WO2017154773A1 - 光検出装置 - Google Patents

光検出装置 Download PDF

Info

Publication number
WO2017154773A1
WO2017154773A1 PCT/JP2017/008483 JP2017008483W WO2017154773A1 WO 2017154773 A1 WO2017154773 A1 WO 2017154773A1 JP 2017008483 W JP2017008483 W JP 2017008483W WO 2017154773 A1 WO2017154773 A1 WO 2017154773A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabry
interference filter
perot interference
light
photodetector
Prior art date
Application number
PCT/JP2017/008483
Other languages
English (en)
French (fr)
Inventor
真樹 廣瀬
柴山 勝己
笠原 隆
敏光 川合
泰生 大山
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN202210293509.4A priority Critical patent/CN114659632A/zh
Priority to EP17763113.2A priority patent/EP3428589B1/en
Priority to CN201780015575.2A priority patent/CN108780007B/zh
Priority to EP24189138.1A priority patent/EP4425574A2/en
Priority to KR1020187026622A priority patent/KR102487457B1/ko
Priority to FIEP17763113.2T priority patent/FI3428589T3/fi
Priority to US16/082,616 priority patent/US11448553B2/en
Priority to EP24159648.5A priority patent/EP4350430A3/en
Publication of WO2017154773A1 publication Critical patent/WO2017154773A1/ja
Priority to US17/847,881 priority patent/US20220333988A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0286Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02165Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors using interference filters, e.g. multilayer dielectric filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/024Arrangements for cooling, heating, ventilating or temperature compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type

Definitions

  • the present disclosure relates to a light detection device including a Fabry-Perot interference filter having a first mirror and a second mirror whose distances are variable.
  • Patent Document 1 includes a Fabry-Perot interferometer, a holder that holds the Fabry-Perot interferometer, a Peltier element attached to the holder, and a vacuum container that houses the Fabry-Perot interferometer, the holder, and the Peltier element.
  • the etalon part of the interferometer is described.
  • a Peltier element is attached to the side of the holder with respect to the optical path from the light entrance window of the vacuum vessel to the light exit window of the vacuum vessel via the Fabry-Perot interferometer.
  • the Fabry-Perot interferometer is cooled from the side by the Peltier element, so that when the Fabry-Perot interference filter and the photodetector are accommodated in the package, the Fabry-Perot interference filter and the photodetector are uniform. Therefore, the Fabry-Perot interference filter and the photodetector may not be maintained at a uniform temperature.
  • the vicinity of the light incident window of the vacuum vessel is cooled by the Peltier element, so that when the light transmitting member is provided in the opening of the package that houses the Fabry-Perot interference filter and the photodetector, the light transmission Condensation may occur in the member.
  • the present disclosure maintains a Fabry-Perot interference filter and a photodetector housed in a package at a uniform temperature while suppressing the occurrence of condensation and cracking in a light transmitting member for allowing light to enter the package.
  • An object of the present invention is to provide a photodetection device capable of performing
  • a light detection device includes a first mirror and a second mirror that are variable in distance from each other, and transmits light according to the distance between the first mirror and the second mirror.
  • a Fabry-Perot interference filter having a region provided on a predetermined line, a photodetector arranged on one side of the line with respect to the Fabry-Perot interference filter, and detecting light transmitted through the light transmission region;
  • a package having an opening located on the other side of the Fabry-Perot interference filter and housing the Fabry-Perot interference filter and the photodetector, a light transmitting member provided in the package so as to close the opening, and a Fabry-Perot
  • a temperature control element having a first region that is thermally connected to the interference filter and the photodetector and functions as one of the heat absorption region and the heat generation region, It is located on one side with respect to the optical detector at least on the line.
  • the first region of the temperature control element that functions as one of the heat absorption region and the heat generation region is located on one side at least on the line with respect to the light detector.
  • the Fabry-Perot interference filter and the photo detector have a uniform temperature. Maintained.
  • a Fabry-Perot interference filter and a photodetector are disposed between the light transmission member and the first region of the temperature control element.
  • the light transmission member is excessively cooled, and the occurrence of condensation on the light transmission member due to the difference between the temperature of the light transmission member and the outside air temperature (usage environment temperature of the light detection device) is suppressed. .
  • production of the crack in the light transmissive member resulting from the difference between the temperature of a light transmissive member and external temperature becoming large by heating a light transmissive member excessively is suppressed. Therefore, according to this photodetection device, the Fabry-Perot interference filter and the photodetector housed in the package can be uniformly distributed while suppressing the occurrence of condensation and cracks in the light transmission member for allowing light to enter the package. Temperature can be maintained.
  • the outer edge of the opening is located on the inner side of the outer edge of the Fabry-Perot interference filter when viewed from a direction parallel to the line
  • the temperature adjustment element includes the package and A second region that is thermally connected and functions as the other of the heat absorption region and the heat generation region may be included.
  • the second region of the temperature adjustment element that functions as the other of the heat absorption region and the heat generation region, and the light transmission member Heat is easily transferred through the package. Therefore, according to this structure, it can suppress more reliably that dew condensation and a crack generate
  • the outer edge of the light transmission member may be located outside the outer edge of the Fabry-Perot interference filter when viewed from a direction parallel to the line.
  • the contact area between the light transmissive member and the package is increased as compared with the case where the outer edge of the light transmissive member is located inside the outer edge of the Fabry-Perot interference filter. Heat is easily transmitted between them. Therefore, according to this structure, it can suppress more reliably that dew condensation and a crack generate
  • the temperature adjustment element is disposed in the package
  • the light detector is disposed on the temperature adjustment element
  • the Fabry-Perot interference filter includes the light detector. You may arrange
  • a light detection device includes a support member that supports a portion of a bottom surface of a Fabry-Perot interference filter that is outside a light transmission region, a side surface of the Fabry-Perot interference filter, and a heat conductive member that contacts the support member. And may be further provided.
  • the support member is disposed between the Fabry-Perot interference filter and the first region of the temperature control element as compared with the case where the heat conducting member that contacts the side surface of the Fabry-Perot interference filter and the support member is not provided. Heat is easy to be transmitted through. Therefore, according to this configuration, the Fabry-Perot interference filter and the photodetector can be efficiently maintained at a uniform temperature.
  • the heat conducting member may be an adhesive member that adheres the Fabry-Perot interference filter and the support member. According to this configuration, the holding state of the Fabry-Perot interference filter on the support member can be stabilized.
  • the support member has a mounting surface on which a portion outside the light transmission region of the bottom surface of the Fabry-Perot interference filter is mounted. At least a portion is located on the placement surface such that a portion of the placement surface is disposed outside the side surface, and the heat conducting member is formed by the side surface and a portion of the placement surface. It is arrange
  • the temperature adjustment element may be embedded in a wall portion of the package. According to this configuration, the volume of the space in the package can be reduced, and as a result, the Fabry-Perot interference filter and the photodetector can be maintained at a uniform temperature more efficiently.
  • the Fabry-Perot interference filter and the photodetector housed in the package are maintained at a uniform temperature while suppressing the occurrence of condensation and cracking in the light transmitting member for allowing light to enter the package. It is possible to provide a photodetection device that can be used.
  • FIG. 1 is a cross-sectional view of the photodetecting device according to the first embodiment.
  • FIG. 2 is a plan view of the photodetecting device of FIG.
  • FIG. 3 is a plan view of a portion including a Fabry-Perot interference filter, a support member, and a heat conduction member in the light detection device of FIG.
  • FIG. 4 is a perspective view of a Fabry-Perot interference filter of the light detection device of FIG.
  • FIG. 5 is a cross-sectional view of the Fabry-Perot interference filter along the line VV in FIG.
  • FIG. 6 is a cross-sectional view of the photodetecting device of the second embodiment.
  • FIG. 7 is a cross-sectional view of a modification of the photodetecting device of the second embodiment.
  • FIG. 8 is a cross-sectional view of a modification of the photodetecting device of the second embodiment.
  • the light detection device 1 ⁇ / b> A includes a package 2.
  • the package 2 is a CAN package having a stem 3 and a cap 4.
  • the cap 4 is integrally formed by the side wall 5 and the top wall 6.
  • the top wall 6 faces the stem 3 in a direction parallel to a predetermined line L that is a straight line.
  • the stem 3 and the cap 4 are made of, for example, metal and are airtightly joined to each other.
  • the temperature adjusting element 50 is fixed to the inner surface 3a of the stem 3.
  • the temperature adjustment element 50 is, for example, a Peltier element, and has a heat absorption region 50a and a heat generation region 50b that face each other in a direction parallel to the line L.
  • the temperature adjusting element 50 is arranged in the package 2 so that the heat generating region 50b is located on the inner surface 3a side of the stem 3 and the heat absorbing region 50a is located on the opposite side. Thereby, the heat generating region 50b of the temperature adjusting element 50 is thermally connected to the package 2.
  • the wiring board 7 is fixed on the endothermic region 50 a of the temperature control element 50.
  • a substrate material of the wiring substrate 7 for example, silicon, ceramic, quartz, glass, plastic, or the like can be used.
  • a photodetector 8 and a temperature compensation element (not shown) such as a thermistor are mounted on the wiring board 7.
  • the heat absorption region 50 a of the temperature adjustment element 50 is thermally connected to the photodetector 8 and the temperature compensation element (not shown) via the wiring board 7.
  • the photodetector 8 is arranged on the line L. More specifically, the photodetector 8 is arranged so that the center line of the light receiving portion coincides with the line L.
  • the photodetector 8 is an infrared detector such as a quantum sensor using InGaAs or the like, or a thermal sensor using a thermopile or bolometer. When detecting light in each of the ultraviolet, visible, and near-infrared wavelength regions, for example, a silicon photodiode can be used as the photodetector 8.
  • the photodetector 8 may be provided with one light receiving portion, or a plurality of light receiving portions may be provided in an array. Furthermore, a plurality of photodetectors 8 may be mounted on the wiring board 7.
  • a plurality of support members 9 are fixed on the wiring board 7 via heat conduction members (not shown).
  • a material of each support member 9 for example, silicon, ceramic, quartz, glass, plastic, or the like can be used.
  • a Fabry-Perot interference filter 10 is fixed on the plurality of support members 9 via a heat conducting member 15. Thereby, the heat absorption region 50a of the temperature control element 50 is thermally connected to the Fabry-Perot interference filter 10 via the wiring board 7, the heat conductive member (not shown), the plurality of support members 9, and the heat conductive member 15. It is connected.
  • the heat conducting member 15 is an adhesive member that bonds the Fabry-Perot interference filter 10 and the support member 9 in addition to being a heat conducting member that transfers heat from the Fabry-Perot interference filter 10 to the support member 9.
