WO2017155040A1 - 電気浸透脱水装置およびその運転方法 - Google Patents
電気浸透脱水装置およびその運転方法 Download PDFInfo
- Publication number
- WO2017155040A1 WO2017155040A1 PCT/JP2017/009482 JP2017009482W WO2017155040A1 WO 2017155040 A1 WO2017155040 A1 WO 2017155040A1 JP 2017009482 W JP2017009482 W JP 2017009482W WO 2017155040 A1 WO2017155040 A1 WO 2017155040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter cloth
- treated sludge
- endless filter
- sludge
- treated
- Prior art date
Links
- 230000018044 dehydration Effects 0.000 title claims abstract description 33
- 238000006297 dehydration reaction Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000010802 sludge Substances 0.000 claims abstract description 172
- 239000004744 fabric Substances 0.000 claims abstract description 84
- 238000005370 electroosmosis Methods 0.000 claims description 13
- 238000003825 pressing Methods 0.000 claims description 12
- 238000003860 storage Methods 0.000 claims description 8
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 230000000903 blocking effect Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 230000006835 compression Effects 0.000 abstract 1
- 238000007906 compression Methods 0.000 abstract 1
- 208000005156 Dehydration Diseases 0.000 description 19
- 238000009826 distribution Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
- B01D35/06—Filters making use of electricity or magnetism
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/56—Electro-osmotic dewatering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J4/00—Feed or outlet devices; Feed or outlet control devices
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/15—Treatment of sludge; Devices therefor by de-watering, drying or thickening by treatment with electric, magnetic or electromagnetic fields; by treatment with ultrasonic waves
Definitions
- the present invention relates to an electroosmotic dehydration apparatus for dehydrating surplus sludge and the like generated in a treatment process such as a biological treatment process for sewage treatment plants, human waste treatment plants or other organic matter-containing wastewater, and an operation method thereof.
- dewatering devices such as a centrifugal dewatering device, a screw dewatering device, a filter press dewatering device, and a belt press dewatering device have been used for dewatering sludge.
- An electroosmotic dewatering device is used as a device for further processing the dewatered sludge dehydrated by these dewatering devices to further reduce the water content.
- Conventional electroosmotic dehydration devices have an endless filter cloth that is wound endlessly, a cathode plate placed on the lower side, and an anode plate that can be moved up and down on the upper side of the endless filter cloth.
- the dewatered sludge dehydrated by various dewatering devices such as centrifugal dewatering device, screw dewatering device, filter press dewatering device, belt press dewatering device, etc.
- a DC voltage is applied between both electrodes to perform dehydration.
- the conventional electroosmosis dehydrator supplies the treated sludge on the endless filter cloth, it is supplied by the dead weight of the treated sludge from the open hopper installed above the endless filter cloth.
- the treated sludge cannot be supplied evenly and unevenness occurs in the thickness of the sludge on the filter cloth.
- the squeezing force and electric working force are not applied evenly to the treated sludge, and the desired effect is obtained.
- the electroosmosis dehydrator requires three steps: an operation for supplying the treated sludge onto the endless filter cloth, a dehydration treatment operation, and an operation for separating the treated dewatered sludge from the endless filter cloth.
- An apparatus capable of performing these steps efficiently and an operation method thereof have not been disclosed so far, and the dehydration operation includes useless time, and the processing capacity per unit time with respect to the unit electrode area is small.
- the present invention solves the above-mentioned drawbacks of the conventional electroosmosis dewatering device, and supplies the treated sludge on the endless filter cloth with an equal thickness, thereby maximizing the dehydration effect inherent in the electroosmosis dewatering device.
- the purpose of the present invention is to provide an electroosmotic dewatering device that can obtain a dehydrated cake with a very low moisture content, and further, an operation for supplying the treated sludge onto the endless filter cloth, and the treated dewatered sludge from the endless filter cloth.
- An object of the present invention is to provide an electroosmotic dehydration apparatus and an operation method thereof that can maximize the processing capacity per unit time with respect to a unit electrode area by performing the peeling operation at the same time. .
- the present invention has the following configuration.
- the electroosmosis dewatering device having the squeezing means for squeezing the treated sludge supplied to the one and other electrodes, the treated sludge storage tank for storing the treated sludge, and the treated sludge on the endless filter cloth
- a to-be-treated sludge supply means for injecting the to-be-treated sludge from the to-be-treated sludge storage tank toward the to-be-treated supply means.
- Electroosmotic dehydrator Electroosmotic dehydrator.
- the endless filter cloth is further rotated after squeezing the treated sludge while applying a voltage between the one and the other electrodes from the standby area to the squeezing area.
- the standby area while peeling from the endless filter cloth outside
- the electroosmosis dewatering device of the present invention is provided with a treated sludge press-fitting means and a treated sludge supply means and supplies the treated sludge onto the endless filter cloth, so that the treated sludge has an equal thickness on the endless filter cloth.
- the squeezing force and the electric action force are evenly applied to the treated sludge, and the dehydration effect inherent in the electroosmotic dehydrator can be maximized.
