以下である。発光層では、電子と正孔が再結合する。これにより、発光層からは、光が発せられる。発光層からの光の色は、例えば赤、緑又は青である。電子輸送層では、電子が輸送される。電子輸送層の厚さは、例えば5nm以上100nm以下である。電子注入層は、アルカリ金属化合物(例えばLiF)、金属酸化物(例えば酸化アルミニウム)又は金属錯体(例えばリチウム8-ヒドロキシキノレート(Liq))からなる。電子注入層の厚さは、例えば0.1nm以上10nm以下である。 The organic layer 220 has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. The total thickness of the organic layer 220 is, for example, not less than 50 nm and not more than 200 nm. Holes move in the hole injection layer and the hole transport layer. The thickness of the hole injection layer is, for example, not less than 50 nm and not more than 100 nm. The thickness of the hole transport layer is thinner than the thickness of the hole injection layer. The thickness of the hole transport layer is, for example, 20 nm or more and 50 nm or less. In the light emitting layer, electrons and holes are recombined. Thereby, light is emitted from the light emitting layer. The color of light from the light emitting layer is, for example, red, green, or blue. In the electron transport layer, electrons are transported. The thickness of the electron transport layer is, for example, 5 nm or more and 100 nm or less. The electron injection layer is made of an alkali metal compound (for example, LiF), a metal oxide (for example, aluminum oxide) or a metal complex (for example, lithium 8-hydroxyquinolate (Liq)). The thickness of the electron injection layer is, for example, not less than 0.1 nm and not more than 10 nm.
 なお、正孔注入層及び正孔輸送層の一方はなくてもよい。電子輸送層及び電子注入層の一方はなくてもよい。 One of the hole injection layer and the hole transport layer may be omitted. One of the electron transport layer and the electron injection layer may be omitted.
 正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層は、例えば塗布プロセスにより形成される。具体的には、例えば正孔注入層、正孔輸送層及び発光層は、塗布プロセスにより形成され。電子輸送層及び電子注入層は、蒸着により形成される。 The hole injection layer, hole transport layer, light emitting layer, electron transport layer, and electron injection layer are formed by, for example, a coating process. Specifically, for example, the hole injection layer, the hole transport layer, and the light emitting layer are formed by a coating process. The electron transport layer and the electron injection layer are formed by vapor deposition.
 図13に示すように、各第2導電層230は、有機層120上にある。図11に示すように、複数の第2導電層230は、第2方向(図中、X方向)に並んでいる。各第2導電層230は、第1方向(図中、Y方向)に延伸している。互いに隣接する第2導電層230は、隔壁160を挟んで互いに対向している。図13に示すように、第2導電層230の一部は、第1導電層210の一部(第1電極110)と重なっている。第2導電層230のこの一部は、発光部140の第2電極130として機能する。 As shown in FIG. 13, each second conductive layer 230 is on the organic layer 120. As shown in FIG. 11, the plurality of second conductive layers 230 are arranged in the second direction (X direction in the figure). Each second conductive layer 230 extends in the first direction (Y direction in the figure). The second conductive layers 230 adjacent to each other face each other across the partition wall 160. As shown in FIG. 13, a part of the second conductive layer 230 overlaps a part of the first conductive layer 210 (first electrode 110). This part of the second conductive layer 230 functions as the second electrode 130 of the light emitting unit 140.
