WO2017158767A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2017158767A1
WO2017158767A1 PCT/JP2016/058360 JP2016058360W WO2017158767A1 WO 2017158767 A1 WO2017158767 A1 WO 2017158767A1 JP 2016058360 W JP2016058360 W JP 2016058360W WO 2017158767 A1 WO2017158767 A1 WO 2017158767A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
emitting device
electrode
insulating layer
Prior art date
Application number
PCT/JP2016/058360
Other languages
French (fr)
Japanese (ja)
Inventor
真滋 中嶋
田中 信介
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2018505142A priority Critical patent/JPWO2017158767A1/en
Priority to PCT/JP2016/058360 priority patent/WO2017158767A1/en
Publication of WO2017158767A1 publication Critical patent/WO2017158767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting device.
  • Such a light-emitting device has a first electrode and a second electrode that face each other with an organic layer interposed therebetween.
  • the organic layer includes a light emitting layer. Electrons and holes are recombined in the light emitting layer by the voltage between the first electrode and the second electrode. In this way, light is emitted from the light emitting layer.
  • a hole injection layer may be provided between the first electrode and the light emitting layer.
  • the hole injection layer of Patent Document 1 contains a transition metal oxide.
  • an insulating layer for defining a light emitting part may be formed on a substrate.
  • Such an insulating layer may contain a photosensitive resin (for example, polyimide).
  • a photosensitive resin for example, polyimide
  • the present inventor has studied to form the insulating layer from an inorganic material.
  • the luminance of the light emitting portion may be lowered due to the inorganic material of the insulating layer.
  • An example of a problem to be solved by the present invention is to suppress a decrease in luminance of the light emitting part even when the insulating layer defining the light emitting part is made of an inorganic material.
  • the invention described in claim 1 A substrate, An insulating layer on the substrate and made of an inorganic material; A light emitting part defined by the insulating layer on the substrate and having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode; With The organic layer is a light emitting device including a light emitting layer and a first transition metal oxide between the light emitting layer and the first electrode.
  • FIG. 3 is a diagram in which a second conductive layer, a partition wall, and an insulating layer are removed from FIG. 2.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a sectional view taken along line BB in FIG.
  • FIG. 3 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 3 is a DD sectional view of FIG. 2. It is the figure which expanded the light emission part shown in FIG.
  • FIG. 5 is a graph showing a result of a weather resistance test of a light emitting device according to an example, a result of a weather resistance test of a light emitting device according to comparative example 1, and a result of a weather resistance test of a light emitting device according to comparative example 2.
  • FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment.
  • FIG. 2 is a view in which the covering layer 200 is removed from FIG.
  • FIG. 3 is a diagram in which the second conductive layer 130a, the partition wall 160, and the insulating layer 150 are removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG. 5 is a cross-sectional view taken along the line BB in FIG. 6 is a cross-sectional view taken along the line CC of FIG. 7 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 8 is an enlarged view of the light emitting unit 140 shown in FIG.
  • the light emitting device 10 includes a substrate 100, an insulating layer 150, and a light emitting unit 140.
  • the insulating layer 150 is on the substrate 100.
  • the insulating layer 150 is made of an inorganic material.
  • the light emitting unit 140 is defined on the substrate 100 by an insulating layer 150.
  • the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130.
  • the organic layer 120 is between the first electrode 110 and the second electrode 130.
  • the organic layer 120 includes a light emitting layer 123 and a hole injection layer 121.
  • the hole injection layer 121 is a transition metal oxide layer, specifically, for example, a molybdenum oxide (MoO x ) layer.
  • the hole injection layer 121 is between the first electrode 110 and the light emitting layer 123.
  • the organic layer 120 includes the first transition metal oxide (transition metal oxide constituting the hole injection layer 121) between the light emitting layer 123 and the first electrode 110. Details will be described below.
  • the light emitting device 10 is a display.
  • the light emitting device 10 includes a substrate 100, a conductive layer 170, a conductive layer 180, an insulating layer 150, an organic layer 120a, a second conductive layer 130a, a partition wall 160, and a coating layer 200.
  • the substrate 100 has a first surface 102 and a second surface 104.
  • the second surface 104 is on the opposite side of the first surface 102 and is the back surface of the substrate 100.
  • the shape of the first surface 102 is a rectangle.
  • the shape of the first surface 102 may be a polygon other than a rectangle, for example.
  • the light emitting device 10 may be either bottom emission or top emission.
  • the substrate 100 is made of a translucent material (for example, glass or resin).
  • the light emitting device 10 is top emission, the light from the plurality of light emitting units 140 is emitted from above the first surface 102 of the substrate 100.
  • the substrate 100 may be made of the above-described translucent material or may be made of a material that does not have translucency.
  • the substrate 100 may have flexibility or may not have flexibility.
  • the thickness of the substrate 100 is, for example, not less than 10 ⁇ m and not more than 1000 ⁇ m.
  • the thickness of the substrate 100 is, for example, 200 ⁇ m or less.
  • the substrate 100 is flexible and includes a resin
  • the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide.
  • the first surface 102 (preferably both the first surface 102 and the second surface 104) of the substrate 100 may be covered with an inorganic barrier film (eg, SiN x or SiON). In this case, even if the substrate 100 includes a material (for example, resin) having a high water vapor transmission rate, the water vapor is prevented from reaching the first surface 102 of the substrate 100.
  • an inorganic barrier film eg, SiN x or SiON
  • the plurality of conductive layers 170 are on the first surface 102 of the substrate 100.
  • the plurality of conductive layers 170 include a plurality of conductive layers 170a and a plurality of conductive layers 170b.
  • Each conductive layer 170 a includes a first conductive layer 110 a and a first wiring 114.
  • the first conductive layer 110a is a part of the conductive layer 170a.
  • the first wiring 114 is another part of the conductive layer 170a.
  • the first conductive layer 110a and the first wiring 114 are connected to each other.
  • Each conductive layer 170 b includes a second wiring 134.
  • the first terminal 112 is located at one end of the first wiring 114. A potential is applied to the first terminal 112. Thereby, the potential of the first terminal 112 is applied to the first conductive layer 110a (first electrode 110) through the first wiring 114.
  • the second terminal 132 is located at one end of the second wiring 134. A potential is applied to the second terminal 132. Thereby, the potential of the second terminal 132 is applied to the second conductive layer 130a (second electrode 130) through the second wiring 134.
  • each conductive layer 170 There is a conductive layer 180 on the top surface of each conductive layer 170.
  • the electric resistance of the conductive layer 180 is lower than the electric resistance of the conductive layer 170. Thereby, the voltage drop between the first terminal 112 and the first electrode 110 and the voltage drop between the second terminal 132 and the second electrode 130 can be suppressed.
  • the conductive layer 180 is positioned so as not to overlap the light emitting unit 140. For this reason, the conductive layer 180 does not need to have translucency.
  • the conductive layer 180 is made of, for example, Al or Ag.
  • the conductive layer 180 may include, for example, a Mo alloy layer on the top surface of the first conductive layer 110a, an Al alloy layer on the Mo alloy layer, and a Mo alloy layer on the Al alloy layer.
  • the plurality of first conductive layers 110a are arranged in the first direction (X direction in the figure).
  • Each first conductive layer 110a extends in a second direction (specifically, the Y direction in the figure) that intersects the first direction (specifically, orthogonal to the first direction).
  • the insulating layer 150 is on the first surface 102 of the substrate 100 and on the plurality of first conductive layers 110a.
  • the insulating layer 150 includes an inorganic material (for example, silicon oxide or silicon nitride).
  • the insulating layer 150 has a plurality of openings 152.
  • the planar shape of each opening 152 is a rectangle. As shown in FIGS.
  • each opening 152 a part of the first conductive layer 110a (first electrode 110) and a part of the second conductive layer 130a (second electrode 130) overlap each other. .
  • the region surrounded by the edge of the opening 152 functions as the light emitting unit 140. That is, the insulating layer 150 defines the light emitting unit 140.
  • each side of the light emitting unit 140 is defined by the lower end of the inner surface of the opening 152.
  • the opening 152 in the cross section perpendicular to the first direction (X direction in FIGS. 1 to 3), the opening 152 has a first inner surface and a second inner surface.
  • the second inner surface is on the opposite side of the first inner surface.
  • the first inner side surface of the opening 152 is inclined so that the upper end of the first inner side surface is located outside the lower end of the first inner side surface.
  • the second inner side surface of the opening 152 is inclined so that the upper end of the second inner side surface is located outside the lower end of the second inner side surface.
  • the first side of the light emitting unit 140 is defined by the lower end of the first inner side surface of the opening 152.
  • the second side of the light emitting unit 140 is defined by the lower end of the second inner side surface of the opening 152.
  • the opening 152 has a third inner surface and a fourth inner surface.
  • the fourth inner surface is on the opposite side of the third inner surface.
  • the third inner side surface of the opening 152 is inclined so that the upper end of the third inner side surface is located outside the lower end of the third inner side surface.
  • the fourth inner side surface of the opening 152 is inclined so that the upper end of the fourth inner side surface is located outside the lower end of the fourth inner side surface.
  • the third side of the light emitting unit 140 is defined by the lower end of the third inner side surface of the opening 152.
  • the fourth side of the edge of the light emitting unit 140 is defined by the lower end of the fourth inner side surface of the opening 152.
  • the insulating layer 150 has an opening 154. As shown in FIG. 6, the second conductive layer 130 a is connected to the second wiring 134 through the opening 154.
  • the partition wall 160 is on the insulating layer 150.
  • the partition 160 includes a photosensitive resin (for example, polyimide).
  • the plurality of partition walls 160 are arranged in the second direction (Y direction in the figure).
  • Each partition wall 160 extends in the first direction (X direction in the figure).
  • the width of the upper surface of the partition wall 160 in the cross section perpendicular to the direction in which the partition wall 160 extends, that is, the first direction (the X direction in FIGS. 1 to 3) is the lower surface of the partition wall 160. Wider than the width of. More specifically, in the cross section perpendicular to the first direction (the X direction in FIGS.
  • the partition wall 160 has a first side surface and a second side surface.
  • the second side surface is on the opposite side of the first inner surface.
  • the first side surface of the partition wall 160 is inclined so that the upper end of the first side surface is located outside the lower end of the first side surface.
  • the second side surface of the partition wall 160 is inclined so that the upper end of the second side surface is located outside the lower end of the second side surface. Note that the number of the partition walls 160 on the insulating layer 150 is not limited to a plurality, and may be only one.
  • the organic layer 120a is on the first surface 102 of the substrate 100, on the plurality of first conductive layers 110a, and on the insulating layer 150. As shown in FIG. 4, the plurality of organic layers 120a are arranged in the second direction (Y direction in FIGS. 1 to 3). The organic layers 120a adjacent to each other face each other with the partition wall 160 interposed therebetween. As shown in FIGS. 4 and 5, a part of the organic layer 120a overlaps a part (first electrode 110) of the first conductive layer 110a. This part of the organic layer 120 a functions as the organic layer 120 of the light emitting unit 140.
  • the organic layer 120 a is not in contact with the partition wall 160.
  • a substance that degrades the organic layer 120a can be prevented from propagating from the partition wall 160 to the organic layer 120a.
  • the partition 160 may contain a substance (for example, water) that degrades the organic layer 120a.
  • this material may propagate from the organic layer 120 a to the partition wall 160.