  • the heat conduction member (not shown) arranged between the wiring board 7 and each support member 9 is a heat conduction member that conducts heat from each support member 9 to the wiring board 7, and each support member. It is also an adhesive member that bonds the member 9 and the wiring board 7 together.
  • a resin material for example, a resin material such as silicone, urethane, epoxy, acrylic, hybrid, etc., which is conductive
  • Fabry-Perot interference filter 10 is arranged on line L. More specifically, the Fabry-Perot interference filter 10 is arranged so that the center line of the light transmission region 10a coincides with the line L.
  • the Fabry-Perot interference filter 10 may be supported by one support member 9 instead of by the plurality of support members 9.
  • the Fabry-Perot interference filter 10 may be supported by a support member 9 that is integrally formed with the wiring board 7.
  • a plurality of lead pins 11 are fixed to the stem 3. More specifically, each lead pin 11 penetrates the stem 3 while maintaining electrical insulation and airtightness with the stem 3.
  • Each lead pin 11 includes an electrode pad provided on the wiring board 7, a terminal of the temperature adjustment element 50, a terminal of the photodetector 8, a terminal of the temperature compensation element, and a terminal of the Fabry-Perot interference filter 10. 12 are electrically connected. Thereby, it is possible to input / output electric signals to / from each of the temperature adjusting element 50, the photodetector 8, the temperature compensating element, and the Fabry-Perot interference filter 10.
  • the package 2 has an opening 2a. More specifically, the opening 2 a is provided in the top wall 6 of the cap 4 so that the center line thereof coincides with the line L.
  • a light transmitting member 13 is disposed on the inner surface 6a of the top wall 6 so as to close the opening 2a. That is, the light transmission member 13 is provided in the package 2 so as to close the opening 2a.
  • the light transmitting member 13 is airtightly joined to the inner surface 6 a of the top wall 6.
  • the light transmission member 13 transmits at least light in the measurement wavelength range of the light detection device 1A.
  • the light transmitting member 13 is a plate-like member including a light incident surface 13a, a light emitting surface 13b, and a side surface 13c that face each other in a direction parallel to the line L.
  • the light transmitting member 13 is made of, for example, glass, quartz, silicon, germanium, plastic, or the like.
  • the light transmissive member 13 is made of a material having a lower thermal conductivity than the material constituting the package 2.
  • a band pass filter 14 is provided on the light emitting surface 13 b of the light transmitting member 13.
  • the bandpass filter 14 is disposed on the light emitting surface 13b of the light transmitting member 13 by, for example, vapor deposition or pasting.
  • the bandpass filter 14 selectively transmits light in the measurement wavelength range of the photodetecting device 1A.
  • the bandpass filter 14 is a dielectric multilayer film made of a combination of a high refractive material such as TiO 2 or Ta 2 O 5 and a low refractive material such as SiO 2 or MgF 2 .
  • the package 2 includes a temperature adjustment element 50, a wiring board 7, a photodetector 8, a temperature compensation element (not shown), a plurality of support members 9, a heat conduction member 15, and a Fabry-Perot interference filter 10. Is housed.
  • the photodetector 8 is disposed on the heat absorption region 50 a of the temperature adjustment element 50 via the wiring board 7.
  • the Fabry-Perot interference filter 10 is connected via the wiring substrate 7, the plurality of support members 9, and the heat conducting member 15 so that the photodetector 8 is positioned between the temperature adjustment element 50 and the Fabry-Perot interference filter 10. It is disposed on the endothermic region 50 a of the temperature adjustment element 50.
  • the photodetector 8 is located on one side (here, the stem 3 side) with respect to the Fabry-Perot interference filter 10 on the line L, and the heat absorption region 50a of the temperature control element 50 is light on the line L. It is located on one side (here, the stem 3 side) with respect to the detector 8.
  • the opening 2a of the package 2 and the light transmission member 13 are located on the other side (opposite side of one side) (here, opposite to the stem 3) with respect to the Fabry-Perot interference filter 10 on the line L. .
  • the Fabry-Perot interference filter 10 and the light transmission member 13 are separated from each other via a gap.
  • the positional relationship and the size relationship of each part when viewed from the direction parallel to the line L are as follows. As shown in FIG. 2, the center line of the light receiving portion of the photodetector 8, the center line of the light transmission region 10a of the Fabry-Perot interference filter 10, and the center line of the opening 2a of the package 2 coincide with the line L. Yes.
  • the outer edge of the light transmission region 10a of the Fabry-Perot interference filter 10 and the outer edge of the opening 2a of the package 2 are, for example, circular.
  • the outer edge of the photodetector 8 and the outer edge of the Fabry-Perot interference filter 10 are, for example, rectangular.
  • the outer edge of the light transmission region 10 a of the Fabry-Perot interference filter 10 is located outside the outer edge of the photodetector 8.
  • the outer edge of the opening 2 a of the package 2 is located outside the outer edge of the light transmission region 10 a of the Fabry-Perot interference filter 10 and is located inside the outer edge of the Fabry-Perot interference filter 10.
  • the outer edge of the light transmitting member 13 is located outside the outer edge of the Fabry-Perot interference filter 10.
  • the outer edge of the temperature adjustment element 50 is located outside the outer edge of the Fabry-Perot interference filter 10.
  • one outer edge when viewed from a predetermined direction, one outer edge is located outside of the other outer edges” means that “one outer edge surrounds the other outer edge when viewed from a predetermined direction”. Means that “one outer edge includes another outer edge when viewed from a predetermined direction”. In addition, “when viewed from a predetermined direction, one outer edge is positioned inside the other outer edges” means that “when viewed from a predetermined direction, one outer edge is surrounded by other outer edges. Means that “one outer edge is included in the other outer edge when viewed from a predetermined direction”.
  • the Fabry-Perot interference filter 10 is supported by a pair of support members 9.
  • the pair of support members 9 face each other across the light transmission region 10 a of the Fabry-Perot interference filter 10 when viewed from a direction parallel to the line L.
  • a portion of the bottom surface 10 b of the Fabry-Perot interference filter 10 that is outside the light transmission region 10 a and along a part of the side surface 10 c of the Fabry-Perot interference filter 10. Is placed.
  • the support member 9 supports a portion of the bottom surface 10b of the Fabry-Perot interference filter 10 outside the light transmission region 10a.
  • a part of the side surface 10c of the Fabry-Perot interference filter 10 is such that a part of the mounting surface 9a of each support member 9 is outside the part of the side surface 10c (when viewed from a direction parallel to the line L). It is located on the mounting surface 9a of each support member 9 so as to be arranged on a part of the outer side. Accordingly, a part of the side surface 10c and a part of the placement surface 9a of each support member 9 (a part of the side surface 10c outside the part, that is, the Fabry-Perot interference filter 10 on the placement surface 9a is placed. A corner portion C is formed with a portion that is not.
  • the heat conducting member 15 is disposed on the placement surface 9a of each support member 9 along the corner C.
  • the heat conducting member 15 includes a first portion 15a and a second portion 15b.
  • the first portion 15 a is a portion arranged along the corner C.
  • the second portion 15 b is a portion disposed between the mounting surface 9 a of the support member 9 and the bottom surface 10 b of the Fabry-Perot interference filter 10.
  • the heat conducting member 15 is in contact with a part of the bottom surface 10 b and part of the side surface 10 c of the Fabry-Perot interference filter 10 and a part of the mounting surface 9 a of the support member 9.
  • the first portion 15a reaches the side surface of the substrate 21 of the Fabry-Perot interference filter 10 described later.
  • the Fabry-Perot interference filter 10 is provided from the outside via the opening 2a of the package 2, the light transmission member 13, and the bandpass filter 14.
  • the light transmission region 10a When light enters the light transmission region 10a, light having a predetermined wavelength is selectively transmitted (details will be described later).
  • the light transmitted through the light transmission region 10 a of the Fabry-Perot interference filter 10 enters the light receiving portion of the photodetector 8 and is detected by the photodetector 8.
  • a light transmission region 10 a that transmits light according to the distance between the first mirror and the second mirror is provided on the line L.
  • the distance between the first mirror and the second mirror is controlled with extremely high accuracy. That is, the light transmission region 10a can control the distance between the first mirror and the second mirror to a predetermined distance in order to selectively transmit light having a predetermined wavelength in the Fabry-Perot interference filter 10.
  • This region is a region through which light having a predetermined wavelength according to the distance between the first mirror and the second mirror can be transmitted.
  • the Fabry-Perot interference filter 10 includes a substrate 21. On the light incident side surface 21a of the substrate 21, an antireflection layer 31, a first stacked body 32, an intermediate layer 33, and a second stacked body 34 are stacked in this order. A gap (air gap) S is formed by the frame-shaped intermediate layer 33 between the first stacked body 32 and the second stacked body 34.
  • the substrate 21 is made of, for example, silicon, quartz, glass or the like.
  • the antireflection layer 31 and the intermediate layer 33 are made of, for example, silicon oxide.
  • the thickness of the intermediate layer 33 is preferably an integral multiple of 1/2 of the center transmission wavelength (that is, the center wavelength of the wavelength range that can be transmitted by the Fabry-Perot interference filter 10).
  • the portion of the first stacked body 32 corresponding to the light transmission region 10 a functions as the first mirror 35.
  • the first mirror 35 is supported on the substrate 21 via the antireflection layer 31.
  • the first stacked body 32 is configured by alternately stacking a plurality of polysilicon layers and a plurality of silicon nitride layers one by one.
  • the optical thickness of each of the polysilicon layer and the silicon nitride layer constituting the first mirror 35 is preferably an integral multiple of 1/4 of the center transmission wavelength. Note that a silicon oxide layer may be used instead of the silicon nitride layer.
  • the portion of the second stacked body 34 corresponding to the light transmission region 10a functions as the second mirror 36 that faces the first mirror 35 with the gap S therebetween.
  • the second mirror 36 is supported on the substrate 21 via the antireflection layer 31, the first stacked body 32, and the intermediate layer 33.
  • the second stacked body 34 is configured by alternately stacking a plurality of polysilicon layers and a plurality of silicon nitride layers one by one.
  • the optical thickness of each of the polysilicon layer and the silicon nitride layer constituting the second mirror 36 is preferably an integral multiple of 1/4 of the center transmission wavelength. Note that a silicon oxide layer may be used instead of the silicon nitride layer.
  • a plurality of through holes (not shown) extending from the surface 34 a of the second stacked body 34 to the space S are provided in a portion corresponding to the space S in the second stacked body 34.
