WO2017154917A1 - 熱電変換モジュール - Google Patents

熱電変換モジュール Download PDF

Info

Publication number
WO2017154917A1
WO2017154917A1 PCT/JP2017/009040 JP2017009040W WO2017154917A1 WO 2017154917 A1 WO2017154917 A1 WO 2017154917A1 JP 2017009040 W JP2017009040 W JP 2017009040W WO 2017154917 A1 WO2017154917 A1 WO 2017154917A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
electrode
conversion module
conversion element
connection
Prior art date
Application number
PCT/JP2017/009040
Other languages
English (en)
French (fr)
Inventor
直樹 内山
和哉 久保
Original Assignee
株式会社アツミテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アツミテック filed Critical 株式会社アツミテック
Priority to US16/083,433 priority Critical patent/US20190081228A1/en
Priority to CA3014404A priority patent/CA3014404C/en
Priority to KR1020187025813A priority patent/KR102154007B1/ko
Priority to EP17763257.7A priority patent/EP3428981B1/en
Priority to CN201780016260.XA priority patent/CN108780832B/zh
Publication of WO2017154917A1 publication Critical patent/WO2017154917A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/854Thermoelectric active materials comprising inorganic compositions comprising only metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a thermoelectric conversion module that performs thermoelectric power generation by the Seebeck effect.
  • thermoelectric conversion module is a module composed of thermoelectric conversion elements that can convert thermal energy into electrical energy by the Seebeck effect. By using such energy conversion properties, waste heat exhausted from industrial and consumer processes and mobile objects can be converted into effective power, so the thermoelectric conversion is an energy-saving technology that takes environmental issues into consideration. A module and a thermoelectric conversion element constituting the module are attracting attention.
  • thermoelectric conversion module is generally configured by joining a plurality of thermoelectric conversion elements (p-type semiconductor and n-type semiconductor) with electrodes.
  • a thermoelectric conversion module is disclosed in Patent Document 1, for example.
  • the thermoelectric conversion module disclosed in Patent Literature 1 is electrically connected to a pair of substrates, one end of which is disposed on one of the substrates, and the other end of the other of the substrates.
  • a plurality of thermoelectric conversion elements electrically connected to the second electrode disposed on the first electrode and the first electrode electrically connected to the thermoelectric conversion element are electrically connected to the adjacent thermoelectric conversion elements;
  • a connection portion for electrically connecting the two electrodes is provided.
  • thermoelectric conversion module As disclosed in Patent Document 1, when the thermoelectric conversion module is mounted on a heat source such as an exhaust part of an engine and used, the amount of heat increases with an increase in the engine exhaust amount. As the temperature rises, the substrate in contact with the heat source may be distorted or curved due to thermal expansion. When such distortion or bending of the substrate occurs, stress concentrates on the terminals for drawing out the thermoelectric conversion module, or in the vicinity of the terminals (that is, the start and end of the thermoelectric conversion module), There has been a problem that the terminal is peeled off from the thermoelectric conversion element, or an electrode located in the vicinity of the terminal is peeled off from the connection portion. Such delamination leads to fluctuations in internal resistance and voltage in the thermoelectric conversion module, leading to a decrease in reliability.
  • This invention is made
  • the place made into the objective is to prevent peeling of an electrode etc. without depending on use conditions, and to provide the thermoelectric conversion module excellent in reliability. It is in.
  • thermoelectric conversion module of the present invention is joined to a plurality of thermoelectric conversion elements arranged in parallel and one end of the thermoelectric conversion element, and electrically connects one end of the adjacent thermoelectric conversion elements.
  • the first electrode and the second electrode form at least one series connection body, and a third electrode having flexibility is disposed at an end of the series connection body.
  • thermoelectric conversion module According to the thermoelectric conversion module according to the present invention, it is possible to prevent exfoliation of electrodes and the like without depending on use conditions, and to realize excellent reliability.
  • thermoelectric conversion module which concerns on an Example. It is a top view of the thermoelectric conversion module which concerns on an Example.
  • FIG. 3 is a cross-sectional end view taken along line III-III in FIG. 2. It is a side view of the electrode used for the thermoelectric conversion module which concerns on an Example. It is a graph which shows the voltage fluctuation regarding the thermoelectric conversion module in a predetermined test. It is a graph which shows the voltage fluctuation regarding the comparative example in a predetermined test.
  • thermoelectric conversion module according to the present invention
  • this invention is not limited to the content demonstrated below, In the range which does not change the summary, it can change arbitrarily and can implement.
  • the drawings used to describe the embodiments schematically show the thermoelectric conversion module according to the present invention or its constituent members, and are partially emphasized, enlarged, reduced, omitted, etc. for better understanding. In some cases, it does not accurately represent the scale or shape of each component.
  • the various numerical values used in the embodiments are only examples, and can be variously changed as necessary.
  • FIG. 1 is a perspective view of the thermoelectric conversion module 1 according to the present embodiment.
  • FIG. 2 is a top view of the thermoelectric conversion module 1 according to this embodiment.
  • FIG. 3 is a sectional end view taken along line III-III in FIG. 1 is defined as the X direction, the directions orthogonal to the X direction are defined as the Y direction and the Z direction, and in particular, the height direction of the thermoelectric conversion module 1 is defined as the Z direction.
  • the thermoelectric conversion module 1 includes a plurality of first thermoelectric conversion elements 2 a and second thermoelectric conversion elements 2 b arranged in parallel, the first thermoelectric conversion elements 2 a, and It has the 1st electrode 3a and the 2nd electrode 3b provided in the edge part of the 2nd thermoelectric conversion element 2b.
  • the thermoelectric conversion module 1 according to the present embodiment functions as a connection electrode 3 c that connects the first electrodes 3 a located at the end in the X direction of the thermoelectric conversion module 1 and an external connection electrode of the thermoelectric conversion module 1. And an extraction electrode 3d.
  • thermoelectric conversion module 1 includes a first covering member 4 provided to cover the first electrode 3a, the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, and the connection electrode. It has the 2nd coating
  • connection electrode 3c 1 When selecting and explaining any one of the connection electrodes 3c, the connection electrode 3c 1 , the connection electrode 3c 2 , the connection electrode 3c 3 , or the connection electrode 3c 4 is described, and any one of the extraction electrodes 3d is selected.
  • the extraction electrode 3d 1 or the extraction electrode 3d 2 will be described.
  • the first thermoelectric conversion element 2a is made of an N-type semiconductor material
  • the second thermoelectric conversion element 2b is made of a P-type semiconductor material.
  • the first thermoelectric conversion elements 2a and the second thermoelectric conversion elements 2b are arranged alternately and in a matrix (eight in the X direction, five in the Y direction, for a total of 40). Further, the adjacent first thermoelectric conversion element 2a and second thermoelectric conversion element 2b are electrically connected via the first electrode 3a and the second electrode 3b.
  • the first thermoelectric conversion element 2a and the second thermoelectric conversion element 2b have a shape in which cylindrical bodies having different diameters are connected to each other. More specifically, as shown in FIG.
  • the first cylindrical portion 11 having a large diameter for example, a diameter of 5 mm
