WO2017155155A1 - 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법 - Google Patents

반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법 Download PDF

Info

Publication number
WO2017155155A1
WO2017155155A1 PCT/KR2016/004887 KR2016004887W WO2017155155A1 WO 2017155155 A1 WO2017155155 A1 WO 2017155155A1 KR 2016004887 W KR2016004887 W KR 2016004887W WO 2017155155 A1 WO2017155155 A1 WO 2017155155A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
conductive
conductive patterns
circuit board
terminal
Prior art date
Application number
PCT/KR2016/004887
Other languages
English (en)
French (fr)
Inventor
이은주
김근택
Original Assignee
주식회사 이노글로벌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160043241A external-priority patent/KR101826663B1/ko
Application filed by 주식회사 이노글로벌 filed Critical 주식회사 이노글로벌
Publication of WO2017155155A1 publication Critical patent/WO2017155155A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices

Definitions

  • the present invention relates to a bidirectional conductive socket for testing a semiconductor device, a bidirectional conductive module for testing a semiconductor device, and a method of manufacturing the same.
  • Bidirectional conductive socket for semiconductor device test semiconductor device test that can test semiconductor device without making additional dummy board and test circuit board as the pitch gap between parts becomes narrower by widening the pitch gap of the part It relates to a bidirectional conductive module and a method of manufacturing the same.
  • the semiconductor device After the semiconductor device is manufactured, the semiconductor device performs a test to determine whether the electrical performance is poor.
  • the positive test of the semiconductor device is performed by inserting a semiconductor test socket (or a contactor or a connector) formed between the semiconductor device and the test circuit board to be in electrical contact with a terminal of the semiconductor device.
  • the semiconductor test socket is also used in a burn-in test process during the manufacturing process of the semiconductor device, in addition to the final positive inspection of the semiconductor device.
  • the perforated pattern is formed in the vertical direction on the silicon body made of an elastic silicon material, and then filled with conductive powder inside the perforated pattern to form a conductive pattern PCR socket type is widely used.
  • the pitch interval between terminals of the semiconductor element is narrow, for example, if the pitch interval between terminals of the semiconductor element is 0.3 mm, the pitch interval between terminals of the test circuit board is 0.3 mm.
  • the test should be carried out in the manufactured state.
  • a semiconductor test socket having a structure as follows is conventionally used.
  • FIG. 1 discloses a semiconductor test apparatus 1 for testing whether a semiconductor device is defective or not when a pitch interval between terminals of a semiconductor device is 0.3 mm.
  • the conventional semiconductor test apparatus 1 includes a support plate 30 and a semiconductor test socket 10 of a PCR socket type.
  • the support plate 30 supports the semiconductor test socket 10 when the semiconductor test socket 10 moves between the semiconductor element 3 and the test circuit board 7.
  • a main through hole (not shown) is formed in the center of the support plate 30, and coupling through holes are formed to be spaced apart from each other at a position spaced apart from an edge along an edge forming the main through hole.
  • the semiconductor test socket 10 is fixed to the support plate 30 by the peripheral support part 50 joined to the upper and lower surfaces of the support plate 30.
  • a perforated pattern is formed in an insulating silicon body, and conductive patterns are formed in the vertical direction by the conductive powder 11 filled in the perforated pattern.
  • the conductive pattern of the semiconductor test socket 10 is in contact with the dummy pattern 6a provided on the dummy board 6 to be electrically connected to the test circuit board 7.
  • the dummy pattern 6a electrically connects the conductive pattern of the semiconductor test socket 10 and the terminal of the test circuit board.
  • the conventional semiconductor test apparatus adopts a structure in which the test circuit board 7 is connected to the dummy board 6 such that the pitch gap between the terminals of the test circuit board is reduced as the pitch interval between the terminals of the semiconductor device is narrowed. This is because, with the pitch spacing of the device, an additional cost is incurred in manufacturing the test circuit board, and as the pitch spacing between terminals decreases, the manufacturing cost of the test circuit board also increases.
  • the PCR socket has an advantage of enabling fine pitch, but due to the pressure generated when the conductive powder 11 filled in the perforated pattern is contacted between the semiconductor element 3 and the test circuit board 7. In that the conductivity is formed, there is a disadvantage in that the thickness is formed in the vertical direction.
  • the PCR socket has a disadvantage of being limited in thickness in the height direction.
  • Korean Patent Publication No. 10-2009-0030190 discloses a socket for semiconductor chip inspection.
  • a fine pattern of a part contacting a terminal of a semiconductor device and a pitch gap of a part contacting a terminal of a test circuit board are widened so that a pitch gap between terminals of the semiconductor device is narrowed. It is an object of the present invention to provide a bidirectional conductive socket for testing a semiconductor device, a bidirectional conductive module for testing a semiconductor device, and a method of manufacturing the same, which can test a semiconductor device without fabrication.
  • the present invention is to produce a plurality of terminal pins by etching or stamping the metal plate in contact with the terminal of the semiconductor device and the terminal of the test circuit board, to widen the pitch interval of the contact portion of the test circuit board to the semiconductor device As the pitch interval between terminals becomes narrower, a bidirectional conductive socket for testing a semiconductor device, a bidirectional conductive module for testing a semiconductor device, and a method of manufacturing the same may be used to test a semiconductor device without fabricating a separate dummy board and an inspection circuit board. It aims to provide.
  • Bidirectional conductive module for testing a semiconductor device is a substrate portion having a structure bent so that one side toward the semiconductor device and the other side toward the test circuit board; A plurality of first conductive patterns spaced apart in a row at a first pitch interval from one surface of the substrate portion and electrically connected to terminals of the semiconductor device, and a second pitch interval greater than the first pitch interval from each other on the other surface of the substrate portion; A plurality of terminal pins provided with a plurality of second conductive patterns spaced apart in a line and electrically connected to terminals of the test circuit board, respectively; And an elastic support portion connected to the substrate portion to elastically support the substrate portion, wherein the plurality of terminal pins are arranged in a line with a plurality of first conductive patterns spaced apart from each other by a first pitch on one surface of the substrate portion, and on the other surface of the substrate portion.
  • the second conductive patterns are arranged offset by the second pitch interval and arranged in a zigzag shape, and the plurality of first conductive patterns are in contact with the terminals of the semiconductor element at a first pitch interval, and the plurality of second conductive patterns
  • the pattern is preferably in contact with the terminals of the test circuit board at a second pitch interval to electrically connect the terminals of the semiconductor element and the terminals of the test circuit board.
  • the substrate portion is formed by plating an insulating sheet having a flexible bending structure, and the first conductive pattern and the second conductive pattern patterned on the substrate portion are electrically treated by plating or conductive lines, respectively. It is preferable to be connected to.
  • the plurality of terminal pins may include: a first bump formed on the surfaces of the plurality of first conductive patterns; And a second bump formed on the surfaces of the plurality of second conductive patterns, wherein the first bumps and the second bumps are formed of conductive powder.
  • the plurality of terminal pins may include: a first bump formed on the surfaces of the plurality of first conductive patterns; A second bump formed on the surfaces of the plurality of second conductive patterns in an uneven manner; And a plating layer plated on the plurality of first conductive patterns and the plurality of second conductive patterns to electrically connect the plurality of first conductive patterns and the plurality of second conductive patterns, wherein the first bumps and the second bumps are separated from each other. It is preferable that it is formed by malleable powder.
  • the bidirectional conductive socket for testing a semiconductor device may include at least one bidirectional conductive module for testing a semiconductor device; And a housing fixing the installation position of the at least one semiconductor device test bidirectional conductive module such that the at least one united bidirectional conductive module for testing the semiconductor device contacts the terminal of the semiconductor device according to the terminal direction of the semiconductor device.
  • the housing may be provided on the other side of the bidirectional conductive module for testing a semiconductor device and coupled to the test circuit board to press a plurality of second conductive patterns in electrical contact with the terminals of the test circuit board. It is preferable to test whether the semiconductor device is good or bad by being electrically connected to the semiconductor device and the test circuit board.
  • the substrate portion includes a semiconductor device and an inspection circuit board.
  • the plurality of first conductive patterns are electrically connected to the terminals of the semiconductor device
  • the plurality of second conductive patterns are electrically connected to the terminals of the test circuit board, thereby electrically connecting the semiconductor device and the test circuit board. It is desirable to.
  • a first insulating sheet forming one surface of the substrate portion and a second insulating sheet forming another surface of the substrate portion are provided, and the first insulating sheet and the second insulating sheet are plated. It is preferred to further include the step of being treated.
  • step (A) the other side of the first insulating sheet, electrically connected to any one of the first conductive pattern of the plurality of first conductive patterns patterned on one side of the first insulating sheet
  • the first connection pattern may be patterned, and the first connection pattern may be electrically connected to any one of the plurality of second conductive patterns when the first insulating sheet and the second insulating sheet are in contact with each other.
  • one side of the second insulating sheet is electrically connected to at least two second conductive patterns of the plurality of second conductive patterns patterned on the other side of the second insulating sheet, respectively.
  • At least two second connection patterns which are in contact are patterned, and at least two second connection patterns are electrically connected to at least two of the plurality of first conductive patterns when the first insulating sheet and the second insulating sheet are in contact with each other. desirable.
  • the conductive powder is attached to the surfaces of the plurality of first conductive patterns to form a first bump, and the plurality of second conductive patterns are attached to the surface of the plurality of second conductive patterns.
  • the method further includes forming two bumps.
  • the plurality of first conductive patterns and the plurality of second conductive patterns are nickel-plated; And gold plating a plurality of nickel plated first conductive patterns and a plurality of second conductive patterns, wherein the plurality of first conductive patterns and the plurality of second conductive patterns are electrically connected by nickel plating and gold plating. It is preferable.
  • step E it is preferable to further include a step of laser cutting between a plurality of first conductive patterns, and between a plurality of second conductive patterns.
  • the bidirectional conductive module for testing a semiconductor device electrically connects a terminal of a semiconductor device having a first pitch interval and a terminal of an inspection circuit board having a second pitch interval greater than the first pitch interval.
  • a terminal pin part having a plurality of terminal pins; And an elastic support portion for elastically supporting the plurality of terminal pins, wherein the plurality of terminal pins have one ends of the plurality of terminal pins protruding upward from the elastic support portion to be spaced apart from each other at a first pitch interval. It is preferable that the other end is bent so as to protrude to the lower side of the elastic support part spaced apart from each other at a second pitch interval at a position away from the elastic support part with respect to one end of the terminal pin.
  • the plurality of terminal pins have a structure that is multiplely bent to have at least two inflection points.
  • a bidirectional conductive socket for testing a semiconductor device may include: a bidirectional conductive module for testing at least one semiconductor device; And a housing fixing the installation position of the at least one semiconductor device test bidirectional conductive module such that the at least one united bidirectional conductive module for testing the semiconductor device contacts the terminal of the semiconductor device according to the terminal direction of the semiconductor device.
  • the housing is provided on the other side of the bidirectional conductive module for testing a semiconductor device and is coupled to the test circuit board to press the other ends of the plurality of terminal pins in electrical contact with the terminals of the test circuit board. It is preferable to test whether the semiconductor device is good or bad by being electrically connected to the semiconductor device and the test circuit board.
  • a method of manufacturing a bidirectional conductive module for testing a semiconductor device comprising: (A) a metal plate, one end of which faces toward the upper portion of the metal plate and the other end of which is separated from the outer side of the metal plate with respect to the one end; Patterning the plurality of terminal pin patterns to be bent toward the bottom of the plate; (B) removing the remaining portions except the plurality of terminal pin patterns from the metal plate to form a plurality of terminal pins from the metal plate; And (C) a plurality of terminal pins are connected to the molding die mold, and the silicon is injected into the molding mold mold and cured to form the elastic support part elastically supporting the plurality of terminal pins.
  • the plurality of terminal pin patterns have one ends of the plurality of terminal pin patterns spaced apart from each other by a first pitch interval, which is a distance between the terminals of the semiconductor device, and the other ends of the plurality of terminal pin patterns are spaced apart from the first pitch interval. It is preferably patterned in a row to be spaced apart by a large second pitch spacing, and the second pitch spacing is a spacing between terminals of the test circuit board.
  • the plurality of terminal pins are removed from the metal plate except for the plurality of terminal pin patterns by the etching process of the metal plate. It is preferred to be formed accordingly.
  • the step (B) in the step (B), the plurality of terminal pins, by the stamping process of the metal plate, the remaining portion except for the plurality of terminal pin patterns are removed from the metal plate It is preferred to be formed accordingly.
  • a portion of the semiconductor element contacted with a terminal is minutely patterned, and a portion of the semiconductor element contacted with the terminal of the test circuit board has a wider pitch interval, so that the pitch interval between terminals of the semiconductor device is narrower.
  • the semiconductor device can be tested without affecting it.
  • a plurality of terminal pins are manufactured by etching or stamping a metal plate to be in contact with a terminal of a semiconductor device and a terminal of an inspection circuit board, thereby widening the pitch interval between the parts of the semiconductor circuit contacting the terminals of the semiconductor device. As the pitch interval between the two becomes narrower, the semiconductor device may be tested without fabricating a separate dummy board and an inspection circuit board.
  • the present invention compensates for the disadvantages of the pogo-pin type semiconductor test socket and the disadvantages of the PCR socket type semiconductor test socket, and enables bidirectional conductivity for semiconductor device testing, which is possible to implement a fine pattern and to test semiconductor devices.
  • the socket can be easily assembled.
  • a portion of the semiconductor device contacting the plurality of terminals and a portion of the inspection circuit board contacting the plurality of terminals by using a method for patterning a conductive pattern on the FPCB can be implemented in a single module with a fine size Due to the development of technology, it is possible to easily manufacture a bidirectional conductive socket for testing a semiconductor device that can test a small semiconductor device, which is difficult to test in a pogo pin type or a PCR socket type, which is conventionally used for testing a semiconductor device.
  • the present invention is a semiconductor having a unit module structure by patterning a plurality of conductive patterns on a FPCB having a flexible structure, rather than electrically connecting a plurality of terminals provided in the semiconductor device and a plurality of terminals of the test circuit board.
  • a bidirectional conductive socket for testing a semiconductor device may be assembled by manufacturing a bidirectional conductive module for testing a device and assembling the bidirectional conductive module for testing a unit modular semiconductor device to a housing.
  • the present invention can increase the assembly efficiency by simplifying the assembly process of the bidirectional conductive socket for semiconductor device testing, and at the same time reduce the work time required during assembly, and also increase the work efficiency of the operator. have.
  • FIG. 1 schematically illustrates a configuration of a semiconductor test apparatus according to the prior art.
  • FIG. 2 schematically illustrates an installation state in which a bidirectional conductive socket for testing a semiconductor device according to an embodiment of the present invention is installed between a semiconductor device and an inspection circuit board.
  • FIG. 3 is an enlarged view of a portion A of FIG. 2.
  • FIG. 4 schematically illustrates a plan view of a bidirectional conductive module for testing a semiconductor device according to an embodiment of the present invention.
  • FIG. 5 schematically illustrates a perspective view of a bidirectional conductive module for testing a semiconductor device according to an embodiment of the present invention.
  • FIG. 6A schematically illustrates the top view of FIG. 5, and FIG. 6B schematically illustrates the bottom view of FIG. 5.
  • FIG. 7 is a schematic cross-sectional view of one terminal pin provided with a plurality of first conductive patterns and a plurality of second conductive patterns according to an embodiment of the present invention.
  • FIG. 8 (a) is a plan view of FIG. 7 viewed from above, and FIG. 8 (b) schematically shows a bottom view of FIG. 7 viewed from below.
  • 9 is a schematic cross-sectional view of two terminal pins.
  • FIG. 10 is a schematic cross-sectional view of a state in which a plurality of terminal pins are arranged.
  • FIG. 11A is a plan view of FIG. 10 viewed from above
  • FIG. 11B is a schematic view of a bottom view of FIG. 10 viewed from below.
  • 12A to 12E schematically illustrate a process sequence of a method of manufacturing a bidirectional conductive module for testing a semiconductor device.
  • FIG. 13 schematically illustrates an installation state in which a bidirectional conductive socket for testing semiconductor devices according to another embodiment of the present invention is installed between a semiconductor device and an inspection circuit board.
