WO2017155215A1 - 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿 - Google Patents

근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿 Download PDF

Info

Publication number
WO2017155215A1
WO2017155215A1 PCT/KR2017/001471 KR2017001471W WO2017155215A1 WO 2017155215 A1 WO2017155215 A1 WO 2017155215A1 KR 2017001471 W KR2017001471 W KR 2017001471W WO 2017155215 A1 WO2017155215 A1 WO 2017155215A1
Authority
WO
WIPO (PCT)
Prior art keywords
group iii
layer
iii nitride
nitride semiconductor
light emitting
Prior art date
Application number
PCT/KR2017/001471
Other languages
English (en)
French (fr)
Inventor
박중서
황성민
조인성
임원택
김두수
신선혜
이성현
Original Assignee
주식회사 소프트에피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소프트에피 filed Critical 주식회사 소프트에피
Priority to US16/083,618 priority Critical patent/US20200058827A1/en
Publication of WO2017155215A1 publication Critical patent/WO2017155215A1/ko
Priority to US16/234,933 priority patent/US11264538B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present disclosure relates to a near-ultraviolet light emitting semiconductor light emitting device and a group III nitride semiconductor template used therein.
  • the present invention relates to a near-ultraviolet light-emitting semiconductor light emitting device using AlGaN and a group III nitride semiconductor template used therein.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor is composed of a compound of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), and Si, It may include an impurity such as Mg.
  • FIG. 1 is a view showing an example of a method for growing a group III nitride semiconductor layer shown in US Patent No. 5,290,393, wherein the growth substrate 10 has Al x Ga 1 - x N (x ⁇ 0).
  • the seed layer 20 After growing the seed layer 20, a technique in which a group III nitride semiconductor layer 21 of Al y Ga 1 - y N (y ⁇ 0) is grown is presented.
  • a seed layer 20 made of GaN is formed at a temperature of 500 ° C, and then a group III nitride semiconductor layer 21 made of GaN is formed at a temperature of 1020 ° C.
  • This technique also provides examples of growing the seed layer 20 containing Al and the group III nitride semiconductor layer 21 containing Al, but the present invention can be applied to a commercially available group III nitride semiconductor light emitting device (eg, LED, LD). Therefore, there is a limit in growing the group III nitride semiconductor layer 21 including Al by the method proposed in this patent.
  • group III nitride semiconductor light emitting device eg, LED, LD
  • the semiconductor light emitting device includes a growth substrate 10, a seed layer (not shown), and an n-type group III nitride semiconductor layer. (30; Si-doped GaN), the active layer (40; InGaN / (In) GaN multi-quantum well structure) to generate light by recombination of electrons and holes, p-type group III nitride semiconductor layer (50; Mg-doped GaN ), the p-side electrode 70 and the n-side electrode 80.
  • the material constituting the seed layer, the n-type III-nitride semiconductor layer 30 and the p-type III-nitride semiconductor layer 50 is GaN, and the growth substrate 10 (eg, C-plane sapphire substrate) has irregularities for light scattering. (11) is formed, and such a growth substrate is called PSS (Patterned Sapphire Substrate).
  • UVA 315-400 nm
  • UVB 280-315 nm
  • UVC 100-280 nm
  • the content of GaN should be minimized.
  • a high-quality 3 containing Al on the side of the growth substrate 10 is provided. It is generally not easy to grow the group nitride semiconductor layer 21, and in the conventional case, a good group III nitride semiconductor layer 21 made of GaN is grown on the side in contact with the growth substrate 10, and then thereon.
  • a technique for growing a near-ultraviolet light emitting group III nitride semiconductor light emitting structure and removing the growth substrate 10 and the group III nitride semiconductor layer 21 made of GaN has been proposed.
  • the semiconductor light emitting device in which the growth substrate 10 is removed is called a vertical chip.
  • U.S. Patent No. 7,759,146 shows that it is not easy to grow a high-quality layer containing Al on a growth substrate (the growth rate slows down as the Al content increases and the Al content increases. As a result, stress is increased in the Al-containing layer, so that a lot of cracks occur in the case of a thick AlGaN layer).
  • an ultraviolet light emitting epitaxial structure is grown on the GaN layer, and then Techniques for removing the growth layer along with the growth substrate have been proposed.
  • a group III nitride semiconductor template for a near ultraviolet (300-400 nm) light emitting semiconductor light emitting device comprising: a growth substrate; A seed layer consisting of Al x Ga 1 - x N (0 ⁇ x ⁇ 1, x>y);
  • a Group III nitride semiconductor template for a near-ultraviolet light-emitting semiconductor light emitting device comprising: a single crystal Group III nitride semiconductor layer of Al y Ga 1- y N (y> 0).
  • a near-ultraviolet (300-400nm) light emitting semiconductor light emitting device comprising: a growth substrate; A seed layer consisting of Al x Ga 1 - x N (0 ⁇ x ⁇ 1); Al y Ga 1 - y N ( y> 0) by a single-crystal Group III nitride semiconductor layer; A light emitting structure that emits near ultraviolet rays through recombination of electrons and holes on the Group III nitride semiconductor layer; And, the first electrode for supplying electrons and holes to the light emitting structure; And a second electrode, wherein the Al composition value y of the group III nitride semiconductor layer is determined so that the group III nitride semiconductor layer does not absorb the near ultraviolet light emitted from the light emitting structure.
  • FIG. 1 is a view showing an example of a method of growing a group III nitride semiconductor layer shown in US Patent No. 5,290,393,
  • FIG. 2 is a view showing an example of a group III nitride semiconductor light emitting device shown in US Patent No. 7,759,140;
  • FIG. 3 illustrates an example of a group III nitride semiconductor template according to the present disclosure
  • FIG. 4 is a view illustrating an example of a method of manufacturing a group III nitride semiconductor template according to the present disclosure
  • FIG. 5 is a view illustrating another example of the group III nitride semiconductor template according to the present disclosure.
  • FIG. 6 is a photograph showing an example of a group III nitride semiconductor layer in which crystal defects occur due to poor growth from above in unevenness;
  • FIG. 7 is a view showing experimental results of a group III nitride semiconductor template manufactured according to the present disclosure.
  • FIG. 8 is a diagram illustrating an example of a near ultraviolet light emitting semiconductor light emitting device according to the present disclosure
  • FIG. 9 is a view showing another example of the near ultraviolet light-emitting semiconductor light emitting device according to the present disclosure.
  • FIG. 10 is a diagram showing an integrated sphere test result of the near ultraviolet light-emitting semiconductor light emitting device shown in FIG. 9;
  • FIG. 3 illustrates an example of a group III nitride semiconductor template according to the present disclosure, wherein the template includes a growth substrate 10, a seed layer 20, and a group III nitride semiconductor layer 21.
  • the growth substrate 10 is generally made of a material different from that of the group III nitride semiconductor layer 21.
  • a sapphire (Al 2 O 3 ) substrate may be used, and the seed layer 20 and the group 3 may be used.
  • the nitride semiconductor layer 21 is generally grown on the C surface of the sapphire substrate.
  • the seed layer 20 is a layer introduced for the crystal growth of the group III nitride semiconductor layer 21 into the growth substrate 10 made of a heterogeneous material, and is composed of Al x Ga 1 - x N (0 ⁇ x ⁇ 1). In general, it is grown at a temperature lower than the growth temperature of the group III nitride semiconductor layer 21. As the content of Al increases, the absorption of light generated in the active layer can be reduced. From this point of view only, AlN is most preferred.
  • the group III nitride semiconductor layer 21 is made of Al y Ga 1 - y N (y> 0), and preferably has bandgap energy that does not absorb light emitted from the light emitting structure grown thereon. For example, when near-ultraviolet light of 365 nm is emitted, Al 0 . Ga 05 can be made of a 0 .95 N. As the Al content increases, the bandgap energy increases, but as described above, since it may adversely affect the crystallinity of the group III nitride semiconductor layer 21, the adverse effect on the crystallinity in the degree of not absorbing the emitted light. It is desirable to determine in the range that minimizes.
  • the group III nitride semiconductor layer 21 may include dopants such as Si and Mg or In as a constituent material, but is not preferable in terms of crystallinity.
  • a seed is processed at a first temperature after a well-known pretreatment process such as cleaning the growth substrate 10.
  • the layer 20 is grown.
  • the group III nitride semiconductor layer 21 is grown at a second temperature higher than the first temperature.