  • the plurality of through holes are formed to such an extent that the function of the second mirror 36 is not substantially affected.
  • the plurality of through-holes are used for forming a void S by removing a part of the intermediate layer 33 by etching.
  • the first electrode 22 is formed on the first mirror 35 so as to surround the light transmission region 10a.
  • a second electrode 23 is formed on the first mirror 35 so as to include the light transmission region 10a.
  • the first electrode 22 and the second electrode 23 are formed by doping the polysilicon layer with impurities to reduce the resistance.
  • the size of the second electrode 23 is preferably a size including the entire light transmission region 10a, but may be substantially the same as the size of the light transmission region 10a.
  • the third electrode 24 is formed on the second mirror 36.
  • the third electrode 24 faces the first electrode 22 and the second electrode 23 with the gap S in the direction parallel to the line L.
  • the third electrode 24 is formed by doping the polysilicon layer with impurities to reduce the resistance.
  • the second electrode 23 is located on the opposite side of the first electrode 22 from the third electrode 24 in the direction parallel to the line L. That is, the first electrode 22 and the second electrode 23 are not located on the same plane in the first mirror 35. The second electrode 23 is farther from the third electrode 24 than the first electrode 22.
  • a pair of terminals 25 are provided so as to face each other with the light transmission region 10a interposed therebetween.
  • Each terminal 25 is disposed in a through hole extending from the surface 34 a of the second stacked body 34 to the first stacked body 32.
  • Each terminal 25 is electrically connected to the first electrode 22 via a wiring 22a.
  • a pair of terminals 26 are provided so as to face each other with the light transmission region 10a interposed therebetween.
  • Each terminal 26 is disposed in a through hole extending from the surface 34 a of the second stacked body 34 to the front of the intermediate layer 33.
  • Each terminal 26 is electrically connected to the second electrode 23 via the wiring 23a and is also electrically connected to the third electrode 24 via the wiring 24a. Note that the direction in which the pair of terminals 25 face each other and the direction in which the pair of terminals 26 face each other are orthogonal (see FIG. 4).
  • the trenches 27 and 28 are provided on the surface 32 a of the first stacked body 32.
  • the trench 27 extends in an annular shape so as to surround the wiring 23 a extending from the terminal 26 along the direction parallel to the line L.
  • the trench 27 electrically insulates the first electrode 22 and the wiring 23a.
  • the trench 28 extends in a ring shape along the inner edge of the first electrode 22.
  • the trench 28 electrically insulates the first electrode 22 and a region inside the first electrode 22.
  • the region in each of the trenches 27 and 28 may be an insulating material or a gap.
  • a trench 29 is provided on the surface 34 a of the second stacked body 34.
  • the trench 29 extends in an annular shape so as to surround the terminal 25.
  • the trench 29 electrically insulates the terminal 25 from the third electrode 24.
  • the region in the trench 28 may be an insulating material or a gap.
  • An antireflection layer 41, a third laminated body 42, an intermediate layer 43, and a fourth laminated body 44 are laminated in this order on the surface 21b on the light emitting side of the substrate 21.
  • the antireflection layer 41 and the intermediate layer 43 have the same configurations as the antireflection layer 31 and the intermediate layer 33, respectively.
  • the third stacked body 42 and the fourth stacked body 44 have symmetrical stacked structures with the first stacked body 32 and the second stacked body 34, respectively, with respect to the substrate 21.
  • the antireflection layer 41, the third stacked body 42, the intermediate layer 43, and the fourth stacked body 44 have a function of suppressing the warpage of the substrate 21.
  • the opening 40a is provided in the antireflection layer 41, the third laminated body 42, the intermediate layer 43, and the fourth laminated body 44 so as to include the light transmission region 10a.
  • the opening 40a has a diameter substantially the same as the size of the light transmission region 10a.
  • the opening 40 a is opened on the light emitting side, and the bottom surface of the opening 40 a reaches the antireflection layer 41.
  • a light shielding layer 45 is formed on the light emitting surface of the fourth stacked body 44.
  • the light shielding layer 45 is made of, for example, aluminum.
  • a protective layer 46 is formed on the surface of the light shielding layer 45 and the inner surface of the opening 40a.
  • the protective layer 46 is made of, for example, aluminum oxide. Note that the optical influence of the protective layer 46 can be ignored by setting the thickness of the protective layer 46 to 1 to 100 nm (preferably about 30 nm).
  • the Fabry-Perot interference filter 10 configured as described above, when a voltage is applied between the first electrode 22 and the third electrode 24 via the terminals 25 and 26, an electrostatic force corresponding to the voltage is generated. Occurs between the first electrode 22 and the third electrode 24. Due to the electrostatic force, the second mirror 36 is attracted to the first mirror 35 fixed to the substrate 21, and the distance between the first mirror 35 and the second mirror 36 is adjusted. Thus, in the Fabry-Perot interference filter 10, the distance between the first mirror 35 and the second mirror 36 is variable.
  • the wavelength of light transmitted through the Fabry-Perot interference filter 10 depends on the distance between the first mirror 35 and the second mirror 36 in the light transmission region 10a. Therefore, by adjusting the voltage applied between the first electrode 22 and the third electrode 24, the wavelength of the transmitted light can be appropriately selected.
  • the second electrode 23 is at the same potential as the third electrode 24. Therefore, the second electrode 23 functions as a compensation electrode for keeping the first mirror 35 and the second mirror 36 flat in the light transmission region 10a.
  • the Fabry-Perot interference filter is changed while changing the voltage applied to the Fabry-Perot interference filter 10 (that is, while changing the distance between the first mirror 35 and the second mirror 36 in the Fabry-Perot interference filter 10).
  • the photodetector 8 By detecting the light transmitted through the ten light transmission regions 10a with the photodetector 8, a spectral spectrum can be obtained.
  • the endothermic region 50a of the temperature adjusting element 50 is located on one side of the line L with respect to the photodetector 8.
  • the Fabry-Perot interference filter 10 and the photodetector are compared. 8 is cooled uniformly.
  • the lower surfaces of the interference filters 10 are in surface contact with each other via an adhesive or the like. Thereby, compared with the case where each member is in point contact, for example, cooling is performed efficiently.
  • the Fabry-Perot interference filter 10 and the photodetector 8 are arranged between the light transmission member 13 and the heat absorption region 50 a of the temperature adjustment element 50.
  • the light transmissive member 13 is excessively cooled, and condensation occurs in the light transmissive member 13 due to the difference between the temperature of the light transmissive member 13 and the outside air temperature (use environment temperature of the light detection device 1A) being increased. Is suppressed. Therefore, according to the photodetector 1A, the Fabry-Perot interference filter 10 and the photodetector housed in the package 2 while suppressing the occurrence of dew condensation in the light transmitting member 13 for allowing light to enter the package 2. 8 can be maintained at a uniform temperature.
  • the Fabry-Perot interference filter 10 is uniformly cooled by the temperature adjusting element 50, so that the temperature of the Fabry-Perot interference filter 10 is kept constant regardless of the operating environment temperature of the light detection device 1A.
  • the thin film-like second mirror 36 is operated with extremely high precision so that the first mirror 35 and the first mirror 35 It is necessary to control the distance to the two mirrors 36 with extremely high accuracy.
  • the Fabry-Perot interference filter 10 has a non-uniform temperature for each part, it becomes difficult to control the distance between the first mirror 35 and the second mirror 36 with extremely high accuracy. Therefore, it is very important to maintain the Fabry-Perot interference filter 10 at a uniform temperature. Furthermore, since the photodetector 8 is uniformly cooled by the temperature adjusting element 50, the dark current generated in the photodetector 8 can be reduced.
  • the configuration in which the temperature adjustment element 50 is arranged in the package 2 tends to increase the volume in the package 2 as compared with the configuration in which the temperature adjustment element 50 is arranged outside the package 2. Therefore, in the configuration in which the temperature adjustment element 50 is disposed in the package 2, it is difficult to maintain the temperature in the package 2 uniformly as the volume in the package 2 increases.
  • the configuration of the light detection device 1A it is possible to effectively maintain the Fabry-Perot interference filter 10 and the light detector 8 that greatly affect the accuracy of the measurement result at a uniform temperature.
  • the risk resulting from the occurrence of condensation in the light transmitting member 13 will be described.
  • the amount of light incident on the package 2 may decrease, and the sensitivity of the photodetector 8 may decrease.
  • multiple reflections, scattering, lens effects, etc. occur in the light incident into the package 2, which causes stray light, and the resolution of the transmitted light incident on the photodetector 8, the S / N ratio, etc. May decrease.
  • the stability of the detection characteristics of the photodetector 8 may be reduced.
  • the peak wavelength of transmitted light with respect to the control voltage applied to the Fabry-Perot interference filter 10 may change. Further, the first mirror 35 and the second mirror 36 may stick to each other due to moisture, leading to failure.
  • the configuration of the photodetecting device 1A that can suppress the occurrence of condensation in the light transmitting member 13 is effective. Furthermore, since the configuration of the photodetecting device 1A is a configuration that can suppress the occurrence of dew condensation in the light transmitting member 13, it is possible to reduce the size of the photodetecting device 1A by reducing the distance between the members.
  • the outer edge of the opening 2a of the package 2 when viewed from a direction parallel to the line L, the outer edge of the opening 2a of the package 2 is located inside the outer edge of the Fabry-Perot interference filter 10, and the heat generation region of the temperature adjusting element 50 50 b is thermally connected to the package 2.
  • the package 2 is placed between the heat generating region 50b of the temperature control element 50 and the light transmitting member 13 as compared with the case where the outer edge of the opening 2a is located outside the outer edge of the Fabry-Perot interference filter 10.
  • Heat is easily transmitted through (specifically, heat is easily transmitted from the heat generating region 50b of the temperature control element 50 to the light transmitting member 13 through the package 2). Therefore, it is possible to more reliably suppress the occurrence of condensation in the light transmission member 13.
  • the outer edge of the light transmission member 13 when viewed from a direction parallel to the line L, the outer edge of the light transmission member 13 is located outside the outer edge of the Fabry-Perot interference filter 10.
  • the contact area between the light transmissive member 13 and the package 2 is increased as compared with the case where the outer edge of the light transmissive member 13 is located inside the outer edge of the Fabry-Perot interference filter 10. Heat is likely to be transferred between the package 2 and the package 2 (specifically, heat is easily transferred from the heat generating region 50b of the temperature adjusting element 50 to the light transmitting member 13 via the package 2).