- the operation of supplying the treated sludge onto the endless filter cloth and the operation of separating the dewatered sludge after the treatment from the endless filter cloth can be performed at the same time, it does not include any wasted time, The processing capacity per unit time can be maximized.
- FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is explanatory drawing which shows supply operation of the to-be-processed sludge with respect to an endless filter cloth, and peeling operation of dewatered sludge. It is a side view of the to-be-processed sludge supply apparatus which showed other embodiment. It is explanatory drawing which showed the to-be-processed sludge supply apparatus of the other embodiment.
- FIG. 1 shows an electroosmotic dehydration apparatus as an example of an embodiment of the present invention, and is an explanatory view showing a state immediately after an electrodehydration process.
- An endless filter cloth 1 is wound around a rotating roller 2.
- the anode plate 3 is disposed at the upper portion of the downstream end of the endless filter cloth 1 in the rotation direction, and the anode plate 3 is provided with pressing means 4 that can drive the anode plate 3 up and down to squeeze sludge.
- the pressing means 4 can be a conventionally used pressing means such as a hydraulic or pneumatic cylinder or an air bag.
- a cathode plate 5 is disposed below the anode plate 3 with an endless filter cloth 1 in between, and the cathode plate 5 is fixed at a strength that can withstand the pressing force from above. Further, the cathode plate 5 has a number of holes so that the water desorbed from the sludge can pass through. As such a cathode plate 5, a punching metal, H steel attached below it, a reinforcing grid, etc. are preferably used. It is done.
- a squeezing region for squeezing the treated sludge between the anode plate 3 and the cathode plate 5 is provided on the downstream side of the horizontal plane of the endless filter cloth.
- the anode plate and the cathode plate are not arranged in the standby region of the treated sludge layer 19B provided on the upstream side, and the standby region has an area larger than the pressing region.
- a shower nozzle 6 is provided across the hung lower endless filter cloth 1, and a detained water receiving tank 7 is provided below the cathode plate 5 and below the lower endless filter cloth 1. .
- a scraper 8 for scraping the dewatered cake 20 is installed on the rotary roller 2 located immediately downstream of both electrode plates.
- the to-be-processed sludge storage tank 9 is installed, and the to-be-processed sludge press-in apparatus 11 is connected via the connecting pipe 10 attached below the to-be-processed sludge storage tank 9.
- the treated sludge supply means 14 communicates with the treated sludge press-fitting device 11 through the connecting pipe 12 and the shutoff valve 13.
- a screw pump As the treated sludge press-fitting device 11, a screw pump, a rotary displacement type uniaxial eccentric screw pump or the like is preferably used.
- a shut-off valve As the shut-off valve, a ball valve, a gate valve or the like is preferably used.
- FIG. 2 is a cross-sectional view of the treated sludge supply device 14 as viewed from above
- FIG. 3 is a cross-sectional view taken along the line AA in FIG.
- the treated sludge supply device 14 is a container whose side is sealed, has a fan shape that spreads from the connecting portion 16 toward the treated sludge supply port 17, and when viewed from the side as shown in FIG. The structure is narrowed from the connecting portion 16 toward the treated sludge supply port 17.
- the treated sludge 19 is discharged from the treated sludge supply port 17 by driving the treated sludge press-fitting device 11, but the distribution distance of the treated sludge 19 in the treated sludge supply device 14 is as follows. Since both side portions are longer than the central portion, the amount of the treated sludge 19 discharged from both ends of the supply port 17 tends to be small depending on the type of the treated sludge 19.
- the distribution of the treated sludge 19 on both side surfaces in the treated sludge supply device 14 becomes smooth, and the treated sludge is evenly discharged from the supply port.
- the treated sludge supply port 17 of the treated sludge supply device 14 shown in FIGS. 2 and 3 is wide and has one, but as will be described later, a plurality of treated sludge supply ports 17 may be provided. There is no problem.
- FIG. 1 shows a state immediately after the electric dehydration process, and the anode plate 3 is pulled up by the pressing means 4.
- the treated sludge press-fitting device 11 is driven while rotating the endless filter cloth 1 from this state, the treated sludge 19 is discharged from the treated sludge port 17 of the treated sludge supply device 14 as shown in FIG.
- the extruded sludge layer 19 ⁇ / b> A is formed on the endless filter cloth 1.
- the dewatered cake 20 formed at the lower part of the anode plate 3 moves downstream as the endless filter cloth 1 rotates and is scraped off by the scraper 8.
- the to-be-processed sludge layer 19B formed on the endless filter cloth 1 in the standby area also moves downstream.
- the rotational traveling speed of the endless filter cloth is 0.5 to 10 m / min
- the thickness of the treated sludge layers 19A and 19B is 5 to 30 mm, and an appropriate speed and thickness may be selected depending on the type of the treated sludge 19.
- the squeezing means 4 is operated to squeeze the treated sludge layer 19B with the anode plate 3, and a DC voltage is applied between the two electrodes to perform electroosmotic dehydration.
- the anode plate 3 After performing the electroosmotic dehydration process for a predetermined time, the anode plate 3 is pulled up again as shown in FIG. 4 (a), and the endless filter cloth 1 is rotated to separate the dewatered cake 20 and supply the treated sludge 19. .