  • the partition 160 even if the partition 160 includes the above-described substance, it is possible to suppress the propagation of the substance to the organic layer 120a.
  • the organic layer 120 b is on the upper surface of the partition wall 160.
  • the material included in the organic layer 120b is the same as the material included in the organic layer 120a.
  • the organic layer 120 a and the organic layer 120 b are formed by depositing an organic layer on the first surface 102 of the substrate 100 and the partition 160. In this case, the organic layer is separated into the organic layer 120 a and the organic layer 120 b by the partition wall 160.
  • the organic layer 120a includes a hole injection layer 121a, a hole transport layer 122a, a light emitting layer 123a, an electron transport layer 124a, and an electron injection layer 125a.
  • a hole injection layer 121a hole injection layer 121
  • part of the hole transport layer 122a hole transport layer 122
  • part of the light emitting layer 123a light emitting layer 123
  • one of the electron transport layers 124a The part (electron transport layer 124) and a part of the electron injection layer 125a (electron injection layer 125) are located in a region (light emitting part 140) defined by the insulating layer 150, and constitute the organic layer 120.
  • the total thickness of the organic layer 120 is, for example, not less than 50 nm and not more than 200 nm.
  • the hole injection layer 121a is a transition metal oxide layer. Specifically, for example, a molybdenum oxide (MoO x ) layer, a tungsten oxide (WO x ) layer, a vanadium oxide (V x O y ) layer, or a ruthenium oxide ( a RuO x) layer, and more specifically, for example, molybdenum trioxide (MoO 3) layer, molybdenum dioxide (MoO 2) layer, tungsten trioxide (WO 3) layer, tungsten dioxide (WO 2) layer, pentoxide A vanadium (V 2 O 5 ) layer, a ruthenium tetroxide (RuO 4 ) layer, or a ruthenium dioxide (RuO 2 ) layer, preferably a molybdenum trioxide (MoO 3 ) layer.
  • MoO x molybdenum oxide
  • WO x tungsten oxide
  • V x O y vanadium oxide
  • the thickness of the hole injection layer 121a is extremely thin and is about 10 nm at most. For this reason, the atoms contained in the hole injection layer 121a may not form a layer.
  • the transition metal oxide is present at the interface with the lower surface of the other part of the layer 122a (the part around the hole transport layer 122).
  • the transition metal oxide (hole injection layer 121) functions to improve the hole injection efficiency between the first electrode 110 and the light emitting layer 123. Accordingly, when there is a transition metal oxide (hole injection layer 121) between the first electrode 110 and the light emitting layer 123, the luminance of the light emitting unit 140 is improved. As a result of studies by the present inventor, the improvement in luminance due to the transition metal oxide (hole injection layer 121) is maintained even when the insulating layer 150 is made of an inorganic material. As described above, when the insulating layer 150 is made of an inorganic material, the luminance of the light emitting unit 140 may deteriorate. On the other hand, in this embodiment, even when the insulating layer 150 is made of an inorganic material, it is possible to suppress a decrease in luminance of the light emitting unit 140.
  • a part of the hole injection layer 121a (first part: hole injection layer 121) is on the first electrode 110 and the other part (second part) of the hole injection layer 121a. ) Is on the insulating layer 150 around the hole injection layer 121.
  • the organic layer 120a (first organic layer) includes the first transition metal oxide (transition metal oxide constituting the hole injection layer 121a) and the insulation between the light emitting layer 123a and the first electrode 110.
  • the second transition metal oxide (transition metal oxide constituting the hole injection layer 121a) on the layer 150 is included.
  • the first transition metal oxide (transition metal oxide constituting the hole injection layer 121a) is the same material as the second transition metal oxide (transition metal oxide constituting the hole injection layer 121a). May be.
  • the hole transport layer 122a (organic material layer) is formed in the melt process. It has been clarified that repelling from the insulating layer 150 (inorganic material layer) is suppressed.
  • the first conductive layer 110a may be heated to a high temperature in the melt process.
  • the insulating layer 150 is made of an inorganic material. In this case, the insulating layer 150 may have high water repellency.
  • the hole injection layer 121a and the hole transport layer 122a melted in the melt process may be repelled from the surface of the insulating layer 150. For this reason, the hole injection layer 121a and the hole transport layer 122a may not be formed in a part of the periphery of the light emitting unit 140. For this reason, a phenomenon occurs in which a part of the light emitting part 140 defined in the insulating layer 150 does not emit light normally.
  • the transition metal oxide (hole injection layer 121a) is located between the surface of the molten hole transport layer 122a and the insulating layer 150, the transition metal oxide (hole injection) melted in the melt process.
  • the transition metal oxide hole injection layer 121a
  • the transition metal oxide may function to adhere the hole transport layer 122a to the insulating layer 150.
  • the hole transport layer 122a is made of an organic material, for example, ⁇ -NPD.
  • the thickness of the hole transport layer 122a is, for example, not less than 20 nm and not more than 50 nm.
  • the light emitting layer 123a is made of an organic material, for example, Alq3 (tris (8-quinolinolato) aluminum). Between the first electrode 110 and the second electrode 130, electrons and holes are recombined in the light emitting layer 123a (light emitting layer 123). Thereby, light is emitted from the light emitting layer 123.
  • the color of light from the light emitting layer 123 is, for example, white, red, green, or blue.
  • Electrons are transported between the first electrode 110 and the second electrode 130 in the electron transport layer 124a (electron transport layer 124).
  • the thickness of the electron transport layer 124 is, for example, 5 nm or more and 100 nm or less.
  • the electron injection layer 125a is made of an alkali metal compound (for example, LiF), a metal oxide (for example, aluminum oxide) or a metal complex (for example, lithium 8-hydroxyquinolate (Liq)).
  • the thickness of the electron injection layer 125a is, for example, not less than 0.1 nm and not more than 10 nm.
  • one of the electron transport layer 124a and the electron injection layer 125a may be omitted.
  • the second conductive layer 130a is on the organic layer 120a.
  • a plurality of second conductive layers 130a are arranged in the second direction (Y direction in the figure).
  • Each second conductive layer 130a extends in the first direction (X direction in the figure).
  • the second conductive layers 130a adjacent to each other are opposed to each other with the partition wall 160 interposed therebetween. In other words, the second conductive layers 130 a adjacent to each other are separated from each other along the partition 160.
  • a part of the second conductive layer 130a overlaps a part of the first conductive layer 110a (first electrode 110). This part of the second conductive layer 130 a functions as the second electrode 130 of the light emitting unit 140.
  • the conductive layer 130 b is provided on the upper surface of the partition wall 160.
  • the material included in the conductive layer 130b is the same as the material included in the second conductive layer 130a.
  • the second conductive layer 130 a and the conductive layer 130 b are formed by depositing a conductive layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the conductive layer is separated into the second conductive layer 130 a and the conductive layer 130 b by the partition 160.
  • the first conductive layer 110a is a conductive layer having translucency. In this case, the second conductive layer 130a does not need to have translucency.
  • the second conductive layer 130a is a light-transmitting conductive layer. In this case, the first conductive layer 110a does not need to have translucency.
  • the first conductive layer 110a and the second conductive layer 130a are light-transmitting conductive layers
  • the first conductive layer 110a and the second conductive layer 130a include, for example, a metal oxide, and more specifically, for example, It contains ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide) or ZnO (Zinc Oxide).
  • the first conductive layer 110a and the second conductive layer 130a are conductive layers that do not have translucency
  • the first conductive layer 110a and the second conductive layer 130a include, for example, Al, Au, Ag, Pt, Mg, Sn, A metal selected from the first group consisting of Zn and In or an alloy of a metal selected from the first group is included.
  • the covering layer 200 covers the insulating layer 150, the plurality of light emitting portions 140, and the plurality of partition walls 160.
  • the coating layer 200 seals the insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160.
  • the covering layer 200 is formed by ALD (Atomic Layer Deposition). Accordingly, the covering layer 200 continuously covers the side surfaces and the upper surface of the insulating layer 150, the light emitting unit 140, and the partition wall 160.
  • the covering layer 200 includes, for example, an insulating material, more specifically, for example, a metal oxide.
  • the covering layer 200 includes, for example, a titanium oxide layer and an aluminum oxide layer. In this case, the aluminum oxide layer is on the titanium oxide layer or below the titanium oxide layer.
  • the thickness of the coating layer 200 is, for example, not less than 50 nm and not more than 300 nm.
  • the covering layer 200 may be formed by, for example, CVD (Chemical Vapor Deposition) or sputtering.
  • the covering layer 200 includes, for example, a SiO 2 layer or a SiN layer.
  • the film thickness of the coating layer 200 is, for example, not less than 10 nm and not more than 1000 nm.
  • the covering layer 200 may be covered with a resin layer.
  • the resin layer is provided to protect the covering layer 200.
  • the resin layer contains, for example, an epoxy resin or an acrylic resin.
  • a method for manufacturing the light emitting device 10 will be described.
  • a conductive layer is formed on the first surface 102 of the substrate 100, and this conductive layer is patterned.
  • a plurality of conductive layers 170 (first conductive layer 110a, first wiring 114, and second wiring 134) are formed.
  • a conductive layer 180 is formed on the upper surface of each conductive layer 170.
  • the insulating layer 150 is formed on the first surface 102 of the substrate 100 and the plurality of conductive layers 170. Next, a plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150.
  • a plurality of partition walls 160 are formed on the insulating layer 150.
  • an organic layer is formed on the insulating layer 150 and the plurality of partition walls 160. Accordingly, the organic layer is separated into the organic layer 120a and the organic layer 120b by the partition 160.
  • a transition metal oxide layer is formed on the insulating layer 150 and the plurality of partition walls 160 by, for example, sputtering or vapor deposition.
  • the transition metal oxide layer is separated into a plurality of hole injection layers 121 a by the partition wall 160.
  • an organic material layer is formed over the insulating layer 150 and the plurality of partition walls 160.
  • the organic material layer is separated into a plurality of hole transport layers 122a by the partition 160.
  • the first electrode 110 is heated to a high temperature (melt process).
  • the transition metal oxidation may cause the molten hole transport layer 122a to be repelled from the surface of the insulating layer 150. It is suppressed by the object (hole injection layer 121a).
  • an organic material layer is formed on the insulating layer 150 and the plurality of partition walls 160.
  • the organic material layer is separated into a plurality of light emitting layers 123 a by the partition 160.
  • an organic material layer is formed over the insulating layer 150 and the plurality of partition walls 160.
  • the organic material layer is separated into a plurality of electron transport layers 124 a by the partition 160.
  • a metal oxide layer is formed over the insulating layer 150 and the plurality of partition walls 160.
  • the metal oxide layer is separated into a plurality of electron injection layers 125 a by the partition 160.
  • a conductive layer is formed over the insulating layer 150 and the plurality of partition walls 160. Accordingly, the conductive layer is separated into the second conductive layer 130a and the conductive layer 130b by the partition 160.
  • the coating layer 200 is formed by ALD on the first surface 102 of the substrate 100, the insulating layer 150, and the plurality of partition walls 160.
  • the insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160 are sealed by the covering layer 200.
  • transition metal oxide hole injection layer 121 between the first electrode 110 and the light emitting layer 123.
  • the transition metal oxide functions to improve the hole injection efficiency between the first electrode 110 and the light emitting layer 123. For this reason, even if the insulating layer 150 (inorganic material) functions to deteriorate the luminance of the light-emitting portion 140, the luminance deterioration due to the insulating layer 150 (inorganic material) can be suppressed.