  • the seed layer 20 is crystallized at a third temperature higher than the first temperature and lower than the second temperature.
  • the growth of the seed layer 20 and the group III nitride semiconductor layer 21 is generally performed by a MOCVD apparatus.
  • the growth of the seed layer 20 may be an epitaxial growth device (eg, a MOCVD device) while minimizing thermo-dynamical effects on the element molecules Al, N, and Ga constituting the seed layer 20.
  • a low temperature first temperature
  • the seed layer 20 of Al x Ga 1 - x N (0 ⁇ x ⁇ 1) grown at low temperature at a low temperature is a polycrystalline film made of a mixture of AlN and GaN, and the combination ratio thereof is 3 to be grown on top.
  • the composition ratio of Al of the group nitride semiconductor layer 21 can be adjusted according to the composition ratio of Al of the group nitride semiconductor layer 21. This is to match the lattice constant with the group III nitride semiconductor layer 21.
  • the seed layer 20 is a polycrystalline film, the degree of matching of the lattice constant is not only advantageous for the crystallinity of the group III nitride semiconductor layer 21.
  • the mode of crystal can be adjusted by the combination ratio of AlN and GaN. In other words, if the ratio of AlN is high, it becomes a '3D-like crystal growth mode', and if the ratio of GaN is high, it is adjusted to a 2D-like crystal growth mode. By adjusting such a ratio, the crystal quality of the group III nitride semiconductor layer 21 can be optimized.
  • the process of raising the temperature to the temperature (second temperature) at which the group III nitride semiconductor layer 21 is grown and / or in the elevated temperature state crystallizes the seed layer 20 which is a polycrystalline film.
  • the crystal growth mode of the seed layer 20 may be changed in this process.
  • the present disclosure by growing the seed layer 20, by using a process of raising the temperature higher than the second temperature (third temperature) and / or crystallization of the seed layer 20 in the elevated state, the seed layer While crystallization of (20) is achieved, the crystallinity of the group III nitride semiconductor layer 21 can be further improved.
  • the second temperature is a temperature suitable for crystal growth of the group III nitride semiconductor layer 21 which is a single crystal film.
  • the seed layer 20 is made of a material having thermodynamic stability in the region of the third temperature.
  • the Al-Ga-N material system constituting the constituent layer of the invention it is preferable to have a high Al composition ratio.
  • the group III nitride semiconductor layer 21 is made of Al 0 .
  • the seed layer 20 provides a structure that recrystallizes at a third temperature and also minimizes crystal defect density due to lattice mismatch upon growth at the second temperature.
  • an appropriate composition range of Al is required. It is preferable that x is 0.5 or more in Al x Ga 1 - x N (0 ⁇ x1). That is, when x approaches 1, the thermodynamic stability is increased at the third temperature, and the 3D island growth mode is activated to induce a growth mode in a direction parallel to the growth substrate 10 plane when growing at the second temperature. To provide a condition.
  • composition ratio of Al is too high, if the density of the 3D island is too high, it may be very difficult to obtain a smooth growth surface due to insufficient merging of the growth surface during the growth of the second temperature. (0.5 ⁇ x ⁇ 1) is required.
  • the thickness as well as the composition ratio of Al in the seed layer 20 is an important process variable.
  • the thickness of the seed layer 20 grown at the first temperature is an important parameter that determines the height and width of the 3D island formed at the third temperature. As for the empirical range by experiment, the range of 10-100 nm is preferable. If the thickness is too thin, the height of the 3D island is not sufficient, so the effect is small. If the thickness is too large, the height of the 3D island is too large to obtain a sufficiently smooth surface.
  • the seed layer 20 has a thickness in the range of 10 to 100 nm and an Al composition ratio of 50 to 100%, and the growth temperature may be grown in a temperature range of 400 to 600 ° C. in which Surface Kinetics Limited Condition is dominant. have.
  • the growth pressure is generally not a sensitive process variable in forming the seed layer 20, and can generally be grown in a variety of pressures ranging from 100 to 760 torr.
  • the MO source or the carrier gas flow rate may be optimized conditions of the MOCVD to be used.
  • the 3rd temperature is about 10-300 degreeC higher than 2nd temperature. Since the second temperature is usually about 1000 to 1100 ° C., the temperature range of 1010 to 1400 ° C. is preferable.
  • the range of optimized temperatures depends on the thickness of the seed layer 20 and the composition ratio of Al.
  • the optimized third temperature is generally higher the greater the thickness and the higher the Al composition ratio.
  • the shape and size of the 3D island is determined according to the third temperature, and if the temperature is too high, the thermodynamic stability of the seed layer 20 may be broken, thereby causing a problem in surface degradation.
  • the duration of the third temperature and the temperature rise time from the first temperature to the third temperature also affect the size and shape of the 3D island, which is not defined uniformly, rather than the commercial conditions of the reactor (MO It is a variable that is optimized according to the source, the V / III ratio, the pressure of the reactor, etc., and therefore it is preferable to adjust the situation.
  • the Al composition ratio to the composition value y is the seed layer 20 of Al x Ga 1 - x N (0 ⁇ x ⁇ 1). It is preferable that it is smaller than x which is the Al composition ratio of. This is because the 3D island formed while the seed layer 20 undergoes the process of the third temperature section is converted into the 2D growth mode in the group III nitride semiconductor layer 21 of the second temperature section to form a smooth epitaxial layer. In general, the smaller the composition ratio of Al, the stronger the tendency of the 2D growth mode.
  • the maximum value thereof is preferably smaller than the Al composition ratio of the seed layer 20.
  • the group III nitride semiconductor layer 21 corresponds to a so-called buffer layer when constituting the device. It is preferable that this thickness is the range of 1-6 micrometers. If too thin, the role of the original buffer layer may be insufficient, and if too thick, wafer bowing due to lattice constant mismatch between the growth substrate 10 and the group III nitride semiconductor layer 21 may increase, thereby causing problems in future semiconductor processes. May cause.
  • the pressure of the reactor uses a relatively low pressure of 50 ⁇ 200 torr. This is to increase the velocity of the carrier gas in order to prevent the TMAl used from vigorizing the parasitic reaction with NH 3 in the gas phase.
  • the growth temperature is generally used in the range of 1000 to 1100 ° C., and a growth temperature range similar to or higher than that of GaN is used. This is to increase the surface mobility (Al) so that the Al precursor adsorbed on the growth surface to find the growth kink site well.
  • the V / III ratio which is the ratio of the flow rate of the MO source to the NH 3
  • the growth rate of the group III nitride semiconductor layer 21 is preferably 1 to 4 ⁇ / h. In general, the slower the growth rate, the better the crystallinity, the higher the crystallinity. However, if it is too slow, the growth efficiency tends to decrease.
  • the template includes a growth substrate 10, a seed layer 20, and a group III nitride semiconductor layer 21.
  • the growth substrate 10 is provided with irregularities 11 for light scattering. As shown in the figure, the unevenness 11 forms protrusions on the growth substrate 10 by etching, so that the protrusions form a protrusion portion, and the bottom surface of the growth substrate 10 exposed by etching is recessed.
  • pression portoin may be formed, or by forming a recess in the growth substrate 10 through etching, the surface of the growth substrate 10 which is not etched may form a convex portion, or a combination thereof Although it may be in a form, it generally has a form in which protrusions are formed through etching.
  • the protrusion 11 may be, for example, in the form of a hemisphere lens, and may have a hemisphere width of about 1.5 to 3 ⁇ m and a height of about 1 to 2 ⁇ m.
  • the growth of the group III nitride semiconductor layer 21 of Al y Ga 1 - y N (y> 0) is higher than in the case of manufacturing the template shown in FIG.
  • Technical difficulty is required. This is because it is not easy for the group III nitride semiconductor layer 21 grown from the bottom surface of the growth substrate 10 to coalesced with each other while stably covering the unevenness 11.
  • 6 illustrates an example of the group III nitride semiconductor layer 21 in which crystal defects are not grown well on irregularities.
  • the group III nitride semiconductor layer 21 into the first layer 22, the second layer 23, and the third layer 24.
  • the seed layer 20 is formed, and then the first layer 22 is grown under growth conditions in which growth is active in the vertical direction.