- 19 A of to-be-processed sludge layers shown to FIG. 4 (C) will stand by in a standby area
- the treated sludge supply device 14 shown in FIG. 2 has a fixed width of the treated sludge supply port 17 so that the thickness of the treated sludge layer 19A formed by extrusion becomes a predetermined thickness.
- the tip of the treated sludge supply device 14 may be movable by the fulcrum 21 so that the cross-sectional area of the treated sludge supply port 17 can be varied.
- the thickness of the treated sludge layer 19 ⁇ / b> A can be adjusted by moving the tip portion with changes in the properties of the treated sludge 19.
- the treated sludge supply device 14 shown in FIG. 2 has a treated sludge supply port 17 having a width substantially equal to the width of the endless filter cloth 1, but as shown in FIG. Two to-be-processed sludge supply apparatuses 14 which have the to-be-processed sludge supply port 17 of the width of about 1/2 of the width may be installed.
- the to-be-processed sludge supply port 17 which the to-be-processed sludge supply apparatus 14 has is not necessarily one, and as shown to FIG. 7 (A), you may provide the to-be-processed sludge supply port 17 with the square cross section as shown in FIG. Alternatively, as shown in FIG. 7B, a plurality of treated sludge supply ports 17 having a circular cross section may be provided.
- the cross section of the treated sludge supply port 17 may be rectangular, circular, elliptical, semicircular, or semielliptical.
- the to-be-processed sludge supply apparatus 14 provided with two or more square or circular to-be-processed sludge supply ports 17 as shown in FIG. 7, immediately after being extruded from the to-be-processed sludge supply ports 17 as shown in FIG. Since the to-be-processed sludge layer 19A is formed at a distance, the pressure roller 22 is provided on the top of the endless filter cloth 1 to level the to-be-processed sludge layer 19A as shown in FIG. Can be made even.
- FIG. 10 is an explanatory view showing an electroosmotic dehydration apparatus according to another embodiment of the present invention.
- the treated sludge layer 19A is continuously supplied from the treated sludge supply device 14 onto the endless filter cloth 1, and the treated sludge layer 19A and the dehydrated cake 20 are connected to each other. It moves on the cloth 1 in the downstream direction.