  • FIG. 14 is an enlarged view of a portion B of FIG. 13.
  • FIG. 15 schematically illustrates a perspective view of a bidirectional conductive module for testing a semiconductor device according to another embodiment of the present invention.
  • 16 is a schematic flowchart of a method of manufacturing a bidirectional conductive module for testing a semiconductor device according to another exemplary embodiment of the present invention.
  • bidirectional conductive module for testing a semiconductor device a bidirectional conductive socket for testing a semiconductor device, and a method for manufacturing a bidirectional conductive module for testing a semiconductor device according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.
  • the bidirectional conductive socket 100 for testing a semiconductor device electrically connects the semiconductor device 10 and the test circuit board 70 to test whether the semiconductor device 10 is good or bad. will be.
  • a bidirectional conductive socket 100 for testing a semiconductor device is provided between the semiconductor device 10 and the test circuit board 70.
  • the bidirectional conductive socket 100 for testing a semiconductor device is electrically connected to the semiconductor device 10 and the test circuit board 70 by the bidirectional conductive module 110 for testing a semiconductor device.
  • the bidirectional conductive socket 100 for testing a semiconductor device includes at least one bidirectional conductive module 110 and a housing 190 for testing a semiconductor device.
  • the semiconductor device 10 may have a variety of structures depending on the purpose used in electronic products.
  • the semiconductor device 10 may have a single in-line package (SIP) structure in which terminals protrude from a package, a small outline package (SOP) structure in which terminals protrude in two directions from a package, or terminals in a package in four directions.
  • SIP single in-line package
  • SOP small outline package
  • Various types such as QFP (Quad Flat Package) structure protruding into the shape are used.
  • the structure of the semiconductor device disclosed in this embodiment is merely exemplary, and the bidirectional conductive socket 100 for testing a semiconductor device according to the present invention uses various types and sizes not disclosed herein by using a bidirectional conductive module for testing a semiconductor device. Of course, it can be manufactured to test the semiconductor device 10 having an excitation.
  • the structure of the bidirectional conductive socket 100 for testing a semiconductor device may also be variously changed according to the arrangement of the terminal 11 of the semiconductor device.
  • the bidirectional conductive socket 100 for a semiconductor device test is formed by assembling at least one bidirectional conductive module 110 for a semiconductor device test in a housing 190 according to the arrangement of the terminal 11 of the semiconductor device. do.
  • the bidirectional conductive module 110 for testing a semiconductor device is a unit modularized terminal connection member used to manufacture a bidirectional conductive socket 100 for a semiconductor device test.
  • the bidirectional conductive module 110 for testing a semiconductor device is for electrically connecting the terminal 11 of the semiconductor device and the terminal 71 of the test circuit board.
  • the spacing between the terminals 11 of the semiconductor element is, for example, 0.3 mm or less (hereinafter referred to as "first pitch interval P1"), which is small.
  • first pitch interval P1 the spacing between the terminals 11 of the semiconductor element.
  • the bidirectional conductive module 110 for testing a semiconductor device is not individually connected to a plurality of very small terminals provided in the semiconductor device 10, but a plurality of conductive patterns are patterned on the FPCB substrate.
  • the unit module is structured to be in contact with the terminal 11 of the semiconductor device.
  • the unit modularized bidirectional conductive module 110 for testing a semiconductor device has a structure in which the bidirectional conductive socket 100 for testing a semiconductor device described above is electrically connected to a plurality of terminals provided on one side of the semiconductor device 10 once. It may have a structure connected to.
  • the bidirectional conductive module 110 for testing a semiconductor device may be fitted into the housing 190 having a predetermined frame, thereby simplifying the assembly process of the bidirectional conductive socket 100 for testing a semiconductor device.
  • the housing 190 is coupled to the inspection circuit board by a coupling member 191.
  • the coupling member penetrates through the housing 190 and is coupled to the test circuit board 70 to define a position of the housing 190 with respect to the test circuit board 70.
  • the housing 190 presses the plurality of second conductive patterns 114a, 114b, and 114c, and electrically connects the plurality of second conductive patterns 114a, 114b, and 114c to the terminal 71 of the test circuit board. Can improve contact.
  • the bidirectional conductive socket 100 for testing a semiconductor device when the gap between the terminals 11 of the semiconductor device is narrowed, the semiconductor device is tested without affecting the pitch interval between the terminals 71 of the test circuit board. In order to be able to perform, it has a structure to widen the pitch interval of the portion in contact with the terminal 71 of the test circuit board.
  • a bidirectional conductive module for testing a semiconductor device will be described.
  • the bidirectional conductive module 110 for testing a semiconductor device includes a substrate portion 111, a plurality of terminal pins 110A and 110B, and an elastic support portion 119.
  • the substrate 111 is a portion that electrically connects the semiconductor device 10 and the test circuit board 70.
  • the substrate portion 111 has a flexible structure. Accordingly, the substrate 111 may be bent such that one surface thereof faces the semiconductor device 10 and the other surface thereof faces the test circuit board 70.
  • first conductive patterns 113a, 113b, and 113c are formed on one surface of the substrate 111, and a plurality of second surfaces are formed on the other surface of the substrate 111.
  • the conductive patterns 114a, 114b, and 114c are formed as they are formed.
  • the plurality of first conductive patterns 113a, 113b, and 113c are spaced apart from each other by a first pitch interval P1.
  • the plurality of second conductive patterns 114a, 114b, and 114c are spaced apart from each other by two pitches.
  • the first pitch interval P1 corresponds to the pitch interval between the terminals 11 of the semiconductor element, and the second pitch interval P2 is larger than the first pitch interval P1 and is between the terminals 71 of the test circuit board. Corresponds to the pitch interval.
  • the insulating sheets 111a and 111b are made of a material that can be flexibly flexed without electricity.
  • As the insulating sheet for example, PI film may be used. Due to the material property, the insulating sheet may have a shape that may be bent according to the pressure pressed in the test process of the semiconductor device 10.
  • the plurality of first conductive patterns 113a, 113b, 113c and the plurality of second conductive patterns 114a, 114b, 114c patterned on the substrate 111 are coaxially positioned. It will be described by dividing it into one terminal pin.
  • One terminal pin 111 may be provided with one terminal pin as shown in FIGS. 7 and 8, or as shown in FIGS. 9 and 11, a plurality of terminal pins 110A and 110B may be provided. Can be prepared.
  • the number of terminal pins is adjustable in the patterning process of the substrate portion 111, in this embodiment, the terminal pin, the first conductive patterns 113a, 113b, 113c and the second conductive patterns 114a, 114b.
  • Number of 114c) is not particularly limited, and of course, it can be variously changed according to the specifications of the semiconductor device according to technology development.
  • the plurality of terminal pins 110A and 110B are in contact with the terminal 11 of the semiconductor device at the first pitch interval P1 and are in contact with the terminal 71 of the test circuit board at the second pitch interval P2. In order to electrically connect the terminal 11 of the semiconductor device and the terminal 71 of the test circuit board.
  • one terminal pin includes a plurality of first conductive patterns 113a, 113b, and 113c and a plurality of second conductive patterns 114a, 114b, and 114c arranged in a line on a coaxial line.
  • the plurality of terminal pins 110A and 110B may be arranged in a line with the plurality of first conductive patterns 113a, 113b, and 113c spaced apart from each other by one pitch interval P1 on one surface of the substrate 111.
  • a plurality of second conductive patterns 114a, 114b, and 114c are disposed on the other side of the unit 111 so as to be arranged in a zigzag form and arranged in a zigzag manner.
  • the plurality of first conductive patterns 113a, 113b, and 113c may apply a current applied to the test circuit board 70 to the terminals of the terminal 11 of the semiconductor device when the first conductive pattern 113a, 113b, 113c contacts the terminal 11 of the semiconductor device. Part.
  • the bidirectional conductive module for testing a semiconductor device is used to increase the contact efficiency between the plurality of first conductive patterns 113a, 113b, and 113c and the terminal 11 of the semiconductor element, that is, the plurality of first conductive patterns.
  • the first bumps 115 may be formed to have rough surfaces of the 113a, 113b, and 113c to stably ensure electrical contact between the terminal 11 of the semiconductor device and the plurality of first conductive patterns 113a, 113b, and 113c. ) Is attached to the plurality of first conductive patterns 113a, 113b, and 113c.
  • the first bumps 115 are attached to the surface of the plurality of first conductive patterns 113a, 113b, and 113c.
  • the first bumps 115 may be formed of conductive powder.
  • the first bumps 115 may be nickel plated and / or gold plated after the non-conductive powder is laid on the surfaces of the plurality of first conductive patterns 113a, 113b, and 113c, and thus, the first conductive patterns 113a, And may be attached to the surfaces of 113b and 113c.
  • the plating layer formed on the surface of the first bump 115 is shown in FIG. 11.
  • the first bump 115 may be formed of conductive powder.
  • the surface of the first conductive patterns 113a, 113b, and 113c may be formed of a plating layer in a sharply protruding structure such as a crown structure.
  • the plurality of second conductive patterns 114a, 114b, 114c are in contact with the terminal 71 of the test circuit board, and the current passes when the current is applied.
  • the plurality of second conductive patterns 114a, 114b and 114c are provided on the other surface of the insulating sheet in the same manner as the plurality of first conductive patterns 113a, 113b and 113c described above.
  • the plurality of second conductive patterns 114a, 114b, and 114c are spaced apart from each other in a row at a second pitch interval P2 larger than the first pitch interval P1, and are provided on the other surface of the substrate 111.
  • Second bumps 116 are formed on the plurality of second conductive patterns 114a, 114b, and 114c.
  • the second bump 116 performs the same structure and role as the first bump 115, and thus description thereof will be omitted in this embodiment to avoid repetition of the description.
  • the plurality of second conductive patterns 114a, 114b, and 114c are arranged in a line at one terminal pin at a second pitch interval P2.
  • the plurality of second conductive patterns 114a, 114b, and 114c may be disposed between the second conductive patterns 114a, 114b, and 114c that are adjacent to each other while the plurality of terminal pins 110A and 110B are arranged in a line. Arranged by a pitch interval P2 and arranged in a zigzag form.
  • the bidirectional conductive module 110 for testing a semiconductor device includes a plurality of first conductive patterns 113a, 113b, and 113c and a plurality of second conductive patterns 114a, 114b, and 114c formed on different surfaces. It has a structure electrically connected to it.
  • the bidirectional conductive module 110 for testing a semiconductor device may include a plurality of first conductive patterns 113a, 113b, and 113c and a plurality of second conductive patterns 114a, in a patterning process after plating of an insulating sheet.
  • the patterning process is performed so that the plating is not removed at the portion where the connecting portions 114b and 114c are connected, so that the plurality of first conductive patterns 113a, 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c are electrically connected to each other. It may have a connected structure.
  • the bidirectional conductive module for testing a semiconductor device may include via holes 118a and 118b communicating with the first conductive patterns 113a, 113b and 113c and the second conductive patterns 114a, 114b and 114c, respectively. Subsequently, the plurality of first conductive patterns 113a, 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c are plated and connected to each other through a via hole filling plating process to thereby connect the plurality of first conductive patterns 113a to each other. , 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c may have a structure electrically connected to each other.
  • first conductive patterns 113a, 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c may be electrically connected by conductive lines.
  • a conductive wire is used as the conductive line.
  • the first conductive patterns 113a, 113b, and 113c and the second conductive patterns 114a, 114b, and 114c are different from each other.
  • the first conductive patterns 113a, 113b and 113c and the second conductive patterns 114a, 114b and 114c are electrically connected by plating connection or conductive lines, and are energized when a current is applied to the test circuit board.
  • the current applied from the terminal 71 may be provided to the terminal 11 of the semiconductor device.
  • the bidirectional conductive module 110 for testing a semiconductor device may elastically support the substrate 111 having a structure that is easily bent as described above using the elastic support 119.
  • the elastic support 119 is made of a material which is elastic to some extent and does not pass current when pressed. In the present invention, it is assumed that the elastic support 119 is made of a silicon material.
  • the elastic support part 119 is adapted to contact the semiconductor device 10 when the bidirectional conductive module 110 for a semiconductor device test is applied to the bidirectional conductive socket 100 for a semiconductor device test to be used for the actual test of the semiconductor device 10.
  • the elastic support 119 is preferably coupled to the substrate 111 so that the first bump 115 and the second bump 116 are not affected by the elastic support 119.
  • the elastic support part 119 surrounds one surface of the substrate part 111 except for the plurality of first conductive patterns 113a, 113b, and 113c, and includes a substrate part except for the plurality of second conductive patterns 114a, 114b, and 114c. It may be coupled to the substrate portion 111 in a block structure surrounding the other surface of the (111).
  • the elastic paper portion 119 may have a block structure having a structure in which a contact surface with the substrate portion 111 is flat, or may have a block structure.
  • P1 a pitch interval of the terminal 11 of the semiconductor device;
  • B On the other side of the substrate portion 111, the plurality of second conductive patterns 114a, 114b, 114c in contact with the terminal 71 of the test circuit board are pitch intervals of the terminal 71 of the test circuit board.
  • a second pitch interval (P2) and patterned to be arranged in a zigzag pattern with respect to the arrangement direction of the plurality of first conductive patterns (113a, 113b, 113c); (C) electrically connecting the plurality of first conductive patterns 113a, 113b, 113c and the plurality of second conductive patterns 114a, 114b, 114c by plating or conductive lines; (D) The plurality of first conductive patterns 113a, 113b, 113c and the plurality of second conductive patterns 114a, 114b, 114c are brought into contact with the molding die and bent in a streamline shape in the shape of the molding mold. Bent to face different directions; And (E) the substrate portion 111 is connected to the mold mold mold, and the silicon is injected into the mold mold and cured to form the elastic support portion 119 elastically supporting the substrate portion 111. Include.
  • the first insulating sheet 111a and the second insulating sheet 111b are prepared.
  • the first insulating sheet 111a forms one surface of the substrate portion 111
  • the second insulating sheet 111b forms another surface of the substrate portion 111.
  • the first insulating sheet 111a and the second insulating sheet 111b are plated. At this time, the plating treatment may be performed by copper.
  • a PI film may be used as the first insulating sheet 111a and the second insulating sheet 111b.
  • a plurality of first conductive patterns 113a, 113b, and 113c contacting the terminal 11 of the semiconductor device on the first insulating sheet 111a may be formed on the terminal 11 of the semiconductor device.
  • the pattern is spaced apart by the first pitch interval P1 which is the pitch interval (step A).
  • P1 which is the pitch interval (step A).
  • the "first a conductive pattern 113a, the first b conductive pattern 113b, and the first c conductive pattern 113c" for the plurality of first conductive patterns 113a, 113b, and 113c are described. The description will be divided into.
  • the first c is any one of the plurality of first conductive patterns 113a, 113b, and 113c patterned on one side of the first insulating sheet 111a.
  • the first connection pattern 113d electrically connected to the conductive pattern 113c is patterned.
  • the first connection pattern 113d may be electrically connected to any one of the plurality of second conductive patterns 114a, 114b, and 114c when the first insulating sheet 111a and the second insulating sheet 111b are in contact with each other. .
  • the plurality of first conductive patterns 113a, 113b, 113c and the first connection pattern 113d are patterned on the first insulating sheet 111a.
  • the plurality of second conductive patterns 114a, 114b, and 114c contacting the terminal 71 of the test circuit board are connected to the terminal of the test circuit board. They are spaced apart from each other by a second pitch interval P2, which is a pitch interval of 71, and are patterned so as to be arranged in a zigzag pattern with respect to the arrangement directions of the plurality of first conductive patterns 113a, 113b, and 113c (step B). .
  • a plurality of second conductive patterns 114a, 114b, and 114c are patterned on the other side of the second insulating sheet 111b.
  • the "a 2a conductive pattern 114a, the 2b conductive pattern 114b, and the 2c conductive pattern 114c" with respect to the plurality of second conductive patterns 114a, 114b, and 114c are described. The description will be divided into.
  • the second a conductive pattern 114a is electrically connected to the first a conductive pattern 113a
  • the second b conductive pattern 114b is electrically connected to the first b conductive pattern 113b
  • the second c conductive pattern 114c is provided.
  • the second connection pattern connected to the second conductive pattern 114a is referred to as a 'second a connection pattern 114d' and the second connection pattern connected to the second b conductive pattern 114b is described.
  • the connection pattern will be referred to as a 'second b connection pattern 114e'.
  • the plurality of second conductive patterns 114a, 114b and 114c, the second a connecting pattern 114d and the second b connecting pattern 114e are patterned on the second insulating sheet 111B. 114B, 114C, 114D, 114E, 114F).
  • the second a conductive pattern is provided only on the surface facing the test circuit board, and the second b conductive pattern 114e is provided only in the direction facing the first layer.
  • one terminal pin 110A is formed by bonding one first layer 113A and a second layer 114A to each other.
  • the plurality of terminal pins 110A, 110B, 110C, and 110D may correspond to the plurality of first layers 113A, 113B, 113C, and 113D and the second layer 114A, respectively. , 114B, 114C, 114D).
  • the second a connecting pattern 114d is in contact with the first a conductive pattern 113a.