  • the second cylindrical portion 12 having a small diameter for example, a diameter of 3 mm
  • the shape of the 1st thermoelectric conversion element 2a and the 2nd thermoelectric conversion element 2b is not limited to such a shape, For example, cylindrical shape or prismatic shape may be sufficient.
  • the first electrode 3a and the second electrode 3b have the same shape (flat plate shape) and are formed of, for example, a copper plate. Further, five first electrodes 3a are arranged in parallel in the X direction and five in the Y direction (25 in total). Furthermore, only one of the first thermoelectric conversion element 2a or the second thermoelectric conversion element 2b is connected to one end of the first electrode 3a located at both ends in the X direction, and the connection electrode 3c or the extraction electrode is connected to the other end. 3d is connected. On the other hand, four second electrodes 3b are arranged in the X direction and five in the Y direction (20 in total).
  • the first thermoelectric conversion element 2a is connected to one end of the second electrode 3b, and the second thermoelectric conversion element 2b is connected to the other end.
  • the first electrode 3 a and the second electrode 3 b are disposed so as to sandwich the first thermoelectric conversion element 2 a and the second thermoelectric conversion element 2 b in the Z direction.
  • thermoelectric conversion element 2a Due to the arrangement of the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the first electrode 3a, and the second electrode 3b, the first thermoelectric conversion element 2a and the second thermoelectric conversion element 2b are connected in series. Will be.
  • One series connection 13 is formed from the electrode 3b. That is, a total of five series connection bodies 13 are formed in the thermoelectric conversion module 1.
  • the serial connection bodies 13 adjacent in the Y direction are connected to each other through connection electrodes 3c.
  • it when selecting and explaining any of the serial connection bodies 13, it demonstrates as the serial connection body 13a, the serial connection body 13b, the serial connection body 13c, the serial connection body 13d, or the serial connection body 13e.
  • the first electrode 3a and the second electrode 3b are not limited to the copper plate, but may be formed of other conductive materials (for example, metal materials such as aluminum). Further, the quantity and shape of the first electrode 3a and the second electrode 3b are not limited to the above-described contents, but according to the first thermoelectric conversion element 2a and the second thermoelectric conversion element 2b (that is, the magnitude of the electromotive force). Can be changed as appropriate. Furthermore, you may arrange
  • connection electrode 3c and the extraction electrode 3d have the same structure. Specifically, as shown in FIG. 4, both electrodes are composed of a mesh metal 21 and two metal plates 22 fixed to both ends of the mesh metal 21. Since the connection electrode 3c and the extraction electrode 3d include the mesh-like metal 21 having good flexibility, the connection electrode 3c and the extraction electrode 3d itself have flexibility. Here, the opening ratio and opening size of the mesh-like metal 21 can be appropriately set within a range in which the connection electrode 3c and the extraction electrode 3d can be provided with excellent flexibility.
  • the mesh metal 21 and the metal plate 22 are made of copper, but these materials are not limited to copper, and other metals can be used.
  • a material that can maintain excellent electrical conductivity while maintaining good flexibility of the connection electrode 3c and the extraction electrode 3d is preferable.
  • the connection electrode 3c and the extraction electrode 3d may be made of a metal material having a structure different from the mesh shape without using the mesh metal 21 as long as the electrode itself can maintain good flexibility. .
  • connection electrode 3c 1 is connected to the other end (+ X side) of the series connection body 13a connected to the extraction electrode 3d 1 located on the ⁇ Y side, via the connection electrode 3c 1 .
  • One series connection body 13b located on the Y side is connected.
  • series connection 13b is the end that is connected to series connection 13a is connected to the connection electrode 3c 2 even in the opposite side (-X side), one through the other connection electrode 3c 2 It will be connected to the serial connection body 13c located on the Y side.
  • a series connection body 13c and series connection 13d is connected via the connection electrode 3c 3 in + X side
  • a series connection body 13d and series connection 13e is a connection electrode 3c 4 in -X side Connected through. Then, the + X side of the series connection 13e is extraction electrode 3d 2 are connected.
  • thermoelectric conversion module 1 Such a connection relationship between the series connection body 13 and the connection electrode 3c forms one zigzag series connection circuit in the thermoelectric conversion module 1. And since the extraction electrode 3d for external connection is arrange
  • the first thermoelectric conversion element 2a and the second thermoelectric conversion element 2b in the series connection bodies 13a, 13c and 13e and the series connection bodies 13b and 13d are used. The arrangement relationship is reversed.
  • the first covering member 4 covers the surface of the first electrode 3a so that the first electrode 3a is embedded.
  • the first covering member 4 is made of an insulating resin, and a metal material such as aluminum, copper, or aluminum nitride that functions as a heat conductive material is mixed with the resin. With such a structure, the first covering member 4 has a relatively high thermal conductivity, and maintains a good electrical insulation state around the first electrode 3a.
  • the second covering member 5 includes the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the second electrode 3b, and the connection electrode 3c.
  • the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the second electrode 3b, and the connection electrode 3c are covered.
  • coated member 5 is formed from resin provided with insulation, and the heat insulating material is mixed with the said resin.
  • a fiber heat insulating material such as glass wool or a foam heat insulating material such as polystyrene foam can be used as the heat insulating material for forming the second covering member 5.
  • the second covering member 5 has lower thermal conductivity than the first covering member 4, and the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the second electrode 3b, and the connection electrode 3c. It has a function to suppress heat dissipation.
  • the second covering member 5 can increase the temperature difference between the first electrode 3a and the second electrode 3b, keep the temperature difference constant, and generate a larger electromotive force.
  • coated member 5 maintains the electrical insulation state around the 1st thermoelectric conversion element 2a, the 2nd thermoelectric conversion element 2b, the 2nd electrode 3b, and the connection electrode 3c favorably.
  • thermoelectric conversion module 1 since the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the second electrode 3b, and the connection electrode 3c are held relatively firmly by the second covering member 5, the strength of the thermoelectric conversion module 1 itself is increased. Can be improved. Furthermore, since the first thermoelectric conversion element 2a and the second thermoelectric conversion element 2b are completely covered, the first thermoelectric conversion element 2a and the second thermoelectric conversion element 2b can be prevented from being damaged and soiled. A reduction in thermoelectric conversion efficiency and reliability of the conversion module 1 itself can be suppressed.
  • thermoelectric conversion element 2a and the 2nd thermoelectric conversion element 2b and the 1st electrode 3a and the 2nd electrode 3b are not exposed, the joining strength of a thermoelectric conversion element and an electrode is improved. At the same time, it is possible to suppress a decrease in bonding strength due to aging, and to prevent generation of cracks at the bonding interface.
  • coated member 5 does not need to coat
  • the second covering member 5 may be mixed with a material that functions as a heat conductive material, like the first covering member 4. Even in such a case, the second covering member 5 needs to have lower thermal conductivity than the first covering member 4.