- the area of the standby area of the sludge to be treated provided on the upstream side of the endless filter cloth in the horizontal plane is smaller than that in FIG. Since the other points are the same as those in FIG. 1, the same reference numerals as those in FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Water Supply & Treatment (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Treatment Of Sludge (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、被処理汚泥を貯留する被処理汚泥貯槽と、前記無端ろ布上に被処理汚泥を供給するための供給口を有する被処理汚泥供給手段と、前記被処理汚泥貯槽から前記被処理供給手段に向けて被処理汚泥を圧入する被処理汚泥圧入手段とを備えたことを特徴とする電気浸透脱水装置。電気浸透脱水装置が本来有する脱水効果を最大限に発揮させることにより、含水率が極めて小さい脱水ケーキが得られ、さらに無駄な時間を一切含まず、単位電極面積に対する、単位時間あたりの処理容量を最大とし得る電気浸透脱水装置およびその運転方法を提供する。
Description
本発明は、下水処理場、し尿処理場、あるいはその他の有機物含有排水の生物処理工程等の処理工程で発生する余剰汚泥等を脱水処理する電気浸透脱水装置およびその運転方法に関する。
従来から汚泥を脱水処理するにあたり、遠心分離式脱水装置、スクリュー式脱水装置、フイルタープレス式脱水装置、ベルトプレス式脱水装置等の各種脱水装置が用いられてきた。これらの脱水装置で脱水処理した脱水汚泥をさらに処理し、より含水率を低下させる装置として電気浸透脱水装置が用いられている。
従来から用いられている電気浸透脱水装置は、エンドレスに掛け回された無端ろ布の下側に陰極板を配し、無端ろ布の上側に上下動可能な陽極板を配し、無端ろ布の上部に、遠心分離式脱水装置、スクリュー式脱水装置、フイルタープレス式脱水装置、ベルトプレス式脱水装置等の各種脱水装置によって脱水処理した脱水汚泥を供給し、陽極を押圧して脱水汚泥を圧搾するとともに両電極間に直流電圧を印加して脱水処理するものである。
このように両電極間に電圧を印加して圧搾処理すると、正に荷電する水分は陰極側に流動するように作用するので、機械的圧搾力と上記電気作用との総和作用によってさらに脱水処理されるのである(たとえば特許文献1~3)。
しかしながら従来の電気浸透脱水装置は無端ろ布上に被処理汚泥を供給する際に、無端ろ布の上方に設置した上部が開放したホッパーから被処理汚泥の自重によって供給するので、無端ろ布上に均等に被処理汚泥を供給することができず、ろ布上の当該汚泥の厚みに凹凸が生じ、その結果被処理汚泥に均等に圧搾力および電気作用力が加わらず、所期の効果が得られないという欠点があった。
さらに電気浸透脱水装置には、無端ろ布上に被処理汚泥を供給する操作と、脱水処理操作と、処理後の脱水汚泥を無端ろ布から剥離する操作との三工程を必要とするが、これらの工程を効率よく行うことができる装置やその運転方法が従来から開示されておらず、脱水処理操作に無駄な時間が含まれ、単位電極面積に対する、単位時間あたりの処理容量が小さかった。
本発明は従来の電気浸透脱水装置の上記欠点を解決し、無端ろ布上に被処理汚泥を均等な厚さで供給することによって、電気浸透脱水装置が本来有する脱水効果を最大限に発揮させることにより、含水率が極めて小さい脱水ケーキが得られる電気浸透脱水装置を提供することを目的とし、さらに無端ろ布上に被処理汚泥を供給する操作と、処理後の脱水汚泥を無端ろ布から剥離する操作とを同時に行うことで、無駄な時間を一切含まず、単位電極面積に対する、単位時間あたりの処理容量を最大とし得る、電気浸透脱水装置およびその運転方法を提供することを目的とする。
上記課題を解決するために、本発明は以下の構成を有する。
(1)ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、被処理汚泥を貯留する被処理汚泥貯槽と、前記無端ろ布上に被処理汚泥を供給するための供給口を有する被処理汚泥供給手段と、前記被処理汚泥貯槽から前記被処理供給手段に向けて被処理汚泥を圧入する被処理汚泥圧入手段とを備えたことを特徴とする電気浸透脱水装置。
(2)前記無端ろ布の下方に陰極板が設けられ、前記無端ろ布の上方に陽極板が設けられている、(1)の電気浸透脱水装置。
(3)前記被処理汚泥供給手段が、前記被処理汚泥圧入手段との連結部から前記供給口に向けて広がる扇状に形成されている、(1)または(2)の電気浸透脱水装置。
(4)前記被処理汚泥供給手段に、被処理汚泥の流れに指向性を付与する整流板が設けられている、(1)~(3)の電気浸透脱水装置。
(5)前記供給口の断面積を調節する調節機構が設けられている、(1)~(4)の電気浸透脱水装置。
(6)前記被処理汚泥圧入手段と前記被処理汚泥供給手段との間に、被処理汚泥の流通を遮断する遮断弁が設けられている、(1)~(5)の電気浸透脱水装置。
(7)前記供給口が複数設けられている、(1)~(6)の電気浸透脱水装置。
(8)前記供給口形状が円形状、楕円形状、半円形状、半楕円形状、角形状から選ばれる一種または複数種である、(1)~(7)の電気浸透脱水装置。
(9)ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、前記無端ろ布の水平面下流側に被処理汚泥を圧搾するための圧搾領域が設けられ、前記無端ろ布の水平面上流側に前記圧搾領域以上の面積を有する被処理汚泥の待機領域が設けられたことを特徴とする電気浸透脱水装置。
(10)ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有し、前記無端ろ布の水平面下流側に被処理汚泥を圧搾するための圧搾領域が設けられ、前記無端ろ布の水平面上流側に前記圧搾領域以上の面積を有する被処理汚泥の待機領域が設けられた電気浸透脱水装置の運転方法であって、前記無端ろ布を回動させて被処理汚泥を前記待機領域から前記圧搾領域に移動させ、前記一および他の電極間に電圧を印加しつつ被処理汚泥を圧搾した後に前記無端ろ布をさらに回動させ、得られた脱水ケーキを前記圧搾領域の外部にて前記無端ろ布から剥離させながら前記待機領域に被処理汚泥を供給することによって、前記待機領域に被処理汚泥層を形成することを特徴とする電気浸透脱水装置の運転方法。