  • the first layer 22 is formed to a point reaching 80 to 90% of the height of the projection.
  • the second layer 23 is grown under growth conditions in which growth is active in the horizontal direction to cover the protrusions, while allowing the second layer 23 to merge well.
  • the third layer 24 is formed under the conditions under which the flat layer is formed, that is, in the 2D growth mode.
  • FIG. 7 shows experimental results of a Group III nitride semiconductor template fabricated according to the present disclosure, with an average value of 352 nm in PL wavelength mapping, which is about 5 in composition ratio of Al in the Group III nitride semiconductor layer 21. Means%. It can be seen that the uniformity of the wavelength is also very uniform at 2% or less. The average thickness was 6 mu m, and the uniformity of the thickness was 3% or less, which is also very good.
  • the XRDs (002) and (102) of the template obtained 131 arcsec and 211 arcsec, respectively.
  • the first layer 22 is a growth condition suitable for the metal-rich surface of the c-growth group III metal as the seed layer 20 and the connecting layer. This does not deviate significantly from conventional high crystalline Group III nitride semiconductor growth conditions, but it is preferable that the V / III ratio is larger than 500.
  • the second layer 23 to be grown is a growth plane merged layer having an enhanced 2D growth mode. It is a layer where growth surfaces approaching each other laterally along the hemispherical lens surface meet each other. Since the structure of the dangling bonds on the surfaces of the different growth surfaces is different from each other, it is a layer that finds the optimum conditions for the smooth connection.
  • the growth layer in the low temperature region is grown to about 20 to 100 ° C. lower than the temperature of the third layer 24.
  • the growth rate is preferably used in the range of 0.1 ⁇ 1 ⁇ m / h.
  • a valid parameter in the growth conditions of the second layer 23 is the growth pressure. In general, higher pressures are advantageous for smooth merging. However, if the pressure is high, the velocity of the carrier gas is slowed down, so that Al precursor TMAl is consumed by the parasitic reaction in the gaseous state, making it difficult to grow AlGaN efficiently. Thus, there is an optimal pressure of two variables. Once a smooth growth surface is made in the second layer 23, the third layer 24 can grow according to the growth conditions of a typical high crystalline Group III nitride semiconductor layer.
  • FIG. 8 is a diagram illustrating an example of a near-ultraviolet light-emitting semiconductor light emitting device according to the present disclosure, wherein the semiconductor light emitting device includes a growth substrate 10, a seed layer 20, a group III nitride semiconductor layer 21, and a first conductivity.
  • Has a first semiconductor layer 30 e.g., an n-type AlGaN layer
  • an active layer 40 e.g., a multi-quantum well structure having InGaN quantum wells
  • a second semiconductor layer 50 having a second conductivity p-type AlGaN layer
  • a first electrode 80 electrically connected to supply electrons to the first semiconductor layer 30 and functioning as a bonding pad
  • an n-side electrode : A stacked structure of Cr / Ni / Au) and a second electrode 70 (p-side electrode) electrically connected to supply holes to the second semiconductor layer 50 and functioning as a bonding pad; for example, Cr / Ni / Au Laminated structure).
  • the unevenness 11 is provided on the growth substrate 10, and the nearly growth of the second semiconductor layer 50 is performed for current spreading between the second semiconductor layer 50 and the second electrode 70.
  • a transmissive current spreading electrode 60 eg, ITO
  • a chip having such a structure is generally called a lateral chip, and wire bonding is performed to supply electricity from the outside to the first electrode 80 and the second electrode 70.
  • the first semiconductor layer 30 and the second semiconductor layer 50 may be composed of a plurality of layers.
  • the second semiconductor layer 50 may have an electron blocking layer having a high Al composition on the side adjacent to the active layer 40. (Electron Blocking Layer) may be provided. The conductivity of both may be changed, and the first semiconductor layer 30, the active layer 40, and the second semiconductor layer 50 are called light emitting structures.
  • FIG. 9 is a view illustrating another example of the near-ultraviolet light-emitting semiconductor light emitting device according to the present disclosure.
  • the transparent current spreading electrode 60 is omitted, and the second electrode 70 is illustrated.
  • the second electrode 70 functions as a bonding pad, and serves as a reflective film that reflects near ultraviolet rays generated from the active layer 40 from the growth substrate 10.
  • the transparent current diffusion electrode 60 may be provided. It is also possible to have a structure in which the second electrode 70 functions only as a bonding pad and has a DBR between the second electrode 70 and the second semiconductor layer 50. This type of chip is called a flip chip.
  • FIG. 10 is a diagram showing an integrating sphere test result of the near-ultraviolet light emitting semiconductor light emitting device shown in FIG. 9. Compared with the device, it showed similar behavior, and compared with the flip chip containing GaN at the bottom, the light output was 3-4 times higher.
  • Group III nitride semiconductor template for near ultraviolet (300-400 nm) light emitting semiconductor light emitting device comprising: a growth substrate; A seed layer consisting of Al x Ga 1 - x N (0 ⁇ x ⁇ 1, x>y); And a single crystal group III nitride semiconductor layer of Al y Ga 1 - y N (y> 0).
  • the group III nitride semiconductor template for near-ultraviolet light-emitting semiconductor light-emitting device comprising: a.
  • the group III nitride semiconductor template for near ultraviolet light-emitting semiconductor light emitting device wherein the growth substrate is provided with irregularities for light scattering and the group III nitride semiconductor layer covers the irregularities.
  • the group III nitride semiconductor layer includes a first layer grown from the seed layer, a second layer covering the unevenness on the first layer, and a third layer formed flat on the second layer.
  • Group III nitride semiconductor template for near ultraviolet light emitting semiconductor light emitting device is included in the group III nitride semiconductor layer.
  • the Al composition value x of the seed layer has a value larger than the Al composition value y of the group III nitride semiconductor layer so that the seed layer is not decomposed at the temperature at which the group III nitride semiconductor layer is grown.
  • Group III nitride semiconductor template for light emitting device is not decomposed at the temperature at which the group III nitride semiconductor layer is grown.
  • a group III nitride semiconductor template for near ultraviolet light-emitting semiconductor light emitting device characterized in that the seed layer is made of AlN.
  • Near ultraviolet (300-400 nm) light emitting semiconductor light emitting device comprising: a growth substrate; A seed layer of Al x Ga 1-x N (0 ⁇ x ⁇ 1); Al y Ga 1 - y N ( y> 0) by a single-crystal Group III nitride semiconductor layer; A light emitting structure that emits near ultraviolet rays through recombination of electrons and holes on the Group III nitride semiconductor layer; And, the first electrode for supplying electrons and holes to the light emitting structure; And a second electrode, wherein the Al composition value y of the group III nitride semiconductor layer is determined so that the group III nitride semiconductor layer does not absorb the near ultraviolet light emitted from the light emitting structure. This causes the bandgap energy of the single crystal group III nitride semiconductor layer to be larger than the wavelength of the near ultraviolet light emitted. If the y value is increased, the bandgap energy is increased.
  • the growth substrate is a near-ultraviolet light-emitting semiconductor light-emitting device, characterized in that it has irregularities for scattering near-ultraviolet light emitted from the light emitting structure.
  • the group III nitride semiconductor layer covers the unevenness, and the group III nitride semiconductor layer is formed flat on the first layer grown from the seed layer, the second layer merged with the unevenness over the first layer, and the second layer.
  • a near-ultraviolet light-emitting semiconductor light emitting device comprising a third layer.
  • a near-ultraviolet light-emitting semiconductor light emitting device characterized in that the seed layer is made of AlN.
  • a commercially available template for a near-ultraviolet light emitting semiconductor light emitting device and a semiconductor light emitting device can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 개시는 근자외선(300~400nm) 발광 반도체 발광소자용 3족 질화물 반도체 템플릿에 있어서, 성장 기판; AlxGa1-xN(0<x≤1, x>y)로 된 씨앗층; 그리고, AlyGa1-yN(y>0)로 된 단결정 3족 질화물 반도체층;을 포함하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿 및 이를 이용하는 근자외선 발광 반도체 발광소자에 관한 것이다.