  • the 1a conductive pattern 113a and the second a conductive pattern 114a are electrically connected to each other.
  • the second b connecting pattern 114e is electrically connected to the second b conductive pattern 114b by a plating process or a conductive line, and is in contact with the first b conductive pattern 113b to contact the first b conductive pattern 113b and the second bb.
  • the conductive patterns 114b are electrically connected to each other.
  • the second c conductive pattern 114c is in contact with the first connection pattern 113d and is electrically connected to the first c conductive pattern 113c.
  • the electrical connection between the first connection pattern 113d and the second c conductive pattern 114c forms a via hole in the first connection pattern 113d and the second c conductive pattern 114c, and fills the via hole.
  • Plating is connected to each other through, or is made as the first connection pattern 113d and the second c conductive pattern 114c are connected by a conductive line (step C).
  • the electrical connection between the second connection pattern 114d and the first c conductive pattern 113c is also performed in the same manner as the first connection pattern 113d and the second c conductive pattern.
  • the electrical connection 111b2 of the conductive pattern 114a is made by nickel plating and gold plating.
  • the plurality of first conductive patterns 113a, 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c formed by patterning the copper plating layer are nickel plated. Thereafter, the plurality of nickel plated first conductive patterns 113a, 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c are gold plated. This is to improve electrical conductivity of the plurality of first conductive patterns 113a, 113b and 113c and the plurality of second conductive patterns 114a, 114b and 114c.
  • step (B) or step (C) the first powder 115 is formed by attaching the conductive powder to the surfaces of the plurality of first conductive patterns 113a, 113b, and 113c.
  • the second bump 116 is formed by attaching the conductive powder to the surfaces of the plurality of second conductive patterns 114a, 114b, and 114c.
  • the first bump 115 is a structure capable of stably performing electrical contact between the first conductive patterns (113a, 113b, 113c) and the terminal 11 of the semiconductor device, using the conductive powder as described herein
  • the surface of the first conductive patterns 113a, 113b, and 113c may be formed of a plating layer in a sharply protruding structure such as a crown structure.
  • the second bump 116 may be formed of a specific powder. A plated layer of shape can be applied.
  • the plurality of first conductive patterns 113a, 113b, and 113c and the plurality of second conductive patterns 114a, 114b, and 114c are electrically connected to the substrate unit 111 by the above method.
  • the substrate portion 111 is in contact with the molding die and bent in a streamline shape in the shape of the molding die, the plurality of first conductive patterns 113a, 113b, 113c and the plurality of second conductive patterns 114a, 114b, 114c) is bent to face different directions (step (D)).
  • step (E) the substrate portion 111 is connected to the molding mold mold 50. Thereafter, silicon is injected into the mold mold 50. As the silicon injected into the mold mold 50 is cured, an elastic support part 119 is formed (step (E)).
  • step E laser cutting is performed between the plurality of first conductive patterns 113a, 113b and 113c and between the plurality of second conductive patterns 114a, 114b and 114c. This is to block the electrical connection between the plurality of first conductive patterns 113a, 113b, and 113c and the electrical connection between the plurality of second conductive patterns 114a, 114b, and 114c.
  • the bidirectional conductive module for testing a semiconductor device manufactured as described above is in the form of a socket fixed to a housing.
  • the plurality of first conductive patterns 113a, 113b, and 113c are formed of a semiconductor. It is electrically connected to the terminal 11 of the device, and the plurality of second conductive patterns 114a, 114b, 114c are electrically connected to the terminal 71 of the test circuit board, thereby electrically connecting the semiconductor device and the test circuit board.
  • the bidirectional conductive module for testing a semiconductor device manufactured as described above is adjusted by adjusting the pitch intervals of the plurality of second conductive patterns 114a, 114b, and 114c with the pitch interval of the terminal 71 of the test circuit board. As the pitch spacing between the terminals 11 of the semiconductor element is narrowed, it is not necessary to manufacture a separate inspection circuit board corresponding to the pitch spacing between the terminals of the semi-small element.
  • the bidirectional conductive module for testing a semiconductor device manufactured as described above may be finely integrated and patterned by a conductive pattern contactable with a plurality of terminals 11 provided on one surface of a semiconductor device. Electrical short circuit between the terminal 11 of the semiconductor element and the terminal 71 of the test circuit board can be prevented.
  • the present invention uses a method of patterning a conductive pattern on the FPCB, the portion of the semiconductor device 10 in contact with the plurality of terminals and the portion of the inspection circuit board 70 in contact with the plurality of terminals 71 is fine Since it can be implemented in one module in size, due to the development of technology, it is possible to test the microminiature semiconductor device 10 that is difficult to test in the pogo pin type or the PCR socket type that is conventionally used for testing the semiconductor device 10.
  • the bidirectional conductive socket 100 for testing a semiconductor device can be easily manufactured.
  • bidirectional conductive socket 200 for testing a semiconductor device Referring to the bidirectional conductive socket 200 for testing a semiconductor device according to another embodiment of the present invention.
  • the bidirectional conductive socket 200 for testing a semiconductor device electrically connects the semiconductor device 10 and the test circuit board 70 to test whether the semiconductor device 10 is good or bad. will be.
  • a bidirectional conductive socket 200 for testing a semiconductor device is provided between the semiconductor device 10 and the test circuit board 70.
  • the bidirectional conductive socket 200 for the semiconductor device test is electrically connected to the semiconductor device 10 and the test circuit board 70 by the bidirectional conductive module 210 for the semiconductor device test.
  • the bidirectional conductive socket 200 for testing a semiconductor device includes at least one bidirectional conductive module 210 and a housing 290 for testing a semiconductor device.
  • the structure of the bidirectional conductive socket 200 for testing a semiconductor device may also be variously changed according to the structure of the terminal 11 arrangement of the semiconductor device.
  • the bidirectional conductive socket 200 for a semiconductor device test is formed by assembling at least one bidirectional conductive module 210 for a semiconductor device test in a housing 290 according to the arrangement of the terminal 11 of the semiconductor device. do.
  • the bidirectional conductive module 210 for testing a semiconductor device is a unit modularized terminal connection member used to manufacture the bidirectional conductive socket 200 for a semiconductor device test.
  • the bidirectional conductive module 210 for testing a semiconductor device is for electrically connecting the terminal 11 of the semiconductor device and the terminal 71 of the test circuit board.
  • the spacing between the terminals 11 of the semiconductor element is, for example, 0.3 mm or less (hereinafter referred to as "first pitch interval P1"), which is small.
  • first pitch interval P1 the spacing between the terminals 11 of the semiconductor element.
  • the bidirectional conductive module 210 for testing a semiconductor device is not connected to each of a plurality of very small terminals provided in the semiconductor device 10, but a plurality of conductive patterns are patterned on the FPCB substrate.
  • the unit module is structured to be in contact with the terminal 11 of the semiconductor device.
  • the bi-directional conductive module 210 for unit-module semiconductor device test illustrated in FIG. 15 is connected to each other in a block-type structure, and has a structure in which the terminal 11 of the semiconductor device 10 is electrically connected once.
  • the bidirectional conductive module 210 for testing a semiconductor device may be fitted into the housing 290 having a predetermined frame, thereby simplifying the assembly process of the bidirectional conductive socket 200 for testing a semiconductor device.
  • the housing 290 is coupled to the test circuit board by a coupling member 191.
  • the coupling member penetrates through the housing 290 and is coupled to the test circuit board 70 to define a position of the housing 290 with respect to the test circuit board 70.
  • the housing 290 presses the other ends of the plurality of terminal pins, thereby improving electrical contact between the plurality of terminal pins and the terminal 71 of the test circuit board.
  • the bidirectional conductive socket 200 for testing a semiconductor device when the interval between the terminals 11 of the semiconductor device is narrowed, the semiconductor device is tested without affecting the pitch interval between the terminals 71 of the test circuit board. In order to be able to perform, it has a structure to widen the pitch interval of the portion in contact with the terminal 71 of the test circuit board.
  • a bidirectional conductive module for testing a semiconductor device will be described.
  • the bidirectional conductive module 210 for testing a semiconductor device includes terminal pin parts 210A and 210B and an elastic support part 219.
  • one end 211a, 212a, and 213a of the terminal pin is in contact with the terminal 11 of the semiconductor device, and the other end 211b, 212b, and 213b of the terminal pin is connected to the terminal 71 of the test circuit board. ) Is electrically connected to the semiconductor device and the test circuit board.
  • the terminal pin portions 210A and 210B are formed of a plurality of terminal pins 211, 212 and 213.
  • the terminal pin part collectively refers to a state in which a plurality of terminal pins are arranged in a row, and the number of the terminal pin parts may be variously changed according to the number of terminals of the semiconductor device.
  • one terminal pin portion 210A may be elastically supported by the elastic support portion 219 as shown in FIG. 16 (d), or two terminal pin portions 210A as shown in FIG. 15. , 210B may be divided into two sides of the elastic support 219.
  • the plurality of terminal pins 211, 212, and 213 are made of a metal material through which current is well communicated.
  • the plurality of terminal pins 211, 212, and 213 may be nickel plated and gold plated on a metal material to further improve conductivity.
  • the terminal pins 211, 212, and 213 have one ends 211a, 212a, and 213a of the terminal pins protruding upward from the elastic support part 219 to be spaced apart from each other by a first pitch interval P1.
  • the other ends 21b, 212b, and 213b of the elastic support parts are spaced apart from each other at a second pitch interval P2 at positions away from the elastic support part 219 with respect to one ends 211a, 212a, and 213a of the terminal pins. 219 is bent to protrude to the bottom.
  • the plurality of terminal pins 211, 212, and 213 have a multi-folded structure to have at least two inflection points, and are bent according to the pressure pressed in the test process of the semiconductor device 10, and then return to the original state when the pressure is released. Has elasticity.
  • a plurality of terminal pins 211, 212, and 213 are contacted with the terminal 11 of the semiconductor element at a first pitch interval P1, and with respect to the terminal 71 of the test circuit board. In contact with the second pitch interval (P2), it is electrically connected to the terminal 11 of the semiconductor device and the terminal 71 of the test circuit board.
  • the first pitch interval P1 corresponds to the pitch interval between the terminals 11 of the semiconductor device
  • the second pitch interval P2 is larger than the first pitch interval P1 and is the terminal 71 of the test circuit board.
  • the pitch interval between the terminals 11 of the semiconductor device corresponds to the pitch interval between the terminals 11 of the semiconductor device
  • the number of the plurality of terminal pins 211, 212, and 213 is not particularly limited, and of course, the number of terminal pins 211, 212, and 213 can be variously changed according to the specifications of the semiconductor device according to technology development.
  • the plurality of terminal pins 211, 212, 213 are semiconductors even when the pitch interval between the terminals 11 of the semiconductor element is narrowed by the structure of the bidirectional conductive module 210 for testing a semiconductor device which has increased the pitch interval between the other ends.
  • it is economical in terms of cost because it does not have to manufacture a separate test circuit board 70 having the same pitch interval as the pitch interval of the terminal 11 of the semiconductor device.
  • the elastic support part 219 elastically supports the plurality of terminal pins 211, 212, and 213 arranged in a line.
  • the elastic support part 219 may be easily bent, and the first pitch interval P1 between one end and the second pitch interval P2 between the other end may be constant.
  • the terminal pin portions 210A and 210B may be elastically supported to be maintained.
  • the elastic support part 219 has a block structure surrounding the terminal pin parts 210A and 210B such that one end 211a, 212a, 213a of the plurality of terminal pins and the other ends 211b, 212b, 213b of the plurality of terminal pins protrude.
  • the elastic support part 219 is made of a material that is elastic to some extent and does not pass current when pressed.
  • the elastic support 219 is provided with a silicon material.
  • the elastic support part 219 is adapted to contact the semiconductor device 10 when the bidirectional conductive module 210 for semiconductor device test is applied to the bidirectional conductive socket 200 for semiconductor device test to be used for the test of the actual semiconductor device 10. Elastic support.
  • the elastic support 219 may have a plate-like block structure for elastically supporting the plurality of terminal pins 211, 212, and 213 arranged in a line as shown in FIG. 15, and the plurality of terminal pins arranged in a plurality of rows ( 211, 212, and 213 may have a block-like structure to elastically support.
  • a method of manufacturing a bidirectional conductive module for testing a semiconductor device comprising: Patterning the plurality of terminal pin patterns P to be bent toward the bottom of the plate; (B) removing the remaining portions except the plurality of terminal pin patterns P from the metal plate to form a plurality of terminal pins 211, 212, and 213 from the metal plate; And (C) the plurality of terminal pins 211, 212, 213 are connected to the molding mold mold, and silicon is injected into the molding mold mold and cured to form the plurality of terminal pins 211, 212, 213. It includes the step of providing an elastic support 219 for supporting.
  • a plurality of terminal pin patterns P is patterned on one metal plate 50.
  • One end of the plurality of terminal pin patterns P is spaced apart from each other by a first pitch interval P1, which is a distance between terminals of the semiconductor device, and the other end of the plurality of terminal pin patterns P. These are patterned so as to be arranged in a line so as to be spaced apart from each other by a second pitch interval P2 larger than the first pitch interval P1.
  • the metal plate 50 includes a first connection pattern 51a for connecting one end of the plurality of terminal pin patterns P and a second connection pattern 52a for connecting the other ends of the plurality of terminal pin patterns P. Is patterned.
  • the remaining portions except for the plurality of terminal pin patterns P, the first connection patterns 51a, and the second connection patterns 52a may be metal plates by etching or stamping. Is removed at 50.
  • the unpatterned portion is removed by etching or stamping, and only a portion of the terminal pin pattern P is patterned to form a plurality of terminal pins 211, 212, and 213.
  • the plurality of terminal pins 211, 212, and 213 are connected to each other by the first connection part 51 and the second connection part 52 formed by the first connection pattern 51a and the second connection pattern 52a. It is a state.
  • the plurality of terminal pins 211, 212, and 213 may be nickel plated and gold plated to improve conductivity.
  • the plurality of terminal pins 211, 212, 213 are installed in the molding mold mold with the first connecting portion 51 and the second connecting portion 52 connected to each other, and then silicon is injected into the molding mold mold.
  • an elastic support 219 is provided to elastically support the plurality of terminal pins 211, 212, and 213.
  • the elastic support part 219 is formed by curing silicone.
  • the structure of the elastic support part 219 can be variously changed according to the size and structure of the molding mold mold.
  • the first connection part 51 and the second connection part 52 may be connected to the plurality of terminal pins 211, 212, 213. Are removed at both ends. This is to block electrical connection between the plurality of terminal pins 211, 212, and 213.
  • the bidirectional conductive module 210 for testing a semiconductor device includes one end 211a, 212a, and 213a of the plurality of terminal pins and the other end 211b, 212b, and 213b of the plurality of terminal pins. It is a state protruding from the elastic support 219.
  • the bidirectional conductive module 210 for testing a semiconductor device manufactured as described above is in the form of a socket fixed to a housing, and when one end of the plurality of terminal pins 211a, 212a, and 213a is positioned between the semiconductor device and the test circuit board. In contact with the terminal 11 of the semiconductor element, the other ends 211b, 212b, 213b of the plurality of terminal pins contact the terminal 71 of the test circuit board, thereby electrically connecting the semiconductor device and the test circuit board.
  • the bidirectional conductive module 210 for testing a semiconductor device manufactured in the above manner has a pitch interval between the other ends 211b, 212b, and 213b of the plurality of terminal pins with the pitch interval of the terminal 71 of the test circuit board. As the pitch interval between the terminals 11 of the semiconductor element is narrowed by adjusting the, it is not necessary to produce a separate inspection circuit board corresponding to the pitch interval between the terminals of the semi-elementary elements.
  • the bidirectional conductive module 210 for a semiconductor device test manufactured as described above may be formed by finely integrating and patterning a conductive pattern contactable with a plurality of terminals 11 provided on one surface of a semiconductor device. Electrical short circuit between the terminal 11 of the semiconductor element and the terminal 71 of the test circuit board due to the defect can be prevented.
  • the present invention uses a method of patterning a conductive pattern on the FPCB, the portion of the semiconductor device 10 in contact with the plurality of terminals and the portion of the inspection circuit board 70 in contact with the plurality of terminals 71 is fine Since it can be implemented in one module in size, due to the development of technology, it is possible to test the microminiature semiconductor device 10 that is difficult to test in the pogo pin type or the PCR socket type that is conventionally used for testing the semiconductor device 10.
  • the bidirectional conductive socket 200 for testing a semiconductor device can be easily manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈은 일면이 반도체소자를 향하고 다른 일면이 검사회로기판을 향하도록 절곡된 구조를 가진 기판부; 기판부의 일면에서 상호 간에 제 1 피치간격으로 일렬로 이격되어 반도체소자의 단자에 각각 전기적으로 연결되는 복수의 제 1 도전성패턴과, 기판부의 다른 일면에서 상호 간에 제 1 피치간격보다 큰 제 2 피치간격으로 일렬로 이격되어 검사회로기판의 단자에 각각 전기적으로 연결되는 복수의 제 2 도전성패턴이 마련된 복수의 단자핀; 및 기판부를 탄성지지토록 기판부에 연결된 탄성지지부를 포함하고, 복수의 단자핀은 기판부의 일면에서 복수의 제 1 도전성패턴이 제 1 피치간격만큼 이격되어 일렬로 배열되고, 기판부의 다른 일면에서 복수의 제 2 도전성패턴이 제 2 피치간격만큼 어긋나게 배치되어 지그재그형태로 배열되도록 기판부에 마련되어, 복수의 제 1 도전성패턴이 반도체소자의 단자에 대해 제 1 피치간격으로 접촉되고, 복수의 제 2 도전성패턴이 검사회로기판의 단자에 대해 제 2 피치간격으로 접촉되어, 반도체소자의 단자와 검사회로기판의 단자를 전기적으로 연결하는 것이 바람직하다.