  • the contact area between the light transmitting member 13 and the package 2 becomes larger. Therefore, it is possible to more reliably suppress the occurrence of condensation in the light transmission member 13. Further, according to this configuration, even if the wire 12 connected to the Fabry-Perot interference filter 10 is bent, the insulating light transmitting member 13 prevents the wire 12 from contacting the package 2. Thereby, it is possible to prevent an electrical signal for controlling the Fabry-Perot interference filter 10 from flowing into the package 2 and to control the Fabry-Perot interference filter 10 with high accuracy.
  • the temperature adjustment element 50 is disposed in the package 2
  • the light detector 8 is disposed on the temperature adjustment element 50
  • the light detector 8 includes the temperature adjustment element 50 and the Fabry-Perot interference filter.
  • the Fabry-Perot interference filter 10 is disposed on the temperature adjustment element 50 so as to be positioned between the temperature adjustment element 50 and the temperature adjustment element 50. Thereby, the Fabry-Perot interference filter 10 and the photodetector 8 can be maintained at a uniform temperature efficiently with a small and simple configuration.
  • the thickness of the temperature adjusting element 50 is 0.7 to 2 mm
  • the thickness of the wiring board 7 is 0.3 mm
  • the thickness of the support member 9 is 0.6 mm.
  • the thickness of the Fabry-Perot interference filter 10 is 0.6 mm.
  • the height of the portion of the lead pin 11 that protrudes from the upper surface of the stem 3 is 0.2 to 1 mm, for example, 0.5 mm. That is, the temperature adjustment element 50 is thicker than each of the wiring substrate 7, the support member 9, and the Fabry-Perot interference filter 10.
  • the temperature adjusting element 50 Since the temperature adjusting element 50 is thick, the photodetector 8 and the Fabry-Perot interference filter 10 are not easily affected by the heat generated from the heat generating region 50b. On the other hand, since the wiring board 7, the support member 9, and the Fabry-Perot interference filter 10 are thin, cooling by the heat absorption region 50a is efficiently performed.
  • the upper surface of the lead pin 11 is at a position lower than the upper surfaces of the temperature adjustment element 50, the wiring board 7, the support member 9, and the Fabry-Perot interference filter 10. This facilitates the connection of the wire 12 from the photodetector 8 and the Fabry-Perot interference filter 10 to the lead pin 11 (particularly the photodetector 8 arranged so as to be covered by the Fabry-Perot interference filter 10 and the temperature compensation). It is possible to suppress the wire 12 drawn from the element from interfering with the Fabry-Perot interference filter 10).
  • the height of the Fabry-Perot interference filter 10 from the stem 3 is preferably not too high. Therefore, in the configuration in which the temperature adjustment element 50 is disposed under the laminate of the wiring board 7, the support member 9, and the Fabry-Perot interference filter 10, the height of the Fabry-Perot interference filter 10 from the stem 3 is increased. From the viewpoint of connecting the wire to the lead pin 11, it is not preferable.
  • the thickness of the wiring board 7, the support member 9, and the Fabry-Perot interference filter 10 is kept thin, so that the height of the Fabry-Perot interference filter 10 from the stem 3 is suppressed and the disadvantage is minimized. It is limited.
  • the Fabry-Perot interference filter 10 and the light transmission member 13 are separated from each other through a gap. Thereby, it is possible to suppress the Fabry-Perot interference filter 10 from being affected by the use environment temperature of the light detection device 1 ⁇ / b> A and the heat from the package 2 and the light transmission member 13.
  • the volume of the space above the Fabry-Perot interference filter 10 is equal to the Fabry-Perot interference filter 10.
  • the support member 9 that supports a portion of the bottom surface 10b of the Fabry-Perot interference filter 10 outside the light transmission region 10a, the side surface 10c of the Fabry-Perot interference filter 10, and the heat conduction that contacts the support member 9.
  • a member 15 is provided. Thereby, for example, compared with the case where the heat conducting member 15 in contact with the side surface 10c of the Fabry-Perot interference filter 10 and the support member 9 is not provided, the Fabry-Perot interference filter 10 and the endothermic region 50a of the temperature adjustment element 50 are reduced.
  • Heat is easily transferred through the support member 9 (specifically, heat is easily transferred from the Fabry-Perot interference filter 10 to the heat absorbing region 50a of the temperature adjusting element 50 through the support member 9). Therefore, the Fabry-Perot interference filter 10 and the photodetector 8 can be efficiently maintained at a uniform temperature.
  • the heat conducting member 15 is an adhesive member that adheres the Fabry-Perot interference filter 10 and the support member 9. Thereby, the holding state of the Fabry-Perot interference filter 10 on the support member 9 can be stabilized.
  • the heat conducting member 15 is disposed at the corner C and is in contact with a part of the side surface 10c of the Fabry-Perot interference filter 10 and a part of the mounting surface 9a of the support member 9.
  • the Fabry-Perot interference filter 10 and the photodetector 8 can be more efficiently maintained at a uniform temperature, and the holding state of the Fabry-Perot interference filter 10 on the support member 9 can be more reliably stabilized. it can.
  • disposing the heat conducting member 15 at the corner C is effective because the volume of the heat conducting member 15 can be increased and the posture of the heat conducting member 15 can be stabilized.
  • the light detection device 1B is different from the light detection device 1A described above in that it is configured as an SMD (Surface Mount Device).
  • the light detection device 1 ⁇ / b> B includes a main body 200 that constitutes a package 2 that houses the light detector 8 and the Fabry-Perot interference filter 10.
  • As a material of the main body 200 for example, ceramic, resin, or the like can be used.
  • a plurality of wires (not shown) are laid on the main body 200.
  • a plurality of mounting electrode pads 207 are provided on the bottom surface 200 a of the main body 200. Corresponding wirings (not shown) and the mounting electrode pads 207 are electrically connected to each other.
  • the main body 200 is formed with a first widened portion 201, a second widened portion 202, a third widened portion 203, a fourth widened portion 204, and a concave portion 205.
  • the concave portion 205, the fourth widened portion 204, the third widened portion 203, the second widened portion 202, and the first widened portion 201 are arranged in this order from the bottom surface 200a side with the predetermined line L being a straight line as the center line. Thus, one space is formed on the opposite side of the bottom surface 200a.
  • the photodetector 8 is fixed to the bottom surface of the recess 205.
  • the bottom surface of the recess 205 and the bottom surface of the photodetector 8 are bonded to each other through, for example, an adhesive member (not shown) having good thermal conductivity.
  • the photodetector 8 is disposed on the line L. More specifically, the photodetector 8 is arranged so that the center line of the light receiving portion coincides with the line L.
  • the Fabry-Perot interference filter 10 is fixed to the bottom surface of the third widened portion 203 via the heat conducting member 15. That is, the bottom surface of the third widened portion 203 and the bottom surface 10 b of the Fabry-Perot interference filter 10 are bonded via the heat conducting member 15.
  • the Fabry-Perot interference filter 10 is disposed on the line L. More specifically, the Fabry-Perot interference filter 10 is arranged so that the center line of the light transmission region 10a coincides with the line L.
  • a plate-like light transmission member 13 is fixed to the bottom surface of the first widened portion 201 via, for example, an adhesive member having good heat conduction.
  • a band pass filter 14 is provided on the light emitting surface 13 b of the light transmitting member 13. Note that a temperature compensating element (not shown) is embedded in the main body 200.
  • Each of the terminals of the photodetector 8, the temperature compensation element, and the Fabry-Perot interference filter 10 is supported via the wire 12 and wiring (not shown) or only via the wiring (not shown).
  • the mounting electrode pad 207 is electrically connected. Thereby, it is possible to input / output electric signals to / from each of the photodetector 8, the temperature compensating element, and the Fabry-Perot interference filter 10.
  • a temperature adjustment element 50 is embedded in a predetermined portion of the main body 200 that is the wall of the package 2. More specifically, in the main body 200, a portion between the bottom surface of the recess 205 and the bottom surface 200a of the main body portion 200, a portion between the bottom surface of the fourth widened portion 204 and the bottom surface 200a of the main body portion 200, and the first 3 The temperature control element 50 is embedded over the entire portion between the bottom surface of the widened portion 203 and the bottom surface 200a of the main body 200.
  • the temperature adjustment element 50 is, for example, a Peltier element.
  • a plurality of N-type semiconductor layers 51 and a plurality of P-type semiconductor layers 52 are alternately arranged.
  • the ends on the opposite side of the bottom surface 200a of the adjacent N-type semiconductor layers 51 and P-type semiconductor layers 52 so that all the N-type semiconductor layers 51 and P-type semiconductor layers 52 that are alternately arranged are connected in series.
  • the first metal member 53 When attention is paid to the N-type semiconductor layer 51 and the P-type semiconductor layer 52 connected to each other by the first metal member 53, if a current flows from the N-type semiconductor layer 51 to the P-type semiconductor layer 52, the first metal An endothermic phenomenon occurs in the member 53. Accordingly, the bottom surface of the third widened portion 203, the bottom surface of the fourth widened portion 204, and the bottom surface of the concave portion 205 function as the heat absorption region 50a.
  • the second metal member 54 When attention is paid to the P-type semiconductor layer 52 and the N-type semiconductor layer 51 connected to each other by the second metal member 54, if a current flows from the P-type semiconductor layer 52 to the N-type semiconductor layer 51, the second metal A heat generation phenomenon occurs in the member 54. Thereby, the bottom surface 200a of the main body 200 functions as a heat generating region 50b.
  • the terminal of the temperature control element 50 is electrically connected to the corresponding mounting electrode pad 207 via wiring (not shown). Thereby, input / output of an electric signal to the temperature control element 50 is possible.
  • the temperature control element 50 all the N-type semiconductor layers 51 and the P-type semiconductor layers 52 that are alternately arranged are connected in series. Therefore, when a current flows in a predetermined direction, a current flows in the direction from the N-type semiconductor layer 51 to the P-type semiconductor layer 52 in the first metal member 53, and the bottom surface of the third widened portion 203 and the fourth widened portion 204. And the bottom surface of the recess 205 function as the heat absorption region 50a.
  • the second metal member 54 current flows from the P-type semiconductor layer 52 to the N-type semiconductor layer 51, and the bottom surface 200a of the main body 200 is It functions as a heat generating area 50b.
  • the package 2 contains the light detector 8, the heat conducting member 15, and the Fabry-Perot interference filter 10.
  • a temperature compensation element (not shown) and a temperature adjustment element 50 are embedded in the wall portion of the package 2.
  • the photodetector 8 is disposed on the bottom surface of the recess 205 which is the heat absorption region 50 a of the temperature adjustment element 50.
  • the bottom surface of the recess 205 which is the heat absorption region 50 a is thermally connected to the photodetector 8.