 図13に示すように、隔壁160の上面上には、第2導電層232がある。第2導電層232に含まれる材料は、第2導電層230に含まれる材料と同一である。第2導電層230及び第2導電層232は、基板100の第1面102上及び隔壁160上に導電層を堆積することにより形成される。この場合、導電層は、隔壁160によって第2導電層230と第2導電層232に分離される。 As shown in FIG. 13, the second conductive layer 232 is on the upper surface of the partition wall 160. The material included in the second conductive layer 232 is the same as the material included in the second conductive layer 230. The second conductive layer 230 and the second conductive layer 232 are formed by depositing a conductive layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the conductive layer is separated into the second conductive layer 230 and the second conductive layer 232 by the partition wall 160.
 発光装置10がボトムエミッションである場合、第1導電層210は、透光性を有する導電層である。この場合、第2導電層230は、透光性を有する必要はない。これに対して、発光装置10がトップエミッションである場合、第2導電層230は、透光性を有する導電層である。この場合、第1導電層210は、透光性を有する必要はない。 When the light emitting device 10 is bottom emission, the first conductive layer 210 is a conductive layer having translucency. In this case, the second conductive layer 230 does not need to have translucency. On the other hand, when the light emitting device 10 is top emission, the second conductive layer 230 is a conductive layer having translucency. In this case, the first conductive layer 210 does not need to have translucency.
 第1導電層210及び第2導電層230が透光性を有する導電層である場合、第1導電層210及び第2導電層230は、例えば金属酸化物を含み、より具体的には、例えばITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)又はZnO(Zinc Oxide)を含んでいる。 When the first conductive layer 210 and the second conductive layer 230 are light-transmitting conductive layers, the first conductive layer 210 and the second conductive layer 230 include, for example, a metal oxide, and more specifically, for example, It contains ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide) or ZnO (Zinc Oxide).
 第1導電層210及び第2導電層230が透光性を有しない導電層である場合、第1導電層210及び第2導電層230は、例えばAl、Au、Ag、Pt、Mg、Sn、Zn及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金を含んでいる。 When the first conductive layer 210 and the second conductive layer 230 are non-translucent conductive layers, the first conductive layer 210 and the second conductive layer 230 include, for example, Al, Au, Ag, Pt, Mg, Sn, A metal selected from the first group consisting of Zn and In or an alloy of a metal selected from the first group is included.
 図13に示すように、被覆層170は、第2導電層230及び複数の隔壁160を覆っている。これにより、被覆層170は、複数の発光部140及び複数の隔壁160を封止している。被覆層170は、例えば絶縁材料、より具体的には例えば金属酸化物を含んでいる。被覆層170は、例えば酸化チタン層及び酸化アルミニウム層を含んでいる。この場合、酸化アルミニウム層は、酸化チタン層上又は酸化チタン層下にある。被覆層170の厚さは、例えば50nm以上300nm以下である。被覆層200は、例えばALD(Atomic Layer Deposition)によって形成されている。 As shown in FIG. 13, the covering layer 170 covers the second conductive layer 230 and the plurality of partition walls 160. Thereby, the coating layer 170 seals the plurality of light emitting units 140 and the plurality of partition walls 160. The covering layer 170 includes, for example, an insulating material, more specifically, for example, a metal oxide. The covering layer 170 includes, for example, a titanium oxide layer and an aluminum oxide layer. In this case, the aluminum oxide layer is on the titanium oxide layer or below the titanium oxide layer. The thickness of the covering layer 170 is, for example, not less than 50 nm and not more than 300 nm. The covering layer 200 is formed by, for example, ALD (Atomic Layer Deposition).