Description

반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
본 발명은 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법에 관한 것이며, 상세하게는 반도체소자의 단자와 접촉되는 부분을 미세 패턴화하고 검사회로기판의 단자와 접촉되는 부분의 피치 간격을 넓혀 반도체소자의 단자 간의 피치 간격이 좁아짐에 따라 별도의 더미보드와 검사회로기판을 제작하지 않고도 반도체소자의 테스트를 수행할 수 있는 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법에 관한 것이다.
반도체 소자는 제조 과정을 거친 후 전기적 성능의 양불을 판단하기 위한 검사를 수행하게 된다. 반도체 소자의 양불 검사는 반도체 소자의 단자와 전기적으로 접촉될 수 있도록 형성된 반도체 테스트 소켓(또는 콘텍터 또는 커넥터)을 반도체 소자와 검사회로기판 사이에 삽입한 상태에서 검사가 수행된다. 그리고, 반도체 테스트 소켓은 반도체 소자의 최종 양불 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.
반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 간격도 미세화되는 추세이고, 그에 따라 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다. 따라서, 기존의 포고-핀(Pogo-pin) 타입의 반도체 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하기 위한 반도체 테스트 소켓을 제작하는데 한계가 있었다.
이와 같은 반도체 소자의 집적화에 부합하도록 제안된 기술이, 탄성 재질의 실리콘 소재로 제작되는 실리콘 본체 상에 수직 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 분말을 충진하여 도전 패턴을 형성하는 PCR 소켓 타입이 널리 사용되고 있다.
PCR 소켓 타입의 반도체 테스트 소켓을 사용한다 하더라도, 반도체 소자의 단자 간의 피치 간격이 좁아지면, 예를 들어, 반도체 소자의 단자 간의 피치간격이 0.3 mm이면 검사회로기판의 단자 간의 피치 간격도 0.3 mm로 제작된 상태에서 테스트가 진행되어야 한다. 검사회로기판의 별도 제작을 해결하게 위해, 종래에는 다음과 같은 구조를 가진 반도체 테스트 소켓이 사용되고 있다.
도 1에는 종래에 반도체소자의 단자 간의 피치 간격이 0.3 mm 간격일 때, 반도체소자의 양호 불량 여부를 테스트하기 위한 반도체 테스트 장치(1)가 개시되어 있다.
도 1을 참조하여 설명하면, 종래의 반도체 테스트 장치(1)는 지지 플레이트(30) 및 PCR 소켓 타입의 반도체 테스트 소켓(10)을 포함한다.
지지 플레이트(30)는 반도체 테스트 소켓(10)이 반도체 소자(3) 및 검사회로기판(7) 사이에서 움직일 때 반도체 테스트 소켓(10)을 지지한다. 여기서, 지지 플레이트(30)의 중앙에는 진퇴 가이드용 메인 관통홀(미도시)이 형성되어 있고, 메인 관통홀을 형성하는 가장자리를 따라 가장자리로부터 이격되는 위치에 결합용 관통홀이 상호 이격되게 형성된다. 그리고, 반도체 테스트 소켓(10)은 지지 플레이트(30)의 상면 및 하면에 접합되는 주변 지지부(50)에 의해 지지 플레이트(30)에 고정된다.
PCR 소켓 타입의 반도체 테스트 소켓(3)은 절연성의 실리콘 본체에 타공 패턴이 형성되고, 해당 타공 패턴 내에 충진되는 도전성 분말(11)에 의해 상하 방향으로 도전 패턴들이 형성된다.
반도체 테스트 소켓(10)의 도전성 패턴은 더미보드(6)에 마련된 더미패턴(6a)과 접촉되어, 검사회로기판(7)과 전기적으로 연결한다. 여기서, 더미패턴(6a)은 반도체 테스트 소켓(10)의 도전성 패턴과 검사회로기판의 단자를 전기적으로 연결한다.
종래의 반도체 테스트 장치가 이와 같은 더미보드(6)에 검사회로기판(7)이 연결되는 구조를 채택하는 것은, 반도체소자의 단자 간의 피치 간격이 좁아짐에 따라 검사회로기판의 단자 간의 피치 간격을 반도체소자의 피치 간격으로, 검사회로기판을 제작하는데 비용이 추가적으로 발생하고, 단자 간의 피치 간격이 좁아질수록 검사회로기판의 제작비용도 증가되기 때문이다.
이와 더불어, PCR 소켓은 미세 피치의 구현이 가능하다는 장점이 있으나, 타공 패턴에 충진된 도전성 분말(11)이 반도체 소자(3)와 검사회로기판(7) 사이에서의 접촉시 발생하는 압력에 의해 도전성이 형성되는 방식이라는 점에서, 상하 방향으로의 두께 형성에 제한을 받는 단점이 있다.
즉, 상하 방향으로의 압력에 의해 도전성 분말(11)이 상호 접촉되어 도전성이 형성되는데, 두께가 증가하는 경우 도전성 분말(11)의 내부로 전달되는 압력이 약해져 도전성이 형성되지 않은 경우가 있다. 따라서, PCR 소켓은 높이 방향으로의 두께의 제약을 받는 단점이 있다.
한국공개특허 제10-2009-0030190호에는 반도체 칩 검사용 소켓이 개시되어 있다.
본 발명은 반도체소자의 단자와 접촉되는 부분을 미세 패턴화하고 검사회로기판의 단자와 접촉되는 부분의 피치 간격을 넓혀 반도체소자의 단자 간의 피치 간격이 좁아짐에 따라 별도의 더미보드와 검사회로기판을 제작하지 않고도 반도체소자의 테스트를 수행할 수 있는 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 반도체소자의 단자와 검사회로기판의 단자에 접촉되게 복수의 단자핀을 금속플레이트에 에칭 또는 스탬핑방식으로 제작하여, 검사회로기판의 단자와 접촉되는 부분의 피치 간격을 넓혀 반도체소자의 단자 간의 피치 간격이 좁아짐에 따라 별도의 더미보드와 검사회로기판을 제작하지 않고도 반도체소자의 테스트를 수행할 수 있는 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈은 일면이 반도체소자를 향하고 다른 일면이 검사회로기판을 향하도록 절곡된 구조를 가진 기판부; 기판부의 일면에서 상호 간에 제 1 피치간격으로 일렬로 이격되어 반도체소자의 단자에 각각 전기적으로 연결되는 복수의 제 1 도전성패턴과, 기판부의 다른 일면에서 상호 간에 제 1 피치간격보다 큰 제 2 피치간격으로 일렬로 이격되어 검사회로기판의 단자에 각각 전기적으로 연결되는 복수의 제 2 도전성패턴이 마련된 복수의 단자핀; 및 기판부를 탄성지지토록 기판부에 연결된 탄성지지부를 포함하고, 복수의 단자핀은 기판부의 일면에서 복수의 제 1 도전성패턴이 제 1 피치간격만큼 이격되어 일렬로 배열되고, 기판부의 다른 일면에서 복수의 제 2 도전성패턴이 제 2 피치간격만큼 어긋나게 배치되어 지그재그형태로 배열되도록 기판부에 마련되어, 복수의 제 1 도전성패턴이 반도체소자의 단자에 대해 제 1 피치간격으로 접촉되고, 복수의 제 2 도전성패턴이 검사회로기판의 단자에 대해 제 2 피치간격으로 접촉되어, 반도체소자의 단자와 검사회로기판의 단자를 전기적으로 연결하는 것이 바람직하다.
본 발명의 일 실시예에서, 기판부는 유연하게 휘어지는 구조를 가진 절연시트가 도금처리되어 형성되고, 기판부에 패터닝처리된 제 1 도전성패턴과 제 2 도전성패턴은 도금처리 또는 도전성 라인에 의해 각각 전기적으로 연결되는 것이 바람직하다.
본 발명의 일 실시예에서, 복수의 단자핀은 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프; 및 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프를 더 포함하고, 제 1 범프와 제 2 범프는 도전성 분말에 의해 형성된 것이 바람직하다.
본 발명의 일 실시예에서, 복수의 단자핀은 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프; 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프; 및 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴에 도금되어, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴을 전기적으로 연결하는 도금층을 포함하고, 제 1 범프와 제 2 범프는 비도전성 분말에 의해 형성된 것이 바람직하다.
한편, 반도체 디바이스 테스트용 양방향 도전성 소켓은 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈; 및 반도체소자의 단자방향에 따라, 단위모듈화된 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈이 반도체소자의 단자와 접촉되도록, 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈의 설치위치를 고정하는 하우징을 포함하고, 하우징은 반도체 디바이스 테스트용 양방향 도전성 모듈의 다른 일면에 마련되어 검사회로기판의 단자와 전기적으로 접촉되는 복수의 제 2 도전성패턴을 가압토록 검사회로기판에 결합되고, 반도체 디바이스 테스트용 양방향 도전성 모듈은 반도체소자와 검사회로기판에 전기적으로 연결되어, 반도체소자의 양호 불량 여부를 테스트하는 것이 바람직하다.
다른 한편, 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법은, (A) 기판부의 일면에 반도체소자의 단자와 접촉되는 복수의 제 1 도전성패턴이 반도체소자의 단자의 피치간격인 제 1 피치간격만큼 이격되어 패터닝되는 단계; (B) 기판부의 다른 일면에서, 검사회로기판의 단자와 접촉되는 복수의 제 2 도전성패턴이 검사회로기판의 단자의 피치간격인 제 2 피치간격만큼 상호 간에 어긋나게 이격되어, 복수의 제 1 도전성패턴의 배열방향에 대해 지그재그형태로 배열되도록 패터닝되는 단계; (C) 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 도금처리 또는 도전성라인에 의해 전기적으로 연결되는 단계; (D) 기판부가 성형금형에 접촉되어 성형금형의 형상대로 유선형으로 휘어지면서, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 서로 다른 방향을 향하도록 절곡되는 단계; 및 (E) 기판부가 성형금형몰드에 연결되고, 실리콘이 성형금형몰드로 주입된 후 경화되어 형성되어, 기판부를 탄성지지하는 탄성지지부가 마련되는 단계를 포함하고, 기판부가 반도체소자와 검사회로기판 사이에 위치되면, 복수의 제 1 도전성패턴은 반도체소자의 단자와 전기적으로 연결되고, 복수의 제 2 도전성패턴은 검사회로기판의 단자에 전기적으로 연결되어, 반도체소자와 검사회로기판을 전기적으로 연결하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, (A) 단계 전에, 기판부의 일면을 이루는 제 1 절연시트와 기판부의 다른 일면을 이루는 제 2 절연시트가 마련되고, 제 1 절연시트와 제 2 절연시트가 도금 처리되는 단계를 더 포함하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, (A) 단계에서, 제 1 절연시트의 타측에는, 제 1 절연시트의 일측에 패터닝된 복수의 제 1 도전성패턴 중 어느 하나의 제 1 도전성패턴과 전기적으로 연결되는 제 1 연결패턴이 패터닝되고, 제 1 연결패턴은 제 1 절연시트와 제 2 절연시트와의 접촉시 복수의 제 2 도전성패턴 중 어느 하나와 전기적으로 연결되는 것이 바람직하다.
본 발명의 일 실시예에 있어서, (B) 단계에서, 제 2 절연시트의 일측에는, 제 2 절연시트의 타측에 패터닝된 복수의 제 2 도전성패턴 중 적어도 두 개의 제 2 도전성패턴에 각각 전기적으로 접촉되는 적어도 두 개의 제 2 연결패턴이 패터닝되고, 적어도 두 개의 제 2 연결패턴은, 제 1 절연시트와 제 2 절연시트와의 접촉시 복수의 제 1 도전성패턴 중 적어도 두 개와 전기적으로 연결되는 것이 바람직하다.
본 발명의 일 실시예에 있어서, (B) 단계후, 도전성분말이 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 부착되어 제 1 범프를 형성하고, 복수의 제 2 도전성패턴의 오돌토돌하게 부착되어 제 2 범프를 형성하는 단계를 더 포함하는 것이 바람직하다.
본 발명의 일 실시예에 있어서, (B) 단계후, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 니켈도금되는 단계; 및 니켈도금된 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 금도금되는 단계를 더 포함하고, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴은 니켈도금 및 금도금에 의해 전기적으로 연결되는 것이 바람직하다.
본 발명의 일 실시예에 있어서, E 단계 후, 복수의 제 1 도전성패턴 사이, 그리고, 복수의 제 2 도전성패턴 사이가 레이저 컷팅되는 단계를 더 포함하는 것이 바람직하다.
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈은 제 1 피치간격을 가지는 반도체소자의 단자와, 제 1 피치간격보다 큰 제 2 피치간격을 가진 검사회로기판의 단자를 전기적으로 연결하는 복수의 단자핀이 구비된 단자핀부; 및 복수의 단자핀을 탄성지지하는 탄성지지부를 포함하고, 복수의 단자핀은, 복수의 단자핀의 일단이 탄성지지부의 상부로 돌출되어 상호 간에 제 1 피치간격으로 이격되고, 복수의 단자핀의 타단이 단자핀의 일단에 대해 탄성지지부의 바깥방향으로 멀어진 위치에서 상호 간에 제 2 피치간격으로 이격되게 탄성지지부의 하부로 돌출되게 절곡된 것이 바람직하다.
본 발명의 다른 실시예에 있어서, 복수의 단자핀은 적어도 두 개의 변곡점을 갖도록 다중절곡된 구조를 가지는 것이 바람직하다.
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓은, 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈; 및 반도체소자의 단자방향에 따라, 단위모듈화된 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈이 반도체소자의 단자와 접촉되도록, 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈의 설치위치를 고정하는 하우징을 포함하고, 하우징은 반도체 디바이스 테스트용 양방향 도전성 모듈의 다른 일면에 마련되어 검사회로기판의 단자와 전기적으로 접촉되는 복수의 단자핀의 타단을 가압토록 검사회로기판에 결합되고, 반도체 디바이스 테스트용 양방향 도전성 모듈은 반도체소자와 검사회로기판에 전기적으로 연결되어, 반도체소자의 양호 불량 여부를 테스트하는 것이 바람직하다.
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법은, (A) 금속플레이트에, 일단이 금속플레이트의 상부를 향하고, 타단이 일단에 대해 금속플레이트의 바깥방향으로 멀어진 위치에서 금속플레이트의 하부를 향하도록 절곡되게 복수의 단자핀패턴이 패터닝되는 단계; (B) 복수의 단자핀패턴을 제외한 나머지부분이 금속플레이트에서 제거되어, 금속플레이트로부터 복수의 단자핀이 형성되는 단계; 및 (C) 복수의 단자핀이 성형금형몰드에 연결되고, 실리콘이 성형금형몰드로 주입된 후 경화되어 형성되어, 복수의 단자핀을 탄성지지하는 탄성지지부가 마련되는 단계를 포함하고, (A)단계에서, 복수의 단자핀패턴은 복수의 단자핀패턴의 일단이 상호 간에 반도체소자의 단자 간의 간격인 제 1 피치간격만큼 이격되고, 복수의 단자핀패턴의 타단이 상호 간에 제 1 피치간격보다 큰 제 2 피치간격만큼 이격되게 일렬로 배열되게 패터닝되고, 제 2 피치간격은 검사회로기판의 단자 간의 간격인 것이 바람직하다.
본 발명의 다른 실시예에에 있어서, 상기 (B) 단계에서, 상기 복수의 단자핀은, 상기 금속플레이트의 에칭 처리에 의해, 상기 복수의 단자핀패턴을 제외한 나머지부분이 상기 금속플레이트에서 제거됨에 따라 형성된 것이 바람직하다.