Description

근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
본 개시(Disclosure)는 전체적으로 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿에 관한 것이다. 특히, AlGaN을 이용하는 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿에 관한 것이다. 여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어지며, Si, Mg와 같은 불물순을 포함할 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 미국 등록특허공보 제5,290,393호에 제시된 3족 질화물 반도체층을 성장시키는 방법의 일 예를 나타내는 도면으로서, 성장 기판(10)에, AlxGa1 - xN(x≥0)으로 된 씨앗층(20)을 성장시킨 다음, AlyGa1 - yN(y≥0)으로 된 3족 질화물 반도체층(21)을 성장시킨 기술이 제시되어 있다. 예를 들어, 500℃의 온도에서 GaN으로 된 씨앗층(20)을 형성한 다음, 1020℃의 온도에서 GaN으로 된 3족 질화물 반도체층(21)을 형성한다. 이 기술은 Al을 포함한 씨앗층(20)과 Al을 포함한 3족 질화물 반도체층(21)을 성장시키는 예들도 또한 제시하고 있지만, 실제 상용의 3족 질화물 반도체 발광소자(예: LED, LD)에 있어서, 이 특허에 제시된 방법으로 Al을 포함한 3족 질화물 반도체층(21)을 성장시키에는 한계가 있다.
도 2는 미국 등록특허공보 제7,759,140호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(10), 씨앗층(도시 생략), n형 3족 질화물 반도체층(30; Si-doped GaN), 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층(40; InGaN/(In)GaN 다중양자우물구조), p형 3족 질화물 반도체층(50; Mg-doped GaN), p측 전극(70) 그리고 n측 전극(80)을 포함한다. 씨앗층, n형 3족 질화물 반도체층(30) 및 p형 3족 질화물 반도체층(50)을 구성하는 물질은 GaN이며, 성장 기판(10; 예: C면 사파이어 기판)에는 광 산란을 위한 요철(11)이 형성되어 있고, 이러한 성장 기판을 PSS(Patterned Sapphire Substrate)라 한다.
주로 청색광 또는 녹색광 발광에 이용되던 3족 질화물 반도체 발광소자는 최근 자외선을 발광하는 반도체 발광소자로서 주목되고 있다. 자외선은 UVA(315~400nm), UVB(280~315nm), UVC(100~280nm)로 나뉠 수 있으며, 본 개시는 근자외영역(300~400nm)을 주대상으로 한다.
그러나, 기존의 청색광 발광 3족 질화물 반도체 발광소자의 에피구조를 근자외선 3족 발광 반도체 발광소자에 적용하는데는 제약이 따른다. 예를 들어, 365nm 파장의 근자외선 빛의 경우에, 일부가 GaN(밴드갭 에너지: 3.4eV)에 흡수되는 문제점을 야기한다.
따라서, 근자외선 발광 3족 질화물 반도체 발광소자를 제조함에 있어서, GaN의 함유를 최소화해야 하지만, 도 1과 관련하여 전술한 바와 같이, 성장 기판(10)에 접하는 측에 Al을 함유하는 양질의 3족 질화물 반도체층(21)을 성장시키는 것은 일반적으로 쉽지 않으며, 종래의 경우에, 성장 기판(10)에 접하는 측에 GaN으로 된양질의 3족 질화물 반도체층(21)을 성장시킨 다음, 그 위에 근자외선 발광 3족 질화물 반도체 발광 구조를 성장시키고, 성장 기판(10)과 GaN으로 된 3족 질화물 반도체층(21)을 제거하는 기술이 제시되고 있다. 이렇게 성장 기판(10)이 제거된 형태의 반도체 발광소자를 수직형 칩(vertical chip)이라 부른다.
예를 들어, 미국 등록특허공보 제7,759,146호에는 성장 기판 위에 Al을 함유하는 양질의 층을 성장시키는 것이 쉽지 않다는 점(Al의 함량이 증가함에 따라 성장속도가 느려지는 점, Al의 함량이 증가함에 따라 Al 함유층 내에 스트레스가 증가하여 두꺼운 AlGaN으로 된 층의 경우에 크랙이 많이 발생하는 점 등)을 지적하면서, 이를 해소하기 위해, GaN으로 된 층 위에 자외선 발광 에피구조를 성장시킨 다음, 이 GaN으로 된 층을 희생층으로 하여 성장 기판과 함께 제거하는 기술이 제시되어 있다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 근자외선(300~400nm) 발광 반도체 발광소자용 3족 질화물 반도체 템플릿에 있어서, 성장 기판; AlxGa1 - xN(0<x≤1, x>y)로 된 씨앗층; 그리고, AlyGa1 -yN(y>0)로 된 단결정 3족 질화물 반도체층;을 포함하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿이 제공된다.
본 개시에 따른 다른 태양에 의하면(According to another aspect of the present disclosure), 근자외선(300~400nm) 발광 반도체 발광소자에 있어서, 성장 기판; AlxGa1 - xN(0<x≤1)로 된 씨앗층; AlyGa1 - yN(y>0)로 된 단결정 3족 질화물 반도체층; 3족 질화물 반도체층 위에서, 전자와 정공의 재결합을 통해 근자외선을 발광하는 발광구조물; 그리고, 발광구조물에 전자와 정공을 공급하는 제1 전극; 및 제2 전극;을 포함하며, 3족 질화물 반도체층의 Al 조성값 y는 발광구조물에서 발광되는 근자외선을 3족 질화물 반도체층이 흡수하지 않도록 정해지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자가 제공된다.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.
도 1은 미국 등록특허공보 제5,290,393호에 제시된 3족 질화물 반도체층을 성장시키는 방법의 일 예를 나타내는 도면,
도 2는 미국 등록특허공보 제7,759,140호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 3은 본 개시에 따른 3족 질화물 반도체 템플릿의 일 예를 나타내는 도면,
도 4는 본 개시에 따른 3족 질화물 반도체 템플릿을 제조하는 방법의 일 예를 나타내는 도면,
도 5는 본 개시에 따른 3족 질화물 반도체 템플릿의 다른 일 예를 나타내는 도면,
도 6은 요철에 위에서 성장이 잘 되지 않아 결정결함이 발생한 3족 질화물 반도체층의 일 예를 나타내는 사진,
도 7은 본 개시에 따라 제조된 3족 질화물 반도체 템플릿에 대한 실험결과를 나타내는 도면,
도 8은 본 개시에 따른 근자외선 발광 반도체 발광소자의 일 예를 나타내는 도면,
도 9는 본 개시에 따른 근자외선 발광 반도체 발광소자의 다른 일 예를 나타내는 도면,
도 10은 도 9에 도시된 근자외선 발광 반도체 발광소자의 적분구 검사 결과를 나타내는 도면.
도 3은 본 개시에 따른 3족 질화물 반도체 템플릿의 일 예를 나타내는 도면으로서, 템플릿은 성장 기판(10), 씨앗층(20; nucleation layer), 그리고 3족 질화물 반도체층(21)을 포함한다.
성장 기판(10)은 3족 질화물 반도체층(21)과 다른 물질로 구성되는 것이 일반적이며, 예를 들어, 사파이어(Al2O3) 기판이 이용될 수 있으며, 씨앗층(20) 및 3족 질화물 반도체층(21)의 성장은 사파이어 기판의 C면에서 이루어지는 것이 일반적이다.
씨앗층(20)은 이종 물질로 된 성장 기판(10)에 3족 질화물 반도체층(21)의 결정성장을 위해 도입되는 층으로, AlxGa1 - xN(0<x≤1)로 구성될 수 있으며, 일반적으로 3족 질화물 반도체층(21)의 성장 온도보다 낮은 온도에서 성장된다. Al의 함량이 증가할수록 활성층에서 생성된 빛의 흡수를 감소시킬 수 있게 된다. 이러한 측면에서만 본다면, AlN이 가장 바람직하다.
3족 질화물 반도체층(21)은 AlyGa1 - yN(y>0)로 이루어지며, 그 상부에 성장되는 발광구조물에서 발광되는 광을 흡수하지 않는 밴드갭 에너지를 가지는 것이 바람직하다. 예를 들어, 365nm의 근자외선이 발광되는 경우에, Al0 . 05Ga0 .95N로 이루어질 수 있다. Al의 함량이 커질수로 밴드갭 에너지가 커지지만, 전술한 바와 같이, 3족 질화물 반도체층(21)의 결정성에 좋지 않은 영향을 줄 수 있으므로, 발광되는 광을 흡수하지 않는 정도에서 결정성에 나쁜 영향을 최소화하는 범위에서 결정되는 것이 바람직하다. 3족 질화물 반도체층(21)은 Si, Mg과 같은 도펀트나, In을 구성물질로서 포함할 수 있으나, 결정성의 측면에서 바람직하지는 않다.
도 4는 본 개시에 따른 3족 질화물 반도체 템플릿을 제조하는 방법의 일 예를 나타내는 도면으로서, 먼저, 성장 기판(10)의 세정 등 종래에 널리 알려진 전처리 과정을 거친 다음, 제1 온도에서, 씨앗층(20)을 성장시킨다. 다음으로, 제1 온도보다 높은 제2 온도에서, 3족 질화물 반도체층(21)을 성장시킨다. 바람직하게는 3족 질화물 반도체층(21)의 성장에 앞서, 제1 온도보다 높고, 제2 온도보다 낮은 제3 온도에서 씨앗층(20)의 결정화가 이루어진다. 씨앗층(20)과 3족 질화물 반도체층(21)의 성장은 MOCVD 장치에 의해서 이루어지는 것이 일반적이다.