 なお、被覆層170は、例えばCVD(Chemical Vapor Deposition)又はスパッタにより形成してもよい。この場合、被覆層170は、例えばSiO層又はSiN層を含んでいる。この場合、被覆層170の膜厚は、例えば10nm以上1000nm以下である。 The covering layer 170 may be formed by, for example, CVD (Chemical Vapor Deposition) or sputtering. In this case, the covering layer 170 includes, for example, a SiO 2 layer or a SiN layer. In this case, the film thickness of the coating layer 170 is, for example, not less than 10 nm and not more than 1000 nm.
 被覆層170は、樹脂層により覆われていてもよい。樹脂層は、被覆層170を保護するために設けられている。樹脂層は、例えばエポキシ樹脂又はアクリル樹脂を含んでいる。 The covering layer 170 may be covered with a resin layer. The resin layer is provided to protect the covering layer 170. The resin layer contains, for example, an epoxy resin or an acrylic resin.
 本実施例によれば、基板100は、第1面102側にリブマーク106を有している。発光領域141(発光部140)は、基板100の第1面102上にある。発光装置10、第2面104が第1辺102aから第2辺102bにかけて外側に向かって凸に湾曲するように取付面22(図3)に取り付けられる。このため、基板100を大きな曲率で湾曲させることができる。なお、発光領域141(発光部140)は、基板100の第2面104上にあってもよい。 According to the present embodiment, the substrate 100 has the rib mark 106 on the first surface 102 side. The light emitting region 141 (light emitting unit 140) is on the first surface 102 of the substrate 100. The light emitting device 10 and the second surface 104 are attached to the attachment surface 22 (FIG. 3) so as to bend outwardly from the first side 102a to the second side 102b. For this reason, the board | substrate 100 can be curved with a big curvature. The light emitting region 141 (light emitting unit 140) may be on the second surface 104 of the substrate 100.
(実施例2)
 図14は、実施例2に係る発光装置10の平面図である。図15は、図14から第2導電層230を取り除いた図である。図16は図15から有機層220を取り除いた図である。図17は、図14のA-A断面図である。本実施例において、発光装置10は、発光パネルである。発光領域141(発光部140)は、基板100の第1面102上にある。
(Example 2)
FIG. 14 is a plan view of the light emitting device 10 according to the second embodiment. FIG. 15 is a diagram in which the second conductive layer 230 is removed from FIG. FIG. 16 is a diagram in which the organic layer 220 is removed from FIG. 17 is a cross-sectional view taken along the line AA in FIG. In the present embodiment, the light emitting device 10 is a light emitting panel. The light emitting region 141 (light emitting unit 140) is on the first surface 102 of the substrate 100.
 発光装置10は、基板100、第2端子132、有機層220、第2導電層230及び導電層302(第1電極110及び第1端子112)を有している。 The light emitting device 10 includes a substrate 100, a second terminal 132, an organic layer 220, a second conductive layer 230, and a conductive layer 302 (first electrode 110 and first terminal 112).
 図17に示すように、発光部140は、第1電極110、有機層120及び第2電極130を有している。有機層120は、第1電極110上にある。第2電極130は、有機層120上にある。 As shown in FIG. 17, the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130. The organic layer 120 is on the first electrode 110. The second electrode 130 is on the organic layer 120.
 第1電極110は、導電層302の一部である。第1電極110は、発光部140の陽極として機能する。導電層302は、光透過性を有する透明電極である。有機層120からの光は、第1電極110を介して外部に出射する。導電層302は、金属を含む材料、例えば金属酸化物、より具体的には、例えばITO(Indium Tin Oxide)又はIZO(Indium Zinc Oxide)からなる。第1電極110の厚さは、例えば10nm以上500nm以下である。 The first electrode 110 is a part of the conductive layer 302. The first electrode 110 functions as an anode of the light emitting unit 140. The conductive layer 302 is a transparent electrode having optical transparency. Light from the organic layer 120 is emitted to the outside through the first electrode 110. The conductive layer 302 is made of a material containing metal, for example, a metal oxide, more specifically, for example, ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). The thickness of the first electrode 110 is, for example, not less than 10 nm and not more than 500 nm.