  • the main material of the first covering member 4 and the second covering member 5 is resin, but materials such as ceramics may be used. Even in such a case, the material covering the second electrode 3b needs to have a lower thermal conductivity than the material covering the first electrode 3a.
  • the support substrate 6 is joined to the second electrode 3b so as to support the second electrode 3b.
  • the support substrate 6 is made of an insulating material, and for example, a general insulating substrate such as a glass epoxy substrate can be used.
  • thermoelectric conversion module As a manufacturing method of the thermoelectric conversion module 1 which concerns on a present Example, between the two punches which function as an electricity pressurization member which comprises a manufacturing apparatus, the prepared 1st thermoelectric conversion element 2a, 2nd thermoelectric conversion element 2b, The first electrode 3a, the second electrode 3b, the connection electrode 3c, and the extraction electrode 3d are disposed. Thereafter, current is supplied while pressurizing the two punches toward the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the first electrode 3a, the second electrode 3b, the connection electrode 3c, and the extraction electrode 3d.
  • thermoelectric conversion element 2a and the second thermoelectric conversion element 2b and the first electrode 3a, the second electrode 3b, the connection electrode 3c, and the extraction electrode 3d are diffusion bonded (plasma bonded), and a plurality of first The thermoelectric conversion element 2a and the second thermoelectric conversion element 2b are connected in series to form a series connection circuit including five series connection bodies 13 and these series connection bodies.
  • Such energization and pressurization is performed in a vacuum, nitrogen gas, or inert gas atmosphere chamber.
  • thermoelectric conversion element 2a the bonded first thermoelectric conversion element 2a, second thermoelectric conversion element 2b, first electrode 3a, second electrode 3b, connection electrode 3c, and extraction electrode 3d are mounted on the support substrate 6. More specifically, the second electrode 3b is bonded to a metal pattern formed on the support substrate 6 via a bonding member such as solder, and the first thermoelectric conversion element 2a, the second thermoelectric conversion element 2b, the first The electrode 3a, the second electrode 3b, the connection electrode 3c, and the extraction electrode 3d are supported.
  • thermoelectric conversion module 1 is completed through the above steps.
  • thermoelectric conversion module 1 Comparative between this example and comparative example
  • thermoelectric conversion module 1 Comparative between this example and comparative example
  • comparative example a comparative product which is a comparative product
  • the difference between the thermoelectric conversion module 1 according to the present embodiment and the comparative example is that in the comparative example, a non-flexible plate-like metal electrode is used as a member corresponding to the connection electrode 3c and the extraction electrode 3d. It has been done.
  • FIG. 5 is a graph showing voltage fluctuations related to the thermoelectric conversion module 1 during a predetermined test
  • FIG. 6 is a graph showing voltage fluctuations related to a comparative example during the predetermined test. 5 and 6, the vertical axis represents voltage (arbitrary unit), and the horizontal axis represents elapsed time (seconds).
  • the predetermined test is a test in which the thermoelectric conversion module 1 and the comparative example are installed in a general-purpose engine (400 cc ⁇ 3700 rpm) as a heat source and durability is confirmed. In the predetermined test, cooling is performed using a water-cooled chiller (20 ° C. setting, flow rate: 4.5 L / min).
  • thermoelectric conversion module 1 outputs a stable voltage with no voltage fluctuation after 900 seconds, although the voltage rises until 900 seconds.
  • the connection electrode 3c and the extraction electrode 3d having flexibility are arranged at the end of the series connection body 13, and thus the thermoelectric This is because the connection electrode 3c and the extraction electrode 3d do not peel from the first electrode 3a even if stress concentration occurs due to the temperature rise of the conversion module 1.
  • an inflexible plate-like electrode is disposed instead at the end of the series connection body 13, so that the inflexible electrode becomes the first as the temperature rises in the comparative example. It peels off from the electrode 3a, the voltage is not stable, and the fluctuation remains large.
  • connection electrode 3c and the extraction electrode 3d having flexibility are arranged at the end of the series connection body 13, the stress concentration accompanying the temperature rise of the thermoelectric conversion module 1 is achieved. Even if this occurs, the connection electrode 3c and the extraction electrode 3d do not peel from the first electrode 3a. Moreover, when the thermoelectric conversion module 1 is mounted on a vehicle, electrode peeling due to engine vibration can be prevented by the above-described structure. That is, the thermoelectric conversion module 1 according to the present embodiment can prevent exfoliation of electrodes and the like without depending on use conditions, and can realize excellent reliability.
  • positioned at the both ends may be sufficient. Even in this case, it is possible to reduce the influence of distortion caused by the stress generated at both ends of the thermoelectric conversion module 1, to prevent peeling of the extraction electrode 3d without depending on the use conditions, and to realize excellent reliability.
  • thermoelectric conversion module plate-like metal plates are used for the first electrode 3a and the second electrode 3b.
  • flexible electrodes such as the connection electrode 3c and the extraction electrode 3d are used. Good. By doing in this way, the influence of the distortion accompanying the stress in not only the end part of the thermoelectric conversion module but all the electrode parts can be reduced, and it becomes possible to provide a more reliable thermoelectric conversion module. Become.
  • thermoelectric conversion module according to the first embodiment of the present invention is joined to a plurality of juxtaposed thermoelectric conversion elements and one end of the thermoelectric conversion element, and electrically connects one end of the adjacent thermoelectric conversion elements.
  • thermoelectric conversion module according to the second embodiment of the present invention includes the plurality of series connection bodies in the thermoelectric conversion module according to the first embodiment described above, and the series connection bodies are connected to each other by the third electrode. Thereby, more thermoelectric conversion elements can be arrange
  • thermoelectric conversion module according to the third embodiment of the present invention is the thermoelectric conversion module according to the first or second embodiment described above, wherein the third electrode includes a mesh metal.
  • thermoelectric conversion module according to the fourth embodiment of the present invention is the thermoelectric conversion module according to the third embodiment described above, wherein the third electrode has a structure in which metal plates are fixed to both ends of a mesh metal. Thereby, even if stress concentration occurs in the end portion of the series connection body, the influence of the strain on the third electrode can be further reduced, and peeling of the third electrode can be reliably prevented.
  • thermoelectric conversion module according to the fifth embodiment of the present invention is the thermoelectric conversion module according to any of the first to fourth embodiments described above, wherein the first electrode and the second electrode have flexibility. Thereby, the influence of the distortion accompanying the stress in not only the edge part of a thermoelectric conversion module but all the electrode parts can be reduced, and a more reliable thermoelectric conversion module is realizable.
  • thermoelectric conversion module 2a 1st thermoelectric conversion element 2b 2nd thermoelectric conversion element 3a 1st electrode 3b 2nd electrode 3c Connection electrode (3rd electrode) 3d extraction electrode (third electrode) 4 first covering member 5 second covering member 6 support substrate 11 first cylindrical portion 12 second cylindrical portion 13 series connection body