  • the hole transport layer 122a there is a transition metal oxide (hole injection layer 121a) between the hole transport layer 122a and the surface of the insulating layer 150 on the surface of the insulating layer 150.
  • the hole transport layer 122a has a transition metal oxide (hole injection layer 121a) between the insulating layers 150, the hole transport layer 122a is firmly bonded to the surface of the insulating layer 150. To come. For this reason, even if the first electrode 110 is heated to a high temperature in the melting step, the molten hole transport layer 122a is suppressed from being repelled from the insulating layer 150.
  • FIG. 9 is a graph showing the results of the weather resistance test of the light emitting device 10 according to the example, the results of the weather resistance test of the light emitting device 10 according to Comparative Example 1, and the results of the weather resistance test of the light emitting device 10 according to Comparative Example 2. It is. In the weather resistance test according to the example shown in the figure, the light emitting device 10 was driven at a temperature of 70 ° C.
  • the light emitting device 10 according to this example was the same as the light emitting device 10 shown in FIGS. Specifically, in this embodiment, the hole injection layer 121a includes a molybdenum trioxide (MoO 3 ) layer.
  • the insulating layer 150 is made of an inorganic material. The inorganic material of the insulating layer 150 was silicon oxide.
  • two light emitting devices 10 according to this example were tested. In the present embodiment, for each of the two light emitting devices 10, the luminance at the initial time (0 hour), the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours. Luminance was measured.
  • the average value of luminance at the initial (0 hour) time point the average value of luminance at the time point of 260 hours, the average value of luminance at the time point of 381 hours, the average value of luminance at the time point of 547 hours Value and the average value of luminance at the time of 1000 hours were calculated.
  • the light emitting device 10 according to Comparative Example 1 was the same as the light emitting device 10 according to this example, except that the hole injection layer 121a did not contain a transition metal oxide.
  • two light emitting devices 10 according to Comparative Example 1 were tested.
  • the luminance at the initial time (0 hour) the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours. Luminance was measured.
  • the average value of luminance at the initial (0 hour) time point the average value of luminance at the time point of 260 hours, the average value of luminance at the time point of 381 hours, the average value of luminance at the time point of 547 hours Value and the average value of luminance at the time of 1000 hours were calculated.
  • the light emitting device 10 according to Comparative Example 2 was the same as the light emitting device 10 according to Comparative Example 1 except that the insulating layer 150 was made of an organic material. In the example shown in the figure, two light emitting devices 10 according to Comparative Example 2 were tested. In this comparative example, the luminance at the initial time (0 hour), the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours were measured.
  • the average value of luminance at the initial (0 hour) time point the average value of luminance at the time point of 260 hours, the average value of luminance at the time point of 381 hours, the average value of luminance at the time point of 547 hours Value and the average value of luminance at the time of 1000 hours were calculated.
  • the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours are almost the same as the luminance at the initial time (0 hour). The luminance did not decrease and became about 90% of the luminance at the initial time (0 hour).
  • the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours are the initial (0 hour) time points. There was almost no decrease from the luminance at, and it was approximately 90% of the luminance at the initial time (0 hour).
  • the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours are initial (0 hours).
  • the brightness greatly decreased from the brightness at 1 ⁇ 2, and became less than half of the brightness at the initial time (0 hour).
  • Comparative Example 1 and Comparative Example 2 suggest that the insulating layer 150 (inorganic material) functions to deteriorate the luminance of the light emitting unit 140.
  • the luminance degradation due to the insulating layer 150 is suppressed by the transition metal oxide (molybdenum trioxide (MoO 3 )) in the hole injection layer 121a. Suggests that.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An insulating layer (150) is formed of an inorganic material. An organic layer (120) includes a light-emitting layer (123) and a positive-hole injection layer (121). The positive-hole injection layer (121) is a transition metal oxide layer and, more specifically, is a molybdenum oxide (MoOx) layer, for example. The positive-hole injection layer (121) is disposed between a first electrode (110) and the light-emitting layer (123). In this manner, the organic layer (120) includes a first transition metal oxide (transition metal oxide forming the positive-hole injection layer (121)) between the light-emitting layer (123) and the first electrode (110).

Description

発光装置Light emitting device
 本発明は、発光装置に関する。 The present invention relates to a light emitting device.
 近年、有機層を備えた発光装置が開発されている。このような発光装置は、有機層を挟んで互いに対向する第1電極及び第2電極を有する。有機層は、発光層を含んでいる。第1電極と第2電極の間の電圧によって、発光層内では、電子と正孔が再結合する。このようにして、発光層からは光が発せられる。 In recent years, light emitting devices having an organic layer have been developed. Such a light-emitting device has a first electrode and a second electrode that face each other with an organic layer interposed therebetween. The organic layer includes a light emitting layer. Electrons and holes are recombined in the light emitting layer by the voltage between the first electrode and the second electrode. In this way, light is emitted from the light emitting layer.
 特許文献1に記載されているように、第1電極と発光層の間には、正孔注入層が設けられることがある。特許文献1の正孔注入層は、遷移金属酸化物を含んでいる。 As described in Patent Document 1, a hole injection layer may be provided between the first electrode and the light emitting layer. The hole injection layer of Patent Document 1 contains a transition metal oxide.
特開2005-32618号公報JP 2005-32618 A
 発光装置では、発光部を画定するための絶縁層を基板上に形成することがある。このような絶縁層は、感光性樹脂(例えばポリイミド)を含んでいることがある。一方、本発明者が検討したところ、絶縁層が感光性樹脂を含んでいる場合、発光部を劣化させる物質が絶縁層を伝搬している可能性があることが明らかとなった。このような物質が絶縁層を伝搬することを抑制するため、本発明者は、絶縁層を無機材料により形成することを検討した。しかしながら本発明者が検討したところ、絶縁層が無機材料からなる場合、発光部の輝度が絶縁層の無機材料に起因して低下している可能性があることが明らかとなった。 In a light emitting device, an insulating layer for defining a light emitting part may be formed on a substrate. Such an insulating layer may contain a photosensitive resin (for example, polyimide). On the other hand, when the inventor examined, when the insulating layer contained photosensitive resin, it became clear that the substance which degrades a light emission part may have propagated through the insulating layer. In order to suppress such a substance from propagating through the insulating layer, the present inventor has studied to form the insulating layer from an inorganic material. However, as a result of studies by the present inventor, it has been clarified that when the insulating layer is made of an inorganic material, the luminance of the light emitting portion may be lowered due to the inorganic material of the insulating layer.
 本発明が解決しようとする課題としては、発光部を画定する絶縁層が無機材料からなる場合であっても、発光部の輝度が低下することを抑制することが一例として挙げられる。 An example of a problem to be solved by the present invention is to suppress a decrease in luminance of the light emitting part even when the insulating layer defining the light emitting part is made of an inorganic material.
 請求項1に記載の発明は、
 基板と、
 前記基板上にあり、無機材料からなる絶縁層と、
 前記基板上で前記絶縁層によって画定され、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する発光部と、
を備え、
 前記有機層は、発光層及び前記発光層と前記第1電極の間の第1の遷移金属酸化物を含む発光装置である。
The invention described in claim 1
A substrate,
An insulating layer on the substrate and made of an inorganic material;
A light emitting part defined by the insulating layer on the substrate and having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
With
The organic layer is a light emitting device including a light emitting layer and a first transition metal oxide between the light emitting layer and the first electrode.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
実施形態に係る発光装置を示す平面図である。It is a top view which shows the light-emitting device which concerns on embodiment. 図1から被覆層を取り除いた図である。It is the figure which removed the coating layer from FIG. 図2から第2導電層、隔壁及び絶縁層を取り除いた図である。FIG. 3 is a diagram in which a second conductive layer, a partition wall, and an insulating layer are removed from FIG. 2. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図2のB-B断面図である。FIG. 3 is a sectional view taken along line BB in FIG. 図2のC-C断面図である。FIG. 3 is a cross-sectional view taken along the line CC of FIG. 図2のD-D断面図である。FIG. 3 is a DD sectional view of FIG. 2. 図4に示した発光部を拡大した図である。It is the figure which expanded the light emission part shown in FIG. 実施例に係る発光装置の耐候性試験の結果、比較例1に係る発光装置の耐候性試験の結果及び比較例2に係る発光装置の耐候性試験の結果を示すグラフである。5 is a graph showing a result of a weather resistance test of a light emitting device according to an example, a result of a weather resistance test of a light emitting device according to comparative example 1, and a result of a weather resistance test of a light emitting device according to comparative example 2.
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 図1は、実施形態に係る発光装置10を示す平面図である。図2は、図1から被覆層200を取り除いた図である。図3は、図2から第2導電層130a、隔壁160及び絶縁層150を取り除いた図である。図4は、図2のA-A断面図である。図5は、図2のB-B断面図である。図6は、図2のC-C断面図である。図7は、図2のD-D断面図である。図8は、図4に示した発光部140を拡大した図である。 FIG. 1 is a plan view showing a light emitting device 10 according to the embodiment. FIG. 2 is a view in which the covering layer 200 is removed from FIG. FIG. 3 is a diagram in which the second conductive layer 130a, the partition wall 160, and the insulating layer 150 are removed from FIG. 4 is a cross-sectional view taken along the line AA in FIG. 5 is a cross-sectional view taken along the line BB in FIG. 6 is a cross-sectional view taken along the line CC of FIG. 7 is a cross-sectional view taken along the line DD of FIG. FIG. 8 is an enlarged view of the light emitting unit 140 shown in FIG.
 図2に示すように、発光装置10は、基板100、絶縁層150及び発光部140を備えている。図4~図8に示すように、絶縁層150は、基板100上にある。絶縁層150は、無機材料からなる。図2、図4及び図5に示すように、発光部140は、基板100上で絶縁層150によって画定されている。図4、図5及び図8に示すように、発光部140は、第1電極110、有機層120及び第2電極130を有する。有機層120は、第1電極110と第2電極130の間にある。図8に示すように、有機層120は、発光層123及び正孔注入層121を含んでいる。正孔注入層121は、遷移金属酸化物層であり、具体的には例えば酸化モリブデン(MoO)層である。正孔注入層121は、第1電極110と発光層123の間にある。このようにして、有機層120は、発光層123と第1電極110の間の第1の遷移金属酸化物(正孔注入層121を構成する遷移金属酸化物)を含んでいる。以下、詳細に説明する。 As shown in FIG. 2, the light emitting device 10 includes a substrate 100, an insulating layer 150, and a light emitting unit 140. As shown in FIGS. 4 to 8, the insulating layer 150 is on the substrate 100. The insulating layer 150 is made of an inorganic material. As shown in FIGS. 2, 4, and 5, the light emitting unit 140 is defined on the substrate 100 by an insulating layer 150. As shown in FIGS. 4, 5, and 8, the light emitting unit 140 includes a first electrode 110, an organic layer 120, and a second electrode 130. The organic layer 120 is between the first electrode 110 and the second electrode 130. As shown in FIG. 8, the organic layer 120 includes a light emitting layer 123 and a hole injection layer 121. The hole injection layer 121 is a transition metal oxide layer, specifically, for example, a molybdenum oxide (MoO x ) layer. The hole injection layer 121 is between the first electrode 110 and the light emitting layer 123. As described above, the organic layer 120 includes the first transition metal oxide (transition metal oxide constituting the hole injection layer 121) between the light emitting layer 123 and the first electrode 110. Details will be described below.