  • the Fabry-Perot interference filter 10 is a first heat absorption region 50a of the temperature adjustment element 50 via the heat conducting member 15 so that the photodetector 8 is positioned between the temperature adjustment element 50 and the Fabry-Perot interference filter 10.
  • 3 is disposed on the bottom surface of the widened portion 203.
  • the bottom surface of the third widened portion 203 that is the heat absorption region 50 a is thermally connected to the Fabry-Perot interference filter 10.
  • the heat sink 60 is bonded to the bottom surface 200a of the main body 200, which is the heat generating region 50b of the temperature adjusting element 50, via an adhesive member having good heat conduction, for example. Thereby, the heat generated from the heat generating region 50 b can be efficiently radiated through the heat sink 60.
  • the heat sink 60 is thicker than the electrode pad 207, by providing a through-hole so that the heat sink 60 does not interfere with the external wiring board on which the light detection device 1B is mounted, the light detection device 1B is provided on the external wiring board. Can be implemented.
  • the through hole is not provided in the external wiring board, the electrode pad 207 is disposed on the side surface of the main body 200, and the light detection device 1B is mounted so that the line L is substantially horizontal to the surface of the external wiring board. Also good.
  • a metal plate thinner than the electrode pad 207 may be bonded to the bottom surface 200 a of the main body 200 and used as the heat sink 60. In this case, if the metal plate is made of the same material as the electrode pad 207 (for example, gold, silver, copper, aluminum, tungsten, etc.), the formation process on the bottom surface 200a can be performed simultaneously.
  • the light detector 8 is located on one side of the line L with respect to the Fabry-Perot interference filter 10 (here, on the bottom surface 200a side of the main body 200), and is a recess that is a heat absorption region 50a of the temperature adjustment element 50.
  • the bottom surface of 205 is positioned on one side with respect to the photodetector 8 on the line L (here, on the bottom surface 200a side of the main body 200).
  • the opening (first widened portion 201) of the package 2 and the light transmitting member 13 are on the other side (opposite side of one side) of the Fabry-Perot interference filter 10 on the line L (here, the bottom surface of the main body 200). (Opposite side of 200a).
  • the Fabry-Perot interference filter 10 and the light transmission member 13 are separated from each other via a gap.
  • the heat conducting member 15 is disposed on the bottom surface of the third widened portion 203 so as to be along the gap between the side surface of the Fabry-Perot interference filter 10 and the inner surface of the third widened portion 203.
  • the heat conducting member 15 includes a first portion disposed along a gap between the side surface of the Fabry-Perot interference filter 10 and the inner surface of the third widened portion 203, the bottom surface of the third widened portion 203, and the bottom surface of the Fabry-Perot interference filter 10. And a second portion disposed between the two.
  • the heat conducting member 15 is in contact with part of the bottom surface and part of the side surface of the Fabry-Perot interference filter 10 and the bottom surface of the third widened portion 203.
  • the first portion reaches the side surface of the substrate 21 of the Fabry-Perot interference filter 10.
  • the light transmission of the Fabry-Perot interference filter 10 from the outside through the opening (first widened portion 201) of the package 2, the light transmission member 13, and the bandpass filter 14.
  • light having a predetermined wavelength is selectively transmitted according to the distance between the first mirror 35 and the second mirror 36 in the light transmission region 10a.
  • the light transmitted through the light transmission region 10 a of the Fabry-Perot interference filter 10 enters the light receiving portion of the photodetector 8 and is detected by the photodetector 8.
  • the Fabry-Perot interference filter is changed while changing the voltage applied to the Fabry-Perot interference filter 10 (that is, while changing the distance between the first mirror 35 and the second mirror 36 in the Fabry-Perot interference filter 10).
  • the photodetector 8 By detecting the light transmitted through the ten light transmission regions 10a with the photodetector 8, a spectral spectrum can be obtained.
  • the bottom surface of the recess 205 in the endothermic region 50a of the temperature adjustment element 50 is located on one side of the line L with respect to the light detector 8. Further, the bottom surface of the third widened portion 203 in the endothermic region 50 a of the temperature control element 50 is located on one side with respect to the Fabry-Perot interference filter 10. As a result, the Fabry-Perot interference filter 10 and the photodetector 8 are uniformly cooled.
  • the bottom surface of the recess 205 and the bottom surface of the photodetector 8, and the bottom surface of the third widened portion 203 and the bottom surface of the Fabry-Perot interference filter 10 are in surface contact with each other via an adhesive or the like. Thereby, compared with the case where each member is in point contact, for example, cooling is performed efficiently.
  • the Fabry-Perot interference filter 10 and the photodetector 8 are disposed between the light transmission member 13 and the bottom surface of the recess 205. Further, the Fabry-Perot interference filter 10 is disposed between the light transmission member 13 and the bottom surface of the third widened portion 203.
  • the light transmission member 13 is excessively cooled, and the difference between the temperature of the light transmission member 13 and the outside air temperature (use environment temperature of the light detection device 1B) is increased. Is suppressed. Therefore, according to the photodetecting device 1B, it is possible to suppress the occurrence of dew condensation in the light transmitting member 13 for allowing light to enter the package 2, and the Fabry-Perot interference filter 10 housed in the package 2 and The photodetector 8 can be maintained at a uniform temperature.
  • the heat conducting member 15 is an adhesive member that adheres the Fabry-Perot interference filter 10 and the main body 200. Thereby, the holding
  • the heat conducting member 15 is disposed on the bottom surface of the third widened portion 203 so as to follow the gap between the side surface of the Fabry-Perot interference filter 10 and the inner surface of the third widened portion 203, and the Fabry-Perot interference filter 10 is in contact with each of a part of the side surface and the bottom surface of the third widened portion 203.
  • the Fabry-Perot interference filter 10 and the photodetector 8 can be more efficiently maintained at a uniform temperature, and the holding state of the Fabry-Perot interference filter 10 in the third widened portion 203 of the main body 200 can be more reliably ensured. Can be stabilized.
  • the temperature adjustment element 50 is embedded in the wall portion of the package 2. Thereby, the volume of the space in the package 2 can be reduced, and as a result, the Fabry-Perot interference filter 10 and the photodetector 8 can be maintained at a uniform temperature more efficiently.
  • the photodetector of the present disclosure is not limited to the first embodiment and the second embodiment described above.
  • the materials and shapes of each component are not limited to the materials and shapes described above, and various materials and shapes can be employed.
  • the main body 200 may be formed. According to this configuration, the temperature adjustment element 50, the photodetector 8, the heat conducting member 15, and the Fabry-Perot interference filter 10 can be thermally separated. As a result, the Fabry-Perot interference filter 10 and the light can be more efficiently separated.
  • the detector 8 can be maintained at a uniform temperature.
  • the Fabry-Perot interference filter 10 terminal and the photodetector 8 terminal are wired ( (Not shown) may be connected by bumps 16. According to this configuration, since the wire 12 is not necessary, the photodetector 1B can be reduced in size.
  • the bandpass filter 14 may be provided on the light incident surface 13a of the light transmission member 13 or light. It may be provided on both the light incident surface 13 a and the light emitting surface 13 b of the transmissive member 13.
  • the Fabry-Perot interference filter 10 has a laminated structure (antireflection) provided on the surface 21b on the light emitting side of the substrate 21.
  • the layer 41, the third stacked body 42, the intermediate layer 43, the fourth stacked body 44, the light shielding layer 45, and the protective layer 46) may not be provided. Further, only a part of layers (for example, only the antireflection layer 41 and the protective layer 46) may be provided as necessary.
  • the outer edge of the light transmission region 10a of the Fabry-Perot interference filter 10 when viewed from a direction parallel to the line L, the outer edge of the light transmission region 10a of the Fabry-Perot interference filter 10 is You may be located outside the outer edge of the opening 2a. In this case, the ratio of the light entering the light transmission region 10a out of the light incident from the opening 2a is increased, and the utilization efficiency of the light incident from the opening 2a is increased. Further, even if the position of the opening 2a with respect to the light transmission region 10a is slightly shifted, the light incident from the opening 2a enters the light transmission region 10a, so that the requirement for positional accuracy during assembly of the light detection devices 1A and 1B is eased. Is done.
  • the heat conducting member 15 does not include the second portion 15b as long as it includes the first portion 15a. May be.
  • the heat conducting member 15 is not limited to the above-described material, and may be a metal such as solder.
  • the endothermic region 50a of the temperature adjustment element 50 is in direct contact with the Fabry-Perot interference filter 10 so that the Fabry-Perot interference filter is in contact. 10 may be thermally connected to the Fabry-Perot interference filter 10 via some member. Similarly, the endothermic region 50a of the temperature control element 50 may be thermally connected to the photodetector 8 by directly contacting the photodetector 8, or may be thermally connected to the photodetector 8 through some member. May be connected to each other.
  • the heat generating region 50b of the temperature adjusting element 50 may be thermally connected to the package 2 by directly contacting the package 2, or via some member.
  • the package 2 may be thermally connected.
  • the light detector 8 may be disposed directly on the temperature adjustment element 50, or through some member. May be disposed on the temperature control element 50.
  • the temperature adjustment element 50 is used for the purpose of cooling the inside of the package 2. This is effective when the use environment temperature of the light detection devices 1A and 1B is higher than the set temperature (appropriate operation temperature) of the Fabry-Perot interference filter 10 and the light detector 8. On the other hand, when the use environment temperature of the light detection devices 1A and 1B is lower than the set temperature of the Fabry-Perot interference filter 10 and the light detector 8, the temperature adjustment element 50 is used for the purpose of heating the inside of the package 2. Also good.
  • the region functioning as the heat absorption region 50a (the first region thermally connected to the Fabry-Perot interference filter 10 and the photodetector 8) functions as the heat generation region 50b, and the heat generation region 50b
  • the region functioning as (in the photodetecting device 1A of the first embodiment, the second region thermally connected to the package 2) may function as the heat absorption region 50a.