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

並設された複数の熱電変換素子と、前記熱電変換素子の一端に接合され、隣接する前記熱電変換素子の一端同士を電気的に接続する第1電極と、前記熱電変換素子の他端に接合され、隣接する前記熱電変換素子の他端同士を電気的に接続する第2電極と、を有し、前記複数の熱電変換素子、前記第1電極、及び前記第2電極は、少なくとも1つの直列接続体を形成し、前記直列接続体の端部には可撓性を備える第3電極が配設されていること。

Description

熱電変換モジュール
 本発明は、ゼーベック効果による熱電発電を行う熱電変換モジュールに関する。
 熱電変換モジュールは、ゼーベック効果によって熱エネルギーを電気エネルギーに変換することが可能である熱電変換素子から構成されるモジュールである。このようなエネルギーの変換性質を利用することで、産業・民生用プロセスや移動体から排出される排熱を有効な電力に変換することができるため、環境問題に配慮した省エネルギー技術として当該熱電変換モジュール及びこれを構成する熱電変換素子が注目されている。
 このような熱電変換モジュールは、一般的に、複数個の熱電変換素子(p型半導体及びn型半導体)を電極で接合して構成される。このような熱電変換モジュールは、例えば、特許文献1に開示されている。特許文献1に開示されている熱電変換モジュールは、一対の基板と、一方の端部が当該基板の一方に配置される第1電極と電気的に接続され、他方の端部が当該基板の他方に配置される第2電極と電気的に接続される複数の熱電変換素子と、当該熱電変換素子に電気的に接続される第1電極を、隣接する熱電変換素子に電気的に接続される第2電極に、電気的に接続する接続部とを備えている。
特開2013-115359号公報
 しかしながら、特許文献1に開示されているような熱電変換モジュールの構造においては、当該熱電変換モジュールをエンジンの排気部等の熱源に搭載して使用する場合、エンジンの排気量の増加に伴って熱量が上昇すると、当該熱源に接触する基板が熱膨張によって歪み或いは湾曲することがある。このような基板の歪み又は湾曲が生じると、熱電変換モジュールの引出用の端子、又は当該端子の近傍(すなわち、熱電変換モジュールの始端及び終端)に位置する電極又は接続部に応力が集中し、当該端子が熱電変換素子から剥離したり、或いは当該端子の近傍に位置する電極が接続部から剥離する問題が生じていた。このような剥離は、熱電変換モジュールにおける内部抵抗及び電圧の変動につながり、信頼性の低下をもたらすことになる。
 本発明はこのような課題に鑑みてなされたものであり、その目的とするところは、使用条件に依存することなく電極等の剥離を防止し、信頼性に優れた熱電変換モジュールを提供することにある。
 上述した目的を達成するため、本発明の熱電変換モジュールは、並設された複数の熱電変換素子と、前記熱電変換素子の一端に接合され、隣接する前記熱電変換素子の一端同士を電気的に接続する第1電極と、前記熱電変換素子の他端に接合され、隣接する前記熱電変換素子の他端同士を電気的に接続する第2電極と、を有し、前記複数の熱電変換素子、前記第1電極、及び前記第2電極は、少なくとも1つの直列接続体を形成し、前記直列接続体の端部には可撓性を備える第3電極が配設されている。
 本発明に係る熱電変換モジュールによれば、使用条件に依存することなく電極等の剥離を防止し、優れた信頼性を実現することができる。
実施例に係る熱電変換モジュールの斜視図である。 実施例に係る熱電変換モジュールの上面図である。 図2における線III-IIIに沿った切断部端面図である。 実施例に係る熱電変換モジュールに使用される電極の側面図である。 所定試験中の熱電変換モジュールに関する電圧変動を示すグラフである。 所定試験中の比較例に関する電圧変動を示すグラフである。
 以下、図面を参照し、本発明による熱電変換モジュールの実施の形態について、実施例に基づき詳細に説明する。なお、本発明は以下に説明する内容に限定されるものではなく、その要旨を変更しない範囲において任意に変更して実施することが可能である。また、実施例の説明に用いる図面は、いずれも本発明による熱電変換モジュール又はその構成部材を模式的に示すものであって、理解を深めるべく部分的な強調、拡大、縮小、又は省略等を行っており、各構成部材の縮尺や形状等を正確に表すものとはなっていない場合がある。更に、実施例で用いる様々な数値は、いずれも一例を示すものであり、必要に応じて様々に変更することが可能である。
<実施例>
(熱電変換モジュールの構造)
 以下において、図1乃至図3を参照しつつ、本実施例に係る熱電変換モジュール1の構造について説明する。ここで、図1は本実施例に係る熱電変換モジュール1の斜視図である。また、図2は本実施例に係る熱電変換モジュール1の上面図である。更に、図3は図2における線III-IIIに沿った切断部端面図である。そして、図1における一方向をX方向と定義し、X方向に直交する方向をY方向、及びZ方向と定義するとともに、特に熱電変換モジュール1の高さ方向をZ方向と定義する。
 図1乃至図3から分かるように、本実施例に係る熱電変換モジュール1は、並設された複数の第1熱電変換素子2a及び第2熱電変換素子2bと、当該第1熱電変換素子2a及び第2熱電変換素子2bの端部に設けられた第1電極3a及び第2電極3bと、を有している。また、本実施例に係る熱電変換モジュール1は、熱電変換モジュール1のX方向の端部に位置する第1電極3a同士を接続する接続電極3cと、熱電変換モジュール1の外部接続電極として機能する引出電極3dと、を有している。更に、本実施例に係る熱電変換モジュール1は、第1電極3aを被覆するように設けられた第1被覆部材4と、当該第1熱電変換素子2a、第2熱電変換素子2b、及び接続電極3cを被覆するように設けられた第2被覆部材5と、第2電極3bを支持するように設けられた支持基板6と、を有している。
 なお、接続電極3cのいずれかを選択して説明する場合には、接続電極3c、接続電極3c、接続電極3c、又は接続電極3cとして説明し、引出電極3dのいずれかを選択して説明する場合には、引出電極3d、又は引出電極3dとして説明する。
 本実施例において、第1熱電変換素子2aはN型半導体材料から構成され、第2熱電変換素子2bはP型半導体材料から構成されている。また、第1熱電変換素子2a及び第2熱電変換素子2bは、交互且つマトリックス状(X方向に8個、Y方向に5個、合計40個)に配置されている。更に、隣接する第1熱電変換素子2a及び第2熱電変換素子2bは、第1電極3a及び第2電極3bを介して電気的に接続されている。そして、図3に示すように、本実施例において、第1熱電変換素子2a及び第2熱電変換素子2bは、直径が互いに異なる円柱体が連結した形状を有している。より具体的には図3に示すように、第1熱電変換素子2a及び第2熱電変換素子2bは、直径が大きい第1円柱部11(例えば、直径5mm)が第1電極3a側に位置し、直径が小さい第2円柱部12(例えば、直径3mm)が第2電極3b側に位置している。なお、第1熱電変換素子2a及び第2熱電変換素子2bの形状はこのような形状に限定されることなく、例えば、円柱状又は角柱状であってもよい。