본 발명의 다른 실시예에에 있어서, 상기 (B) 단계에서, 상기 복수의 단자핀은, 상기 금속플레이트의 스탬핑 처리에 의해, 상기 복수의 단자핀패턴을 제외한 나머지부분이 상기 금속플레이트에서 제거됨에 따라 형성된 것이 바람직하다.
본 발명은 반도체소자의 단자와 접촉되는 부분을 미세 패턴화하고 검사회로기판의 단자와 접촉되는 부분은 피치 간격을 넓혀 반도체소자의 단자 간의 피치간격이 좁아짐에 따른 검사회로기판의 단자 간의 피치 간격에는 영향을 주지 않고도 반도체소자의 테스트를 수행할 수 있다.
본 발명은 반도체소자의 단자와 검사회로기판의 단자에 접촉되게 복수의 단자핀을 금속플레이트에 에칭 또는 스탬핑방식으로 제작하여, 검사회로기판의 단자와 접촉되는 부분의 피치 간격을 넓혀 반도체소자의 단자 간의 피치 간격이 좁아짐에 따라 별도의 더미보드와 검사회로기판을 제작하지 않고도 반도체소자의 테스트를 수행할 수 있다.
본 발명은 포고-핀 타입의 반도체 테스트 소켓이 갖는 단점과, PCR 소켓 타입의 반도체 테스트 소켓이 갖는 단점을 보완하여, 미세 패턴의 구현이 가능하면서도 반도체소자의 테스트에 사용되는 반도체 디바이스 테스트용 양방향 도전성 소켓을 용이하게 조립할 수 있다.
또한, 본 발명은 FPCB에 도전성패턴을 패터닝하는 방식을 이용하여, 반도체소자의 복수의 단자에 접촉되는 부분과 검사회로기판의 복수의 단자에 접촉되는 부분을 미세한 크기로 하나의 모듈에 구현할 수 있어, 기술의 발전으로 인해 기존에 반도체소자를 테스트하기 위해 사용되는 포고핀 타입 또는 PCR소켓 타입에서는 테스트하기 어려운 초소형의 반도체소자를 테스트할 수 있는 반도체 디바이스 테스트용 양방향 도전성 소켓을 용이하게 제작할 수 있다.
아울러, 본 발명은, 반도체소자에 마련된 복수의 단자와 검사회로기판의 복수의 단자를 일일이 전기적으로 연결하는 것이 아니라, 플렉시블한 구조를 가진 FPCB에 복수의 도전성패턴을 패터닝하여 단위모듈구조를 가진 반도체 디바이스 테스트용 양방향 도전성 모듈을 제조하고, 단위 모듈화된 반도체 디바이스 테스트용 양방향 도전성 모듈을 하우징에 조립하는 방식으로 반도체 디바이스 테스트용 양방향 도전성 소켓을 조립할 수 있다.
이로 인해, 본 발명은 반도체 디바이스 테스트용 양방향 도전성 소켓의 조립공정의 단순화를 통해 조립효율을 증대시키는 동시에, 조립시 소요되는 작업시간을 단축할 수 있고, 이와 더불어, 작업자의 작업능률을 증대시킬 수 있다.
도 1은 종래기술에 따른 반도체 테스트 장치에 대한 구성도를 개략적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓이 반도체소자와 검사회로기판 사이에 설치된 설치상태도를 개략적으로 도시한 것이다.
도 3은 도 2의 A부분을 확대한 도면이다.
도 4는 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈의 평면도를 개략적으로 도시한 것이다.
도 5는 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈의 사시도를 개략적으로 도시한 것이다.
도 6(a)는 도 5의 평면도를 개략적으로 도시한 것이고, 도 6(b)는 도 5의 저면도를 개략적으로 도시한 것이다.
도 7은 본 발명의 일 실시예에 따라, 복수의 제 1 도전성패턴과 복수의 제 2 도전성패턴이 마련된 하나의 단자핀의 단면을 개략적으로 도시한 것이다.
도 8(a)는 도 7을 위에서 바라본 평면도이고, 도 8(b)는 도 7을 아래에서 바라본 저면도를 개략적으로 도시한 것이다.
도 9은 두 개의 단자핀의 단면을 개략적으로 도시한 것이다.
도 10은 복수 개의 단자핀이 배열된 상태의 단면을 개략적으로 도시한 것이다.
도 11(a)는 도 10을 위에서 바라본 평면도이고, 도 11(b)는 도 10을 아래에서 바라본 저면도를 개략적으로 도시한 것이다.
도 12a 내지 도 12e는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법의 공정순서를 개략적으로 도시한 것이다.
도 13은 본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓이 반도체소자와 검사회로기판 사이에 설치된 설치상태도를 개략적으로 도시한 것이다.
도 14는 도 13의 B부분을 확대한 도면이다.
도 15는 본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈의 사시도를 개략적으로 도시한 것이다.
도 16은 본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법의 공정순서를 개략적으로 도시한 것이다.
이하에서는 첨부도면을 참조하여, 본 발명의 바람직한 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈, 반도체 디바이스 테스트용 양방향 도전성 소켓 및 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법에 대해 설명하기로 한다.
제 1 실시예
반도체 디바이스 테스트용 양방향 도전성 소켓
도 2 및 도 3을 참조하여, 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓(100)에 대해 설명하면 다음과 같다.
본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자(10)와 검사회로기판(70)을 전기적으로 연결하여, 반도체소자(10)의 양호 불량 여부를 테스트하기 위한 것이다.
도 2에 도시된 바와 같이, 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자(10)와 검사회로기판(70) 사이에 설치된다. 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체 디바이스 테스트용 양방향 도전성 모듈(110)에 의해, 반도체소자(10)와 검사회로기판(70)에 전기적으로 연결된다. 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈(110)과 하우징(190)으로 이루어진다.
시판 중인 반도체소자(10)는 전자제품에 사용되는 목적에 따라 다양한 구조가 사용되고 있다. 예컨대, 반도체소자(10)는 패키지에서 단자가 한방향으로 돌출된 SIP(Single In-line Package) 구조, 패키지에서 단자가 두방향으로 돌출된 SOP(Small Outline Package)구조, 또는 패키지에서 단자가 4방향으로 돌출된 QFP(Quad Flat Package) 구조 등 다양한 종류가 사용되고 있다.
본 실시예에 개시된 반도체소자의 구조는 예시적인 것에 불과하며, 본 발명인 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체 디바이스 테스트용 양방향 도전성 모듈을 이용하여 본 명세서에 개시되지 않는 다양한 종류 및 크기를 가진 반도체소자(10)를 테스트하기 위해 제작될 수 있음은 물론이다.
반도체소자(10)는 단자배치가 다양하게 이루어지는바, 반도체소자의 단자(11)배치구조에 따라 반도체 디바이스 테스트용 양방향 도전성 소켓(100)의 구조도 다양하게 가변될 수 있다. 이를 위해, 본 발명은 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자의 단자(11)배치에 따라, 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈(110)이 하우징(190)에 조립되어 형성된다.
본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체 디바이스 테스트용 양방향 도전성 소켓(100)을 제조하는데 사용되는 단위모듈화된 단자연결부재이다. 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체소자의 단자(11)와 검사회로기판의 단자(71)를 전기적으로 연결하기 위한 것이다.
본 예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체소자의 단자(11) 간의 간격이 예를 들어 0.3 mm 이하로(이하에서는 "제 1 피치간격(P1)"으로 지칭한다), 작은 크기의 반도체소자를 테스트하기 위한 것이다.
이에, 본 예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 반도체소자(10)에 마련된 크기가 매우 작은 복수의 단자 각각에 개별적으로 연결되는 것이 아니라, FPCB기판에 복수의 도전성패턴이 패터닝되어 반도체소자의 단자(11)와 접촉되는 구조로 단위모듈화된다.
단위모듈화된 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 상술한 반도체 디바이스 테스트용 양방향 도전성 소켓(100)에 개시된 구조와 같이, 반도체소자(10)의 일측에 마련된 복수의 단자와 한번의 접촉되는 전기적으로 연결되는 구조를 가질 수 있다.
이러한 구조에 의해, 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 일정틀을 가진 하우징(190)에 끼움 결합되어, 반도체 디바이스 테스트용 양방향 도전성 소켓(100)의 조립공정을 단순화시킬 수 있다.
하우징(190)은 상기 검사회로기판에 결합부재(191)에 의해 결합된다. 결합부재는 하우징(190)을 관통하여 검사회로기판(70)에 결합되어, 검사회로기판(70)에 대한 하우징(190)의 위치를 한정한다.
이로 인해, 하우징(190)은 복수의 제 2 도전성패턴(114a, 114b, 114c)을 가압하게 되어, 복수의 제 2 도전성패턴(114a, 114b, 114c)과 검사회로기판의 단자(71)와의 전기적 접촉을 향상시킬 수 있다.
본 예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓(100)은 반도체소자의 단자(11) 간의 간격이 좁아지는 경우에, 검사회로기판의 단자(71) 간의 피치 간격에는 영향을 주지 않고도 반도체소자의 테스트를 수행할 수 있도록, 검사회로기판의 단자(71)와 접촉되는 부분의 피치간격을 넓히는 구조를 가진다. 이하에서는 반도체 디바이스 테스트용 양방향 도전성 모듈에 대해 설명하기로 한다.
반도체 디바이스 테스트용 양방향 도전성 모듈
이하에서는 도 3 내지 도 11을 참조하여, 반도체 디바이스 테스트용 양방향 도전성 모듈의 구성에 대해 설명하기로 한다.
도 3 내지 도 5에 도시된 바와 같이, 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 기판부(111), 복수의 단자핀(110A, 110B)과 탄성지지부(119)로 이루어진다.
기판부(111)는 반도체소자(10)와 검사회로기판(70)을 전기적으로 연결하는 부분이다. 기판부(111)는 플렉시블한 구조를 가진다. 이에, 기판부(111)는 일면이 반도체소자(10)를 향하고 다른 일면이 검사회로기판(70)을 향하도록 절곡될 수 있다.
기판부(111)는 절연시트의 양면이 도금된 후, 양면에서 각각 패터닝과정이 수행됨에 따라 일면에 복수의 제 1 도전성패턴(113a, 113b, 113c)이 형성되고, 다른 일면에 복수의 제 2 도전성패턴(114a, 114b, 114c)이 형성됨에 따라 만들어진다.
복수의 제 1 도전성패턴(113a, 113b, 113c)은 상호 간에 제 1 피치간격(P1)만큼 이격된다. 복수의 제 2 도전성패턴(114a, 114b, 114c)은 상호 간에 2 피치간격만큼 이격된다.
제 1 피치간격(P1)은 반도체소자의 단자(11)간의 피치간격에 대응되며, 제 2 피치간격(P2)은 제 1 피치간격(P1)보다 큰 간격으로서 검사회로기판의 단자(71)간의 피치간격에 대응된다.
절연시트(111a, 111b)는 전기가 통하지 않고 유연하게 휘어질 수 있는 재질로 이루어진다. 절연시트로는 예를 들어 PI필름이 사용될 수 있다. 절연시트는 재질적 특성으로 인해, 반도체소자(10)의 테스트 과정에서 눌러지는 압력에 따라 휘어질 수 있는 형태가 될 수 있다.
본 실시예에서는 설명의 편의를 위하여, 기판부(111)에 패터닝된 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 동축상에 위치된 것을 하나의 단자핀으로 구분하여 설명하기로 한다. 하나의 기판부(111)에는 도 7 및 도 8에 도시된 바와 같이 하나의 단자핀이 마련될 수 있고, 또는, 도 9 및 도 11에 도시된 바와 같이 복수의 단자핀(110A, 110B)이 마련될 수 있다. 본 실시예에서, 단자핀의 개수는 기판부(111)의 패터닝 과정에서 조절가능하며, 본 실시예에서는 단자핀, 제 1 도전성패턴(113a, 113b, 113c)과 제 2 도전성패턴(114a, 114b, 114c)의 개수에 대해서는 특별히 한정하지 않기로 하며, 기술발전에 따른 반도체소자의 규격에 따라 다양하게 가변가능함은 물론이다.
복수의 단자핀(110A, 110B)은 반도체소자의 단자(11)에 대해 제 1 피치간격(P1)으로 접촉되고, 검사회로기판의 단자(71)에 대해 제 2 피치간격(P2)으로 접촉되어, 반도체소자의 단자(11)와 검사회로기판의 단자(71)를 전기적으로 연결하기 위한 것이다.
상술했듯이, 하나의 단자핀은 동축상에서 일렬로 배열된 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)을 한 세트로 하여 이루어진다.
그리고, 복수의 단자핀(110A, 110B)은 기판부(111)의 일면에서 복수의 제 1 도전성패턴(113a, 113b, 113c)이 제 1 피치간격(P1)만큼 이격되어 일렬로 배열되고, 기판부(111)의 다른 일면에서 복수의 제 2 도전성패턴(114a, 114b, 114c)이 제 2 피치간격(P2)만큼 어긋나게 배치되어 지그재그형태로 배열되도록 기판부(111)에 마련된다.
복수의 제 1 도전성패턴(113a, 113b, 113c)은 반도체소자의 단자(11)와의 접촉시, 검사회로기판(70)으로 인가된 전류를 반도체소자의 단자(11)의 단자로 전류를 인가하는 부분이다.
본 실시예에서, 반도체 디바이스 테스트용 양방향 도전성 모듈은 복수의 제 1 도전성패턴(113a, 113b, 113c)과 반도체소자의 단자(11)와의 접촉효율을 증대시키기 위해, 즉, 복수의 제 1 도전성패턴(113a, 113b, 113c)의 표면을 거칠게 형성하여, 반도체소자의 단자(11)와 복수의 제 1 도전성패턴(113a, 113b, 113c)의 전기적 접촉을 안정적으로 보장하기 위해, 제 1 범프(115)가 복수의 제 1 도전성패턴(113a, 113b, 113c)에 부착된다.
제 1 범프(115)는 복수의 제 1 도전성패턴(113a, 113b, 113c)의 표면에서 오돌토돌하게 부착된다. 제 1 범프(115)는 도전성 분말에 의해 형성될 수 있다. 또는 제 1 범프(115)는 비도전성 분말이 복수의 제 1 도전성패턴(113a, 113b, 113c)의 표면에서 오돌토돌하게 놓인 후, 니켈도금 및/또는 금도금되어, 복수의 제 1 도전성패턴(113a, 113b, 113c)의 표면에 부착될 수 있다. 제 1 범프(115)의 표면에 도금층이 형성된 것은 도 11에서 도시된다.
또한, 제 1 범프(115)는 제 1 도전성패턴(113a, 113b, 113c)과 반도체소자의 단자(11)와의 전기적 접촉을 안정적으로 수행할 수 있는 구조라면, 본 명세서에 개시된 것과 같이 도전성 분말을 사용하는 것 이외에, 제 1 도전성패턴(113a, 113b, 113c)의 표면을 크라운 구조와 같이 뾰족뾰족하게 돌출된 구조로 도금층으로 형성될 수도 있다.
한편, 본 실시예에서, 복수의 제 2 도전성패턴(114a, 114b, 114c)은 검사회로기판의 단자(71)와 접촉되고, 전류인가시 전류가 통하는 부분이다. 복수의 제 2 도전성패턴(114a, 114b, 114c)은 상술한 복수의 제 1 도전성패턴(113a, 113b, 113c)과 동일한 방식으로 절연시트의 다른 일면에 마련된다. 복수의 제 2 도전성패턴(114a, 114b, 114c)은 상호 간에 제 1 피치간격(P1)보다 큰 제 2 피치간격(P2)으로 일렬로 이격되어 기판부(111)의 다른 일면에 마련된다.