  • the light transmission member 13 is excessively heated and the difference between the temperature of the light transmission member 13 and the outside air temperature (the use environment temperature of the light detection devices 1A and 1B) is increased. It is possible to suppress the occurrence of cracks and the like due to a stress difference between the light incident surface 13a that contracts due to a low outside air temperature and the light emitting surface 13b that is heated and expands. If a Peltier element is used as the temperature adjusting element 50, the heat absorption region and the heat generation region can be easily switched by switching the direction in which the current flows in the Peltier element.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Radiation Pyrometers (AREA)

Abstract

光検出装置は、光透過領域が所定のライン上に設けられたファブリペロー干渉フィルタと、ライン上においてファブリペロー干渉フィルタに対して一方の側に配置された光検出器と、ライン上においてファブリペロー干渉フィルタに対して他方の側に位置する開口を有するパッケージと、開口を塞ぐようにパッケージに設けられた光透過部材と、ファブリペロー干渉フィルタ及び光検出器と熱的に接続されて吸熱領域を有する温度調節素子と、を備える。吸熱領域は、ライン上において光検出器に対して一方の側に位置している。

Description

光検出装置
 本開示は、互いの距離が可変とされた第1ミラー及び第2ミラーを有するファブリペロー干渉フィルタを備える光検出装置に関する。
 特許文献1には、ファブリペロー干渉計と、ファブリペロー干渉計を保持するホルダと、ホルダに取り付けられたペルチェ素子と、ファブリペロー干渉計、ホルダ及びペルチェ素子を収容する真空容器と、を備える、干渉計のエタロン部が記載されている。このエタロン部では、真空容器の光入射窓からファブリペロー干渉計を介して真空容器の光出射窓に至る光路に対して、ホルダの側方にペルチェ素子が取り付けられている。
特開平1-250834号公報
 しかしながら、上述した構成では、ファブリペロー干渉計がペルチェ素子によって側方から冷却されるため、ファブリペロー干渉フィルタ及び光検出器がパッケージに収容されている場合、ファブリペロー干渉フィルタ及び光検出器が均一に冷却されないため、ファブリペロー干渉フィルタ及び光検出器が均一な温度に維持されないおそれがある。しかも、上述した構成では、真空容器の光入射窓近傍がペルチェ素子によって冷却されるため、ファブリペロー干渉フィルタ及び光検出器を収容するパッケージの開口に光透過部材が設けられている場合、光透過部材において結露が発生するおそれがある。
 本開示は、パッケージ内に光を入射させるための光透過部材において結露や割れが発生するのを抑制しつつ、パッケージに収容されたファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができる光検出装置を提供することを目的とする。
 本開示の一形態に係る光検出装置は、互いの距離が可変とされた第1ミラー及び第2ミラーを有し、第1ミラーと第2ミラーとの距離に応じた光を透過させる光透過領域が所定のライン上に設けられたファブリペロー干渉フィルタと、ライン上においてファブリペロー干渉フィルタに対して一方の側に配置され、光透過領域を透過した光を検出する光検出器と、ライン上においてファブリペロー干渉フィルタに対して他方の側に位置する開口を有し、ファブリペロー干渉フィルタ及び光検出器を収容するパッケージと、開口を塞ぐようにパッケージに設けられた光透過部材と、ファブリペロー干渉フィルタ及び光検出器と熱的に接続されて吸熱領域及び発熱領域の一方として機能する第1領域を有する温度調節素子と、を備え、第1領域は、少なくともライン上において光検出器に対して一方の側に位置している。
 この光検出装置では、吸熱領域及び発熱領域の一方として機能する温度調節素子の第1領域が少なくともライン上において光検出器に対して一方の側に位置している。これにより、例えば、ラインに対してファブリペロー干渉フィルタ及び光検出器の側方に温度調節素子の第1領域が位置している場合に比べ、ファブリペロー干渉フィルタ及び光検出器が均一な温度に維持される。更に、少なくともライン上においては、光透過部材と温度調節素子の第1領域との間にファブリペロー干渉フィルタ及び光検出器が配置されている。これにより、光透過部材が過度に冷却されて光透過部材の温度と外気温(光検出装置の使用環境温度)との差が大きくなることに起因する光透過部材における結露の発生が抑制される。また、光透過部材が過度に加熱されて光透過部材の温度と外気温との差が大きくなることに起因する光透過部材における割れの発生が抑制される。よって、この光検出装置によれば、パッケージ内に光を入射させるための光透過部材において結露や割れが発生するのを抑制しつつ、パッケージに収容されたファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができる。
 本開示の一形態に係る光検出装置では、ラインに平行な方向から見た場合に、開口の外縁は、ファブリペロー干渉フィルタの外縁よりも内側に位置しており、温度調節素子は、パッケージと熱的に接続されて吸熱領域及び発熱領域の他方として機能する第2領域を有してもよい。この構成では、例えば、開口の外縁がファブリペロー干渉フィルタの外縁よりも外側に位置している場合に比べ、吸熱領域及び発熱領域の他方として機能する温度調節素子の第2領域と光透過部材との間で、パッケージを介して熱が伝わり易い。よって、この構成によれば、光透過部材において結露や割れが発生するのをより確実に抑制することができる。
 本開示の一形態に係る光検出装置では、ラインに平行な方向から見た場合に、光透過部材の外縁は、ファブリペロー干渉フィルタの外縁よりも外側に位置していてもよい。この構成では、例えば、光透過部材の外縁がファブリペロー干渉フィルタの外縁よりも内側に位置している場合に比べ、光透過部材とパッケージとの接触面積が増えて、光透過部材とパッケージとの間で熱が伝わり易い。よって、この構成によれば、光透過部材において結露や割れが発生するのをより確実に抑制することができる。
 本開示の一形態に係る光検出装置では、温度調節素子は、パッケージ内に配置されており、光検出器は、温度調節素子上に配置されており、ファブリペロー干渉フィルタは、光検出器が温度調節素子とファブリペロー干渉フィルタとの間に位置するように温度調節素子上に配置されていてもよい。この構成によれば、小型且つ簡易な構成で効率良く、ファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができる。
 本開示の一形態に係る光検出装置は、ファブリペロー干渉フィルタの底面のうち光透過領域の外側の部分を支持する支持部材と、ファブリペロー干渉フィルタの側面、及び支持部材と接触する熱伝導部材と、を更に備えてもよい。この構成では、例えば、ファブリペロー干渉フィルタの側面、及び支持部材と接触する熱伝導部材が設けられていない場合に比べ、ファブリペロー干渉フィルタと温度調節素子の第1領域との間で、支持部材を介して熱が伝わり易い。よって、この構成によれば、効率良く、ファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができる。
 本開示の一形態に係る光検出装置では、熱伝導部材は、ファブリペロー干渉フィルタと支持部材とを接着する接着部材であってもよい。この構成によれば、支持部材上におけるファブリペロー干渉フィルタの保持状態を安定させることができる。
 本開示の一形態に係る光検出装置では、支持部材は、ファブリペロー干渉フィルタの底面のうち光透過領域の外側の部分が載置された載置面を有し、ファブリペロー干渉フィルタの側面の少なくとも一部は、載置面の一部が側面の外側に配置されるように、載置面上に位置しており、熱伝導部材は、側面、及び載置面の一部によって形成された隅部に配置され、側面、及び載置面の一部のそれぞれと接触していてもよい。この構成によれば、より効率良く、ファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができると共に、支持部材上におけるファブリペロー干渉フィルタの保持状態をより確実に安定させることができる。
 本開示の一形態に係る光検出装置では、温度調節素子は、パッケージの壁部に埋設されていてもよい。この構成によれば、パッケージ内の空間の体積を小さくすることができ、その結果、より効率良く、ファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができる。
 本開示によれば、パッケージ内に光を入射させるための光透過部材において結露や割れが発生するのを抑制しつつ、パッケージに収容されたファブリペロー干渉フィルタ及び光検出器を均一な温度に維持することができる光検出装置を提供することが可能となる。
図1は、第1実施形態の光検出装置の断面図である。 図2は、図1の光検出装置の平面図である。 図3は、図1の光検出装置のうち、ファブリペロー干渉フィルタ、支持部材及び熱伝導部材を含む部分の平面図である。 図4は、図1の光検出装置のファブリペロー干渉フィルタの斜視図である。 図5は、図4のV-V線に沿ってのファブリペロー干渉フィルタの断面図である。 図6は、第2実施形態の光検出装置の断面図である。 図7は、第2実施形態の光検出装置の変形例の断面図である。 図8は、第2実施形態の光検出装置の変形例の断面図である。
 以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する部分を省略する。
[第1実施形態]
[光検出装置の構成]
 図1に示されるように、光検出装置1Aは、パッケージ2を備えている。パッケージ2は、ステム3と、キャップ4と、を有するCANパッケージである。キャップ4は、側壁5及び天壁6によって一体的に構成されている。天壁6は、直線である所定のラインLに平行な方向においてステム3と対向している。ステム3及びキャップ4は、例えば金属からなり、互いに気密に接合されている。
 ステム3の内面3aには、温度調節素子50が固定されている。温度調節素子50は、例えばペルチェ素子であり、ラインLに平行な方向において互いに対向する吸熱領域50a及び発熱領域50bを有している。温度調節素子50は、ステム3の内面3a側に発熱領域50bが位置し且つその反対側に吸熱領域50aが位置するように、パッケージ2内に配置されている。これにより、温度調節素子50の発熱領域50bは、パッケージ2と熱的に接続されている。