 第1電極3a及び第2電極3bは、同一の形状(平板状)を有し、例えば、銅板から形成されている。また、第1電極3aは、X方向に5個、Y方向に5個(合計25個)並設されている。更に、X方向の両端に位置する第1電極3aの一端には、第1熱電変換素子2a又は第2熱電変換素子2bのいずれか一方のみが接続され、他端には接続電極3c又は引出電極3dが接続されている。一方、第2電極3b、X方向に4個、Y方向に5個(合計20個)並設されている。また、第2電極3bの一端には第1熱電変換素子2aが接続され、他端には第2熱電変換素子2bが接続されている。そして、図1及び図3から分かるように、第1電極3a及び第2電極3bは、Z方向において、第1熱電変換素子2a及び第2熱電変換素子2bを挟むように配置されている。
 このような第1熱電変換素子2a、第2熱電変換素子2b、第1電極3a、及び第2電極3bの配置関係により、第1熱電変換素子2a及び第2熱電変換素子2bが直列に接続されることになる。特に、本実施例においては、X方向に並設された、4個の第1熱電変換素子2a、4個の第2熱電変換素子2b、5個の第1電極3a、及び4個の第2電極3bから1つの直列接続体13が形成されている。すなわち、熱電変換モジュール1には合計5個の直列接続体13が形成されている。また、Y方向において隣接する直列接続体13同士は、それぞれの一端同士が接続電極3cを介して接続されている。なお、直列接続体13のいずれかを選択して説明する場合には、直列接続体13a、直列接続体13b、直列接続体13c、直列接続体13d、又は直列接続体13eとして説明する。
 ここで、第1電極3a及び第2電極3bは、銅板に限定されることなく、他の導電性材料(例えば、アルミニウム等の金属材料)によって形成されてもよい。また、第1電極3a及び第2電極3bの数量、形状は上述した内容に限定されることなく、第1熱電変換素子2a及び第2熱電変換素子2b(すなわち、起電力の大きさ)に応じて適宜変更することができる。更には、第1熱電変換素子2a及び第2熱電変換素子2bを並列に接続するように第1電極3a及び第2電極3bを配設してもよい。
 接続電極3c及び引出電極3dは、同一の構造を有している。具体的には、図4に示すように、両電極はメッシュ状金属21と、当該メッシュ状金属21の両端に固着された2つの金属板22から構成されている。接続電極3c及び引出電極3dは良好な可撓性を備えるメッシュ状金属21を含むため、接続電極3c及び引出電極3d自体としても可撓性を備えることになる。ここで、メッシュ状金属21の開口率及び開口寸法は、接続電極3c及び引出電極3dに優れた可撓性を備えさせることができる範囲内において、適宜設定することができる。
 また、本実施例において、メッシュ状金属21及び金属板22は銅から形成されているが、これらの材料は銅に限定されることなく、他の金属を用いることができる。特に、接続電極3c及び引出電極3dの良好な可撓性を保持しつつ、優れた電気伝導率も保持できる材料が好ましい。更に、接続電極3c及び引出電極3dは、電極自体が良好な可撓性を保持することができれば、メッシュ状金属21を用いることなく、メッシュ状とは異なる構造の金属材料を使用してもよい。
 図2に示すように、-Y側に位置する引出電極3dに接続された直列接続体13aの他端(+X側)に接続電極3cが接続されており、当該接続電極3cを介して1つY側に位置する直列接続体13bが接続されることになる。また、直列接続体13bは、直列接続体13aと接続した端部とは反対側(-X側)においても接続電極3cが接続されており、当該他の接続電極3cを介して1つY側に位置する直列接続体13cに接続されることになる。更に、同様の接続構成により、直列接続体13cと直列接続体13dが+X側において接続電極3cを介して接続され、直列接続体13dと直列接続体13eが-X側において接続電極3cを介して接続されている。そして、直列接続体13eの+X側には、引出電極3dが接続されている。
 このような、直列接続体13と接続電極3cとの接続関係により、熱電変換モジュール1には、ジグザグ状の1つの直列接続回路が形成されることになる。そして、当該直列接続回路の両端には、外部接続用の引出電極3dが配置されているため、熱電変換モジュール1にて生じた電力を外部に取り出すことが可能になる。なお、このようなジグザグ状の1つの直列接続回路を形成するため、直列接続体13a、13c、13eと、直列接続体13b、13dとにおける第1熱電変換素子2a及び第2熱電変換素子2bの配置関係は逆になっている。
 図1及び図3から分かるように、第1被覆部材4は、第1電極3aが埋設されるように、第1電極3aの表面を被覆している。また、第1被覆部材4は絶縁性を備える樹脂から形成され、且つ当該樹脂には熱伝導性材料として機能するアルミニウム、銅、又は窒化アルミニウム等の金属材料が混合されている。このような構造により、第1被覆部材4は、比較的に高い熱伝導性を備えるとともに、第1電極3aの周囲の電気的絶縁状態を良好に維持する。
 また、図1及び図3から分かるように、第2被覆部材5は、第1熱電変換素子2a、第2熱電変換素子2b、第2電極3b、及び接続電極3cが埋設されるように、第1熱電変換素子2a、第2熱電変換素子2b、第2電極3b、及び接続電極3cを被覆している。また、第2被覆部材5は絶縁性を備える樹脂から形成され、且つ当該樹脂には断熱材料が混合されている。例えば、第2被覆部材5を形成する断熱材料としては、グラスウール等の繊維系断熱材やポリスチレンフォーム等の発泡系断熱材を用いることができる。
 このような構造により、第2被覆部材5は、第1被覆部材4よりも低い熱伝導性を備え、第1熱電変換素子2a、第2熱電変換素子2b、第2電極3b、及び接続電極3cにおける放熱を抑制する機能を備える。そして、第2被覆部材5は、第1電極3a及び第2電極3b間の温度差を大きくし且つその温度差を一定に保ち、より大きな起電力を生じさせることができる。また、第2被覆部材5は、第1熱電変換素子2a、第2熱電変換素子2b、第2電極3b、及び接続電極3cの周囲の電気的絶縁状態を良好に維持する。
 更に、第2被覆部材5によって第1熱電変換素子2a、第2熱電変換素子2b、第2電極3b、及び接続電極3cが比較的に強固に保持されているため、熱電変換モジュール1自体の強度を向上させることがきる。更に、第1熱電変換素子2a及び第2熱電変換素子2bが完全に被覆されているため、第1熱電変換素子2a及び第2熱電変換素子2bの破損及び汚れ等を防止することができ、熱電変換モジュール1自体の熱電変換効率及び信頼性の低下を抑制することができる。そして、第1熱電変換素子2a及び第2熱電変換素子2bと、第1電極3a及び第2電極3bとの接合界面の縁部が露出しないため、熱電変換素子と電極との接合強度を向上させるとともに、経年変化にともなう接合強度の低下を抑制することができ、接合界面におけるクラックの発生を防止できる。
 なお、第2被覆部材5は、第1熱電変換素子2a、及び第2熱電変換素子2bを完全に被覆している必要はなく、その一部分を被覆していてもよい。このような場合であっもて、第1電極3aと第2電極3bとの間に温度差を生じさせつつ当該温度差を一定に保つことができ、熱電変換モジュール1自体の強度を向上させることができるからである。また、第2被覆部材5は、第1被覆部材4と同様に、熱伝導性材料として機能する材料が混合されていてもよい。このような場合であっても、第2被覆部材5は、第1被覆部材4よりも低い熱伝導性を備える必要がある。更に、本実施例においては、第1被覆部材4及び第2被覆部材5の主材料が樹脂であったが、セラミックス等の材料を用いてもよい。このような場合であっても、第2電極3bを被覆する材料が、第1電極3aを被覆する材料よりも低い熱伝導率を備える必要がある。