복수의 제 2 도전성패턴(114a, 114b, 114c)에는 제 2 범프(116)가 형성된다. 본 실시예에서, 제 2 범프(116)는 제 1 범프(115)와 동일한 구조 및 역할을 수행하는 바, 본 실시예에서는 설명의 반복을 피하기 위해 이에 대한 설명은 생략하기로 한다.
도 6(b)에 도시된 바와 같이, 복수의 제 2 도전성패턴(114a, 114b, 114c)은 하나의 단자핀에서 제 2 피치간격(P2)으로 일렬로 배열된다. 그리고, 복수의 제 2 도전성패턴(114a, 114b, 114c)은 복수의 단자핀(110A, 110B)이 일렬로 나열된 상태에서, 인접하게 위치된 제 2 도전성패턴(114a, 114b, 114c)간에 제 2 피치간격(P2)만큼 어긋나게 배치되어 지그재그형태로 배열된다.
이와 같은 복수의 제 2 도전성패턴(114a, 114b, 114c) 간의 피치간격을 늘린 반도체 디바이스 테스트용 양방향 도전성 모듈의 구조에 의해, 반도체소자의 단자(11)간의 피치간격이 좁아지는 경우에도, 반도체소자를 테스트하기 위해, 반도체소자의 단자(11)의 피치간격과 동일한 피치간격을 가진 별도의 검사회로기판을 제작하지 않아도 되어 비용면에서 경제적이다.
본 실시예에서, 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 서로 다른 면에 형성된 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 상호 간에 전기적으로 연결된 구조를 가진다.
이러한 구조를 형성하기 위해, 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 절연시트의 도금 후 패터닝 공정에서, 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 연결되는 부분에서 도금이 제거되지 않도록 패터닝처리되어, 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 상호 간에 전기적으로 연결된 구조를 가질 수 있다.
다른 예로, 반도체 디바이스 테스트용 양방향 도전성 모듈은 제 1 도전성패턴(113a, 113b, 113c)과 제 2 도전성패턴(114a, 114b, 114c)을 연통하는 비아홀(via hole, 118a, 118b)을 각각 형성한 후에, 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 비아홀 메움 도금 공정을 통해 상호 간에 도금 연결되어, 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 상호 간에 전기적으로 연결된 구조를 가질 수 있다.
또 다른 예로, 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)은 도전성 라인에 의해 전기적으로 연결될 수 있다. 본 발명에서는 도전성 라인으로 도전성 와이어가 사용되는 것을 예로 한다.
상기와 같은 구조를 통해, 본 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 제 1 도전성패턴(113a, 113b, 113c)과 제 2 도전성패턴(114a, 114b, 114c)이 서로 다른 면에 마련되었더라도, 제 1 도전성패턴(113a, 113b, 113c)과 제 2 도전성패턴(114a, 114b, 114c)이 도금연결 또는 도전성 라인에 의해 전기적으로 연결되어, 전류인가시 통전되어, 검사회로기판의 단자(71)에서 인가된 전류를 반도체소자의 단자(11)로 제공할 수 있다.
본 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(110)은 탄성지지부(119)를 이용하여, 상술한 바와 같이 휘어지기 쉬운 구조를 가진 기판부(111)를 탄성지지할 수 있다.
탄성지지부(119)는 가압시 어느 정도의 탄성이 있고, 전류가 통하지 않는 재질로 이루어진다. 본 발명에서, 탄성지지부(119)가 실리콘 재질로 마련되는 것을 예로 한다. 탄성지지부(119)는 반도체 디바이스 테스트용 양방향 도전성 모듈(110)이 반도체 디바이스 테스트용 양방향 도전성 소켓(100)에 적용되어 실제 반도체소자(10)의 테스트에 사용될 때, 반도체소자(10)의 접촉을 탄성적으로 지지하게 된다. 탄성지지부(119)는 제 1 범프(115)와 제 2 범프(116)가 탄성지지부(119)에 영향을 받지 않도록, 기판부(111)에 결합된 것이 바람직하다.
예컨대, 탄성지지부(119)는 복수의 제 1 도전성패턴(113a, 113b, 113c)을 제외한 기판부(111)의 일면을 둘러싸고, 복수의 제 2 도전성패턴(114a, 114b, 114c)을 제외한 기판부(111)의 다른 일면을 둘러싸는 블럭구조로 기판부(111)에 결합될 수 있다. 또는, 탄성지부(119)는 기판부(111)와의 접촉면이 판판한 구조를 가진 블럭 구조를 가질 수도 있고, 블럭형 구조를 가질 수 있다.
반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법
이하에서는 도 7 내지 도 12e를 참조하여, 본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법을 설명하기로 한다.
본 발명의 일 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법은, (A) 기판부(111)의 일면에 반도체소자의 단자(11)와 접촉되는 복수의 제 1 도전성패턴(113a, 113b, 113c)이 반도체소자의 단자(11)의 피치간격인 제 1 피치간격(P1)만큼 이격되어 패터닝되는 단계; (B) 기판부(111)의 다른 일면에서, 검사회로기판의 단자(71)와 접촉되는 복수의 제 2 도전성패턴(114a, 114b, 114c)이 검사회로기판의 단자(71)의 피치간격인 제 2 피치간격(P2)만큼 상호 간에 어긋나게 이격되어, 복수의 제 1 도전성패턴(113a, 113b, 113c)의 배열방향에 대해 지그재그형태로 배열되도록 패터닝되는 단계; (C) 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 도금처리 또는 도전성라인에 의해 전기적으로 연결되는 단계; (D) 기판부(111)가 성형금형에 접촉되어 성형금형의 형상대로 유선형으로 휘어지면서, 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 서로 다른 방향을 향하도록 절곡되는 단계; 및 (E) 기판부(111)가 성형금형몰드에 연결되고, 실리콘이 성형금형몰드로 주입된 후 경화되어 형성되어, 기판부(111)를 탄성지지하는 탄성지지부(119)가 마련되는 단계를 포함한다.
우선, 제 1 절연시트(111a)와 제 2 절연시트(111b)가 준비된다. 여기서, 제 1 절연시트(111a)는 기판부(111)의 일면을 이루고, 제 2 절연시트(111b)는 기판부(111)의 다른 일면을 이룬다. 제 1 절연시트(111a)와 제 2 절연시트(111b)가 도금 처리된다. 이때, 도금처리는 구리에 의해 행해질수 있다. 제 1 절연시트(111a)와 제 2 절연시트(111b)는 전류가 통하지 않는 재질인 PI 필름이 사용될 수 있다.
이후, 도 12a에 도시된 바와 같이, 제 1 절연시트(111a)에 반도체소자의 단자(11)와 접촉되는 복수의 제 1 도전성패턴(113a, 113b, 113c)이 반도체소자의 단자(11)의 피치간격인 제 1 피치간격(P1)만큼 이격되어 패터닝된다(A단계). 본 실시예에서는 설명의 편의를 위하여, 복수의 제 1 도전성패턴(113a, 113b, 113c)에 대해 "제 1a 도전성패턴(113a), 제 1b 도전성패턴(113b), 제 1c 도전성패턴(113c)"으로 구분지어 설명하기로 한다.
그리고, (A) 단계에서, 제 1 절연시트(111a)의 타측에는, 제 1 절연시트(111a)의 일측에 패터닝된 복수의 제 1 도전성패턴(113a, 113b, 113c) 중 어느 하나인 제 1c 도전성패턴(113c)과 전기적으로 연결되는 제 1 연결패턴(113d)이 패터닝된다. 제 1 연결패턴(113d)은 제 1 절연시트(111a)와 제 2 절연시트(111b)와의 접촉시 복수의 제 2 도전성패턴(114a, 114b, 114c) 중 어느 하나와 전기적으로 연결되는 것이 바람직하다. 본 예에서는, 제 1 절연시트(111a)에 복수의 제 1 도전성패턴(113a, 113b, 113c)과 제 1 연결패턴(113d)이 패터닝된 것을 "제 1 레이어(113A, 113B, 113C, 113D, 113E, 113F)"라 지칭한다.
다음으로, 도 12b에 도시된 바와 같이, 제 2 절연시트(111b)에서, 검사회로기판의 단자(71)와 접촉되는 복수의 제 2 도전성패턴(114a, 114b, 114c)이 검사회로기판의 단자(71)의 피치간격인 제 2 피치간격(P2)만큼 상호 간에 어긋나게 이격되어, 복수의 제 1 도전성패턴(113a, 113b, 113c)의 배열방향에 대해 지그재그형태로 배열되도록 패터닝된다(B 단계).
이로 인해, 제 2 절연시트(111b)의 타측에는 복수의 제 2 도전성패턴(114a, 114b, 114c)이 패터닝된다. 본 실시예에서는 설명의 편의를 위하여, 복수의 제 2 도전성패턴(114a, 114b, 114c)에 대해 "제 2a 도전성패턴(114a), 제 2b 도전성패턴(114b), 제 2c 도전성패턴(114c)"으로 구분지어 설명하기로 한다.
여기서, 제 2a 도전성패턴(114a)은 제 1a 도전성패턴(113a)과 전기적으로 연결되고, 제 2b 도전성패턴(114b)은 제 1b 도전성패턴(113b)과 전기적으로 연결되고, 제 2c 도전성패턴(114c)은 제 1c 도전성패턴(113c)과 전기적으로 연결되는데, 이들의 전기적 연결구조에 대해서는 후술하기로 한다.
제 2 절연시트(111b)의 일측에는, 제 2 절연시트(111b)의 타측에 패터닝된 복수의 제 2 도전성패턴(114a, 114b, 114c) 중 적어도 두 개의 제 2a 도전성패턴(114a)과 제 2b 도전성패턴(114b)에 각각 전기적으로 접촉되는 적어도 두 개의 제 2 연결패턴이 패터닝된다.
본 예에서는 설명의 편의를 위하여, 제 2a 도전성패턴(114a)과 연결되는 제 2 연결패턴에 대해 '제 2a 연결패턴(114d)'이라 지칭하고, 제 2b 도전성패턴(114b)과 연결되는 제 2 연결패턴에 대해 '제 2b 연결패턴(114e)'이라 지칭하기로 한다. 그리고, 제 2 절연시트(111B)에 복수의 제 2 도전성패턴(114a, 114b, 114c), 제 2a 연결패턴(114d)과 제 2b 연결패턴(114e)이 패터닝된 것을 "제 2 레이어(114A, 114B, 114C, 114D, 114E, 114F)"라 지칭한다. 제 2 레이어에서, 제 2a 도전성패턴은 검사회로기판을 향하는 면에만 마련되며, 제 2b 도전성패턴(114e)은 제 1 레이어를 향하는 방향에만 마련된다.
도 7에 도시된 바와 같이, 하나의 단자핀(110A)은 하나의 제 1 레이어(113A)와 제 2 레이어(114A)가 접착되어 형성된다. 그리고, 도 9 및 도 10에 도시된 바와 같이, 복수의 단자핀(110A, 110B, 110C, 110D)은 각각 대응되는 복수의 제 1 레이어(113A, 113B, 113C, 113D)와 제 2 레이어(114A, 114B, 114C, 114D)의 간의 접착에 의해 이루어진다.
도 7 및 도 9에 도시된 바와 같이, 제 1 절연시트(111a)와 제 2 절연시트(111b)와의 접촉시, 제 2a 연결패턴(114d)은 제 1a 도전성패턴(113a)과 맞닿아, 제 1a 도전성패턴(113a)과 제 2a 도전성패턴(114a)을 전기적으로 연결한다.
그리고, 제 2b 연결패턴(114e)은 제 2b 도전성패턴(114b)과 도금처리 또는 도전성라인에 의해 전기적으로 연결되고, 제 1b 도전성패턴(113b)과 맞닿아 제 1b 도전성패턴(113b)과 제 2b 도전성패턴(114b)을 전기적으로 연결한다. 그리고, 제 2c 도전성패턴(114c)은 제 1 연결패턴(113d)과 맞닿아 제 1c 도전성패턴(113c)과 전기적으로 연결된다.
이때, 제 1 연결패턴(113d)과 제 2c 도전성패턴(114c)의 전기적 연결은, 제 1 연결패턴(113d)과 제 2c 도전성패턴(114c)에 비아홀(via hole)을 형성하고 비아홀 메움 도금 공정을 통해 상호 간에 도금 연결되거나, 도전성 라인에 의해 제 1 연결패턴(113d)과 제 2c 도전성패턴(114c)이 연결됨에 따라 이루어진다(C 단계). 아울러, 제 2a 연결패턴(114d)과 제 1c 도전성패턴(113c)과의 전기적 연결도 제 1 연결패턴(113d)과 제 2c 도정성패턴과 동일한 방식으로 수행된다.
제 1c 도전성패턴(113c)과 제 1 연결패턴(113d)의 전기적 연결(111a3), 제 1b 도전성패턴(113b)과 제 1c 도전성패턴(113c)의 전기적 연결(111a2), 제 1a 도전성패턴(113a)과 제 1b 도전성패턴(113b)의 전기적 연결(111a1), 제 2b 도전성패턴(114b)과 제 2b 연결패턴(114e)의 전기적 연결(111b1), 그리고, 제 2a 도전성패턴(114a)과 제 2a 도전성패턴(114a)의 전기적 연결(111b2)은 니켈도금 및 금도금 처리에 의해 이루어진다.
즉, 구리도금층에 패터닝되어 형성된 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 니켈도금된다. 이후, 니켈도금된 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 금도금된다. 이는 복수의 제 1 도전성패턴(113a, 113b, 113c)와 복수의 제 2 도전성패턴(114a, 114b, 114c)의 전기전도도를 향상시키기 위함이다.
이후, (B) 단계 또는 (C) 단계 후, 도전성분말이 복수의 제 1 도전성패턴(113a, 113b, 113c)의 표면에 오돌토돌하게 부착됨으로써 제 1 범프(115)가 형성된다. 그리고, 도전성분말이 복수의 제 2 도전성패턴(114a, 114b, 114c)의 표면에 오돌토돌하게 부착됨으로써 제 2 범프(116)가 형성된다.
제 1 범프(115)는 제 1 도전성패턴(113a, 113b, 113c)과 반도체소자의 단자(11)와의 전기적 접촉을 안정적으로 수행할 수 있는 구조라면, 본 명세서에 개시된 것과 같이 도전성 분말을 사용하는 것 이외에, 제 1 도전성패턴(113a, 113b, 113c)의 표면을 크라운 구조와 같이 뾰족뾰족하게 돌출된 구조로 도금층으로 형성될 수도 있다.
아울러, 제 2 범프(116)는 제 2 도전성패턴(114a, 114b, 114c)과 검사회로기판의 단자(71)와의 전기적 접촉을 안정적으로 수행할 수 있는 구조라면, 도전성 분말을 사용하는 것 이외에 특정형상의 도금층이 적용될 수 있다.
한편, 상기와 같은 방식에 의해, 기판부(111)에 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 각각 상호 간에 전기적으로 연결된 구조를 가진 후에, 기판부(111)가 성형금형에 접촉되어 성형금형의 형상대로 유선형으로 휘어지면서, 복수의 제 1 도전성패턴(113a, 113b, 113c)과 복수의 제 2 도전성패턴(114a, 114b, 114c)이 서로 다른 방향을 향하도록 절곡된다((D) 단계).
다음으로, 기판부(111)가 성형금형몰드(50)에 연결된다. 이후, 실리콘이 성형금형몰드(50)로 주입된다. 성형금형몰드(50)로 주입된 실리콘이 경화되면서, 탄성지지부(119)가 형성된다((E) 단계).
그리고, E 단계 후, 복수의 제 1 도전성패턴(113a, 113b, 113c) 사이, 그리고, 복수의 제 2 도전성패턴(114a, 114b, 114c) 사이가 레이저 컷팅된다. 이는, 복수의 제 1 도전성패턴(113a, 113b, 113c) 간의 전기적 연결, 그리고, 복수의 제 2 도전성패턴(114a, 114b, 114c) 간의 전기적 연결을 차단하기 위함이다.