(1)ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、被処理汚泥を貯留する被処理汚泥貯槽と、前記無端ろ布上に被処理汚泥を供給するための供給口を有する被処理汚泥供給手段と、前記被処理汚泥貯槽から前記被処理供給手段に向けて被処理汚泥を圧入する被処理汚泥圧入手段とを備えたことを特徴とする電気浸透脱水装置。
(2)前記無端ろ布の下方に陰極板が設けられ、前記無端ろ布の上方に陽極板が設けられている、(1)の電気浸透脱水装置。
(3)前記被処理汚泥供給手段が、前記被処理汚泥圧入手段との連結部から前記供給口に向けて広がる扇状に形成されている、(1)または(2)の電気浸透脱水装置。
(4)前記被処理汚泥供給手段に、被処理汚泥の流れに指向性を付与する整流板が設けられている、(1)~(3)の電気浸透脱水装置。
(5)前記供給口の断面積を調節する調節機構が設けられている、(1)~(4)の電気浸透脱水装置。
(6)前記被処理汚泥圧入手段と前記被処理汚泥供給手段との間に、被処理汚泥の流通を遮断する遮断弁が設けられている、(1)~(5)の電気浸透脱水装置。
(7)前記供給口が複数設けられている、(1)~(6)の電気浸透脱水装置。
(8)前記供給口形状が円形状、楕円形状、半円形状、半楕円形状、角形状から選ばれる一種または複数種である、(1)~(7)の電気浸透脱水装置。
(9)ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、前記無端ろ布の水平面下流側に被処理汚泥を圧搾するための圧搾領域が設けられ、前記無端ろ布の水平面上流側に前記圧搾領域以上の面積を有する被処理汚泥の待機領域が設けられたことを特徴とする電気浸透脱水装置。
(10)ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有し、前記無端ろ布の水平面下流側に被処理汚泥を圧搾するための圧搾領域が設けられ、前記無端ろ布の水平面上流側に前記圧搾領域以上の面積を有する被処理汚泥の待機領域が設けられた電気浸透脱水装置の運転方法であって、前記無端ろ布を回動させて被処理汚泥を前記待機領域から前記圧搾領域に移動させ、前記一および他の電極間に電圧を印加しつつ被処理汚泥を圧搾した後に前記無端ろ布をさらに回動させ、得られた脱水ケーキを前記圧搾領域の外部にて前記無端ろ布から剥離させながら前記待機領域に被処理汚泥を供給することによって、前記待機領域に被処理汚泥層を形成することを特徴とする電気浸透脱水装置の運転方法。
本発明の電気浸透脱水装置は、被処理汚泥圧入手段と、被処理汚泥供給手段とを設けて無端ろ布上に被処理汚泥を供給するので、無端ろ布上に被処理汚泥を均等な厚さで供給することができ、被処理汚泥に均等に圧搾力および電気作用力が加わり、電気浸透脱水装置が本来有している脱水効果を最大限に発揮させることができる。
さらに無端ろ布上に被処理汚泥を供給する操作と、処理後の脱水汚泥を無端ろ布から剥離する操作とを同時に行うことができるので、無駄な時間を一切含まず、単位電極面積に対する、単位時間あたりの処理容量を最大とし得る。
以下に本発明を、図面を用いて詳細に説明する。
図1は本発明の実施態様の一例である電気浸透脱水装置であって、電気脱水処理直後の状態を示す説明図であり、無端ろ布1が回転ローラ2に掛け回されている。
図1は本発明の実施態様の一例である電気浸透脱水装置であって、電気脱水処理直後の状態を示す説明図であり、無端ろ布1が回転ローラ2に掛け回されている。
無端ろ布1の回転方向下流部の上部には陽極板3が配置され、陽極板3には当該陽極板3を上下に駆動して汚泥を圧搾し得る圧搾手段4が設置されている。当該圧搾手段4には油圧式あるいは空圧式のシリンダー、エアーバッグ等の従来から用いられている圧搾手段を用いることができる。
陽極板3の下側には無端ろ布1を挟んで陰極板5が配置され、当該陰極板5は上部から圧迫力を受けてもそれに堪え得る強度で固定されている。また陰極板5は汚泥からの脱離水が通過し得るように多数の穴を有しており、このような陰極板5としてはパンチングメタルとその下方に付設したH鋼、補強グリッド等が好ましく用いられる。
図1に示した実施態様では、無端ろ布の水平面下流側には陽極板3と陰極板5の間で被処理汚泥を圧搾するための圧搾領域が設けられているが、無端ろ布の水平面上流側に設けられた被処理汚泥層19Bの待機領域には陽極板及び陰極板が配置されておらず、かつ待機領域は圧搾領域以上の面積を有している。
掛け回された下側無端ろ布1を挟んでシャワーノズル6が付設されており、陰極板5の下方および下側無端ろ布1の下方には脱離水の受け槽7がそれぞれ設置されている。また両電極板のすぐ下流に位置する回転ローラ2には脱水ケーキ20を掻き取るためのスクレーパ8が設置されている。
また被処理汚泥貯槽9が設置されており、被処理汚泥貯槽9の下方に付設された連結管10を介して被処理汚泥圧入装置11が連通している。さらに被処理汚泥圧入装置11の出口側には連結管12および遮断弁13を介して被処理汚泥供給手段14が連通している。
被処理汚泥圧入装置11としてはスクリューポンプや回転容積式一軸偏心ねじポンプ等が好ましく用いられる。また遮断弁としてはボール弁、ゲート弁等が好ましく用いられる。
なお被処理汚泥貯槽9の下方内部に回転翼15を付設し、回転させることにより、被処理汚泥槽9内における、被処理汚泥19のブリッジによる空間部の形成を防止することができる。
次に被処理汚泥供給装置14について詳しく説明する。
図2は被処理汚泥供給装置14を上から見た断面図であり、図3は図2のA-A断面図である。
被処理汚泥供給装置14は側面が密閉された容器であって、連結部16から被処理汚泥供給口17に向かって末広がりの扇状となっており、さらに図3に示したごとく側面から見ると、連結部16から被処理汚泥供給口17に向かって絞られた構造となっている。なお被処理汚泥供給装置14内には末広がりの傾斜に沿って一対の整流板18を設けることが好ましい。