씨앗층(20)의 성장은 씨앗층(20)을 구성하는 요소 분자들(Al, N, Ga)에 대한 열역학적인 영향(thermo-dynamical effects)을 최소화하면서, 에피 성장 장치(예: MOCVD 장치)의 물리적인 소스 분사 및 반응기(reactor) 내의 가스 유동에 더 많이 영향을 받는 저온(제1 온도)에서 이루어진다. 즉, 반응기를 저온 영역에서 소스 증착 균일도가 높게 튜닝하면, 균일한 물리적 증착이 성장 기판(10)에 이루질 수 있다. 제1 온도에서 저온 성장되는 AlxGa1 - xN(0<x≤1)로 된 씨앗층(20)은 AlN와 GaN의 혼합으로 이루어진 다결정막이며, 이들의 조합 비율은 상부에 성장될 3족 질화물 반도체층(21)의 Al의 조성비에 맞추어 조절될 수 있다. 이는 3족 질화물 반도체층(21)과 격자상수를 일치시키기 위함이다. 그러나 씨앗층(20)은 다결정막이므로 이러한 격자상수 일치 정도가 3족 질화물 반도체층(21)의 결정성에 유리한 것만은 아니다. 다만, AlN와 GaN의 조합비에 의해서 결정의 모드를 조절할 수 있다. 즉, AlN의 비율이 높으면 '3D-like 결정성장 모드'가 되고, 'GaN의 비율이 높으면 2D-like 결정성장 모드'로 조정된다. 이러한 비율을 조절함으로써 3족 질화물 반도체층(21)의 결정의 질을 최적화할 수 있다.
씨앗층(20)을 성장시킨 후, 3족 질화물 반도체층(21)이 성장되는 온도(제2 온도)로 승온하는 과정 및/또는 승온한 상태에서, 다결정막인 씨앗층(20)을 결정화하는 것이 일반적이며, 이러한 과정에서 씨앗층(20)의 결정성장 모드를 변경할 수 있다. 본 개시는 씨앗층(20)을 성장시킨 후, 제2 온도보다 높은 온도(제3 온도)로 승온하는 과정 및/또는 승온한 상태에 씨앗층(20)을 결정화하는 과정을 이용함으로써, 씨앗층(20)의 결정화를 도모하는 한편, 3족 질화물 반도체층(21)의 결정성을 추가적으로 향상시킬 수 있다. 제2 온도보다 높은 제3 온도를 이용한 씨앗층(20)의 결정화가 이루어지는 경우에, 제2 온도는 단결정막인 3족 질화물 반도체층(21)의 결정 성장에 적합한 온도이므로, 제3 온도로 씨앗층(20)을 결정화하기 위해서는(씨앗층(20)이 제3 온도에서 열역학적 안정성을 유지하기 위해서는), 씨앗층(20)이 제3 온도의 영역에서 열역학적 안정성을 가지는 물질로 이루어지는 것이 바람직하며 본 발명의 구성층을 이루는 Al-Ga-N 물질계에서는 높은 Al 조성비를 갖는 것이 바람직하다. 예를 들어, 3족 질화물 반도체층(21)이 Al0 . 05Ga0 .95N로 이루어지는 경우에, AlxGa1 - xN(0<x≤1)로 된 씨앗층(20)의 x값은 0.05보다 큰 것이 바람직하며, 이러한 관점에서 씨앗층(20)이 AlN(x=1)로 이루어지면, 제3 온도의 공정 상한값을 최대한으로 높일 수 있게 된다.
씨앗층(20)은 제3 온도에서 재결정화되고 또한 제2 온도에서 성장시 격자불일치에서 기인한 결정결함 밀도를 최소화하는 구조를 제공한다. 이 두 가지 기술사항을 만족시키기 위해서는 적절한 Al의 조성 범위가 필요하다. AlxGa1 - xN(0<x1)에서 x가 0.5 이상인 것이 바람직하다. 즉, x가 1에 근접하면 제3 온도에서 열역학적 안정성이 높아지고 또한 3D island 성장 모드가 활성화되어 제2 온도에서 성장시 성장 기판(10) 면과 수평인 방향의 성장 모드(Lateral Growth Mode)로 유도하는 조건을 제공하게 된다. 다만 Al의 조성비 너무 높아지면 3D island의 밀도가 너무 높으면 제2 온도의 성장시 성장면의 충분한 병합이 이루어지지 않아서 매끄러운 성장 표면을 얻기가 매우 어려울 수 있으므로, 이러한 점을 감안하여, 적절한 Al의 조성비(0.5≤x≤1)가 필요하다.
씨앗층(20)에서 Al의 조성비 뿐만 아니라 두께도 중요한 공정 변수이다. 제1 온도에서 성장되는 씨앗층(20)의 두께는 제3 온도에서 형성되는 3D island의 높이와 폭을 결정하는 중요 변수이다. 실험에 의한 경험적 범위는 10~100nm 범위가 바람직하다. 두께가 너무 얇으면 3D island의 높이가 충분하지 않아서 효과가 적으며, 두께가 너무 크면 3D island의 높이가 너무 커 충분히 매끄러운 표면을 얻기 어렵다.
씨앗층(20) 두께의 범위가 10~100nm, Al 조성비 50~100%가 바람직하며, 성장 온도는 표면 유동성 제한 조건(Surface Kinetics Limited Condition)이 지배적인 400~600℃의 온도 범위에서 성장될 수 있다. 성장 압력은 일반적으로 씨앗층(20)을 형성하는데 있어서 민감한 공정 변수가 아니며, 일반적으로 100~760 torr 압력 범위에서 다양하게 성장될 수 있다. 이 밖에 MO 소스나 캐리어 가스의 유량은 사용하고자하는 MOCVD의 최적화된 조건이 사용되어도 무방하다.
제3 온도는 제2 온도보다 10~300℃ 정도 높은 범위가 바람직하다. 이는 통상 제2 온도가 1000~1100℃ 정도이므로 이로 환산하면 1010~1400℃의 온도 범위가 바람직하다. 최적화된 온도의 범위는 씨앗층(20)의 두께, Al의 조성비에 따라서 다르다. 최적화된 제3 온도는 일반적으로 두께가 크고 Al 조성비가 높을수록 높다. 제3 온도에 따라서 3D island의 형태와 크기가 결정되며, 온도가 너무 높으면 씨앗층(20)의 열역학적 안정성이 깨져서 표면 분해(Surface Desorption)가 발생하는 문제점이 야기될 수 있다. 제3 온도의 최적 범위 뿐만 아니라 제3 온도의 지속시간과 제1 온도에서 제3 온도로 높이는 승온 시간도 3D island의 크기와 형태에 영향을 주며 이는 일률적으로 규정하기보다는 반응기의 상용되는 조건(MO 소스, V/III 비율, 반응기의 압력 등)에 따라서 최적화되는 변수이므로 상황에 맞게 조정되는 것이 바람직하다.
AlyGa1 - yN(y>0)로 된 3족 질화물 반도체층(21)에서 Al 조성비 내지 조성값 y는 AlxGa1 - xN(0<x≤1)로 된 씨앗층(20)의 Al 조성비인 x 보다 작은 것이 바람직하다. 이것은 씨앗층(20)이 제3 온도 구간의 공정을 거치면서 형성된 3D island가 제2 온도 구간의 3족 질화물 반도체층(21)에서 2D 성장 모드로 전환되어 매끄러운 에피층을 형성하게 위함이다. 일반적으로 Al의 조성비가 작을수록 2D 성장모드의 경향이 강하다. 그러므로 궁극적인 소자 설계상 3족 질화물 반도체층(21)이 가질 수 있는 Al 조성비의 최소값에 가까울수록 바람직하며, 이의 최대값은 씨앗층(20)의 Al 조성비 보다 작은 것이 바람직하다. 3족 질화물 반도체층(21)은 소자를 구성할 때 소위 완충층(buffer layer)에 해당하는 것이다. 이것의 두께는 1~6㎛의 범위인 것이 바람직하다. 너무 앏으면 본래의 완충층의 역할에 부족할 수 있고, 너무 두꺼우면 성장 기판(10)과 3족 질화물 반도체층(21)과의 격자상수 불일치에 의한 웨이퍼 보잉(Wafer Bowing)이 커져서 향후 반도체 공정시 문제를 야기할 수 있다.
일예로 Al0 . 05Ga0 .95N의 성장시, 사용되는 MOCVD에 따라서 차이는 있지만 통상적으로 반응기 압력은 50~200 torr의 비교적 낮은 압력을 사용한다. 이는 사용되는 TMAl이 기상상태에서 NH3와 기생반응을 왕성하게 하는 것을 방지하기 위하여 캐리어 가스의 속도를 증가시키기 위함이다. 성장 온도는 통상적으로 1000~1100℃의 범위에서 사용하며, GaN의 성장 온도와 유사하거나 10~50℃ 정도 높은 성장 온도 영역을 사용한다. 이는 성장 표면에서 흡착된 Al 전구체가 성장 Kink site를 잘 찾아가도록 표면이동도(Surface Mobility)를 증가시키기 위함이다. MO 소스의 유량과 NH3와의 비율인 V/III 비는 사용되는 반응기의 종류와 성장목적에 따라서 다를 수 있기 때문에 각 반응기에 최적화된 조건의 범위에서 사용하는 것이 바람직하다. 3족 질화물 반도체층(21)의 통상적인 성장 속도는 1~4㎛/h가 바람직하다. 일반적으로 성장 속도가 느릴수록 결정성이 좋고 클수록 결정이 저하된다. 그렇지만 너무 느리면 성장효율이 낮아지는 경향을 보인다.
도 5는 본 개시에 따른 3족 질화물 반도체 템플릿의 다른 일 예를 나타내는 도면으로서, 템플릿은 성장 기판(10), 씨앗층(20; nucleation layer), 그리고 3족 질화물 반도체층(21)을 포함한다. 성장 기판(10)에는 광 산란을 위한 요철(11)이 구비되어 있다. 요철(11)은 도시에서와 같이, 성장 기판(10)에 에칭을 통해 돌기를 형성함으로써, 돌기가 철부(protrusion portion)를 구성하고, 에칭에 의해 노출된 성장 기판(10)의 바닥면이 요부(depression portoin)을 구성하는 형태여도 좋고, 성장 기판(10)에 에칭을 통해 요부를 형성함으로써, 에칭되지 않고 남은 성장 기판(10)의 면이 철부를 구성하는 형태여도 좋으며, 이들의 조합으로 이루어지는 형태여도 좋지만, 일반적으로 에칭을 통해 통해 돌기를 형성한 형태를 가진다.
돌기(11)는 예를 들어, 반구의 렌즈 형태일 수 있으며, 1.5~3㎛ 정도의 반구의 폭과 1~2㎛ 정도의 높이를 가질 수 있다.
요철(11)을 구비하는 경우에, 도 4에 제시된 템플릿을 제조하는 경우에 비해, AlyGa1 - yN(y>0)으로 된 3족 질화물 반도체층(21)을 성장시키는데는 보다 높은 기술적 난이도가 요구된다. 이는 성장 기판(10)의 바닥면으로부터 성장되는 3족 질화물 반도체층(21)이 요철(11)을 안정적으로 덮으면서, 서로 합쳐지는(coalesced) 것이 쉽지 않기 때문이다. 도 6에 요철 위에서 성장이 잘 되지 않아 결정결함이 발생한 3족 질화물 반도체층(21)의 일 예를 제시하였다.