 そして、図1及び図3に示すように、支持基板6は、第2電極3bを支持するように、第2電極3bと接合している。支持基板6は、絶縁材料から構成されており、例えば、ガラスエポキシ基板等の一般的な絶縁基板を用いることができる。
(熱電変換モジュールの製造方法)
 本実施例に係る熱電変換モジュール1の製造方法としては、製造装置を構成する通電加圧部材として機能する2つのパンチの間に、準備した第1熱電変換素子2a、第2熱電変換素子2b、第1電極3a、第2電極3b、接続電極3c、及び引出電極3dを配置する。その後、2つのパンチを第1熱電変換素子2a、第2熱電変換素子2b、第1電極3a、第2電極3b、接続電極3c、及び引出電極3dに向かって加圧しつつ電流を供給する。これにより、第1熱電変換素子2a及び第2熱電変換素子2bと、第1電極3a、第2電極3b、接続電極3c、及び引出電極3dとが拡散接合(プラズマ接合)され、複数の第1熱電変換素子2a及び第2熱電変換素子2bが直列に接続され、5つの直列接続体13及びこれらの直列接続体からなる直列接続回路が形成される。このような通電加圧は、真空、窒素ガス、又は不活性ガス雰囲気のチャンバ内で行われる。
 次に、接合した状態の第1熱電変換素子2a、第2熱電変換素子2b、第1電極3a、第2電極3b、接続電極3c、及び引出電極3dを支持基板6上に実装する。より具体的には、支持基板6上に形成された金属パターン上に第2電極3bを半田等の接合部材を介して接合し、第1熱電変換素子2a、第2熱電変換素子2b、第1電極3a、第2電極3b、接続電極3c、及び引出電極3dの支持をなす。
 次に、一般的なインサート形成によって第2被覆部材5を形成し、その後に同様のインサート形成によって第1被覆部材4を形成する。以上の工程を経て、熱電変換モジュール1が完成することになる。
(本実施例と比較例との比較)
 次に、図5及び図6を参照しつつ、本実施例に係る熱電変換モジュール1と、比較品である比較例に係る熱電変換モジュール(以下、比較例と称する)とについて実施した試験及びその結果について説明する。ここで、本実施例に係る熱電変換モジュール1と比較例との相違点は、比較例には接続電極3c及び引出電極3dに相当する部材として、非可撓性の板状の金属電極が使用されていることである。
 図5は所定試験中の熱電変換モジュール1に関する電圧変動を示すグラフであり、図6は所定試験中の比較例に関する電圧変動を示すグラフである。なお、図5及び図6において、縦軸が電圧(任意単位)であり、横軸が経過時間(秒)である。また、所定試験とは、熱電変換モジュール1及び比較例を熱源である汎用エンジン(400cc・3700rpm)に設置して耐久性を確認する試験のことである。また、当該所定試験においては、水冷チラー(20℃設定、流量:4.5L/min)を使用して冷却を行っている。
 図5及び図6を比較するとわかるように、本実施例に係る熱電変換モジュール1は、役900秒までは電圧が上昇するものの、900秒以降は電圧の変動が無く、安定した電圧を出力していることが分かる。一方、比較例は、電圧が徐々に上昇するものの、電圧の変動が落ち着くことなく、約2000秒まで大きな変動を繰り返している。このような差が出る理由としては、本実施例に係る熱電変換モジュール1においては、直列接続体13の端部に可撓性を備える接続電極3c及び引出電極3dが配置されているため、熱電変換モジュール1の温度上昇に伴う応力集中が生じたとしても、接続電極3c及び引出電極3dが第1電極3aから剥離することが無いためである。一方、比較例においては、直列接続体13の端部に非可撓性の板状の電極が代わりに配置されているため、比較例の温度上昇にともない当該非可撓性の電極が第1電極3aから剥離してしまい、電圧が安定せず、その変動が大きいままとなる。
 以上のように、本実施例においては、直列接続体13の端部に可撓性を備える接続電極3c及び引出電極3dが配設されているため、熱電変換モジュール1の温度上昇に伴う応力集中が生じたとしても、接続電極3c及び引出電極3dが第1電極3aから剥離することがなくなる。また、上述した構造により、熱電変換モジュール1を車両に搭載した場合に、エンジンの振動による電極剥離も防止することができる。すなわち、本実施例に係る熱電変換モジュール1は、使用条件に依存することなく電極等の剥離を防止し、優れた信頼性を実現することができる。
 なお、本実施例においては、複数の直列接続体13を形成していたが、1つの直列接続体13のみを形成し、その両端に引出電極3dが配置されている構造であってもよい。この場合においても、熱電変換モジュール1の両端に生じる応力にともなう歪みの影響を低減し、使用条件に依存することなく引出電極3dの剥離を防止し、優れた信頼性を実現することができる。
 また、本実施例においては、第1電極3a及び第2電極3bに板状の金属板を使用していたが、接続電極3c及び引出電極3dのような可撓性の電極を使用してもよい。このようにすることにより、熱電変換モジュールの端部のみならず、全ての電極部分における応力に伴う歪みの影響を低減することができ、より信頼性の高い熱電変換モジュールを提供することが可能になる。
<本発明の実施態様>
 本発明の第1実施態様に係る熱電変換モジュールは、並設された複数の熱電変換素子と、前記熱電変換素子の一端に接合され、隣接する前記熱電変換素子の一端同士を電気的に接続する第1電極と、前記熱電変換素子の他端に接合され、隣接する前記熱電変換素子の他端同士を電気的に接続する第2電極と、を有し、前記複数の熱電変換素子、前記第1電極、及び前記第2電極は、少なくとも1つの直列接続体を形成し、前記直列接続体の端部には可撓性を備える第3電極が配設されている。これにより、使用条件に依存することなく電極等の剥離を防止し、優れた信頼性を実現することができる。
 本発明の第2実施態様に係る熱電変換モジュールは、前述した第1実施態様に係る熱電変換モジュールにおいて、前記直列接続体を複数有し、前記直列接続体同士を前記第3電極によって接続する。これにより、より多くの熱電変換素子を熱電変換モジュール内に配置し、より優れた熱電変換効率を備える熱電変換モジュールを実現することができる。
 本発明の第3実施態様に係る熱電変換モジュールは、前述した第1又は第2実施態様に係る熱電変換モジュールおいて、前記第3電極は、メッシュ状金属を含む。これにより、直列接続体の端部に応力集中が生じたとしても、歪による第3電極への影響をより一層低減することができ、第3電極の剥離を確実に防止することができる。
 本発明の第4実施態様に係る熱電変換モジュールは、前述した第3実施態様に係る熱電変換モジュールおいて、前記第3電極は、メッシュ状金属の両端に金属板が固着された構造を備える。これにより、直列接続体の端部に応力集中が生じたとしても、歪による第3電極への影響をより一層低減することができ、第3電極の剥離を確実に防止することができる。
 本発明の第5実施態様に係る熱電変換モジュールは、前述した第1乃至第4実施態様に係る熱電変換モジュールのいずれかにおいて、前記第1電極及び前記第2電極は、可撓性を備える。これにより、熱電変換モジュールの端部のみならず全ての電極部分における応力に伴う歪みの影響を低減することができ、より信頼性の高い熱電変換モジュールを実現することができる。
 1  熱電変換モジュール
 2a  第1熱電変換素子
 2b  第2熱電変換素子
 3a  第1電極
 3b  第2電極
 3c  接続電極(第3電極)
 3d  引出電極(第3電極)
 4  第1被覆部材
 5  第2被覆部材
 6  支持基板
 11  第1円柱部
 12  第2円柱部
 13  直列接続体
 