整流板18を設置しなくとも被処理汚泥圧入装置11の駆動により被処理汚泥19は被処理汚泥供給口17から排出されるが、被処理汚泥供給装置14内の被処理汚泥19の流通距離は、中央部より両側面部の方が長いので、被処理汚泥19の種類によっては当該供給口17の両端部から排出される被処理汚泥19の量が少なくなる傾向となる。
整流板18を設置することにより被処理汚泥供給装置14内の両側面部の被処理汚泥19の流通が円滑となり、当該供給口から均等に被処理汚泥が排出されるようになる。
図2および図3に示した被処理汚泥供給装置14の被処理汚泥供給口17は幅広状であって一つであるが、後で説明するように被処理汚泥供給口17は複数設けても差し支えない。
無端ろ布1を回転しながら被処理汚泥圧入装置11を駆動させて被処理汚泥供給口17から被処理汚泥19を押し出すと、図2および図3に示すように無端ろ布1上に被処理汚泥層19Aが形成される。
[電気浸透脱水装置の操作例]
前述したように図1は電気脱水処理直後の状態を示しており、陽極板3は圧搾手段4によって引き上げられている。本状態から無端ろ布1を回転させながら被処理汚泥圧入装置11を駆動させると図4(イ)に示したように、被処理汚泥供給装置14の被処理汚泥口17から被処理汚泥19が押し出され、無端ろ布1上に被処理汚泥層19Aが形成される。また陽極板3の下部に形成されていた脱水ケーキ20は無端ろ布の1の回転に伴い下流側に移動し、スクレーパ8によって掻き取られる。さらに前工程によって待機領域の無端ろ布1上に形成されていた被処理汚泥層19Bも下流側に移動する。
前述したように図1は電気脱水処理直後の状態を示しており、陽極板3は圧搾手段4によって引き上げられている。本状態から無端ろ布1を回転させながら被処理汚泥圧入装置11を駆動させると図4(イ)に示したように、被処理汚泥供給装置14の被処理汚泥口17から被処理汚泥19が押し出され、無端ろ布1上に被処理汚泥層19Aが形成される。また陽極板3の下部に形成されていた脱水ケーキ20は無端ろ布の1の回転に伴い下流側に移動し、スクレーパ8によって掻き取られる。さらに前工程によって待機領域の無端ろ布1上に形成されていた被処理汚泥層19Bも下流側に移動する。
なお無端ろ布の回転走行速度は0.5~10m/min、被処理汚泥層19A、19Bの厚みは5~30mmとし、被処理汚泥19の種類によって適当な速度と厚みを選択するとよい。
そして図4(ロ)に示すように脱水ケーキ20がすべてスクレーパ8によって掻き取られ、被処理汚泥層19Bが陽極板3の真下の所定の位置に達した際に被処理汚泥圧入装置11の駆動を止めるとともに遮断弁13を閉じて被処理汚泥19の供給を止める。さらに無端ろ布1の回転も止める。このような操作によって両電極板が配置されていない無端ろ布の上流側には被処理汚泥層19Aが形成される。
次いで図4(ハ)に示すように圧搾手段4を操作して陽極板3で被処理汚泥層19Bを圧搾するとともに、両極間に直流電圧を印加し電気浸透脱水処理を行う。
電気浸透脱水処理を所定時間行った後、再び図4(イ)に示したように陽極板3を引き上げ、無端ろ布1を回転させて脱水ケーキ20の剥離と被処理汚泥19の供給を行う。なお、図4(ハ)に示した被処理汚泥層19Aは、電気浸透脱水処理中は待機領域にて待機することとなり、その後図4(イ)に示す被処理汚泥層19Bとなる。
次に他の実施態様について説明する。
図2に示した被処理汚泥供給装置14は、押し出されて形成される被処理汚泥層19Aの厚みが予め定めた厚さになるように被処理汚泥供給口17の幅が固定されているものであるが、図5に示したように被処理汚泥供給装置14の先端部を支点21によって可動可能とし、被処理汚泥供給口17の断面積を可変し得るようにしてもよい。このような構造の絞り機構を付設することにより、被処理汚泥19の性状の変化に伴い、先端部を可動させて被処理汚泥層19Aの厚みを調節することができる。
また図2に示した被処理汚泥供給装置14は、無端ろ布1の幅とほぼ等しい幅の被処理汚泥供給口17を有するものであるが、図6に示したように無端ろ布1の幅のほぼ2分の1の幅の被処理汚泥供給口17を有する被処理汚泥供給装置14を二つ設置してもよい。
また被処理汚泥供給装置14に有する被処理汚泥供給口17は一つとは限らず、図7(イ)に示したようにその断面が角形の被処理汚泥供給口17を複数設けてもよく、あるいは図7(ロ)に示したようにその断面が円形の被処理汚泥供給口17を複数設けてもよい。
なお被処理汚泥供給口17の断面は角形、円形の他、楕円形、半円形、半楕円形としてもよい。
なお図7に示したような角形あるいは円形の被処理汚泥供給口17を複数設けた被処理汚泥供給装置14を用いる場合は、図8に示すように被処理汚泥供給口17から押出された直後の被処理汚泥層19Aは離間して形成されるので、無端ろ布1の上部に押圧ローラ22を設けて、図9に示すように離間した被処理汚泥層19Aをならし、層の高さが均等になるようにすることもできる。
図10は本発明の他の実施態様の電気浸透脱水装置を示す説明図である。図1とは異なり、被処理汚泥層19Aは被処理汚泥供給装置14から連続的に無端ろ布1上に供給されており、被処理汚泥層19Aと脱水ケーキ20とがつながった状態で無端ろ布1上を下流方向に移動する。さらに無端ろ布の水平面上流側に設けられた被処理汚泥の待機領域の面積は、図1と比較して小さくなっている。その他の点については図1と同様であるため、図1と同じ符号を付して説明を省略する。
1・・・無端ろ布 2・・・回転ローラ
3・・・陽極板 4・・・圧搾手段
5・・・陰極板 6・・・シャワーノズル
7・・・受け槽 8・・・スクレーパ
9・・・被処理汚泥貯槽 10・・・連通管
11・・・被処理汚泥圧入装置 12・・・連通管
13・・・遮断弁 14・・・被処理汚泥供給装置
15・・・回転翼 16・・・連結部
17・・・被処理汚泥供給口 18・・・整流板
19・・・被処理汚泥 19A、19B・・・被処理汚泥層
20・・・脱水ケーキ 21・・・支点
22・・・押圧ローラ
3・・・陽極板 4・・・圧搾手段