 図1~図8に示す例において、発光装置10は、ディスプレイである。発光装置10は、基板100、導電層170、導電層180、絶縁層150、有機層120a、第2導電層130a、隔壁160及び被覆層200を有している。 In the example shown in FIGS. 1 to 8, the light emitting device 10 is a display. The light emitting device 10 includes a substrate 100, a conductive layer 170, a conductive layer 180, an insulating layer 150, an organic layer 120a, a second conductive layer 130a, a partition wall 160, and a coating layer 200.
 図4~図8に示すように、基板100は、第1面102及び第2面104を有している。第2面104は、第1面102の反対側にあり、基板100の裏面である。図1~図3に示す例では、第1面102の形状は、矩形である。ただし、第1面102の形状は、例えば矩形以外の多角形であってもよい。 As shown in FIGS. 4 to 8, the substrate 100 has a first surface 102 and a second surface 104. The second surface 104 is on the opposite side of the first surface 102 and is the back surface of the substrate 100. In the example shown in FIGS. 1 to 3, the shape of the first surface 102 is a rectangle. However, the shape of the first surface 102 may be a polygon other than a rectangle, for example.
 発光装置10は、ボトムエミッション及びトップエミッションのいずれであってもよい。発光装置10がボトムエミッションである場合、複数の発光部140からの光は、基板100の第2面104から出射される。この場合、基板100は、透光性の材料(例えばガラス又は樹脂)からなる。これに対して、発光装置10がトップエミッションである場合、複数の発光部140からの光は、基板100の第1面102の上方から出射される。この場合、基板100は、上記した透光性の材料からなってもよいし、又は透光性を有しない材料からなってもよい。 The light emitting device 10 may be either bottom emission or top emission. When the light emitting device 10 is bottom emission, light from the plurality of light emitting units 140 is emitted from the second surface 104 of the substrate 100. In this case, the substrate 100 is made of a translucent material (for example, glass or resin). On the other hand, when the light emitting device 10 is top emission, the light from the plurality of light emitting units 140 is emitted from above the first surface 102 of the substrate 100. In this case, the substrate 100 may be made of the above-described translucent material or may be made of a material that does not have translucency.
 基板100は、可撓性を有していてもよいし、又は可撓性を有していなくてもよい。基板100が可撓性を有する場合、基板100の厚さは、例えば10μm以上1000μm以下である。基板100が可撓性を有し、かつガラスを含む場合、基板100の厚さは、例えば200μm以下である。基板100が可撓性を有し、かつ樹脂を含む場合、基板100は、例えばPEN(ポリエチレンナフタレート)、PES(ポリエーテルサルホン)、PET(ポリエチレンテレフタラート)又はポリイミドを含む。なお、基板100の第1面102(好ましくは、第1面102及び第2面104の双方)は、無機バリア膜(例えばSiN又はSiON)により覆われていてもよい。この場合、基板100が水蒸気透過率の高い材料(例えば樹脂)を含んでいても、水蒸気が基板100の第1面102よりも上に達することが抑制される。 The substrate 100 may have flexibility or may not have flexibility. When the substrate 100 has flexibility, the thickness of the substrate 100 is, for example, not less than 10 μm and not more than 1000 μm. When the substrate 100 has flexibility and includes glass, the thickness of the substrate 100 is, for example, 200 μm or less. When the substrate 100 is flexible and includes a resin, the substrate 100 includes, for example, PEN (polyethylene naphthalate), PES (polyethersulfone), PET (polyethylene terephthalate), or polyimide. The first surface 102 (preferably both the first surface 102 and the second surface 104) of the substrate 100 may be covered with an inorganic barrier film (eg, SiN x or SiON). In this case, even if the substrate 100 includes a material (for example, resin) having a high water vapor transmission rate, the water vapor is prevented from reaching the first surface 102 of the substrate 100.
 図1~図3に示すように、複数の導電層170は、基板100の第1面102上にある。複数の導電層170は、複数の導電層170a及び複数の導電層170bを含んでいる。各導電層170aは、第1導電層110a及び第1配線114を含む。第1導電層110aは、導電層170aの一部である。第1配線114は、導電層170aの他の一部である。第1導電層110aと第1配線114は、互いに接続している。各導電層170bは、第2配線134を含む。 As shown in FIGS. 1 to 3, the plurality of conductive layers 170 are on the first surface 102 of the substrate 100. The plurality of conductive layers 170 include a plurality of conductive layers 170a and a plurality of conductive layers 170b. Each conductive layer 170 a includes a first conductive layer 110 a and a first wiring 114. The first conductive layer 110a is a part of the conductive layer 170a. The first wiring 114 is another part of the conductive layer 170a. The first conductive layer 110a and the first wiring 114 are connected to each other. Each conductive layer 170 b includes a second wiring 134.
 第1配線114の一端には、第1端子112が位置している。第1端子112には、電位が与えられる。これにより、第1端子112の電位は、第1配線114を介して第1導電層110a(第1電極110)に与えられる。第2配線134の一端には、第2端子132が位置している。第2端子132には、電位が与えられる。これにより、第2端子132の電位は、第2配線134を介して第2導電層130a(第2電極130)に与えられる。 The first terminal 112 is located at one end of the first wiring 114. A potential is applied to the first terminal 112. Thereby, the potential of the first terminal 112 is applied to the first conductive layer 110a (first electrode 110) through the first wiring 114. The second terminal 132 is located at one end of the second wiring 134. A potential is applied to the second terminal 132. Thereby, the potential of the second terminal 132 is applied to the second conductive layer 130a (second electrode 130) through the second wiring 134.
 各導電層170の上面上には、導電層180がある。導電層180の電気抵抗は、導電層170の電気抵抗よりも低い。これにより、第1端子112と第1電極110の間の電圧降下及び第2端子132と第2電極130の間の電圧降下を抑制することができる。導電層180は、発光部140と重ならないように位置している。このため、導電層180は、透光性を有する必要がない。具体的には、導電層180は、例えばAl又はAgからなる。その他の例として、導電層180は、例えば第1導電層110aの上面上のMo合金層、Mo合金層上のAl合金層及びAl合金層上のMo合金層を含んでいてもよい。 There is a conductive layer 180 on the top surface of each conductive layer 170. The electric resistance of the conductive layer 180 is lower than the electric resistance of the conductive layer 170. Thereby, the voltage drop between the first terminal 112 and the first electrode 110 and the voltage drop between the second terminal 132 and the second electrode 130 can be suppressed. The conductive layer 180 is positioned so as not to overlap the light emitting unit 140. For this reason, the conductive layer 180 does not need to have translucency. Specifically, the conductive layer 180 is made of, for example, Al or Ag. As another example, the conductive layer 180 may include, for example, a Mo alloy layer on the top surface of the first conductive layer 110a, an Al alloy layer on the Mo alloy layer, and a Mo alloy layer on the Al alloy layer.
 図3に示すように、複数の第1導電層110aは、第1方向(図中、X方向)に並んでいる。各第1導電層110aは、第1方向に交わる(具体的には、第1方向に直交する)第2方向(図中、Y方向)に延伸している。 As shown in FIG. 3, the plurality of first conductive layers 110a are arranged in the first direction (X direction in the figure). Each first conductive layer 110a extends in a second direction (specifically, the Y direction in the figure) that intersects the first direction (specifically, orthogonal to the first direction).
 図4、図5及び図7に示すように、絶縁層150は、基板100の第1面102上及び複数の第1導電層110a上にある。絶縁層150は、無機材料(例えば、シリコン酸化物又はシリコン窒化物)を含んでいる。図2及び図3に示すように、絶縁層150は、複数の開口152を有する。複数の開口152は、第2方向(図中、Y方向)に並ぶm個の行及び第1方向(図中、X方向)に並ぶn個の列を含むm×nの行列状(本図に示す例では、m=4、n=5)に並んでいる。各開口152の平面形状は、矩形である。図4及び図5に示すように、各開口152内では、第1導電層110aの一部(第1電極110)と第2導電層130aの一部(第2電極130)が互いに重なっている。これにより、開口152の縁によって囲まれた領域が発光部140として機能する。すなわち、絶縁層150は、発光部140を画定している。 As shown in FIGS. 4, 5 and 7, the insulating layer 150 is on the first surface 102 of the substrate 100 and on the plurality of first conductive layers 110a. The insulating layer 150 includes an inorganic material (for example, silicon oxide or silicon nitride). As shown in FIGS. 2 and 3, the insulating layer 150 has a plurality of openings 152. The plurality of openings 152 is an m × n matrix (this figure) including m rows arranged in the second direction (Y direction in the drawing) and n columns arranged in the first direction (X direction in the drawing). In the example shown in FIG. 4, m = 4 and n = 5). The planar shape of each opening 152 is a rectangle. As shown in FIGS. 4 and 5, in each opening 152, a part of the first conductive layer 110a (first electrode 110) and a part of the second conductive layer 130a (second electrode 130) overlap each other. . Thereby, the region surrounded by the edge of the opening 152 functions as the light emitting unit 140. That is, the insulating layer 150 defines the light emitting unit 140.
 なお、図4及び図5に示すように、発光部140の各辺は、開口152の内側面の下端によって画定されている。詳細には、図4に示すように、第1方向(図1~図3において、X方向)に垂直な断面において、開口152は、第1内側面及び第2内側面を有している。第2内側面は、第1内側面の反対側にある。開口152の第1内側面は、第1内側面の上端が第1内側面の下端よりも外側に位置するように傾いている。開口152の第2内側面は、第2内側面の上端が第2内側面の下端よりも外側に位置するように傾いている。発光部140の第1辺は、開口152の第1内側面の下端によって画定されている。発光部140の第2辺は、開口152の第2内側面の下端によって画定されている。同様にして、図5に示すように、第2方向(図1~図3において、Y方向)に垂直な断面において、開口152は、第3内側面及び第4内側面を有している。第4内側面は、第3内側面の反対側にある。開口152の第3内側面は、第3内側面の上端が第3内側面の下端よりも外側に位置するように傾いている。開口152の第4内側面は、第4内側面の上端が第4内側面の下端よりも外側に位置するように傾いている。発光部140の第3辺は、開口152の第3内側面の下端によって画定されている。発光部140の縁の第4辺は、開口152の第4内側面の下端によって画定されている。 As shown in FIGS. 4 and 5, each side of the light emitting unit 140 is defined by the lower end of the inner surface of the opening 152. Specifically, as shown in FIG. 4, in the cross section perpendicular to the first direction (X direction in FIGS. 1 to 3), the opening 152 has a first inner surface and a second inner surface. The second inner surface is on the opposite side of the first inner surface. The first inner side surface of the opening 152 is inclined so that the upper end of the first inner side surface is located outside the lower end of the first inner side surface. The second inner side surface of the opening 152 is inclined so that the upper end of the second inner side surface is located outside the lower end of the second inner side surface. The first side of the light emitting unit 140 is defined by the lower end of the first inner side surface of the opening 152. The second side of the light emitting unit 140 is defined by the lower end of the second inner side surface of the opening 152. Similarly, as shown in FIG. 5, in the cross section perpendicular to the second direction (the Y direction in FIGS. 1 to 3), the opening 152 has a third inner surface and a fourth inner surface. The fourth inner surface is on the opposite side of the third inner surface. The third inner side surface of the opening 152 is inclined so that the upper end of the third inner side surface is located outside the lower end of the third inner side surface. The fourth inner side surface of the opening 152 is inclined so that the upper end of the fourth inner side surface is located outside the lower end of the fourth inner side surface. The third side of the light emitting unit 140 is defined by the lower end of the third inner side surface of the opening 152. The fourth side of the edge of the light emitting unit 140 is defined by the lower end of the fourth inner side surface of the opening 152.