본 개시에 따르면, 3족 질화물 반도체층(21)을 제1 층(22), 제2 층(23) 및 제3 층(24)으로 나누어 형성함으로써 이러한 문제점에 대한 해결책을 제시한다. 먼저, 씨앗층(20)을 형성한 다음, 수직 방향으로 성장이 활발한 성장 조건에서 제1 층(22)을 성장시킨다. 예를 들어, 돌기 높이의 80~90%에 이르는 지점까지 제1 층(22)을 형성한다. 다음으로, 수평 방향으로 성장이 활발한 성장 조건에서 제2 층(23)을 성장시켜 돌기를 덮는 한편, 제2 층(23)이 잘 합쳐지도록 한다. 마지막으로 평탄한 층이 형성되는 조건, 즉 2D 성장 모드에서 제3 층(24)을 형성한다.
도 7은 본 개시에 따라 제조된 3족 질화물 반도체 템플릿에 대한 실험결과를 나타내는 도면으로서, PL 파장 맵핑에서 평균값이 352nm이며, 이것은 3족 질화물 반도체층(21) 내에서의 Al의 조성비가 약 5%라는 것을 의미한다. 파장의 균일도도 2% 이하로 매우 균일함을 알 수 있다. 두께는 평균 6㎛이고, 두께의 균일도는 3% 이하로 역시 매우 우수한 결과를 얻었다. 템플릿의 XRD (002)와 (102)는 각각 131 arcsec, 211 arcsec를 얻었다. 이는 본 발명자(들)이 인지하는 한도 내에서, Al0.05Ga0.95N로 된 3족 질화물 반도체층(21)의 XRD 결정성으로는 학계에 보고된 문헌을 기준으로 가장 좋은 결과라 말할 수 있다. 일반적으로 XRD (102) 기준으로 400 arcsec 이하를 얻으면 상업적으로 가능한 수준의 반도체 발광소자를 얻을 수 있다고 알려져 있는데, 상기 결과는 이 기준을 초과하여 만족하는 결과이다.
제1 층(22)은 씨앗층(20)과 연결층으로 c-성장축의 3족 금속이 풍부한 표면(metal-rich surface)에 적합한 성장 조건이다. 이는 통상적인 고결정성 3족 질화물 반도체 성장 조건에서 크게 벗어나지 않으나 다만 V/III 비가 500보다 큰 것이 바람직하다. 이어서 성장되는 제2 층(23)은 2D 성장모드가 강화된 성장면 병합층이다. 반구형 렌즈면을 따라서 횡방향으로 서로 접근하는 성장면이 서로 만나는 층이다. 서로 다른 성장면의 표면의 Dangling Bond의 구조가 서로 다르기 때문에 매끄럽게 연결되기 위한 최적의 조건을 찾는 층이다. 이를 위해서 성장면 결정구조 방향에 둔감하게 하기 위한 1)저온 영역의 성장층, 2)성장 속도를 극단적으로 낮추어 충분히 서로 질서 있게 결합되도록 하는 두 가지의 방법이 유효하게 시도될 수 있다. 저온 영역의 성장층은 제3 층(24)의 온도보다 20~100℃ 정도 낮게 성장하는 것이 바람직하다. 그리고 성장 속도는 0.1~1㎛/h의 범위로 사용되는 것이 바람직하다. 제2 층(23)의 성장 조건에서 유효한 변수는 성장 압력이다. 일반적으로 압력이 높을수록 매끄러운 병합에 유리하다. 그렇지만 압력이 높으면 캐리어 가스의 속도가 늦어져 Al의 전구체인 TMAl이 기상상태에서 기생반응에 의해서 소모가 많이 되므로 효율적으로 AlGaN을 성장하기 어려워진다. 따라서 두 변수의 최적 압력이 존재하게 된다. 일단 제2 층(23)에서 매끄러운 성장 표면이 만들어지면, 제3 층(24)은 일반적인 고결정성 3족 질화물 반도체층의 성장 조건에 준하여 성장할 수 있다.
도 8은 본 개시에 따른 근자외선 발광 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 성장 기판(10), 씨앗층(20), 3족 질화물 반도체층(21), 제1 도전성을 가지는 제1 반도체층(30; 예: n형 AlGaN 층), 전자와 정공의 재결합을 통해 근자외선을 발광하는 활성층(40; 예: InGaN 양자우물을 가지는 다중양자우물 구조), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; p형 AlGaN층), 제1 반도체층(30)에 전자를 공급하도록 전기적으로 연결되며 본딩 패드로 기능하는 제1 전극(80; n측 전극; 예: Cr/Ni/Au의 적층 구조) 그리고, 제2 반도체층(50)에 정공을 공급하도록 전기적으로 연결되며 본딩 패드로 기능하는 제2 전극(70; p측 전극; 예: Cr/Ni/Au의 적층 구조)을 포함한다. 바람직하게는 성장 기판(10)에 요철(11)이 구비되고, 제2 반도체층(50)과 제2 전극(70) 사이에 전류 확산(current spreading)을 위해 제2 반도체층(50)의 거의 전면에 걸쳐 투광성 전류 확산 전극(60; 예: ITO)이 구비되는 것이 일반적이다. 이러한 구조의 칩을 통상 수평형 칩(lateral chip)이라 부르며, 제1 전극(80)과 제2 전극(70)에 외부로부터 전기를 공급하기 위해 와이어 본딩이 이루어진다. 제1 반도체층(30)과 제2 반도체층(50)은 복수의 층으로 구성될 수 있으며, 예를 들어 제2 반도체층(50)은 활성층(40)에 인접한 측에 높은 Al 조성을 가지는 전자 방지막(Electron Blocking Layer)을 구비할 수 있다. 양자의 도전성은 바뀔 수 있으며, 제1 반도체층(30), 활성층(40) 및 제2 반도체층(50)을 발광구조물(Light Emitting Structure)이라 칭한다.
도 9는 본 개시에 따른 근자외선 발광 반도체 발광소자의 다른 일 예를 나타내는 도면으로서, 도 8에 제시된 수평형 칩과 달리, 투광성 전류 확산 전극(60)이 생략되고, 제2 전극(70; 예: Ag/Ni/Au 또는 Al/Ni/Au)이 제2 반도체층(50)의 거의 전면에 걸쳐서 형성되어 있다. 제2 전극(70)은 본딩 패드로 기능하는 한편, 활성층(40)에서 생성된 근자외선을 성장 기판(10)으로부터 반사시키는 반사막으로 기능한다. 추가적으로 투광성 전류 확산 전극(60)이 구비될 수 있음을 물론이다. 제2 전극(70)이 본딩 패드로만 기능하고, 제2 전극(70)과 제2 반도체층(50) 사이에 DBR을 구비하는 구조도 가능하다. 이러한 형태의 칩을 플립 칩(flip chip)이라 부른다.
도 10은 도 9에 도시된 근자외선 발광 반도체 발광소자의 적분구 검사 결과를 나타내는 도면으로서, 적분구 검사 결과, 본 개시에 따른 반도체 발광소자는 상용되는 365nm 파장의 빛을 발광하는 수직형 반도체 발광소자와 비교할 때, 유사한 거동을 보였으며, GaN을 하부에 포함하는 플립 칩과 비교할 때, 3~4배 높은 광출력을 보였다.
이하에서, 본 개시에 따른 다양한 실시예가 제시된다.
(1) 근자외선(300~400nm) 발광 반도체 발광소자용 3족 질화물 반도체 템플릿에 있어서, 성장 기판; AlxGa1 - xN(0<x≤1, x>y)로 된 씨앗층; 그리고, AlyGa1 - yN(y>0)로 된 단결정 3족 질화물 반도체층;을 포함하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
(2) 성장 기판은 광 산란을 위한 요철이 구비하며, 3족 질화물 반도체층이 요철을 덮고 있는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
(3) 3족 질화물 반도체층은 씨앗층으로부터 성장되는 제1 층, 제1 층 위에서 요철을 덮으며 합쳐지는 제2 층, 제2 층 위에 평탄하게 형성되는 제3 층을 구비하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
(4) 씨앗층의 Al 조성값 x는 3족 질화물 반도체층이 성장된 온도에서 씨앗층이 분해되지 않도록 3족 질화물 반도체층의 Al 조성값 y보다 큰 값을 가지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
(5) 씨앗층은 AlN로 이루어지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
(6) 근자외선(300~400nm) 발광 반도체 발광소자에 있어서, 성장 기판; AlxGa1-xN(0<x≤1)로 된 씨앗층; AlyGa1 - yN(y>0)로 된 단결정 3족 질화물 반도체층; 3족 질화물 반도체층 위에서, 전자와 정공의 재결합을 통해 근자외선을 발광하는 발광구조물; 그리고, 발광구조물에 전자와 정공을 공급하는 제1 전극; 및 제2 전극;을 포함하며, 3족 질화물 반도체층의 Al 조성값 y는 발광구조물에서 발광되는 근자외선을 3족 질화물 반도체층이 흡수하지 않도록 정해지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자. 이것은 단결정 3족 질화물 반도체층의 밴드갭 에너지가 발광되는 근자외선의 파장보다 크게 하는 것으로, y값을 크게 하면, 밴드갭 에너지는 커지게 된다.
(7) 씨앗층의 Al 조성값 x는 3족 질화물 반도체층의 Al 조성값 y보다 큰 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
(8) 성장 기판은 발광구조물에서 발광되는 근자외선을 산란시키기 위한 요철을 구비하는 것을 특징으로 근자외선 발광 반도체 발광소자.
(9) 3족 질화물 반도체층이 요철을 덮고 있으며, 3족 질화물 반도체층은 씨앗층으로부터 성장되는 제1 층, 제1 층 위에서 요철을 덮으며 합쳐지는 제2 층, 제2 층 위에 평탄하게 형성되는 제3 층을 구비하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
(10) 씨앗층은 AlN로 이루어지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
본 개시에 따른 하나의 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿에 의하면, 상용가능한 근자외선 발광 반도체 발광소자용 템플릿 및 반도체 발광소자를 제조할 수 있게 된다.