5・・・陰極板 6・・・シャワーノズル
7・・・受け槽 8・・・スクレーパ
9・・・被処理汚泥貯槽 10・・・連通管
11・・・被処理汚泥圧入装置 12・・・連通管
13・・・遮断弁 14・・・被処理汚泥供給装置
15・・・回転翼 16・・・連結部
17・・・被処理汚泥供給口 18・・・整流板
19・・・被処理汚泥 19A、19B・・・被処理汚泥層
20・・・脱水ケーキ 21・・・支点
22・・・押圧ローラ
Claims (10)
- ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、被処理汚泥を貯留する被処理汚泥貯槽と、前記無端ろ布上に被処理汚泥を供給するための供給口を有する被処理汚泥供給手段と、前記被処理汚泥貯槽から前記被処理供給手段に向けて被処理汚泥を圧入する被処理汚泥圧入手段とを備えたことを特徴とする電気浸透脱水装置。
- 前記無端ろ布の下方に陰極板が設けられ、前記無端ろ布の上方に陽極板が設けられている、請求項1に記載の電気浸透脱水装置。
- 前記被処理汚泥供給手段が、前記被処理汚泥圧入手段との連結部から前記供給口に向けて広がる扇状に形成されている、請求項1または2に記載の電気浸透脱水装置。
- 前記被処理汚泥供給手段に、被処理汚泥の流れに指向性を付与する整流板が設けられている、請求項1~3のいずれかに記載の電気浸透脱水装置。
- 前記供給口の断面積を調節する調節機構が設けられている、請求項1~4のいずれかに記載の電気浸透脱水装置。
- 前記被処理汚泥圧入手段と前記被処理汚泥供給手段との間に、被処理汚泥の流通を遮断する遮断弁が設けられている、請求項1~5のいずれかに記載の電気浸透脱水装置。
- 前記供給口が複数設けられている、請求項1~6のいずれかに記載の電気浸透脱水装置。
- 前記供給口形状が円形状、楕円形状、半円形状、半楕円形状、角形状から選ばれる一種または複数種である、請求項1~7のいずれかに記載の電気浸透脱水装置。
- ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有する電気浸透脱水装置において、前記無端ろ布の水平面下流側に被処理汚泥を圧搾するための圧搾領域が設けられ、前記無端ろ布の水平面上流側に前記圧搾領域以上の面積を有する被処理汚泥の待機領域が設けられたことを特徴とする電気浸透脱水装置。
- ローラ間に掛け回された無端ろ布と、該無端ろ布の下方に配置された一の電極と、前記無端ろ布の上方に配置された他の電極と、前記無端ろ布上に供給された被処理汚泥を前記一および他の電極間で圧搾する圧搾手段とを有し、前記無端ろ布の水平面下流側に被処理汚泥を圧搾するための圧搾領域が設けられ、前記無端ろ布の水平面上流側に前記圧搾領域以上の面積を有する被処理汚泥の待機領域が設けられた電気浸透脱水装置の運転方法であって、
前記無端ろ布を回動させて被処理汚泥を前記待機領域から前記圧搾領域に移動させ、前記一および他の電極間に電圧を印加しつつ被処理汚泥を圧搾した後に前記無端ろ布をさらに回動させ、得られた脱水ケーキを前記圧搾領域の外部にて前記無端ろ布から剥離させながら前記待機領域に被処理汚泥を供給することによって、前記待機領域に被処理汚泥層を形成することを特徴とする電気浸透脱水装置の運転方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-048240 | 2016-03-11 | ||
JP2016048240 | 2016-03-11 | ||
JP2016-089847 | 2016-04-27 | ||
JP2016089847A JP2017164730A (ja) | 2016-03-11 | 2016-04-27 | 電気浸透脱水装置およびその運転方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017155040A1 true WO2017155040A1 (ja) | 2017-09-14 |
Family
ID=59790549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/009482 WO2017155040A1 (ja) | 2016-03-11 | 2017-03-09 | 電気浸透脱水装置およびその運転方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017155040A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108101338A (zh) * | 2017-12-22 | 2018-06-01 | 佛山科学技术学院 | 基于电渗透原理的污泥脱水装置 |
JP2021528061A (ja) * | 2018-06-29 | 2021-10-21 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | アルカロイドを含有する材料のキャストシートの製造のためのキャスティング装置および方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094398U (ja) * | 1983-12-05 | 1985-06-27 | 石垣機工株式会社 | ベルトプレスにおける汚泥の供給装置 |
JPS621427A (ja) * | 1985-06-26 | 1987-01-07 | Fuji Electric Co Ltd | 電気浸透脱水装置 |
JPH10180012A (ja) * | 1996-12-25 | 1998-07-07 | Kubota Corp | スラリーの固液分離装置 |
JP2004314034A (ja) * | 2003-04-18 | 2004-11-11 | Nihon Hels Industry Corp | ベルトプレス型脱水機の脱水能力向上装置 |
JP2005034796A (ja) * | 2003-07-18 | 2005-02-10 | Kubota Corp | ベルト型濃縮機 |