상기와 같은 방식으로 제작된 반도체 디바이스 테스트용 양방향 도전성 모듈은 하우징에 고정된 소켓형태로, 반도체소자와 검사회로기판 사이에 위치될 때, 복수의 제 1 도전성패턴(113a, 113b, 113c)은 반도체소자의 단자(11)와 전기적으로 연결되고, 복수의 제 2 도전성패턴(114a, 114b, 114c)은 검사회로기판의 단자(71)에 전기적으로 연결되어, 반도체소자와 검사회로기판을 전기적으로 연결할 수 있다.
상기와 같은 방식으로 제작된 반도체 디바이스 테스트용 양방향 도전성 모듈은 기존에 사용하던 검사회로기판의 단자(71)의 피치간격으로 복수의 제 2 도전성패턴(114a, 114b, 114c)의 피치간격을 조정함으로써, 반도체소자의 단자(11)간의 피치간격이 좁아짐에 따라, 반소체소자의 단자간의 피치간격에 대응되는 별도의 검사회로기판을 제작할 필요가 없다.
이와 더불어, 상기와 같은 방식으로 제작된 반도체 디바이스 테스트용 양방향 도전성 모듈은 반도체소자의 일면에 마련된 복수의 단자(11)와 접촉가능한 도전성패턴을 미세하게 집적화하여 패터닝함으로써 기존의 포고핀의 불량으로 인한 반도체소자의 단자(11)와 검사회로기판의 단자(71) 간의 전기적 단락을 방지할 수 있다.
아울러, 본 발명은 FPCB에 도전성패턴을 패터닝하는 방식을 이용하여, 반도체소자(10)의 복수의 단자에 접촉되는 부분과 검사회로기판(70)의 복수의 단자(71)에 접촉되는 부분을 미세한 크기로 하나의 모듈에 구현할 수 있어, 기술의 발전으로 인해 기존에 반도체소자(10)를 테스트하기 위해 사용되는 포고핀 타입 또는 PCR소켓 타입에서는 테스트하기 어려운 초소형의 반도체소자(10)를 테스트할 수 있는 반도체 디바이스 테스트용 양방향 도전성 소켓(100)을 용이하게 제작할 수 있다.
제 2 실시예
반도체 디바이스 테스트용 양방향 도전성 소켓
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓(200)에 대해 설명하면 다음과 같다.
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓(200)은 반도체소자(10)와 검사회로기판(70)을 전기적으로 연결하여, 반도체소자(10)의 양호 불량 여부를 테스트하기 위한 것이다.
도 13에 도시된 바와 같이, 반도체 디바이스 테스트용 양방향 도전성 소켓(200)은 반도체소자(10)와 검사회로기판(70) 사이에 설치된다. 반도체 디바이스 테스트용 양방향 도전성 소켓(200)은 반도체 디바이스 테스트용 양방향 도전성 모듈(210)에 의해, 반도체소자(10)와 검사회로기판(70)에 전기적으로 연결된다. 반도체 디바이스 테스트용 양방향 도전성 소켓(200)은 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈(210)과 하우징(290)으로 이루어진다.
반도체소자(10)는 단자배치가 다양하게 이루어지는바, 반도체소자의 단자(11)배치구조에 따라 반도체 디바이스 테스트용 양방향 도전성 소켓(200)의 구조도 다양하게 가변될 수 있다.
이를 위해, 본 발명은 반도체 디바이스 테스트용 양방향 도전성 소켓(200)은 반도체소자의 단자(11)배치에 따라, 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈(210)이 하우징(290)에 조립되어 형성된다.
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 반도체 디바이스 테스트용 양방향 도전성 소켓(200)을 제조하는데 사용되는 단위모듈화된 단자연결부재이다. 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 반도체소자의 단자(11)와 검사회로기판의 단자(71)를 전기적으로 연결하기 위한 것이다.
본 예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 반도체소자의 단자(11) 간의 간격이 예를 들어 0.3 mm 이하로(이하에서는 "제 1 피치간격(P1)"으로 지칭한다), 작은 크기의 반도체소자를 테스트하기 위한 것이다.
이에, 본 예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 반도체소자(10)에 마련된 크기가 매우 작은 복수의 단자 각각에 개별적으로 연결되는 것이 아니라, FPCB기판에 복수의 도전성패턴이 패터닝되어 반도체소자의 단자(11)와 접촉되는 구조로 단위모듈화된다.
도 15에 도시된 단위모듈화된 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 여러 개가 연결되어, 블럭형 구조로, 반도체소자(10)의 단자(11)와 한 번의 접촉되는 전기적으로 연결되는 구조를 가질 수 있다.
이러한 구조에 의해, 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 일정틀을 가진 하우징(290)에 끼움 결합되어, 반도체 디바이스 테스트용 양방향 도전성 소켓(200)의 조립공정을 단순화시킬 수 있다.
하우징(290)은 상기 검사회로기판에 결합부재(191)에 의해 결합된다. 결합부재는 하우징(290)을 관통하여 검사회로기판(70)에 결합되어, 검사회로기판(70)에 대한 하우징(290)의 위치를 한정한다.
이로 인해, 하우징(290)은 복수의 단자핀의 타단을 가압하게 되어, 복수의 단자핀과 검사회로기판의 단자(71)와의 전기적 접촉을 향상시킬 수 있다.
본 예에 따른 반도체 디바이스 테스트용 양방향 도전성 소켓(200)은 반도체소자의 단자(11) 간의 간격이 좁아지는 경우에, 검사회로기판의 단자(71) 간의 피치 간격에는 영향을 주지 않고도 반도체소자의 테스트를 수행할 수 있도록, 검사회로기판의 단자(71)와 접촉되는 부분의 피치간격을 넓히는 구조를 가진다. 이하에서는 반도체 디바이스 테스트용 양방향 도전성 모듈에 대해 설명하기로 한다.
반도체 디바이스 테스트용 양방향 도전성 모듈
이하에서는 도 14 내지 도 15를 참조하여, 반도체 디바이스 테스트용 양방향 도전성 모듈(210)의 구성에 대해 설명하기로 한다.
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 단자핀부(210A, 210B)과 탄성지지부(219)로 이루어진다.
단자핀부(210A, 210B)는 단자핀의 일단(211a, 212a, 213a)이 반도체소자의 단자(11)에 접촉되고, 단자핀의 타단(211b, 212b, 213b)이 검사회로기판의 단자(71)에 접촉되어, 반도체소자와 검사회로기판에 전기적으로 연결되는 것이다.
단자핀부(210A, 210B)는 복수의 단자핀(211, 212, 213)으로 이루어진다. 단자핀부는 복수의 단자핀이 일렬로 배열된 상태를 통칭하는 것으로서, 단자핀부의 개수는 반도체소자의 단자의 개수에 따라 다양하게 가변가능하다.
예를 들어, 도 16(d)에 도시된 바와 같이 하나의 단자핀부(210A)가 탄성지지부(219)에 의해 탄성지지될 수 있으며, 또는, 도 15에 도시된 바와 같이 두개의 단자핀부(210A, 210B)가 탄성지지부(219)의 양측으로 구분되어 배치될 수 있다.
복수의 단자핀(211, 212, 213)은 전류가 잘 통하는 금속재질로 이루어진다. 그리고, 복수의 단자핀(211, 212, 213)은 금속재질에 니켈도금 및 금도금 처리되어, 전도성을 더 향상시킬 수 있다.
복수의 단자핀(211, 212, 213)은, 단자핀의 일단(211a, 212a, 213a)이 탄성지지부(219)의 상부로 돌출되어 상호 간에 제 1 피치간격(P1)으로 이격되고, 단자핀의 타단(21b, 212b, 213b)이 단자핀의 일단(211a, 212a, 213a)에 대해 탄성지지부(219)의 바깥방향으로 멀어진 위치에서 상호 간에 제 2 피치간격(P2)으로 이격되게 탄성지지부(219)의 하부로 돌출되게 절곡된다.
복수의 단자핀(211, 212, 213)은 적어도 두 개의 변곡점을 갖도록 다중절곡된 구조를 가져, 반도체소자(10)의 테스트 과정에서 눌러지는 압력에 따라 휘어진 후, 압력해제시 원상태로 되돌아가는 정도의 탄성을 가진다.
단자핀부(210A, 210B)는 복수의 단자핀(211, 212, 213)이 반도체소자의 단자(11)에 대해 제 1 피치간격(P1)으로 접촉되고, 검사회로기판의 단자(71)에 대해 제 2 피치간격(P2)으로 접촉되어, 반도체소자의 단자(11)와 검사회로기판의 단자(71)에 전기적으로 연결된다.
여기서, 제 1 피치간격(P1)은 반도체소자의 단자(11)간의 피치간격에 대응되며, 제 2 피치간격(P2)은 제 1 피치간격(P1)보다 큰 간격으로서 검사회로기판의 단자(71)간의 피치간격에 대응된다.
본 실시예에서는 복수의 단자핀(211, 212, 213)의 개수에 대해서는 특별히 한정하지 않기로 하며, 기술발전에 따른 반도체소자의 규격에 따라 다양하게 가변가능함은 물론이다.
복수의 단자핀(211, 212, 213)은 타단 간의 피치간격을 늘린 반도체 디바이스 테스트용 양방향 도전성 모듈(210)의 구조에 의해, 반도체소자의 단자(11)간의 피치간격이 좁아지는 경우에도, 반도체소자(10)를 테스트하기 위해, 반도체소자의 단자(11)의 피치간격과 동일한 피치간격을 가진 별도의 검사회로기판(70)을 제작하지 않아도 되어 비용면에서 경제적이다.
탄성지지부(219)는 일렬로 나열된 복수의 단자핀(211, 212, 213)을 탄성지지하는 것이다. 본 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 탄성지지부(219)를 이용하여, 휘어지기 쉽고 일단 간의 제 1 피치간격(P1)과 타단 간의 제 2 피치간격(P2)이 일정하게 유지되도록 단자핀부(210A, 210B)를 탄성지지할 수 있다.
탄성지지부(219)는 복수의 단자핀의 일단(211a, 212a, 213a)과 복수의 단자핀의 타단(211b, 212b, 213b)이 돌출되도록 단자핀부(210A, 210B)를 둘러싼 블럭 구조를 가진다.
탄성지지부(219)는 가압시 어느 정도의 탄성이 있고, 전류가 통하지 않는 재질로 이루어진다. 본 발명에서, 탄성지지부(219)가 실리콘 재질로 마련되는 것을 예로 한다.
탄성지지부(219)는 반도체 디바이스 테스트용 양방향 도전성 모듈(210)이 반도체 디바이스 테스트용 양방향 도전성 소켓(200)에 적용되어 실제 반도체소자(10)의 테스트에 사용될 때, 반도체소자(10)의 접촉을 탄성적으로 지지하게 된다.
탄성지지부(219)는 도 15에 도시된 바와 같이 일렬로 배열된 복수의 단자핀(211, 212, 213)을 탄성지지하는 판형 블럭구조를 가질 수도 있고, 여러 개의 열로 배열된 복수의 단자핀(211, 212, 213)을 탄성지지하는 블럭형 구조를 가질 수 있다.
반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법
본 발명의 다른 실시예에 따른 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법은, (A) 금속플레이트에, 일단이 금속플레이트의 상부를 향하고, 타단이 일단에 대해 금속플레이트의 바깥방향으로 멀어진 위치에서 금속플레이트의 하부를 향하도록 절곡되게 복수의 단자핀패턴(P)이 패터닝되는 단계; (B) 복수의 단자핀패턴(P)을 제외한 나머지부분이 금속플레이트에서 제거되어, 금속플레이트로부터 복수의 단자핀(211, 212, 213)이 형성되는 단계; 및 (C) 복수의 단자핀(211, 212, 213)이 성형금형몰드에 연결되고, 실리콘이 성형금형몰드로 주입된 후 경화되어 형성되어, 복수의 단자핀(211, 212, 213)을 탄성지지하는 탄성지지부(219)가 마련되는 단계를 포함한다.
도 16(a)에 도시된 바와 같이, 하나의 금속플레이트(50)에 복수의 단자핀패턴(P)이 패터닝된다.
복수의 단자핀패턴(P)은 복수의 단자핀패턴(P)의 일단이 상호 간에 반도체소자의 단자 간의 간격인 제 1 피치간격(P1)만큼 이격되고, 복수의 단자핀패턴(P)의 타단이 상호 간에 제 1 피치간격(P1)보다 큰 제 2 피치간격(P2)만큼 이격되게 일렬로 배열되게 패터닝된다.
그리고, 금속플레이트(50)에는 복수의 단자핀패턴(P)의 일단을 연결하는 제 1 연결패턴(51a)과 복수의 단자핀패턴(P)의 타단을 연결하는 제 2 연결패턴(52a)이 패터닝된다.
도 16(b)에 도시된 바와 같이, 복수의 단자핀패턴(P), 제 1 연결패턴(51a)과 제 2 연결패턴(52a)을 제외한 나머지부분은, 에칭처리 또는 스탬핑처리에 의해 금속플레이트(50)에서 제거된다.
금속플레이트(50)는 패터닝되지 않은 부분이 에칭처리 또는 스탬핑처리에 의해 제거되고, 복수의 단자핀패턴(P)이 패터닝된 부분만 남아 복수의 단자핀(211, 212, 213)을 형성한다.
이때, 복수의 단자핀(211, 212, 213)은 제 1 연결패턴(51a)과 제 2 연결패턴(52a)에 의해 형성된 제 1 연결부(51)와 제 2 연결부(52)에 의해 상호 간에 연결된 상태이다. 복수의 단자핀(211, 212, 213)은 니켈도금된 후 금도금되어, 전도성을 향상시킬 수 있다.
다음으로, 복수의 단자핀(211, 212, 213)이 제 1 연결부(51)와 제 2 연결부(52)에 의해 상호 간에 연결된 상태로 성형금형몰드에 설치되고 이후 실리콘이 성형금형몰드로 주입되어 경화되면, 도 16(c)에 도시된 바와 같이, 복수의 단자핀(211, 212, 213)을 탄성지지하는 탄성지지부(219)가 마련된다. 탄성지지부(219)는 실리콘이 경화되어 형성된 것이다. 탄성지지부(219)의 구조는 성형금형몰드의 크기 및 구조에 따라 다양하게 가변가능하다.
마지막으로, 복수의 단자핀(211, 212, 213)이 탄성지지부(219)에 의해 탄성지지되면, 제 1 연결부(51)와 제 2 연결부(52)가 복수의 단자핀(211, 212, 213)의 양단에서 제거된다. 이는 복수의 단자핀(211, 212, 213) 간의 전기적 연결을 차단하기 위함이다.
도 16(d)에 도시된 바와 같이, 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 복수의 단자핀의 일단(211a, 212a, 213a)과 복수의 단자핀의 타단(211b, 212b, 213b)은 탄성지지부(219)에서 돌출된 상태이다.
상기와 같이 제작된 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 하우징에 고정된 소켓형태로, 반도체소자와 검사회로기판 사이에 위치될 때, 복수의 단자핀의 일단(211a, 212a, 213a)이 반도체소자의 단자(11)에 접촉되고, 복수의 단자핀의 타단(211b, 212b, 213b)이 검사회로기판의 단자(71)에 접촉되어, 반도체소자와 검사회로기판을 전기적으로 연결한다.
상기와 같은 방식으로 제작된 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 기존에 사용하던 검사회로기판의 단자(71)의 피치간격으로 복수의 단자핀의 타단(211b, 212b, 213b) 간의 피치간격을 조정함으로써, 반도체소자의 단자(11)간의 피치간격이 좁아짐에 따라, 반소체소자의 단자간의 피치간격에 대응되는 별도의 검사회로기판을 제작할 필요가 없다.
이와 더불어, 상기와 같은 방식으로 제작된 반도체 디바이스 테스트용 양방향 도전성 모듈(210)은 반도체소자의 일면에 마련된 복수의 단자(11)와 접촉가능한 도전성패턴을 미세하게 집적화하여 패터닝함으로써 기존의 포고핀의 불량으로 인한 반도체소자의 단자(11)와 검사회로기판의 단자(71) 간의 전기적 단락을 방지할 수 있다.
아울러, 본 발명은 FPCB에 도전성패턴을 패터닝하는 방식을 이용하여, 반도체소자(10)의 복수의 단자에 접촉되는 부분과 검사회로기판(70)의 복수의 단자(71)에 접촉되는 부분을 미세한 크기로 하나의 모듈에 구현할 수 있어, 기술의 발전으로 인해 기존에 반도체소자(10)를 테스트하기 위해 사용되는 포고핀 타입 또는 PCR소켓 타입에서는 테스트하기 어려운 초소형의 반도체소자(10)를 테스트할 수 있는 반도체 디바이스 테스트용 양방향 도전성 소켓(200)을 용이하게 제작할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.