 温度調節素子50の吸熱領域50a上には、配線基板7が固定されている。配線基板7の基板材料としては、例えば、シリコン、セラミック、石英、ガラス、プラスチック等を用いることができる。配線基板7には、光検出器8、及びサーミスタ等の温度補償用素子(図示省略)が実装されている。これにより、温度調節素子50の吸熱領域50aは、配線基板7を介して、光検出器8及び温度補償用素子(図示省略)と熱的に接続されている。
 光検出器8は、ラインL上に配置されている。より具体的には、光検出器8は、その受光部の中心線がラインLに一致するように配置されている。光検出器8は、例えば、InGaAs等が用いられた量子型センサ、サーモパイル又はボロメータ等が用いられた熱型センサ等の赤外線検出器である。紫外、可視、近赤外の各波長域の光を検出する場合には、光検出器8として、例えば、シリコンフォトダイオード等を用いることができる。なお、光検出器8には、1つの受光部が設けられていてもよいし、或いは、複数の受光部がアレイ状に設けられていてもよい。更に、複数の光検出器8が配線基板7に実装されていてもよい。
 配線基板7上には、複数の支持部材9が熱伝導部材(図示省略)を介して固定されている。各支持部材9の材料としては、例えば、シリコン、セラミック、石英、ガラス、プラスチック等を用いることができる。複数の支持部材9上には、ファブリペロー干渉フィルタ10が熱伝導部材15を介して固定されている。これにより、温度調節素子50の吸熱領域50aは、配線基板7、上記熱伝導部材(図示省略)、複数の支持部材9、及び熱伝導部材15を介して、ファブリペロー干渉フィルタ10と熱的に接続されている。
 熱伝導部材15は、ファブリペロー干渉フィルタ10から支持部材9に熱を伝える熱伝導部材であることに加え、ファブリペロー干渉フィルタ10と支持部材9とを接着する接着部材でもある。同様に、配線基板7と各支持部材9との間に配置された熱伝導部材(図示省略)は、各支持部材9から配線基板7に熱を伝える熱伝導部材であることに加え、各支持部材9と配線基板7とを接着する接着部材でもある。熱伝導部材15及び上記熱伝導部材(図示省略)の材料としては、例えば樹脂材料(例えば、シリコーン系、ウレタン系、エポキシ系、アクリル系、ハイブリッド等の樹脂材料であって、導電性であっても或いは非導電性であってもよい)を用いることができる。
 ファブリペロー干渉フィルタ10は、ラインL上に配置されている。より具体的には、ファブリペロー干渉フィルタ10は、その光透過領域10aの中心線がラインLに一致するように配置されている。なお、ファブリペロー干渉フィルタ10は、複数の支持部材9によってではなく、1つの支持部材9によって支持されていてもよい。また、ファブリペロー干渉フィルタ10は、配線基板7に一体的に構成された支持部材9によって支持されていてもよい。
 ステム3には、複数のリードピン11が固定されている。より具体的には、各リードピン11は、ステム3との間の電気的な絶縁性及び気密性が維持された状態で、ステム3を貫通している。各リードピン11には、配線基板7に設けられた電極パッド、温度調節素子50の端子、光検出器8の端子、温度補償用素子の端子、及びファブリペロー干渉フィルタ10の端子のそれぞれが、ワイヤ12によって電気的に接続されている。これにより、温度調節素子50、光検出器8、温度補償用素子、及びファブリペロー干渉フィルタ10のそれぞれに対する電気信号の入出力等が可能である。
 パッケージ2には、開口2aが設けられている。より具体的には、開口2aは、その中心線がラインLに一致するようにキャップ4の天壁6に設けられている。天壁6の内面6aには、開口2aを塞ぐように光透過部材13が配置されている。つまり、光透過部材13は、開口2aを塞ぐようにパッケージ2に設けられている。光透過部材13は、天壁6の内面6aに気密に接合されている。光透過部材13は、少なくとも光検出装置1Aの測定波長範囲の光を透過させる。光透過部材13は、ラインLに平行な方向において互いに対向する光入射面13a及び光出射面13b、並びに側面13cを含む板状の部材である。光透過部材13は、例えば、ガラス、石英、シリコン、ゲルマニウム、プラスチック等からなる。光透過部材13は、パッケージ2を構成する材料に比べ、熱伝導率の低い材料からなる。なお、天壁6の内面6aに、板状の光透過部材13を、例えば熱伝導の良い接着部材を介して固定してもよい。
 光透過部材13の光出射面13bには、バンドパスフィルタ14が設けられている。バンドパスフィルタ14は、例えば、蒸着、貼り付け等によって、光透過部材13の光出射面13bに配置されている。バンドパスフィルタ14は、光検出装置1Aの測定波長範囲の光を選択的に透過させる。バンドパスフィルタ14は、例えば、TiO、Ta等の高屈折材料と、SiO、MgF等の低屈折材料との組合せからなる誘電体多層膜である。
 光検出装置1Aでは、パッケージ2は、温度調節素子50、配線基板7、光検出器8、温度補償用素子(図示省略)、複数の支持部材9、熱伝導部材15、及びファブリペロー干渉フィルタ10を収容している。光検出器8は、配線基板7を介して温度調節素子50の吸熱領域50a上に配置されている。ファブリペロー干渉フィルタ10は、光検出器8が温度調節素子50とファブリペロー干渉フィルタ10との間に位置するように、配線基板7、複数の支持部材9、及び熱伝導部材15を介して、温度調節素子50の吸熱領域50a上に配置されている。
 光検出器8は、ラインL上においてファブリペロー干渉フィルタ10に対して一方の側(ここでは、ステム3側)に位置しており、温度調節素子50の吸熱領域50aは、ラインL上において光検出器8に対して一方の側(ここでは、ステム3側)に位置している。パッケージ2の開口2a及び光透過部材13は、ラインL上においてファブリペロー干渉フィルタ10に対して他方の側(一方の側の反対側)(ここでは、ステム3の反対側)に位置している。なお、ファブリペロー干渉フィルタ10と光透過部材13とは、空隙を介して互いに離間している。
 ラインLに平行な方向から見た場合における各部の位置関係及び大小関係は、次のとおりである。図2に示されるように、光検出器8の受光部の中心線、ファブリペロー干渉フィルタ10の光透過領域10aの中心線、及びパッケージ2の開口2aの中心線は、ラインLに一致している。ファブリペロー干渉フィルタ10の光透過領域10aの外縁、及びパッケージ2の開口2aの外縁は、例えば円形状である。光検出器8の外縁、及びファブリペロー干渉フィルタ10の外縁は、例えば矩形状である。
 ファブリペロー干渉フィルタ10の光透過領域10aの外縁は、光検出器8の外縁よりも外側に位置している。パッケージ2の開口2aの外縁は、ファブリペロー干渉フィルタ10の光透過領域10aの外縁よりも外側に位置しており、且つファブリペロー干渉フィルタ10の外縁よりも内側に位置している。光透過部材13の外縁は、ファブリペロー干渉フィルタ10の外縁よりも外側に位置している。温度調節素子50の外縁は、ファブリペロー干渉フィルタ10の外縁よりも外側に位置している。なお、「所定の方向から見た場合に一の外縁が他の外縁よりも外側に位置している」とは、「所定の方向から見た場合に一の外縁が他の外縁を包囲している」、「所定の方向から見た場合に一の外縁が他の外縁を含んでいる」との意味である。また、「所定の方向から見た場合に一の外縁が他の外縁よりも内側に位置している」とは、「所定の方向から見た場合に一の外縁が他の外縁に包囲されている」、「所定の方向から見た場合に一の外縁が他の外縁に含まれている」との意味である。
 支持部材9、熱伝導部材15及びファブリペロー干渉フィルタ10の構成の詳細は、次のとおりである。図3に示されるように(図3では、温度調節素子50、ワイヤ12、ステム3等が省略されている)、ファブリペロー干渉フィルタ10は、一対の支持部材9によって支持されている。一対の支持部材9は、ラインLに平行な方向から見た場合に、ファブリペロー干渉フィルタ10の光透過領域10aを挟んで互いに対向している。各支持部材9の載置面9aには、ファブリペロー干渉フィルタ10の底面10bのうち、光透過領域10aの外側の部分であって且つファブリペロー干渉フィルタ10の側面10cの一部に沿った部分が載置されている。このように、支持部材9は、ファブリペロー干渉フィルタ10の底面10bのうち光透過領域10aの外側の部分を支持している。
 ファブリペロー干渉フィルタ10の側面10cの一部は、各支持部材9の載置面9aの一部が当該側面10cの一部の外側(ラインLに平行な方向から見た場合における当該側面10cの一部の外側)に配置されるように、各支持部材9の載置面9a上に位置している。これにより、側面10cの一部と各支持部材9の載置面9aの一部(当該側面10cの一部の外側の部分、すなわち、載置面9aのうちファブリペロー干渉フィルタ10が載置されていない部分)とで隅部Cが形成されている。
 熱伝導部材15は、隅部Cに沿うように、各支持部材9の載置面9aに配置されている。各支持部材9の載置面9aにおいて、熱伝導部材15は、第1部分15a及び第2部分15bを含んでいる。第1部分15aは、隅部Cに沿って配置された部分である。第2部分15bは、支持部材9の載置面9aとファブリペロー干渉フィルタ10の底面10bとの間に配置された部分である。このように、熱伝導部材15は、ファブリペロー干渉フィルタ10の底面10bの一部及び側面10cの一部、並びに支持部材9の載置面9aの一部のそれぞれと接触している。なお、第1部分15aは、後述するファブリペロー干渉フィルタ10の基板21の側面に至っている。
 以上のように構成された光検出装置1Aにおいては、図1に示されるように、外部から、パッケージ2の開口2a、光透過部材13及びバンドパスフィルタ14を介して、ファブリペロー干渉フィルタ10の光透過領域10aに光が入射すると、所定の波長を有する光が選択的に透過させられる(詳細は後述する)。ファブリペロー干渉フィルタ10の光透過領域10aを透過した光は、光検出器8の受光部に入射して、光検出器8によって検出される。
[ファブリペロー干渉フィルタの構成]
 図4に示されるように、ファブリペロー干渉フィルタ10では、第1ミラーと第2ミラーとの距離に応じた光を透過させる光透過領域10aがラインL上に設けられている。光透過領域10aにおいては、第1ミラーと第2ミラーとの距離が極めて精度良く制御される。つまり、光透過領域10aは、ファブリペロー干渉フィルタ10のうち、所定の波長を有する光を選択的に透過させるために第1ミラーと第2ミラーとの距離を所定の距離に制御することが可能な領域であって、第1ミラーと第2ミラーとの距離に応じた所定の波長を有する光が透過可能な領域である。
 図5に示されるように、ファブリペロー干渉フィルタ10は、基板21を備えている。基板21の光入射側の表面21aには、反射防止層31、第1積層体32、中間層33及び第2積層体34がこの順序で積層されている。第1積層体32と第2積層体34との間には、枠状の中間層33によって空隙(エアギャップ)Sが形成されている。基板21は、例えば、シリコン、石英、ガラス等からなる。基板21がシリコンからなる場合には、反射防止層31及び中間層33は、例えば、酸化シリコンからなる。中間層33の厚さは、中心透過波長(すなわち、ファブリペロー干渉フィルタ10が透過させ得る波長範囲の中心波長)の1/2の整数倍であることが好ましい。
 第1積層体32のうち光透過領域10aに対応する部分は、第1ミラー35として機能する。第1ミラー35は、反射防止層31を介して基板21に支持されている。第1積層体32は、複数のポリシリコン層と複数の窒化シリコン層とが一層ずつ交互に積層されることで構成されている。第1ミラー35を構成するポリシリコン層及び窒化シリコン層のそれぞれの光学厚さは、中心透過波長の1/4の整数倍であることが好ましい。なお、窒化シリコン層の代わりに酸化シリコン層が用いられてもよい。