Claims (5)

  1.  並設された複数の熱電変換素子と、
     前記熱電変換素子の一端に接合され、隣接する前記熱電変換素子の一端同士を電気的に接続する第1電極と、
     前記熱電変換素子の他端に接合され、隣接する前記熱電変換素子の他端同士を電気的に接続する第2電極と、を有し、
     前記複数の熱電変換素子、前記第1電極、及び前記第2電極は、少なくとも1つの直列接続体を形成し、
     前記直列接続体の端部には可撓性を備える第3電極が配設されている熱電変換モジュール。
  2.  前記直列接続体を複数有し、
     前記直列接続体同士を前記第3電極によって接続する請求項1に記載の熱電変換モジュール。
  3.  前記第3電極は、メッシュ状金属を含む請求項1又は2に記載の熱電変換モジュール。
  4.  前記第3電極は、前記メッシュ状金属の両端に金属板が固着された構造を備える請求項3に記載の熱電変換モジュール。
  5.  前記第1電極及び前記第2電極は、可撓性を備える請求項1乃至4のいずれか1項に記載の熱電変換モジュール。
PCT/JP2017/009040 2016-03-10 2017-03-07 熱電変換モジュール WO2017154917A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/083,433 US20190081228A1 (en) 2016-03-10 2017-03-07 Thermoelectric conversion module
CA3014404A CA3014404C (en) 2016-03-10 2017-03-07 Thermoelectric conversion module
KR1020187025813A KR102154007B1 (ko) 2016-03-10 2017-03-07 열전 변환 모듈
EP17763257.7A EP3428981B1 (en) 2016-03-10 2017-03-07 Thermoelectric conversion module
CN201780016260.XA CN108780832B (zh) 2016-03-10 2017-03-07 热电转换模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047300A JP6933441B2 (ja) 2016-03-10 2016-03-10 熱電変換モジュール
JP2016-047300 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154917A1 true WO2017154917A1 (ja) 2017-09-14