 絶縁層150は、開口154を有する。図6に示すように、第2導電層130aは、開口154を介して第2配線134に接続している。 The insulating layer 150 has an opening 154. As shown in FIG. 6, the second conductive layer 130 a is connected to the second wiring 134 through the opening 154.
 図4、図6及び図7に示すように、隔壁160は、絶縁層150上にある。隔壁160は、感光性樹脂(例えばポリイミド)を含んでいる。図2に示すように、複数の隔壁160が第2方向(図中、Y方向)に並んでいる。各隔壁160は、第1方向(図中、X方向)に延伸している。図4及び図6に示すように、隔壁160が延在する方向、すなわち第1方向(図1~図3のX方向)に垂直な断面において、隔壁160の上面の幅は、隔壁160の下面の幅よりも広い。より詳細には、第1方向(図1~図3のX方向)に垂直な断面において、隔壁160は、第1側面及び第2側面を有している。第2側面は、第1内側面の反対側にある。隔壁160の第1側面は、第1側面の上端が第1側面の下端よりも外側に位置するように傾いている。隔壁160の第2側面は、第2側面の上端が第2側面の下端よりも外側に位置するように傾いている。なお、絶縁層150上の隔壁160の数は複数に限定されるものではなく、1つのみであってもよい。 As shown in FIGS. 4, 6, and 7, the partition wall 160 is on the insulating layer 150. The partition 160 includes a photosensitive resin (for example, polyimide). As shown in FIG. 2, the plurality of partition walls 160 are arranged in the second direction (Y direction in the figure). Each partition wall 160 extends in the first direction (X direction in the figure). 4 and 6, the width of the upper surface of the partition wall 160 in the cross section perpendicular to the direction in which the partition wall 160 extends, that is, the first direction (the X direction in FIGS. 1 to 3) is the lower surface of the partition wall 160. Wider than the width of. More specifically, in the cross section perpendicular to the first direction (the X direction in FIGS. 1 to 3), the partition wall 160 has a first side surface and a second side surface. The second side surface is on the opposite side of the first inner surface. The first side surface of the partition wall 160 is inclined so that the upper end of the first side surface is located outside the lower end of the first side surface. The second side surface of the partition wall 160 is inclined so that the upper end of the second side surface is located outside the lower end of the second side surface. Note that the number of the partition walls 160 on the insulating layer 150 is not limited to a plurality, and may be only one.
 図4~図6に示すように、有機層120aは、基板100の第1面102上、複数の第1導電層110a上及び絶縁層150上にある。図4に示すように、複数の有機層120aが第2方向(図1~図3のY方向)に並んでいる。互いに隣接する有機層120aは、隔壁160を挟んで互いに対向している。図4及び図5に示すように、有機層120aの一部は、第1導電層110aの一部(第1電極110)と重なっている。有機層120aのこの一部は、発光部140の有機層120として機能する。 4 to 6, the organic layer 120a is on the first surface 102 of the substrate 100, on the plurality of first conductive layers 110a, and on the insulating layer 150. As shown in FIG. 4, the plurality of organic layers 120a are arranged in the second direction (Y direction in FIGS. 1 to 3). The organic layers 120a adjacent to each other face each other with the partition wall 160 interposed therebetween. As shown in FIGS. 4 and 5, a part of the organic layer 120a overlaps a part (first electrode 110) of the first conductive layer 110a. This part of the organic layer 120 a functions as the organic layer 120 of the light emitting unit 140.
 なお、図4及び図6に示すように、有機層120aは、隔壁160とは接していない。この場合、有機層120aを劣化させる物質が隔壁160から有機層120aに伝搬することを抑制することができる。詳細には、隔壁160は、有機層120aを劣化させる物質(例えば、水)を含んでいることがある。この場合、有機層120aが隔壁160と接していると、この物質が有機層120aから隔壁160に伝搬することがある。これに対して図4及び図6に示す例では、隔壁160が上記した物質を含んでいたとしても、この物質が有機層120aに伝搬することを抑制することができる。 As shown in FIGS. 4 and 6, the organic layer 120 a is not in contact with the partition wall 160. In this case, a substance that degrades the organic layer 120a can be prevented from propagating from the partition wall 160 to the organic layer 120a. In detail, the partition 160 may contain a substance (for example, water) that degrades the organic layer 120a. In this case, if the organic layer 120 a is in contact with the partition wall 160, this material may propagate from the organic layer 120 a to the partition wall 160. On the other hand, in the example shown in FIGS. 4 and 6, even if the partition 160 includes the above-described substance, it is possible to suppress the propagation of the substance to the organic layer 120a.
 図4、図6及び図7に示すように、隔壁160の上面上には、有機層120bがある。有機層120bに含まれる材料は、有機層120aに含まれる材料と同一である。有機層120a及び有機層120bは、基板100の第1面102上及び隔壁160上に有機層を堆積することにより形成される。この場合、有機層は、隔壁160によって有機層120aと有機層120bに分離される。 As shown in FIGS. 4, 6, and 7, the organic layer 120 b is on the upper surface of the partition wall 160. The material included in the organic layer 120b is the same as the material included in the organic layer 120a. The organic layer 120 a and the organic layer 120 b are formed by depositing an organic layer on the first surface 102 of the substrate 100 and the partition 160. In this case, the organic layer is separated into the organic layer 120 a and the organic layer 120 b by the partition wall 160.
 図8に示すように、有機層120aは、正孔注入層121a、正孔輸送層122a、発光層123a、電子輸送層124a及び電子注入層125aを含んでいる。正孔注入層121aの一部(正孔注入層121)、正孔輸送層122aの一部(正孔輸送層122)、発光層123aの一部(発光層123)、電子輸送層124aの一部(電子輸送層124)及び電子注入層125aの一部(電子注入層125)は、絶縁層150によって画定された領域(発光部140)内に位置しており、有機層120を構成している。有機層120全体の厚さは、例えば50nm以上200nm以下である。 As shown in FIG. 8, the organic layer 120a includes a hole injection layer 121a, a hole transport layer 122a, a light emitting layer 123a, an electron transport layer 124a, and an electron injection layer 125a. Part of the hole injection layer 121a (hole injection layer 121), part of the hole transport layer 122a (hole transport layer 122), part of the light emitting layer 123a (light emitting layer 123), one of the electron transport layers 124a The part (electron transport layer 124) and a part of the electron injection layer 125a (electron injection layer 125) are located in a region (light emitting part 140) defined by the insulating layer 150, and constitute the organic layer 120. Yes. The total thickness of the organic layer 120 is, for example, not less than 50 nm and not more than 200 nm.
 正孔注入層121aは、遷移金属酸化物層であり、具体的には、例えば酸化モリブデン(MoO)層、酸化タングステン(WO)層、酸化バナジウム(V)層又は酸化ルテニウム(RuO)層であり、より具体的には、例えば三酸化モリブデン(MoO)層、二酸化モリブデン(MoO)層、三酸化タングステン(WO)層、二酸化タングステン(WO)層、五酸化バナジウム(V)層、四酸化ルテニウム(RuO)層又は二酸化ルテニウム(RuO)層であり、好ましくは三酸化モリブデン(MoO)層である。正孔注入層121aの膜厚は、極めて薄く、多くて約10nmである。このため、正孔注入層121aに含まれる原子は、層を構成していない場合がある。言い換えると、この場合、第1電極110の上面と正孔輸送層122aの一部(正孔輸送層122)の下面との界面に遷移金属酸化物があり、絶縁層150の表面と正孔輸送層122aの他の一部(正孔輸送層122の周囲の部分)の下面との界面に遷移金属酸化物があることになる。 The hole injection layer 121a is a transition metal oxide layer. Specifically, for example, a molybdenum oxide (MoO x ) layer, a tungsten oxide (WO x ) layer, a vanadium oxide (V x O y ) layer, or a ruthenium oxide ( a RuO x) layer, and more specifically, for example, molybdenum trioxide (MoO 3) layer, molybdenum dioxide (MoO 2) layer, tungsten trioxide (WO 3) layer, tungsten dioxide (WO 2) layer, pentoxide A vanadium (V 2 O 5 ) layer, a ruthenium tetroxide (RuO 4 ) layer, or a ruthenium dioxide (RuO 2 ) layer, preferably a molybdenum trioxide (MoO 3 ) layer. The thickness of the hole injection layer 121a is extremely thin and is about 10 nm at most. For this reason, the atoms contained in the hole injection layer 121a may not form a layer. In other words, in this case, there is a transition metal oxide at the interface between the upper surface of the first electrode 110 and the lower surface of a part of the hole transport layer 122a (hole transport layer 122), and the surface of the insulating layer 150 and the hole transport. The transition metal oxide is present at the interface with the lower surface of the other part of the layer 122a (the part around the hole transport layer 122).
 遷移金属酸化物(正孔注入層121)は、第1電極110と発光層123の間の正孔注入効率を向上させるように機能する。これにより、第1電極110と発光層123の間に遷移金属酸化物(正孔注入層121)がある場合、発光部140の輝度が向上する。本発明者が検討したところ、遷移金属酸化物(正孔注入層121)に起因する輝度の向上は、絶縁層150が無機材料からなる場合であっても、維持される。上記したように、絶縁層150が無機材料からなる場合、発光部140の輝度が劣化することがある。これに対して、本実施形態では、絶縁層150が無機材料からなる場合であっても、発光部140の輝度の低下を抑制することができる。 The transition metal oxide (hole injection layer 121) functions to improve the hole injection efficiency between the first electrode 110 and the light emitting layer 123. Accordingly, when there is a transition metal oxide (hole injection layer 121) between the first electrode 110 and the light emitting layer 123, the luminance of the light emitting unit 140 is improved. As a result of studies by the present inventor, the improvement in luminance due to the transition metal oxide (hole injection layer 121) is maintained even when the insulating layer 150 is made of an inorganic material. As described above, when the insulating layer 150 is made of an inorganic material, the luminance of the light emitting unit 140 may deteriorate. On the other hand, in this embodiment, even when the insulating layer 150 is made of an inorganic material, it is possible to suppress a decrease in luminance of the light emitting unit 140.
 図8に示す例では、正孔注入層121aの一部(第1部分:正孔注入層121)は、第1電極110上にあり、正孔注入層121aの他の一部(第2部分)は、正孔注入層121の周囲において絶縁層150上にある。このようにして、有機層120a(第1有機層)は、発光層123aと第1電極110の間の第1の遷移金属酸化物(正孔注入層121aを構成する遷移金属酸化物)及び絶縁層150上の第2の遷移金属酸化物(正孔注入層121aを構成する遷移金属酸化物)を含んでいる。また、第1の遷移金属酸化物(正孔注入層121aを構成する遷移金属酸化物)は第2の遷移金属酸化物(正孔注入層121aを構成する遷移金属酸化物)と同じ材料であっても良い。 In the example shown in FIG. 8, a part of the hole injection layer 121a (first part: hole injection layer 121) is on the first electrode 110 and the other part (second part) of the hole injection layer 121a. ) Is on the insulating layer 150 around the hole injection layer 121. In this way, the organic layer 120a (first organic layer) includes the first transition metal oxide (transition metal oxide constituting the hole injection layer 121a) and the insulation between the light emitting layer 123a and the first electrode 110. The second transition metal oxide (transition metal oxide constituting the hole injection layer 121a) on the layer 150 is included. The first transition metal oxide (transition metal oxide constituting the hole injection layer 121a) is the same material as the second transition metal oxide (transition metal oxide constituting the hole injection layer 121a). May be.