 有機層120は、有機層220の一部であり、具体的には第1電極110と重なっている部分である。有機層220は、例えば正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を有している。 The organic layer 120 is a part of the organic layer 220, specifically, a portion overlapping the first electrode 110. The organic layer 220 has, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
 第2電極130は、第2導電層230の一部であり、具体的には第1電極110と重なっている部分である。第2電極130は、発光部140の陰極として機能する。第2導電層230は、Al、Au、Ag、Pt、Sn、Zn及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金からなる金属層を含んでいる。 The second electrode 130 is a part of the second conductive layer 230, specifically, a part overlapping the first electrode 110. The second electrode 130 functions as a cathode of the light emitting unit 140. The second conductive layer 230 includes a metal layer made of a metal selected from the first group consisting of Al, Au, Ag, Pt, Sn, Zn, and In, or an alloy of a metal selected from the first group. It is out.
 図16に示すように、基板100上には、2つの第1端子112及び2つの第2端子132がある。2つの第1端子112は、導電層302の一部であり、第1電極110を挟んで互いに反対側にある。一方の第1端子112は、第3辺102cに沿って位置し、他方の第1端子112は、第4辺102dに沿って位置する。2つの第2端子132は、導電層302を挟んで互いに反対側にある。一方の第2端子132は、第1辺102aに沿って位置し、他方の第2端子132は、第2辺102bに沿って位置する。第1端子112及び第2端子132は、発光部140に電力を供給するために設けられている。第1端子112及び第2端子132には、導電部材、例えばリード端子又はボンディングワイヤが接続される。 As shown in FIG. 16, there are two first terminals 112 and two second terminals 132 on the substrate 100. The two first terminals 112 are part of the conductive layer 302 and are on opposite sides of the first electrode 110. One first terminal 112 is positioned along the third side 102c, and the other first terminal 112 is positioned along the fourth side 102d. The two second terminals 132 are on opposite sides of the conductive layer 302. One second terminal 132 is positioned along the first side 102a, and the other second terminal 132 is positioned along the second side 102b. The first terminal 112 and the second terminal 132 are provided to supply power to the light emitting unit 140. A conductive member such as a lead terminal or a bonding wire is connected to the first terminal 112 and the second terminal 132.
 本実施例によれば、基板100は、第1面102側にリブマーク106を有している。発光領域141(発光部140)は、基板100の第1面102上にある。発光装置10、第2面104が第1辺102aから第2辺102bにかけて外側に向かって凸に湾曲するように取付面22(図3)に取り付けられる。このため、基板100を大きな曲率で湾曲させることができる。なお、発光領域141(発光部140)は、基板100の第2面104上にあってもよい。 According to the present embodiment, the substrate 100 has the rib mark 106 on the first surface 102 side. The light emitting region 141 (light emitting unit 140) is on the first surface 102 of the substrate 100. The light emitting device 10 and the second surface 104 are attached to the attachment surface 22 (FIG. 3) so as to bend outwardly from the first side 102a to the second side 102b. For this reason, the board | substrate 100 can be curved with a big curvature. The light emitting region 141 (light emitting unit 140) may be on the second surface 104 of the substrate 100.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (9)