Family

ID=59790686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009040 WO2017154917A1 (ja) 2016-03-10 2017-03-07 熱電変換モジュール

Country Status (7)

Country Link
US (1) US20190081228A1 (ja)
EP (1) EP3428981B1 (ja)
JP (1) JP6933441B2 (ja)
KR (1) KR102154007B1 (ja)
CN (1) CN108780832B (ja)
CA (1) CA3014404C (ja)
WO (1) WO2017154917A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111656546B (zh) 2018-01-23 2024-04-16 Lg伊诺特有限公司 热电模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252528A (ja) * 1999-02-26 2000-09-14 Nhk Spring Co Ltd 熱電発電用熱電変換モジュールブロック
JP2001244510A (ja) * 2000-02-28 2001-09-07 Nissan Motor Co Ltd 熱電変換モジュールおよびその製造方法
JP2012235088A (ja) * 2011-04-22 2012-11-29 Panasonic Corp 熱電変換モジュールとその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168318B2 (ja) * 1996-08-29 2001-05-21 日本航空電子工業株式会社 薄膜熱電変換装置
JP3501394B2 (ja) * 1999-03-30 2004-03-02 日本発条株式会社 熱電変換モジュール
JP3469812B2 (ja) * 1999-03-31 2003-11-25 日本発条株式会社 熱電変換モジュールおよび熱電変換モジュールブロック
JP2001168402A (ja) * 1999-12-03 2001-06-22 Aisin Seiki Co Ltd 熱電半導体チップと電極との半田付け方法及び熱電半導体モジュール
JP4255691B2 (ja) * 2002-12-27 2009-04-15 独立行政法人物質・材料研究機構 熱電変換材料を利用した電子部品の冷却装置
JP4385898B2 (ja) * 2004-09-08 2009-12-16 パナソニック電工株式会社 熱電変換素子の製造方法
JP4728745B2 (ja) * 2005-08-29 2011-07-20 株式会社東芝 熱電素子デバイス及び熱電モジュール
JP5134395B2 (ja) * 2008-02-26 2013-01-30 アイシン精機株式会社 熱電モジュール、熱電モジュールを用いた熱電装置及び熱電モジュールの製造方法
JP2010098035A (ja) * 2008-10-15 2010-04-30 Konica Minolta Holdings Inc 熱電変換素子
JP2010177417A (ja) * 2009-01-29 2010-08-12 Konica Minolta Holdings Inc 熱電変換モジュール及びその製造方法
JP5375950B2 (ja) * 2009-03-18 2013-12-25 コニカミノルタ株式会社 熱電変換素子
CN101894905B (zh) * 2010-06-07 2011-06-15 江西纳米克热电电子股份有限公司 一种柔性热电半导体发电器件及其制备方法
JPWO2013065856A1 (ja) * 2011-11-01 2015-04-02 日本電気株式会社 熱電変換素子および熱電変換モジュール
JP5913935B2 (ja) 2011-11-30 2016-05-11 日本サーモスタット株式会社 熱電変換モジュール
CN103354240A (zh) * 2012-11-13 2013-10-16 国家纳米科学中心 一种复合式纳米发电机及其制备方法
US9748466B2 (en) * 2013-01-08 2017-08-29 Analog Devices, Inc. Wafer scale thermoelectric energy harvester
JP6240514B2 (ja) * 2014-01-22 2017-11-29 株式会社アツミテック 熱電変換モジュール
CN104701449B (zh) * 2015-02-13 2017-12-05 国家电网公司 一种柔性热电薄膜器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252528A (ja) * 1999-02-26 2000-09-14 Nhk Spring Co Ltd 熱電発電用熱電変換モジュールブロック
JP2001244510A (ja) * 2000-02-28 2001-09-07 Nissan Motor Co Ltd 熱電変換モジュールおよびその製造方法
JP2012235088A (ja) * 2011-04-22 2012-11-29 Panasonic Corp 熱電変換モジュールとその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428981A4 *

Also Published As

Publication number Publication date
CN108780832B (zh) 2022-03-22
EP3428981B1 (en) 2020-09-09
JP6933441B2 (ja) 2021-09-08
CA3014404A1 (en) 2017-09-14
KR102154007B1 (ko) 2020-09-09
JP2017163033A (ja) 2017-09-14
EP3428981A1 (en) 2019-01-16
CN108780832A (zh) 2018-11-09
KR20180110074A (ko) 2018-10-08
EP3428981A4 (en) 2019-09-25
US20190081228A1 (en) 2019-03-14
CA3014404C (en) 2021-10-26

Similar Documents

Publication Publication Date Title
JP3927784B2 (ja) 熱電変換部材の製造方法
US20130074897A1 (en) Thermoelectric module and manufacturing method for thermoelectric module
JP6730425B2 (ja) 熱電変換モジュールパッケージ
WO2015111628A1 (ja) 熱電変換モジュール
JP2006049736A (ja) 熱電モジュール
CN110024145B (zh) 热电模块和热电发电机
WO2017154917A1 (ja) 熱電変換モジュール
JP2017208478A (ja) 熱電変換モジュールおよび熱電変換装置
JP2018093152A (ja) 熱発電デバイス
JP2020123744A (ja) 熱電発電機
CN108713259B (zh) 热电转换模块
WO2017154918A1 (ja) 熱電変換モジュール及び熱電変換素子
JP5992028B2 (ja) 回路基板
WO2016088762A2 (ja) シリサイド系熱電発電素子
WO2015111629A1 (ja) 熱電変換モジュール
JP2017204505A (ja) 熱電変換装置
JP2017069443A (ja) 熱電変換モジュール
JP2000091650A (ja) 高温度熱電変換素子
KR20190114889A (ko) 열전 모듈
JP2007180455A (ja) 熱電変換デバイス及び熱電変換デバイスの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 3014404

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20187025813

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187025813

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017763257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763257

Country of ref document: EP

Effective date: 20181010

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763257

Country of ref document: EP

Kind code of ref document: A1