Claims (18)

  1. 일면이 반도체소자를 향하고 다른 일면이 검사회로기판을 향하도록 절곡된 구조를 가진 기판부;
    상기 기판부의 일면에서 상호 간에 제 1 피치간격으로 일렬로 이격되어 상기 반도체소자의 단자에 각각 전기적으로 연결되는 복수의 제 1 도전성패턴과, 상기 기판부의 다른 일면에서 상호 간에 상기 제 1 피치간격보다 큰 제 2 피치간격으로 일렬로 이격되어 상기 검사회로기판의 단자에 각각 전기적으로 연결되는 복수의 제 2 도전성패턴이 마련된 복수의 단자핀; 및
    상기 기판부를 탄성지지토록 상기 기판부에 연결된 탄성지지부를 포함하고,
    상기 복수의 단자핀은 상기 기판부의 일면에서 상기 복수의 제 1 도전성패턴이 상기 제 1 피치간격만큼 이격되어 일렬로 배열되고, 상기 기판부의 다른 일면에서 상기 복수의 제 2 도전성패턴이 상기 제 2 피치간격만큼 어긋나게 배치되어 지그재그형태로 배열되도록 상기 기판부에 마련되어, 상기 복수의 제 1 도전성패턴이 상기 반도체소자의 단자에 대해 상기 제 1 피치간격으로 접촉되고, 상기 복수의 제 2 도전성패턴이 상기 검사회로기판의 단자에 대해 상기 제 2 피치간격으로 접촉되어, 상기 반도체소자의 단자와 상기 검사회로기판의 단자를 전기적으로 연결하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈.
  2. 제 1 항에 있어서,
    상기 기판부는 유연하게 휘어지는 구조를 가진 절연시트가 도금처리되어 형성되고,
    상기 기판부에 패터닝처리된 상기 제 1 도전성패턴과 상기 제 2 도전성패턴은 도금처리 또는 도전성 라인에 의해 각각 전기적으로 연결되는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈.
  3. 제 1 항에 있어서, 상기 복수의 단자핀은
    상기 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프; 및
    상기 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프를 더 포함하고, 상기 제 1 범프와 상기 제 2 범프는 도전성 분말에 의해 형성된 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈.
  4. 제 1 항에 있어서, 상기 복수의 단자핀은
    상기 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 형성된 제 1 범프;
    상기 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 형성된 제 2 범프; 및
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴에 도금되어, 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴을 전기적으로 연결하는 도금층을 포함하고,
    상기 제 1 범프와 상기 제 2 범프는 비도전성 분말에 의해 형성된 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈.
  5. 제 1 항의 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈; 및
    반도체소자의 단자방향에 따라, 단위모듈화된 상기 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈이 상기 반도체소자의 단자와 접촉되도록, 상기 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈의 설치위치를 고정하는 하우징을 포함하고,
    상기 하우징은 상기 반도체 디바이스 테스트용 양방향 도전성 모듈의 다른 일면에 마련되어 검사회로기판의 단자와 전기적으로 접촉되는 복수의 제 2 도전성패턴을 가압토록 상기 검사회로기판에 결합되고,
    상기 반도체 디바이스 테스트용 양방향 도전성 모듈은 상기 반도체소자와 검사회로기판에 전기적으로 연결되어, 상기 반도체소자의 양호 불량 여부를 테스트하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 소켓.
  6. (A) 기판부의 일면에 반도체소자의 단자와 접촉되는 복수의 제 1 도전성패턴이 상기 반도체소자의 단자의 피치간격인 제 1 피치간격만큼 이격되어 패터닝되는 단계;
    (B) 상기 기판부의 다른 일면에서, 상기 검사회로기판의 단자와 접촉되는 복수의 제 2 도전성패턴이 상기 검사회로기판의 단자의 피치간격인 제 2 피치간격만큼 상호 간에 어긋나게 이격되어, 상기 복수의 제 1 도전성패턴의 배열방향에 대해 지그재그형태로 배열되도록 패터닝되는 단계;
    (C) 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 도금처리 또는 도전성라인에 의해 전기적으로 연결되는 단계;
    (D) 상기 기판부가 성형금형에 접촉되어 상기 성형금형의 형상대로 유선형으로 휘어지면서, 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 서로 다른 방향을 향하도록 절곡되는 단계; 및
    (E) 상기 기판부가 성형금형몰드에 연결되고, 실리콘이 상기 성형금형몰드로 주입된 후 경화되어 형성되어, 상기 기판부를 탄성지지하는 탄성지지부가 마련되는 단계를 포함하고,
    상기 기판부가 상기 반도체소자와 상기 검사회로기판 사이에 위치되면, 상기 복수의 제 1 도전성패턴은 상기 반도체소자의 단자와 전기적으로 연결되고, 상기 복수의 제 2 도전성패턴은 상기 검사회로기판의 단자에 전기적으로 연결되어, 상기 반도체소자와 상기 검사회로기판을 전기적으로 연결하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  7. 제 6 항에 있어서, 상기 (A) 단계 전에,
    상기 기판부의 일면을 이루는 제 1 절연시트와 상기 기판부의 다른 일면을 이루는 제 2 절연시트가 마련되고, 상기 제 1 절연시트와 상기 제 2 절연시트가 도금 처리되는 단계를 더 포함하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  8. 제 7 항에 있어서, 상기 (A) 단계에서,
    상기 제 1 절연시트의 타측에는, 상기 제 1 절연시트의 일측에 패터닝된 상기 복수의 제 1 도전성패턴 중 어느 하나의 제 1 도전성패턴과 전기적으로 연결되는 제 1 연결패턴이 패터닝되고,
    상기 제 1 연결패턴은 상기 제 1 절연시트와 상기 제 2 절연시트와의 접촉시 상기 복수의 제 2 도전성패턴 중 어느 하나와 전기적으로 연결되는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  9. 제 7 항에 있어서, 상기 (B) 단계에서,
    상기 제 2 절연시트의 일측에는, 상기 제 2 절연시트의 타측에 패터닝된 상기 복수의 제 2 도전성패턴 중 적어도 두 개의 제 2 도전성패턴에 각각 전기적으로 접촉되는 적어도 두 개의 제 2 연결패턴이 패터닝되고,
    상기 적어도 두 개의 제 2 연결패턴은, 상기 제 1 절연시트와 상기 제 2 절연시트와의 접촉시 상기 복수의 제 1 도전성패턴 중 적어도 두 개와 전기적으로 연결되는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  10. 제 6 항에 있어서, 상기 (B) 단계후,
    도전성분말이 상기 복수의 제 1 도전성패턴의 표면에 오돌토돌하게 부착되어 제 1 범프를 형성하고, 상기 복수의 제 2 도전성패턴의 표면에 오돌토돌하게 부착되어 제 2 범프를 형성하는 단계를 더 포함하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  11. 제 6 항에 있어서, 상기 (B) 단계후,
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 니켈도금되는 단계; 및
    니켈도금된 상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴이 금도금되는 단계를 더 포함하고,
    상기 복수의 제 1 도전성패턴과 상기 복수의 제 2 도전성패턴은 상기 니켈도금 및 상기 금도금에 의해 전기적으로 연결되는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  12. 제 6 항에 있어서, 상기 (E) 단계 후,
    상기 복수의 제 1 도전성패턴 사이, 그리고, 상기 복수의 제 2 도전성패턴 사이가 레이저 컷팅되는 단계를 더 포함하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  13. 제 1 피치간격을 가지는 반도체소자의 단자와, 상기 제 1 피치간격보다 큰 제 2 피치간격을 가진 검사회로기판의 단자를 전기적으로 연결하는 복수의 단자핀이 구비된 단자핀부; 및
    상기 복수의 단자핀을 탄성지지하는 탄성지지부를 포함하고,
    상기 복수의 단자핀은, 상기 복수의 단자핀의 일단이 상기 탄성지지부의 상부로 돌출되어 상호 간에 상기 제 1 피치간격으로 이격되고, 상기 복수의 단자핀의 타단이 상기 단자핀의 일단에 대해 상기 탄성지지부의 바깥방향으로 멀어진 위치에서 상호 간에 상기 제 2 피치간격으로 이격되게 상기 탄성지지부의 하부로 돌출되게 절곡된 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈.
  14. 제 13 항에 있어서,
    상기 복수의 단자핀은 적어도 두 개의 변곡점을 갖도록 다중절곡된 구조를 가지는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈.
  15. 제 13 항의 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈; 및
    반도체소자의 단자방향에 따라, 단위모듈화된 상기 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈이 상기 반도체소자의 단자와 접촉되도록, 상기 적어도 하나의 반도체 디바이스 테스트용 양방향 도전성 모듈의 설치위치를 고정하는 하우징을 포함하고,
    상기 하우징은 상기 반도체 디바이스 테스트용 양방향 도전성 모듈의 다른 일면에 마련되어 검사회로기판의 단자와 전기적으로 접촉되는 상기 복수의 단자핀의 타단을 가압토록 상기 검사회로기판에 결합되고,
    상기 반도체 디바이스 테스트용 양방향 도전성 모듈은 상기 반도체소자와 검사회로기판에 전기적으로 연결되어, 상기 반도체소자의 양호 불량 여부를 테스트하는 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 소켓.
  16. (A) 금속플레이트에, 일단이 상기 금속플레이트의 상부를 향하고, 타단이 상기 일단에 대해 상기 금속플레이트의 바깥방향으로 멀어진 위치에서 상기 금속플레이트의 하부를 향하도록 절곡되게 복수의 단자핀패턴이 패터닝되는 단계;
    (B) 상기 복수의 단자핀패턴을 제외한 나머지부분이 상기 금속플레이트에서 제거되어, 상기 금속플레이트로부터 복수의 단자핀이 형성되는 단계; 및
    (C) 상기 복수의 단자핀이 성형금형몰드에 연결되고, 실리콘이 상기 성형금형몰드로 주입된 후 경화되어 형성되어, 상기 복수의 단자핀을 탄성지지하는 탄성지지부가 마련되는 단계를 포함하고,
    상기 (A)단계에서, 상기 복수의 단자핀패턴은 상기 복수의 단자핀패턴의 일단이 상호 간에 반도체소자의 단자 간의 간격인 제 1 피치간격만큼 이격되고, 상기 복수의 단자핀패턴의 타단이 상호 간에 상기 제 1 피치간격보다 큰 제 2 피치간격만큼 이격되게 일렬로 배열되게 패터닝되고, 상기 제 2 피치간격은 검사회로기판의 단자 간의 간격인 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  17. 제 16 항에 있어서, 상기 (B) 단계에서,
    상기 복수의 단자핀은, 상기 금속플레이트의 에칭 처리에 의해, 상기 복수의 단자핀패턴을 제외한 나머지부분이 상기 금속플레이트에서 제거됨에 따라 형성된 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
  18. 제 16 항에 있어서, 상기 (B) 단계에서,
    상기 복수의 단자핀은, 상기 금속플레이트의 스탬핑 처리에 의해, 상기 복수의 단자핀패턴을 제외한 나머지부분이 상기 금속플레이트에서 제거됨에 따라 형성된 것을 특징으로 하는 반도체 디바이스 테스트용 양방향 도전성 모듈 제조방법.
PCT/KR2016/004887 2016-03-07 2016-05-10 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법 WO2017155155A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160026866 2016-03-07
KR10-2016-0026866 2016-03-07
KR10-2016-0043241 2016-04-08
KR1020160043241A KR101826663B1 (ko) 2016-03-07 2016-04-08 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017155155A1 true WO2017155155A1 (ko) 2017-09-14

Family

ID=59789483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004887 WO2017155155A1 (ko) 2016-03-07 2016-05-10 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2017155155A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060085976A1 (en) * 2004-10-22 2006-04-27 Formfactor, Inc. Electroform spring built on mandrel transferable to other surface
KR20100002820A (ko) * 2008-06-30 2010-01-07 이재학 테스트 소켓
KR20110090298A (ko) * 2010-02-03 2011-08-10 (주)티에스이 피치변환가능 테스트 소켓
KR20130023819A (ko) * 2011-08-30 2013-03-08 주식회사 오킨스전자 테스트 소켓
KR101575830B1 (ko) * 2014-08-21 2015-12-08 주식회사 아이에스시 검사용 소켓

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060085976A1 (en) * 2004-10-22 2006-04-27 Formfactor, Inc. Electroform spring built on mandrel transferable to other surface
KR20100002820A (ko) * 2008-06-30 2010-01-07 이재학 테스트 소켓
KR20110090298A (ko) * 2010-02-03 2011-08-10 (주)티에스이 피치변환가능 테스트 소켓
KR20130023819A (ko) * 2011-08-30 2013-03-08 주식회사 오킨스전자 테스트 소켓
KR101575830B1 (ko) * 2014-08-21 2015-12-08 주식회사 아이에스시 검사용 소켓

Similar Documents

Publication Publication Date Title
WO2010008257A2 (ko) 스프링 조립체 및 그를 이용한 테스트 소켓
WO2018117361A1 (ko) 마이크로 엘이디 모듈 및 그 제조방법
WO2013137668A1 (en) The printed circuit board and the method for manufacturing the same
WO2012057399A1 (ko) 양방향 도전성 시트 및 그 제조 방법, 양방향 도전성 다층 시트, 반도체 테스트 소켓
WO2017105019A1 (en) Printed circuit board having high-speed or high-frequency signal connector
WO2021194213A1 (ko) 프로브 헤드 및 이를 구비하는 프로브 카드
KR101826663B1 (ko) 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
WO2015170877A1 (ko) 방수용 기판스위치 및 방수용 기판스위치 제조방법
WO2017082510A1 (ko) 도전 실리콘 고무 안에 도전 와이어를 포함하는 테스트 소켓, 및 그 제조 방법
WO2017061656A1 (ko) 켈빈 테스트용 프로브, 켈빈 테스트용 프로브 모듈 및 그 제조방법
WO2017155155A1 (ko) 반도체 디바이스 테스트용 양방향 도전성 소켓, 반도체 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
WO2012011628A1 (ko) 프로브 카드 및 그 제조방법
WO2016167412A1 (ko) 고주파 디바이스 테스트용 양방향 도전성 소켓, 고주파 디바이스 테스트용 양방향 도전성 모듈 및 이의 제조방법
WO2015076465A1 (ko) 금속 박판을 적층한 반도체 검사 패드 및 제조방법
WO2023167479A1 (ko) 전기 전도성 접촉핀, 정렬 플레이트 및 이를 구비하는 검사장치
WO2020096309A1 (ko) 인터포저
WO2024014667A1 (ko) 전기적 검사를 위한 도전성 입자, 검사용 커넥터 및 도전성 입자의 제조방법
WO2020145577A1 (ko) 신호 전송 커넥터용 도전부 보호부재 및 그 제조방법과, 이를 갖는 신호 전송 커넥터 및 그 제조방법
WO2017126782A1 (ko) 초정밀 가공 기술을 이용한 반도체 테스트용 양방향 도전성 패턴 모듈 및 이를 이용한 반도체 테스트 소켓, 반도체 테스트용 양방향 도전성 패턴 모듈의 제조 방법
WO2020022656A1 (ko) 안테나 장치
WO2019168286A1 (ko) 테스트 소켓 및 그 테스트 소켓을 포함한 테스트 장치
WO2023191410A1 (ko) 전기 전도성 접촉핀 및 이를 구비하는 검사장치
WO2023163513A1 (ko) 전기 전도성 접촉핀
WO2023282701A1 (ko) 솔더볼과 탄성체를 기반으로 연결되는 기판 구조
WO2022015075A1 (ko) 검사용 커넥팅 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893670

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893670

Country of ref document: EP

Kind code of ref document: A1