  1.  取付面に取り付けられる発光装置であって、
     第1面及び前記第1面とは反対側の第2面を有し、ガラスからなる基板と、
     前記第1面上又は前記第2面上の一方にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む発光部と、
    を備え、
     前記基板は、前記第1面側にリブマークを有し、
     前記発光装置は、前記基板が前記第2面の外側に向かって凸に湾曲するように前記取付面に取り付けられる発光装置。
    A light emitting device attached to a mounting surface,
    A substrate having a first surface and a second surface opposite to the first surface, and made of glass;
    A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
    With
    The substrate has a rib mark on the first surface side,
    The light emitting device is attached to the attachment surface such that the substrate is convexly curved toward the outside of the second surface.
  2.  第1面及び前記第1面とは反対側の第2面を有し、ガラスからなる基板と、
     前記第1面上又は前記第2面上の一方にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む発光部と、
    を備え、
     前記基板は、前記第1面側にリブマークを有し、
     前記基板は、前記第2面の外側に向かって凸に湾曲している発光装置。
    A substrate having a first surface and a second surface opposite to the first surface, and made of glass;
    A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
    With
    The substrate has a rib mark on the first surface side,
    The light emitting device, wherein the substrate is curved convexly toward the outside of the second surface.
  3.  請求項1又は2に記載の発光装置において、
     前記発光部は、前記第1面上にある発光装置。
    The light-emitting device according to claim 1 or 2,
    The light emitting unit is a light emitting device on the first surface.
  4.  請求項1又は2に記載の発光装置において、
     前記発光部は、前記第2面上にある発光装置。
    The light-emitting device according to claim 1 or 2,
    The light emitting unit is a light emitting device on the second surface.
  5.  請求項1~4のいずれか一項に記載の発光装置において、
     前記リブマークの深さは、前記基板の厚さの20.0%以上30.0%以下である発光装置。
    The light emitting device according to any one of claims 1 to 4,
    The depth of the rib mark is 20.0% or more and 30.0% or less of the thickness of the substrate.
  6.  請求項5に記載の発光装置において、
     前記リブマークの深さは、前記基板の厚さの22.5%以上27.5%以下である発光装置。
    The light emitting device according to claim 5.
    The depth of the rib mark is 22.5% or more and 27.5% or less of the thickness of the substrate.
  7.  請求項1~6のいずれか一項に記載の発光装置において、
     前記基板の厚さは、200μm以下である発光装置。
    The light emitting device according to any one of claims 1 to 6,
    The light emitting device, wherein the substrate has a thickness of 200 μm or less.
  8.  取付面と、
     前記取付面に取り付けられた発光装置と、
    を備え、
     前記発光装置は、
      第1面及び前記第1面とは反対側の第2面を有し、ガラスからなる基板と、
      前記第1面上又は前記第2面上の一方にあり、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む発光部と、
    を備え、
     前記基板は、前記第1面側にリブマークを有し、
     前記発光装置は、前記基板が前記第2面の外側に向かって凸に湾曲するように前記取付面に取り付けられている電子機器。
    A mounting surface;
    A light emitting device attached to the mounting surface;
    With
    The light emitting device
    A substrate having a first surface and a second surface opposite to the first surface, and made of glass;
    A light-emitting unit that is on one of the first surface and the second surface and includes a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
    With
    The substrate has a rib mark on the first surface side,
    The light emitting device is an electronic device attached to the attachment surface such that the substrate is convexly curved toward the outside of the second surface.
  9.  取付面に取り付けられる発光装置の製造方法であって、
     第1面及び前記第1面とは反対側の第2面を有していてガラスからなる基材を準備し、各々が第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を含む複数の発光部を前記基材の前記第1面上又は前記第2面上の一方に形成する工程と、
     前記第1面側にリブマークを形成することにより、前記基材を複数の基板に分離して各基板が前記発光部を有するようにする工程と、
    を含み、
     前記発光装置は、前記基板及び前記発光部を備え、
     前記発光装置は、前記基板が前記第2面の外側に向かって凸に湾曲するように前記取付面に取り付けられる、発光装置の製造方法。
    A method of manufacturing a light emitting device attached to a mounting surface,
    A base material made of glass having a first surface and a second surface opposite to the first surface is prepared, and each of the first electrode, the second electrode, the first electrode, and the second electrode A step of forming a plurality of light emitting portions including an organic layer therebetween on one of the first surface and the second surface of the substrate;
    Forming a rib mark on the first surface side to separate the base material into a plurality of substrates so that each substrate has the light emitting part; and
    Including
    The light emitting device includes the substrate and the light emitting unit,
    The method of manufacturing a light-emitting device, wherein the light-emitting device is attached to the attachment surface so that the substrate is convexly curved toward the outside of the second surface.
PCT/JP2016/058315 2016-03-16 2016-03-16 Light emitting device, electronic apparatus, and method for manufacturing light emitting device WO2017158757A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/058315 WO2017158757A1 (en) 2016-03-16 2016-03-16 Light emitting device, electronic apparatus, and method for manufacturing light emitting device
JP2018505134A JP6776329B2 (en) 2016-03-16 2016-03-16 Manufacturing method of light emitting device, electronic device and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058315 WO2017158757A1 (en) 2016-03-16 2016-03-16 Light emitting device, electronic apparatus, and method for manufacturing light emitting device