Claims (10)

  1. 근자외선(300~400nm) 발광 반도체 발광소자용 3족 질화물 반도체 템플릿에 있어서,
    성장 기판;
    AlxGa1 - xN(0<x≤1, x>y)로 된 씨앗층; 그리고,
    AlyGa1 - yN(y>0)로 된 단결정 3족 질화물 반도체층;을 포함하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
  2. 청구항 1에 있어서,
    성장 기판은 광 산란을 위한 요철을 구비하며,
    3족 질화물 반도체층이 요철을 덮고 있는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
  3. 청구항 2에 있어서,
    3족 질화물 반도체층은 씨앗층으로부터 성장되는 제1 층, 제1 층 위에서 요철을 덮으며 합쳐지는 제2 층, 제2 층 위에 평탄하게 형성되는 제3 층을 구비하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
  4. 청구항 1에 있어서,
    씨앗층의 Al 조성값 x는 3족 질화물 반도체층이 성장된 온도에서 씨앗층이 분해되지 않도록 3족 질화물 반도체층의 Al 조성값 y보다 큰 값을 가지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
  5. 청구항 1 내지 청구항 4 중의 어느 한 항에 있어서,
    씨앗층은 AlN로 이루어지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자용 3족 질화물 반도체 템플릿.
  6. 근자외선(300~400nm) 발광 반도체 발광소자에 있어서,
    성장 기판;
    AlxGa1 - xN(0<x≤1)로 된 씨앗층;
    AlyGa1 - yN(y>0)로 된 단결정 3족 질화물 반도체층;
    3족 질화물 반도체층 위에서, 전자와 정공의 재결합을 통해 근자외선을 발광하는 발광구조물; 그리고,
    발광구조물에 전자와 정공을 공급하는 제1 전극; 및 제2 전극;을 포함하며,
    3족 질화물 반도체층의 Al 조성값 y는 발광구조물에서 발광되는 근자외선을 3족 질화물 반도체층이 흡수하지 않도록 정해지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
  7. 청구항 6에 있어서,
    씨앗층의 Al 조성값 x는 3족 질화물 반도체층의 Al 조성값 y보다 큰 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
  8. 청구항 6 또는 청구항 7에 있어서,
    성장 기판은 발광구조물에서 발광되는 근자외선을 산란시키기 위한 요철을 구비하는 것을 특징으로 근자외선 발광 반도체 발광소자.
  9. 청구항 8에 있어서,
    3족 질화물 반도체층이 요철을 덮고 있으며,
    3족 질화물 반도체층은 씨앗층으로부터 성장되는 제1 층, 제1 층 위에서 요철을 덮으며 합쳐지는 제2 층, 제2 층 위에 평탄하게 형성되는 제3 층을 구비하는 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
  10. 청구항 9에 있어서,
    씨앗층은 AlN로 이루어지는 것을 특징으로 하는 근자외선 발광 반도체 발광소자.
PCT/KR2017/001471 2016-03-10 2017-02-10 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿 WO2017155215A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/083,618 US20200058827A1 (en) 2016-03-10 2017-02-10 Near-Ultraviolet Light-Emitting Semiconductor Light-Emitting Element And Group III Nitride Semiconductor Template Used Therefor
US16/234,933 US11264538B2 (en) 2016-03-10 2018-12-28 Near-ultraviolet light-emitting semiconductor light-emitting element and group III nitride semiconductor template used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160028850A KR101803929B1 (ko) 2016-03-10 2016-03-10 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
KR10-2016-0028850 2016-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/083,618 A-371-Of-International US20200058827A1 (en) 2016-03-10 2017-02-10 Near-Ultraviolet Light-Emitting Semiconductor Light-Emitting Element And Group III Nitride Semiconductor Template Used Therefor
US16/234,933 Continuation US11264538B2 (en) 2016-03-10 2018-12-28 Near-ultraviolet light-emitting semiconductor light-emitting element and group III nitride semiconductor template used therefor