 本発明者が検討したところ、遷移金属酸化物(正孔注入層121a)が正孔輸送層122aと絶縁層150の間に位置する場合、メルト工程において正孔輸送層122a(有機材料層)が絶縁層150(無機材料層)からはじかれることが抑制されることが明らかとなった。詳細には、正孔注入層121a及び正孔輸送層122aを形成した後、メルト工程において第1導電層110aを高温に加熱することがある。本実施形態において、絶縁層150は無機材料からなる。この場合、絶縁層150は、高い撥水性を有することがある。この場合、メルト工程で溶融した正孔注入層121a及び正孔輸送層122aが絶縁層150の表面からはじかれることがある。このことから、発光部140の周囲の一部に正孔注入層121a及び正孔輸送層122aが形成されないことがある。このため、絶縁層150に画定された発光部140の一部が正常に発光しないという現象が発生する。これに対して、溶融した正孔輸送層122aと絶縁層150の表面の間に遷移金属酸化物(正孔注入層121a)が位置する場合、メルト工程で溶融した遷移金属酸化物(正孔注入層121a)及び正孔輸送層122aが絶縁層150の表面からはじかれることが無く、絶縁層150に画定された発光部140の全てが正常に発光することが確認された。このことから、遷移金属酸化物(正孔注入層121a)が正孔輸送層122aを絶縁層150に接着させるように機能している可能性があることが本発明者の検討により明らかとなった。 When the inventor examined, when the transition metal oxide (hole injection layer 121a) is located between the hole transport layer 122a and the insulating layer 150, the hole transport layer 122a (organic material layer) is formed in the melt process. It has been clarified that repelling from the insulating layer 150 (inorganic material layer) is suppressed. Specifically, after forming the hole injection layer 121a and the hole transport layer 122a, the first conductive layer 110a may be heated to a high temperature in the melt process. In the present embodiment, the insulating layer 150 is made of an inorganic material. In this case, the insulating layer 150 may have high water repellency. In this case, the hole injection layer 121a and the hole transport layer 122a melted in the melt process may be repelled from the surface of the insulating layer 150. For this reason, the hole injection layer 121a and the hole transport layer 122a may not be formed in a part of the periphery of the light emitting unit 140. For this reason, a phenomenon occurs in which a part of the light emitting part 140 defined in the insulating layer 150 does not emit light normally. On the other hand, when the transition metal oxide (hole injection layer 121a) is located between the surface of the molten hole transport layer 122a and the insulating layer 150, the transition metal oxide (hole injection) melted in the melt process. It was confirmed that the layer 121a) and the hole transport layer 122a were not repelled from the surface of the insulating layer 150, and all of the light emitting portions 140 defined in the insulating layer 150 emitted light normally. From this, it has been clarified by the present inventors that the transition metal oxide (hole injection layer 121a) may function to adhere the hole transport layer 122a to the insulating layer 150. .
 正孔輸送層122aは、有機材料からなり、例えばα-NPDからなる。正孔輸送層122aの厚さは、例えば20nm以上50nm以下である。 The hole transport layer 122a is made of an organic material, for example, α-NPD. The thickness of the hole transport layer 122a is, for example, not less than 20 nm and not more than 50 nm.
 発光層123aは、有機材料からなり、例えばAlq3(トリス(8-キノリノラト)アルミニウム)からなる。第1電極110と第2電極130の間において、発光層123a(発光層123)では、電子と正孔が再結合する。これにより、発光層123からは、光が発せられる。発光層123からの光の色は例えば白、赤、緑又は青である。 The light emitting layer 123a is made of an organic material, for example, Alq3 (tris (8-quinolinolato) aluminum). Between the first electrode 110 and the second electrode 130, electrons and holes are recombined in the light emitting layer 123a (light emitting layer 123). Thereby, light is emitted from the light emitting layer 123. The color of light from the light emitting layer 123 is, for example, white, red, green, or blue.
 第1電極110と第2電極130の間において、電子輸送層124a(電子輸送層124)では、電子が輸送される。電子輸送層124の厚さは、例えば5nm以上100nm以下である。 Electrons are transported between the first electrode 110 and the second electrode 130 in the electron transport layer 124a (electron transport layer 124). The thickness of the electron transport layer 124 is, for example, 5 nm or more and 100 nm or less.
 電子注入層125aは、アルカリ金属化合物(例えばLiF)、金属酸化物(例えば酸化アルミニウム)又は金属錯体(例えばリチウム8-ヒドロキシキノレート(Liq))からなる。電子注入層125aの厚さは、例えば0.1nm以上10nm以下である。 The electron injection layer 125a is made of an alkali metal compound (for example, LiF), a metal oxide (for example, aluminum oxide) or a metal complex (for example, lithium 8-hydroxyquinolate (Liq)). The thickness of the electron injection layer 125a is, for example, not less than 0.1 nm and not more than 10 nm.
 なお、電子輸送層124a及び電子注入層125aの一方はなくてもよい。 Note that one of the electron transport layer 124a and the electron injection layer 125a may be omitted.
 図4~図6に示すように、第2導電層130aは、有機層120a上にある。図2に示すように、複数の第2導電層130aが第2方向(図中、Y方向)に並んでいる。各第2導電層130aは、第1方向(図中、X方向)に延伸している。互いに隣接する第2導電層130aは、隔壁160を挟んで互いに対向している。言い換えると、互いに隣接する第2導電層130aは、隔壁160に沿って互いに分断されている。図4及び図5に示すように、第2導電層130aの一部は、第1導電層110aの一部(第1電極110)と重なっている。第2導電層130aのこの一部は、発光部140の第2電極130として機能する。 As shown in FIGS. 4 to 6, the second conductive layer 130a is on the organic layer 120a. As shown in FIG. 2, a plurality of second conductive layers 130a are arranged in the second direction (Y direction in the figure). Each second conductive layer 130a extends in the first direction (X direction in the figure). The second conductive layers 130a adjacent to each other are opposed to each other with the partition wall 160 interposed therebetween. In other words, the second conductive layers 130 a adjacent to each other are separated from each other along the partition 160. As shown in FIGS. 4 and 5, a part of the second conductive layer 130a overlaps a part of the first conductive layer 110a (first electrode 110). This part of the second conductive layer 130 a functions as the second electrode 130 of the light emitting unit 140.
 図4、図6及び図7に示すように、隔壁160の上面上には、導電層130bがある。導電層130bに含まれる材料は、第2導電層130aに含まれる材料と同一である。第2導電層130a及び導電層130bは、基板100の第1面102上及び隔壁160上に導電層を堆積することにより形成される。この場合、導電層は、隔壁160によって第2導電層130aと導電層130bに分離される。 As shown in FIGS. 4, 6, and 7, the conductive layer 130 b is provided on the upper surface of the partition wall 160. The material included in the conductive layer 130b is the same as the material included in the second conductive layer 130a. The second conductive layer 130 a and the conductive layer 130 b are formed by depositing a conductive layer on the first surface 102 and the partition 160 of the substrate 100. In this case, the conductive layer is separated into the second conductive layer 130 a and the conductive layer 130 b by the partition 160.
 発光装置10がボトムエミッションである場合、第1導電層110aは、透光性を有する導電層である。この場合、第2導電層130aは、透光性を有する必要はない。これに対して、発光装置10がトップエミッションである場合、第2導電層130aは、透光性を有する導電層である。この場合、第1導電層110aは、透光性を有する必要はない。 When the light emitting device 10 is bottom emission, the first conductive layer 110a is a conductive layer having translucency. In this case, the second conductive layer 130a does not need to have translucency. On the other hand, when the light emitting device 10 is top emission, the second conductive layer 130a is a light-transmitting conductive layer. In this case, the first conductive layer 110a does not need to have translucency.
 第1導電層110a及び第2導電層130aが透光性を有する導電層である場合、第1導電層110a及び第2導電層130aは、例えば金属酸化物を含み、より具体的には、例えばITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IWZO(Indium Tungsten Zinc Oxide)又はZnO(Zinc Oxide)を含んでいる。 In the case where the first conductive layer 110a and the second conductive layer 130a are light-transmitting conductive layers, the first conductive layer 110a and the second conductive layer 130a include, for example, a metal oxide, and more specifically, for example, It contains ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IWZO (Indium Tungsten Zinc Oxide) or ZnO (Zinc Oxide).
 第1導電層110a及び第2導電層130aが透光性を有しない導電層である場合、第1導電層110a及び第2導電層130aは、例えばAl、Au、Ag、Pt、Mg、Sn、Zn及びInからなる第1群の中から選択される金属又はこの第1群から選択される金属の合金を含んでいる。 In the case where the first conductive layer 110a and the second conductive layer 130a are conductive layers that do not have translucency, the first conductive layer 110a and the second conductive layer 130a include, for example, Al, Au, Ag, Pt, Mg, Sn, A metal selected from the first group consisting of Zn and In or an alloy of a metal selected from the first group is included.
 図4~図7に示すように、被覆層200は、絶縁層150、複数の発光部140及び複数の隔壁160を覆っている。これにより、被覆層200は、絶縁層150、複数の発光部140及び複数の隔壁160を封止している。より具体的には、本図に示す例では、被覆層200は、ALD(Atomic Layer Deposition)によって形成されている。これにより、被覆層200は、絶縁層150、発光部140並びに隔壁160の側面及び上面を連続して覆っている。被覆層200は、例えば絶縁材料、より具体的には例えば金属酸化物を含んでいる。被覆層200は、例えば酸化チタン層及び酸化アルミニウム層を含んでいる。この場合、酸化アルミニウム層は、酸化チタン層上又は酸化チタン層下にある。被覆層200の厚さは、例えば50nm以上300nm以下である。 4 to 7, the covering layer 200 covers the insulating layer 150, the plurality of light emitting portions 140, and the plurality of partition walls 160. Thereby, the coating layer 200 seals the insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160. More specifically, in the example shown in the figure, the covering layer 200 is formed by ALD (Atomic Layer Deposition). Accordingly, the covering layer 200 continuously covers the side surfaces and the upper surface of the insulating layer 150, the light emitting unit 140, and the partition wall 160. The covering layer 200 includes, for example, an insulating material, more specifically, for example, a metal oxide. The covering layer 200 includes, for example, a titanium oxide layer and an aluminum oxide layer. In this case, the aluminum oxide layer is on the titanium oxide layer or below the titanium oxide layer. The thickness of the coating layer 200 is, for example, not less than 50 nm and not more than 300 nm.
 なお、被覆層200は、例えばCVD(Chemical Vapor Deposition)又はスパッタにより形成してもよい。この場合、被覆層200は、例えばSiO層又はSiN層を含んでいる。この場合、被覆層200の膜厚は、例えば10nm以上1000nm以下である。 The covering layer 200 may be formed by, for example, CVD (Chemical Vapor Deposition) or sputtering. In this case, the covering layer 200 includes, for example, a SiO 2 layer or a SiN layer. In this case, the film thickness of the coating layer 200 is, for example, not less than 10 nm and not more than 1000 nm.