JP2010162467A (ja) * | 2009-01-14 | 2010-07-29 | Shinmaywa Industries Ltd | 汚泥濃縮装置および汚泥濃縮車 |
JP2015020114A (ja) * | 2013-07-19 | 2015-02-02 | 倉敷紡績株式会社 | スラリー供給システム、スラリー供給方法および脱水装置 |
JP5736659B2 (ja) * | 2010-03-31 | 2015-06-17 | 栗田工業株式会社 | 電気浸透脱水方法及び装置 |
-
2017
- 2017-03-09 WO PCT/JP2017/009482 patent/WO2017155040A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6094398U (ja) * | 1983-12-05 | 1985-06-27 | 石垣機工株式会社 | ベルトプレスにおける汚泥の供給装置 |
JPS621427A (ja) * | 1985-06-26 | 1987-01-07 | Fuji Electric Co Ltd | 電気浸透脱水装置 |
JPH10180012A (ja) * | 1996-12-25 | 1998-07-07 | Kubota Corp | スラリーの固液分離装置 |
JP2004314034A (ja) * | 2003-04-18 | 2004-11-11 | Nihon Hels Industry Corp | ベルトプレス型脱水機の脱水能力向上装置 |
JP2005034796A (ja) * | 2003-07-18 | 2005-02-10 | Kubota Corp | ベルト型濃縮機 |
JP2010162467A (ja) * | 2009-01-14 | 2010-07-29 | Shinmaywa Industries Ltd | 汚泥濃縮装置および汚泥濃縮車 |
JP5736659B2 (ja) * | 2010-03-31 | 2015-06-17 | 栗田工業株式会社 | 電気浸透脱水方法及び装置 |
JP2015020114A (ja) * | 2013-07-19 | 2015-02-02 | 倉敷紡績株式会社 | スラリー供給システム、スラリー供給方法および脱水装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108101338A (zh) * | 2017-12-22 | 2018-06-01 | 佛山科学技术学院 | 基于电渗透原理的污泥脱水装置 |
JP2021528061A (ja) * | 2018-06-29 | 2021-10-21 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | アルカロイドを含有する材料のキャストシートの製造のためのキャスティング装置および方法 |
JP7372268B2 (ja) | 2018-06-29 | 2023-10-31 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | アルカロイドを含有する材料のキャストシートの製造のためのキャスティング装置および方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105923968B (zh) | 基于氧化电渗透机械压滤协同的污水污泥脱水装置 | |
JP6712929B2 (ja) | 複合脱水装置 | |
CN204428942U (zh) | 一种污泥脱水带式压滤机 | |
WO2017155040A1 (ja) | 電気浸透脱水装置およびその運転方法 | |
CN105923967B (zh) | 污水污泥氧化电渗透机械压滤协同脱水装置 | |
JP2008290142A (ja) | スクリュープレス | |
KR101468602B1 (ko) | 압착스크류와 타공망의 간극 조절이 용이한 스크류 탈수 장치 | |
US7578918B2 (en) | Process and apparatus for treating sludge | |
JP4651045B2 (ja) | 汚泥脱水装置 | |
JP2017164730A (ja) | 電気浸透脱水装置およびその運転方法 | |
JP2017209655A (ja) | 電気浸透脱水装置の被処理汚泥供給装置 | |
JP2018008183A (ja) | 電気浸透脱水装置 | |
JPS642405B2 (ja) | ||
KR101846826B1 (ko) | 슬러지의 두께 조절 및 균등 공급이 가능한 장치 | |
JP6148804B1 (ja) | 回転加圧脱水機の制御方法 | |
CN211921284U (zh) | 平板脱水机的布料装置 | |
JP6742143B2 (ja) | 電気浸透脱水装置 | |
JP2018008184A (ja) | 電気浸透脱水装置 | |
CN215559600U (zh) | 一种高效带式压滤机 | |
CN2827503Y (zh) | 一种强力压滤机 | |
CN111732318B (zh) | 固液分离挤压机 | |
CA2474176C (en) | Process and apparatus for treating sludge | |
KR100441168B1 (ko) | 전기삼투압 필터프레스 탈수장치 | |
JPH01189311A (ja) | 電気浸透式脱水機 | |
JP2015000368A (ja) | 脱水汚泥成形機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17763380 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17763380 Country of ref document: EP Kind code of ref document: A1 |