Publications (1)

Publication Number Publication Date
WO2017155215A1 true WO2017155215A1 (ko) 2017-09-14

Family

ID=59789474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/001471 WO2017155215A1 (ko) 2016-03-10 2017-02-10 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿

Country Status (3)

Country Link
US (2) US20200058827A1 (ko)
KR (1) KR101803929B1 (ko)
WO (1) WO2017155215A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201732A (zh) * 2020-09-16 2021-01-08 广东省科学院半导体研究所 一种紫外led量子阱生长方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101803929B1 (ko) * 2016-03-10 2018-01-11 주식회사 소프트에피 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
CN110164757A (zh) * 2019-05-31 2019-08-23 中国科学院半导体研究所 化合物半导体及其外延方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023220A (ja) * 2001-07-06 2003-01-24 Toshiba Corp 窒化物半導体素子
JP2003218396A (ja) * 2001-11-15 2003-07-31 Mitsubishi Cable Ind Ltd 紫外線発光素子
JP2011187591A (ja) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
KR20130074080A (ko) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 자외선 발광 소자
KR20140020028A (ko) * 2012-08-07 2014-02-18 엘지이노텍 주식회사 자외선 발광 소자 및 발광 소자 패키지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
PL207400B1 (pl) * 2001-06-06 2010-12-31 Ammono Społka Z Ograniczoną Odpowiedzialnością Sposób i urządzenie do otrzymywania objętościowego monokryształu azotku zawierającego gal
WO2003049184A1 (en) 2001-12-07 2003-06-12 Fujitsu Limited Semiconductor device and method for manufacturing the same
KR100714639B1 (ko) 2003-10-21 2007-05-07 삼성전기주식회사 발광 소자
JP2012530027A (ja) * 2009-06-15 2012-11-29 コリア エレクトロニクス テクノロジ インスティチュート 異種基板、それを利用した窒化物系半導体素子及びその製造方法
US9485108B2 (en) * 2011-03-14 2016-11-01 Qualcomm Incorporated System and apparatus for using multichannel file delivery over unidirectional transport (“FLUTE”) protocol for delivering different classes of files in a broadcast network
KR101803929B1 (ko) * 2016-03-10 2018-01-11 주식회사 소프트에피 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
US20180083163A1 (en) * 2016-09-21 2018-03-22 Tqyqda Gosei Co. , Ltd. Light-emitting device and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023220A (ja) * 2001-07-06 2003-01-24 Toshiba Corp 窒化物半導体素子
JP2003218396A (ja) * 2001-11-15 2003-07-31 Mitsubishi Cable Ind Ltd 紫外線発光素子
JP2011187591A (ja) * 2010-03-08 2011-09-22 Uv Craftory Co Ltd 窒化物半導体紫外線発光素子
KR20130074080A (ko) * 2011-12-26 2013-07-04 엘지이노텍 주식회사 자외선 발광 소자
KR20140020028A (ko) * 2012-08-07 2014-02-18 엘지이노텍 주식회사 자외선 발광 소자 및 발광 소자 패키지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201732A (zh) * 2020-09-16 2021-01-08 广东省科学院半导体研究所 一种紫外led量子阱生长方法
CN112201732B (zh) * 2020-09-16 2021-09-03 广东省科学院半导体研究所 一种紫外led量子阱生长方法

Also Published As

Publication number Publication date
US20190140140A1 (en) 2019-05-09
US11264538B2 (en) 2022-03-01
KR101803929B1 (ko) 2018-01-11
US20200058827A1 (en) 2020-02-20
KR20170106541A (ko) 2017-09-21

Similar Documents

Publication Publication Date Title
CN101359710B (zh) 一种绿光发光二极管的制造方法
US8330173B2 (en) Nanostructure having a nitride-based quantum well and light emitting diode employing the same
CN101488550B (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN101488548B (zh) 一种高In组分多InGaN/GaN量子阱结构的LED
US9853182B2 (en) Gallium nitride-based light emitting diode
US20130193448A1 (en) Patterned substrate and stacked light emitting diode
US10043943B2 (en) UV light emitting diode having a stress adjustment layer
CN106711295B (zh) 一种GaN基发光二极管外延片的生长方法
CN100580966C (zh) 一种绿光发光二极管
WO2007089089A1 (en) Nitride semiconductor light emitting diode and method of fabricating the same
WO2017155215A1 (ko) 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
WO2019149095A1 (zh) 一种GaN基LED外延结构及其制备方法
KR101644156B1 (ko) 양자우물 구조의 활성 영역을 갖는 발광 소자
US10374123B2 (en) UV light emitting device
KR100728132B1 (ko) 전류 확산층을 이용한 발광 다이오드
KR20180083824A (ko) 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
US8541772B2 (en) Nitride semiconductor stacked structure and method for manufacturing same and nitride semiconductor device
KR20170141159A (ko) 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
KR101239856B1 (ko) 발광 다이오드 및 이의 제조 방법
CN110459654A (zh) 紫外led外延结构
KR101137513B1 (ko) 질화물계 반도체 발광소자 및 그의 제조 방법
KR101116904B1 (ko) 질화물 반도체 결정 제조 방법 및 발광 소자 제조 방법
KR101282774B1 (ko) 질화물계 발광 소자 및 그 제조방법
KR20190002394A (ko) 근자외선 발광 반도체 발광소자 및 이에 사용되는 3족 질화물 반도체 템플릿
CN106910800A (zh) Led外延生长方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763478

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763478

Country of ref document: EP

Kind code of ref document: A1