 被覆層200は、樹脂層により覆われていてもよい。樹脂層は、被覆層200を保護するために設けられている。樹脂層は、例えばエポキシ樹脂又はアクリル樹脂を含んでいる。 The covering layer 200 may be covered with a resin layer. The resin layer is provided to protect the covering layer 200. The resin layer contains, for example, an epoxy resin or an acrylic resin.
 次に、発光装置10の製造方法について説明する。まず、基板100の第1面102上に導電層を形成し、この導電層をパターニングする。これにより、複数の導電層170(第1導電層110a、第1配線114及び第2配線134)が形成される。次いで、各導電層170の上面上に導電層180を形成する。 Next, a method for manufacturing the light emitting device 10 will be described. First, a conductive layer is formed on the first surface 102 of the substrate 100, and this conductive layer is patterned. Thus, a plurality of conductive layers 170 (first conductive layer 110a, first wiring 114, and second wiring 134) are formed. Next, a conductive layer 180 is formed on the upper surface of each conductive layer 170.
 次いで、基板100の第1面102上及び複数の導電層170上に絶縁層150を形成する。次いで、絶縁層150に複数の開口152及び複数の開口154を形成する。 Next, the insulating layer 150 is formed on the first surface 102 of the substrate 100 and the plurality of conductive layers 170. Next, a plurality of openings 152 and a plurality of openings 154 are formed in the insulating layer 150.
 次いで、絶縁層150上に複数の隔壁160を形成する。 Next, a plurality of partition walls 160 are formed on the insulating layer 150.
 次いで、絶縁層150上及び複数の隔壁160上に有機層を形成する。これにより、有機層は、隔壁160によって有機層120a及び有機層120bに分離される。 Next, an organic layer is formed on the insulating layer 150 and the plurality of partition walls 160. Accordingly, the organic layer is separated into the organic layer 120a and the organic layer 120b by the partition 160.
 詳細には、まず、絶縁層150上及び複数の隔壁160上に遷移金属酸化物層を例えばスパッタ又は蒸着により形成する。遷移金属酸化物層は、隔壁160によって複数の正孔注入層121aに分離される。次いで、絶縁層150上及び複数の隔壁160上に有機材料層を形成する。有機材料層は、隔壁160によって複数の正孔輸送層122aに分離される。次いで、第1電極110を高温に加熱する(メルト工程)。上記したように、このメルト工程では、絶縁層150(無機材料層)が高い撥水性を有していても、溶融した正孔輸送層122aが絶縁層150の表面からはじかれることが遷移金属酸化物(正孔注入層121a)によって抑制される。 Specifically, first, a transition metal oxide layer is formed on the insulating layer 150 and the plurality of partition walls 160 by, for example, sputtering or vapor deposition. The transition metal oxide layer is separated into a plurality of hole injection layers 121 a by the partition wall 160. Next, an organic material layer is formed over the insulating layer 150 and the plurality of partition walls 160. The organic material layer is separated into a plurality of hole transport layers 122a by the partition 160. Next, the first electrode 110 is heated to a high temperature (melt process). As described above, in this melt process, even if the insulating layer 150 (inorganic material layer) has high water repellency, the transition metal oxidation may cause the molten hole transport layer 122a to be repelled from the surface of the insulating layer 150. It is suppressed by the object (hole injection layer 121a).
 次いで、絶縁層150上及び複数の隔壁160上に有機材料層を形成する。有機材料層は、隔壁160によって複数の発光層123aに分離される。次いで、絶縁層150上及び複数の隔壁160上に有機材料層を形成する。有機材料層は、隔壁160によって複数の電子輸送層124aに分離される。次いで、絶縁層150上及び複数の隔壁160上に例えば金属酸化物層を形成する。金属酸化物層は、隔壁160によって複数の電子注入層125aに分離される。 Next, an organic material layer is formed on the insulating layer 150 and the plurality of partition walls 160. The organic material layer is separated into a plurality of light emitting layers 123 a by the partition 160. Next, an organic material layer is formed over the insulating layer 150 and the plurality of partition walls 160. The organic material layer is separated into a plurality of electron transport layers 124 a by the partition 160. Next, for example, a metal oxide layer is formed over the insulating layer 150 and the plurality of partition walls 160. The metal oxide layer is separated into a plurality of electron injection layers 125 a by the partition 160.
 次いで、絶縁層150上及び複数の隔壁160上に導電層を形成する。これにより、導電層は、隔壁160によって第2導電層130a及び導電層130bに分離される。 Next, a conductive layer is formed over the insulating layer 150 and the plurality of partition walls 160. Accordingly, the conductive layer is separated into the second conductive layer 130a and the conductive layer 130b by the partition 160.
 次いで、基板100の第1面102上、絶縁層150上及び複数の隔壁160上に被覆層200をALDにより形成する。これにより、絶縁層150、複数の発光部140及び複数の隔壁160は、被覆層200によって封止される。 Next, the coating layer 200 is formed by ALD on the first surface 102 of the substrate 100, the insulating layer 150, and the plurality of partition walls 160. As a result, the insulating layer 150, the plurality of light emitting units 140, and the plurality of partition walls 160 are sealed by the covering layer 200.
 以上、本実施形態によれば、第1電極110と発光層123の間に遷移金属酸化物(正孔注入層121)がある。遷移金属酸化物は、第1電極110と発光層123の間の正孔注入効率を向上させるように機能する。このため、絶縁層150(無機材料)が発光部140の輝度を劣化させるように機能していたとしても、絶縁層150(無機材料)に起因した輝度の劣化を抑制することができる。 As described above, according to the present embodiment, there is a transition metal oxide (hole injection layer 121) between the first electrode 110 and the light emitting layer 123. The transition metal oxide functions to improve the hole injection efficiency between the first electrode 110 and the light emitting layer 123. For this reason, even if the insulating layer 150 (inorganic material) functions to deteriorate the luminance of the light-emitting portion 140, the luminance deterioration due to the insulating layer 150 (inorganic material) can be suppressed.
 さらに、本実施形態においては、絶縁層150の表面上において、正孔輸送層122aと絶縁層150の表面の間に遷移金属酸化物(正孔注入層121a)がある。本発明者が検討したところ、正孔輸送層122aを絶縁層150の間に遷移金属酸化物(正孔注入層121a)がある場合、正孔輸送層122aは絶縁層150の表面に強固に接着するようになる。このため、メルト工程において第1電極110を高温に加熱したとしても、溶融した正孔輸送層122aが絶縁層150からはじかれることが抑制される。 Furthermore, in the present embodiment, there is a transition metal oxide (hole injection layer 121a) between the hole transport layer 122a and the surface of the insulating layer 150 on the surface of the insulating layer 150. As a result of studies by the inventors, when the hole transport layer 122a has a transition metal oxide (hole injection layer 121a) between the insulating layers 150, the hole transport layer 122a is firmly bonded to the surface of the insulating layer 150. To come. For this reason, even if the first electrode 110 is heated to a high temperature in the melting step, the molten hole transport layer 122a is suppressed from being repelled from the insulating layer 150.
 図9は、実施例に係る発光装置10の耐候性試験の結果、比較例1に係る発光装置10の耐候性試験の結果及び比較例2に係る発光装置10の耐候性試験の結果を示すグラフである。本図に示す例に係る耐候性試験では、発光装置10を温度70℃で駆動させた。 FIG. 9 is a graph showing the results of the weather resistance test of the light emitting device 10 according to the example, the results of the weather resistance test of the light emitting device 10 according to Comparative Example 1, and the results of the weather resistance test of the light emitting device 10 according to Comparative Example 2. It is. In the weather resistance test according to the example shown in the figure, the light emitting device 10 was driven at a temperature of 70 ° C.
 本実施例に係る発光装置10は、図1~図8に示した発光装置10と同様にした。具体的には、本実施例では、正孔注入層121aは、三酸化モリブデン(MoO)層を含んでいる。絶縁層150は、無機材料からなる。絶縁層150の無機材料は、シリコン酸化物とした。本図に示す例では、本実施例に係る2つの発光装置10について試験した。本実施例では、2つの発光装置10の各々について、初期(0時間)の時点における輝度、260時間の時点における輝度、381時間の時点における輝度、547時間の時点における輝度及び1000時間の時点における輝度を測定した。さらに、2つの発光装置10について、初期(0時間)の時点における輝度の平均値、260時間の時点における輝度の平均値、381時間の時点における輝度の平均値、547時間の時点における輝度の平均値及び1000時間の時点における輝度の平均値を算出した。 The light emitting device 10 according to this example was the same as the light emitting device 10 shown in FIGS. Specifically, in this embodiment, the hole injection layer 121a includes a molybdenum trioxide (MoO 3 ) layer. The insulating layer 150 is made of an inorganic material. The inorganic material of the insulating layer 150 was silicon oxide. In the example shown in this figure, two light emitting devices 10 according to this example were tested. In the present embodiment, for each of the two light emitting devices 10, the luminance at the initial time (0 hour), the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours. Luminance was measured. Further, for the two light emitting devices 10, the average value of luminance at the initial (0 hour) time point, the average value of luminance at the time point of 260 hours, the average value of luminance at the time point of 381 hours, the average value of luminance at the time point of 547 hours Value and the average value of luminance at the time of 1000 hours were calculated.
 比較例1に係る発光装置10は、正孔注入層121aが遷移金属酸化物を含んでいない点を除いて、本実施例に係る発光装置10と同様とした。本図に示す例では、比較例1に係る2つの発光装置10について試験した。本比較例では、2つの発光装置10の各々について、初期(0時間)の時点における輝度、260時間の時点における輝度、381時間の時点における輝度、547時間の時点における輝度及び1000時間の時点における輝度を測定した。さらに、2つの発光装置10について、初期(0時間)の時点における輝度の平均値、260時間の時点における輝度の平均値、381時間の時点における輝度の平均値、547時間の時点における輝度の平均値及び1000時間の時点における輝度の平均値を算出した。 The light emitting device 10 according to Comparative Example 1 was the same as the light emitting device 10 according to this example, except that the hole injection layer 121a did not contain a transition metal oxide. In the example shown in this figure, two light emitting devices 10 according to Comparative Example 1 were tested. In this comparative example, for each of the two light emitting devices 10, the luminance at the initial time (0 hour), the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours. Luminance was measured. Further, for the two light emitting devices 10, the average value of luminance at the initial (0 hour) time point, the average value of luminance at the time point of 260 hours, the average value of luminance at the time point of 381 hours, the average value of luminance at the time point of 547 hours Value and the average value of luminance at the time of 1000 hours were calculated.
 比較例2に係る発光装置10は、絶縁層150が有機材料からなる点を除いて、比較例1に係る発光装置10と同様とした。本図に示す例では、比較例2に係る2つの発光装置10について試験した。本比較例では、初期(0時間)の時点における輝度、260時間の時点における輝度、381時間の時点における輝度、547時間の時点における輝度及び1000時間の時点における輝度を測定した。さらに、2つの発光装置10について、初期(0時間)の時点における輝度の平均値、260時間の時点における輝度の平均値、381時間の時点における輝度の平均値、547時間の時点における輝度の平均値及び1000時間の時点における輝度の平均値を算出した。 The light emitting device 10 according to Comparative Example 2 was the same as the light emitting device 10 according to Comparative Example 1 except that the insulating layer 150 was made of an organic material. In the example shown in the figure, two light emitting devices 10 according to Comparative Example 2 were tested. In this comparative example, the luminance at the initial time (0 hour), the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours were measured. Further, for the two light emitting devices 10, the average value of luminance at the initial (0 hour) time point, the average value of luminance at the time point of 260 hours, the average value of luminance at the time point of 381 hours, the average value of luminance at the time point of 547 hours Value and the average value of luminance at the time of 1000 hours were calculated.