Publications (1)

Publication Number Publication Date
WO2017158757A1 true WO2017158757A1 (en) 2017-09-21

Family

ID=59850172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058315 WO2017158757A1 (en) 2016-03-16 2016-03-16 Light emitting device, electronic apparatus, and method for manufacturing light emitting device

Country Status (2)

Country Link
JP (1) JP6776329B2 (en)
WO (1) WO2017158757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095868A (en) * 2018-12-13 2020-06-18 株式会社デンソー Display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308380A (en) * 2007-06-18 2008-12-25 Epson Imaging Devices Corp Display unit having glass substrate couple and its cutting method
JP2009237279A (en) * 2008-03-27 2009-10-15 Mitsubishi Electric Corp Liquid crystal panel and method for manufacturing the same
JP2013025015A (en) * 2011-07-20 2013-02-04 Mitsubishi Electric Corp Liquid crystal panel and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4007308B2 (en) * 2003-10-28 2007-11-14 セイコーエプソン株式会社 Electro-optical device, electronic apparatus, and method of manufacturing electro-optical device
JP2007322693A (en) * 2006-05-31 2007-12-13 Optrex Corp Method of manufacturing display device
JP2009211828A (en) * 2008-02-29 2009-09-17 Rohm Co Ltd Illuminating device and method of manufacturing illuminating device
US8657456B2 (en) * 2009-04-30 2014-02-25 Mitsubishi Electric Corporation Display device and method for manufacturing the same
WO2015198183A1 (en) * 2014-06-23 2015-12-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308380A (en) * 2007-06-18 2008-12-25 Epson Imaging Devices Corp Display unit having glass substrate couple and its cutting method
JP2009237279A (en) * 2008-03-27 2009-10-15 Mitsubishi Electric Corp Liquid crystal panel and method for manufacturing the same
JP2013025015A (en) * 2011-07-20 2013-02-04 Mitsubishi Electric Corp Liquid crystal panel and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020095868A (en) * 2018-12-13 2020-06-18 株式会社デンソー Display device
JP7035991B2 (en) 2018-12-13 2022-03-15 株式会社デンソー Display device

Also Published As

Publication number Publication date
JP6776329B2 (en) 2020-10-28
JPWO2017158757A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
US9196869B2 (en) Manufacturing method of light-emitting device with nano-imprinting wiring
KR20070023584A (en) Electroluminescence panel and method for manufacturing electroluminescence panel
WO2017158757A1 (en) Light emitting device, electronic apparatus, and method for manufacturing light emitting device
KR102505167B1 (en) Organic light emitting diodes
JP2007179914A (en) El device and method of manufacturing same
JP2009187774A (en) Organic electroluminescent element
JP2020102463A (en) Light-emitting device
US11937346B2 (en) Light emitting device
WO2015181869A1 (en) Light emitting device
WO2016157321A1 (en) Light emitting device
CN110875439B (en) Device with light-emitting element
JP2017182912A (en) Light emitting device
WO2017158767A1 (en) Light-emitting device
KR20200082504A (en) Lighting apparatus
WO2017163331A1 (en) Light emitting device, electronic device, and manufacturing method for light emitting device
JP6329177B2 (en) Light emitting device
JP2016186911A (en) Light emission device
JP6700013B2 (en) Light emitting device
JPWO2017119068A1 (en) Light emitting device
JP2017216203A (en) Light-emitting device
WO2017168581A1 (en) Light-emitting device
WO2017154207A1 (en) Light-emitting device
WO2017163347A1 (en) Light emitting device
WO2017212540A1 (en) Light emitting device and substrate
WO2018151026A1 (en) Light emission device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505134

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894375

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894375

Country of ref document: EP

Kind code of ref document: A1