 本実施例に係る発光装置10では、260時間の時点における輝度、381時間の時点における輝度、547時間の時点における輝度及び1000時間の時点における輝度は、初期(0時間)の時点における輝度からほとんど低下せず、初期(0時間)の時点における輝度のおおよそ90%となった。同様にして、比較例2に係る発光装置10では、260時間の時点における輝度、381時間の時点における輝度、547時間の時点における輝度及び1000時間の時点における輝度は、初期(0時間)の時点における輝度からほとんど低下せず、初期(0時間)の時点における輝度のおおよそ90%となった。これに対して、比較例1に係る発光装置10では、260時間の時点における輝度、381時間の時点における輝度、547時間の時点における輝度及び1000時間の時点における輝度が初期(0時間)の時点における輝度から大きく低下し、初期(0時間)の時点における輝度の半分以下となった。 In the light emitting device 10 according to this example, the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours are almost the same as the luminance at the initial time (0 hour). The luminance did not decrease and became about 90% of the luminance at the initial time (0 hour). Similarly, in the light emitting device 10 according to Comparative Example 2, the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours are the initial (0 hour) time points. There was almost no decrease from the luminance at, and it was approximately 90% of the luminance at the initial time (0 hour). On the other hand, in the light emitting device 10 according to Comparative Example 1, the luminance at the time of 260 hours, the luminance at the time of 381 hours, the luminance at the time of 547 hours, and the luminance at the time of 1000 hours are initial (0 hours). The brightness greatly decreased from the brightness at ½, and became less than half of the brightness at the initial time (0 hour).
 比較例1及び比較例2の結果は、絶縁層150(無機材料)が発光部140の輝度を劣化させるように機能していることを示唆している。 The results of Comparative Example 1 and Comparative Example 2 suggest that the insulating layer 150 (inorganic material) functions to deteriorate the luminance of the light emitting unit 140.
 本実施例及び比較例1の結果は、絶縁層150(無機材料)に起因した輝度の劣化が正孔注入層121a中の遷移金属酸化物(三酸化モリブデン(MoO))によって抑制されていることを示唆している。 As a result of this example and Comparative Example 1, the luminance degradation due to the insulating layer 150 (inorganic material) is suppressed by the transition metal oxide (molybdenum trioxide (MoO 3 )) in the hole injection layer 121a. Suggests that.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (9)

  1.  基板と、
     前記基板上にあり、無機材料からなる絶縁層と、
     前記基板上で前記絶縁層によって画定され、第1電極、第2電極及び前記第1電極と前記第2電極の間の有機層を有する発光部と、
     前記絶縁層、及び前記発光部の少なくとも一部を覆う被覆層と、
    を備え、
     前記有機層は、発光層及び前記発光層と前記第1電極の間の第1の遷移金属酸化物を含む発光装置。
    A substrate,
    An insulating layer on the substrate and made of an inorganic material;
    A light emitting part defined by the insulating layer on the substrate and having a first electrode, a second electrode, and an organic layer between the first electrode and the second electrode;
    A covering layer covering at least a part of the insulating layer and the light emitting part;
    With
    The organic layer includes a light emitting layer and a first transition metal oxide between the light emitting layer and the first electrode.
  2.  請求項1に記載の発光装置において、
     前記第1電極上の第1部分及び前記第1部分の周囲の第2部分を含む第1有機層を備え、
     前記第1有機層の前記第1部分は、前記発光部の前記有機層であり、
     前記第1有機層の前記第2部分は、前記絶縁層上にあり、
     前記絶縁層上の第2の遷移金属酸化物を含む発光装置。
    The light-emitting device according to claim 1.
    A first organic layer comprising a first portion on the first electrode and a second portion around the first portion;
    The first portion of the first organic layer is the organic layer of the light emitting unit;
    The second portion of the first organic layer is on the insulating layer;
    A light emitting device comprising a second transition metal oxide on the insulating layer.
  3.  請求項2に記載の発光装置において、
     前記第1有機層は、遷移金属酸化物層を含み、
     前記遷移金属酸化物層は、前記第1の遷移金属酸化物及び前記第2の遷移金属酸化物を含む発光装置。
    The light-emitting device according to claim 2.
    The first organic layer includes a transition metal oxide layer,
    The transition metal oxide layer is a light emitting device including the first transition metal oxide and the second transition metal oxide.
  4.  請求項1~3のいずれか一項に記載の発光装置において、
     前記絶縁層上の隔壁を備え、
     前記隔壁に沿って前記第2電極を分断している発光装置。
    The light emitting device according to any one of claims 1 to 3,
    Comprising a partition on the insulating layer;
    A light emitting device in which the second electrode is divided along the partition.
  5.  請求項4に記載の発光装置において、
     前記隔壁が延在する方向に対して垂直な断面において、前記隔壁は、下面及び前記下面の幅よりも広い幅を有する上面を有する発光装置。
    The light-emitting device according to claim 4.
    In the cross section perpendicular to the direction in which the partition extends, the partition has a lower surface and an upper surface having a width wider than a width of the lower surface.
  6.  請求項4又は5に記載の発光装置において、
     前記絶縁層、前記発光部及び前記隔壁の側面及び上面を連続して覆う前記被覆層を備える発光装置。
    The light emitting device according to claim 4 or 5,
    A light emitting device comprising the covering layer that continuously covers side surfaces and an upper surface of the insulating layer, the light emitting unit, and the partition.
  7.  請求項6に記載の発光装置において、
     前記被覆層は、酸化チタン層及び酸化アルミニウム層を含む発光装置。
    The light-emitting device according to claim 6.
    The covering layer is a light emitting device including a titanium oxide layer and an aluminum oxide layer.
  8.  請求項1~7のいずれか一項に記載の発光装置において、
     第1方向に並ぶ複数の第1導電層と、
     前記基板上及び前記複数の第1導電層上で前記第1方向に直交する第2方向に並ぶ複数の第2導電層と、
    を備え、
     前記第1導電層は、前記第2導電層と重なる部分を含み、
     前記第2導電層は、前記第1導電層と重なる部分を含み、
     前記第1電極は、前記第1導電層の前記部分であり、
     前記第2電極は、前記第2導電層の前記部分である発光装置。
    The light emitting device according to any one of claims 1 to 7,
    A plurality of first conductive layers arranged in a first direction;
    A plurality of second conductive layers arranged in a second direction orthogonal to the first direction on the substrate and the plurality of first conductive layers;
    With
    The first conductive layer includes a portion overlapping the second conductive layer,
    The second conductive layer includes a portion overlapping the first conductive layer,
    The first electrode is the portion of the first conductive layer;
    The light emitting device, wherein the second electrode is the portion of the second conductive layer.
  9.  請求項1~8のいずれか一項に記載の発光装置において、
     前記第1の遷移金属酸化物は、酸化モリブデンである発光装置。
    The light emitting device according to any one of claims 1 to 8,
    The light emitting device wherein the first transition metal oxide is molybdenum oxide.
PCT/JP2016/058360 2016-03-16 2016-03-16 Light-emitting device WO2017158767A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018505142A JPWO2017158767A1 (en) 2016-03-16 2016-03-16 Light emitting device
PCT/JP2016/058360 WO2017158767A1 (en) 2016-03-16 2016-03-16 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/058360 WO2017158767A1 (en) 2016-03-16 2016-03-16 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2017158767A1 true WO2017158767A1 (en) 2017-09-21

Family

ID=59851148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058360 WO2017158767A1 (en) 2016-03-16 2016-03-16 Light-emitting device

Country Status (2)

Country Link
JP (1) JPWO2017158767A1 (en)
WO (1) WO2017158767A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083086A (en) * 2017-10-27 2019-05-30 双葉電子工業株式会社 Organic EL device and optical print head

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093402A (en) * 2003-09-19 2005-04-07 Semiconductor Energy Lab Co Ltd Light emitting device
WO2009087966A1 (en) * 2008-01-07 2009-07-16 Panasonic Corporation Organic electroluminescence device and method for manufacturing the same
JP2010129419A (en) * 2008-11-28 2010-06-10 Sumitomo Chemical Co Ltd Light emitting device and manufacturing method
JP2011060692A (en) * 2009-09-14 2011-03-24 Toppan Printing Co Ltd Organic el panel, and manufacturing method thereof
JP2011176190A (en) * 2010-02-25 2011-09-08 Sumitomo Chemical Co Ltd Light emitting device and method of manufacturing the same
JP2012174712A (en) * 2011-02-17 2012-09-10 Panasonic Corp Organic light-emitting element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093402A (en) * 2003-09-19 2005-04-07 Semiconductor Energy Lab Co Ltd Light emitting device
WO2009087966A1 (en) * 2008-01-07 2009-07-16 Panasonic Corporation Organic electroluminescence device and method for manufacturing the same
JP2010129419A (en) * 2008-11-28 2010-06-10 Sumitomo Chemical Co Ltd Light emitting device and manufacturing method
JP2011060692A (en) * 2009-09-14 2011-03-24 Toppan Printing Co Ltd Organic el panel, and manufacturing method thereof
JP2011176190A (en) * 2010-02-25 2011-09-08 Sumitomo Chemical Co Ltd Light emitting device and method of manufacturing the same
JP2012174712A (en) * 2011-02-17 2012-09-10 Panasonic Corp Organic light-emitting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019083086A (en) * 2017-10-27 2019-05-30 双葉電子工業株式会社 Organic EL device and optical print head

Also Published As

Publication number Publication date
JPWO2017158767A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
KR101746677B1 (en) Flexible organic light emitting diode
KR20170071152A (en) Organic light emitting display device
KR101893281B1 (en) Light emitting apparatus
JP4684592B2 (en) Method for manufacturing organic electroluminescent device
US20240163984A1 (en) Light emitting device
KR100736576B1 (en) Light emitting diode and method for manufacturing the same
JP2007179914A (en) El device and method of manufacturing same
WO2017158767A1 (en) Light-emitting device
JP2009187774A (en) Organic electroluminescent element
JP2007179913A (en) El device and method of manufacturing same
JP2017182912A (en) Light emitting device
JP6661373B2 (en) Light emitting device
JP6701383B2 (en) Light emitting device
JP6776329B2 (en) Manufacturing method of light emitting device, electronic device and light emitting device
JP2017091775A (en) Method of manufacturing light-emitting device
WO2017163347A1 (en) Light emitting device
WO2017094087A1 (en) Light emitting device
WO2017168581A1 (en) Light-emitting device
JP2018041637A (en) Light-emitting device
JPWO2017119068A1 (en) Light emitting device
JP6700013B2 (en) Light emitting device
JP2018156752A (en) Light-emitting device
WO2017183118A1 (en) Light-emitting device
WO2017119069A1 (en) Light emitting device
WO2017163374A1 (en) Method for manufacturing light emitting device, and light emitting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505142

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16894385

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16894385

Country of ref document: EP

Kind code of ref document: A1