 第2積層体34のうち光透過領域10aに対応する部分は、空隙Sを介して第1ミラー35と対向する第2ミラー36として機能する。第2ミラー36は、反射防止層31、第1積層体32及び中間層33を介して基板21に支持されている。第2積層体34は、複数のポリシリコン層と複数の窒化シリコン層とが一層ずつ交互に積層されることで構成されている。第2ミラー36を構成するポリシリコン層及び窒化シリコン層のそれぞれの光学厚さは、中心透過波長の1/4の整数倍であることが好ましい。なお、窒化シリコン層の代わりに酸化シリコン層が用いられてもよい。
 第2積層体34において空隙Sに対応する部分には、第2積層体34の表面34aから空隙Sに至る複数の貫通孔(図示省略)が設けられている。複数の貫通孔は、第2ミラー36の機能に実質的に影響を与えない程度に形成されている。複数の貫通孔は、エッチングにより中間層33の一部を除去して空隙Sを形成するために用いられたものである。
 第1ミラー35には、光透過領域10aを囲むように第1電極22が形成されている。第1ミラー35には、光透過領域10aを含むように第2電極23が形成されている。第1電極22及び第2電極23は、ポリシリコン層に不純物をドープして低抵抗化することで形成されている。第2電極23の大きさは、光透過領域10aの全体を含む大きさであることが好ましいが、光透過領域10aの大きさと略同一であってもよい。
 第2ミラー36には、第3電極24が形成されている。第3電極24は、ラインLに平行な方向において、空隙Sを介して第1電極22及び第2電極23と対向している。第3電極24は、ポリシリコン層に不純物をドープして低抵抗化することで形成されている。
 ファブリペロー干渉フィルタ10においては、第2電極23は、ラインLに平行な方向において、第1電極22に対して第3電極24とは反対側に位置している。すなわち、第1電極22と第2電極23とは、第1ミラー35において同一平面上に位置していない。第2電極23は、第1電極22よりも第3電極24から離れている。
 端子25は、光透過領域10aを挟んで対向するように一対設けられている。各端子25は、第2積層体34の表面34aから第1積層体32に至る貫通孔内に配置されている。各端子25は、配線22aを介して第1電極22と電気的に接続されている。
 端子26は、光透過領域10aを挟んで対向するように一対設けられている。各端子26は、第2積層体34の表面34aから中間層33の手前に至る貫通孔内に配置されている。各端子26は、配線23aを介して第2電極23と電気的に接続されていると共に、配線24aを介して第3電極24と電気的に接続されている。なお、一対の端子25が対向する方向と、一対の端子26が対向する方向とは、直交している(図4参照)。
 第1積層体32の表面32aには、トレンチ27,28が設けられている。トレンチ27は、端子26からラインLに平行な方向に沿って延びる配線23aを囲むように環状に延在している。トレンチ27は、第1電極22と配線23aとを電気的に絶縁している。トレンチ28は、第1電極22の内縁に沿って環状に延在している。トレンチ28は、第1電極22と第1電極22の内側の領域とを電気的に絶縁している。各トレンチ27,28内の領域は、絶縁材料であっても、空隙であってもよい。
 第2積層体34の表面34aには、トレンチ29が設けられている。トレンチ29は、端子25を囲むように環状に延在している。トレンチ29は、端子25と第3電極24とを電気的に絶縁している。トレンチ28内の領域は、絶縁材料であっても、空隙であってもよい。
 基板21の光出射側の表面21bには、反射防止層41、第3積層体42、中間層43及び第4積層体44がこの順序で積層されている。反射防止層41及び中間層43は、それぞれ、反射防止層31及び中間層33と同様の構成を有している。第3積層体42及び第4積層体44は、それぞれ、基板21を基準として第1積層体32及び第2積層体34と対称の積層構造を有している。反射防止層41、第3積層体42、中間層43及び第4積層体44は、基板21の反りを抑制する機能を有している。
 反射防止層41、第3積層体42、中間層43及び第4積層体44には、光透過領域10aを含むように開口40aが設けられている。開口40aは、光透過領域10aの大きさと略同一の径を有している。開口40aは、光出射側に開口しており、開口40aの底面は、反射防止層41に至っている。第4積層体44の光出射側の表面には、遮光層45が形成されている。遮光層45は、例えばアルミニウム等からなる。遮光層45の表面及び開口40aの内面には、保護層46が形成されている。保護層46は、例えば酸化アルミニウムからなる。なお、保護層46の厚さを1~100nm(好ましくは、30nm程度)にすることで、保護層46による光学的な影響を無視することができる。
 以上のように構成されたファブリペロー干渉フィルタ10においては、端子25,26を介して第1電極22と第3電極24との間に電圧が印加されると、当該電圧に応じた静電気力が第1電極22と第3電極24との間に発生する。当該静電気力によって、第2ミラー36が、基板21に固定された第1ミラー35側に引き付けられ、第1ミラー35と第2ミラー36との距離が調整される。このように、ファブリペロー干渉フィルタ10では、第1ミラー35と第2ミラー36との距離が可変とされている。
 ファブリペロー干渉フィルタ10を透過する光の波長は、光透過領域10aにおける第1ミラー35と第2ミラー36との距離に依存する。したがって、第1電極22と第3電極24との間に印加する電圧を調整することで、透過する光の波長を適宜選択することができる。このとき、第2電極23は、第3電極24と同電位である。したがって、第2電極23は、光透過領域10aにおいて第1ミラー35及び第2ミラー36を平坦に保つための補償電極として機能する。
 光検出装置1Aでは、ファブリペロー干渉フィルタ10に印加する電圧を変化させながら(すなわち、ファブリペロー干渉フィルタ10において第1ミラー35と第2ミラー36との距離を変化させながら)、ファブリペロー干渉フィルタ10の光透過領域10aを透過した光を光検出器8で検出することで、分光スペクトルを得ることができる。
[作用及び効果]
 光検出装置1Aでは、温度調節素子50の吸熱領域50aがラインL上において光検出器8に対して一方の側に位置している。これにより、例えば、ラインLに対してファブリペロー干渉フィルタ10及び光検出器8の側方に温度調節素子50の吸熱領域50aが位置している場合に比べ、ファブリペロー干渉フィルタ10及び光検出器8が均一に冷却される。特に、温度調節素子50の上面及び配線基板7の下面、配線基板7の上面及び光検出器8の下面、配線基板7の上面及び支持部材9の下面、並びに、支持部材9の上面及びファブリペロー干渉フィルタ10の下面は、それぞれ、接着剤等を介して互いに面接触している。これにより、例えば各部材が点接触している場合に比べ、冷却が効率的に行われる。更に、ラインL上においては、光透過部材13と温度調節素子50の吸熱領域50aとの間にファブリペロー干渉フィルタ10及び光検出器8が配置されている。これにより、光透過部材13が過度に冷却されて光透過部材13の温度と外気温(光検出装置1Aの使用環境温度)との差が大きくなることに起因する光透過部材13における結露の発生が抑制される。よって、光検出装置1Aによれば、パッケージ2内に光を入射させるための光透過部材13において結露が発生するのを抑制しつつ、パッケージ2に収容されたファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができる。
 このように、光検出装置1Aでは、ファブリペロー干渉フィルタ10が温度調節素子50によって均一に冷却されるため、光検出装置1Aの使用環境温度によらずファブリペロー干渉フィルタ10の温度を一定に維持することができ、その結果、光検出装置1Aの使用環境温度の変化に起因する透過光の波長シフトを抑制することができる。特に、互いの距離が可変とされた第1ミラー35及び第2ミラー36を有するファブリペロー干渉フィルタ10においては、薄膜状の第2ミラー36を極めて精度良く動作させて、第1ミラー35と第2ミラー36との距離を極めて精度良く制御する必要がある。ここで、ファブリペロー干渉フィルタ10が部位ごとに不均一な温度になると、第1ミラー35と第2ミラー36との距離を極めて精度良く制御することが困難になる。そのため、ファブリペロー干渉フィルタ10を均一な温度に維持することは非常に重要である。更に、光検出器8が温度調節素子50によって均一に冷却されるため、光検出器8で発生する暗電流を減少させることができる。
 なお、パッケージ2内に温度調節素子50が配置された構成は、パッケージ2外に温度調節素子50が配置された構成と比べ、パッケージ2内の容積が増大し易い。そのため、パッケージ2内に温度調節素子50が配置された構成では、パッケージ2内の容積が増大する分、パッケージ2内の温度を均一に維持するのが難しい。しかし、光検出装置1Aの構成によれば、測定結果の精度に大きな影響を与えるファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することを効果的に実施することができる。
 ここで、光透過部材13における結露の発生に起因するリスクについて説明する。まず、光透過部材13の光入射面13a及び/又は光出射面13bで結露が発生すると、パッケージ2内に入射する光の光量が減少し、光検出器8の感度が低下するおそれがある。更に、パッケージ2内に入射する光について、多重反射、散乱、レンズ効果等が発生し、それが迷光の原因となって、光検出器8に入射する透過光の分解能、S/N比等が低下するおそれがある。このように、光透過部材13の光入射面13a及び/又は光出射面13bで結露が発生すると、光検出器8における検出特性の安定性が低下するおそれがある。
 また、ファブリペロー干渉フィルタ10の第2ミラー36上において結露が発生すると、ファブリペロー干渉フィルタ10に印加する制御電圧に対する透過光のピーク波長が変化するおそれがある。更に、水分によって第1ミラー35と第2ミラー36とが貼りつき、故障に繋がるおそれがある。
 これに対し、光検出装置1Aでは、光透過部材13において結露が発生するのを抑制することができるため、上述したリスクを回避することができる。特に、製造過程においてパッケージ2内に水分が残存した場合には、光透過部材13における結露の発生を抑制し得る光検出装置1Aの構成は有効である。更に、光検出装置1Aの構成は光透過部材13における結露の発生を抑制し得る構成であるから、各部材間の距離を近付けて、光検出装置1Aを小型化することも可能である。
 光検出装置1Aでは、ラインLに平行な方向から見た場合に、パッケージ2の開口2aの外縁が、ファブリペロー干渉フィルタ10の外縁よりも内側に位置しており、温度調節素子50の発熱領域50bが、パッケージ2と熱的に接続されている。これにより、例えば、開口2aの外縁がファブリペロー干渉フィルタ10の外縁よりも外側に位置している場合に比べ、温度調節素子50の発熱領域50bと光透過部材13との間で、パッケージ2を介して熱が伝わり易い(具体的には、温度調節素子50の発熱領域50bからパッケージ2を介して光透過部材13に熱が伝わり易い)。よって、光透過部材13において結露が発生するのをより確実に抑制することができる。
 光検出装置1Aでは、ラインLに平行な方向から見た場合に、光透過部材13の外縁が、ファブリペロー干渉フィルタ10の外縁よりも外側に位置している。これにより、例えば、光透過部材13の外縁がファブリペロー干渉フィルタ10の外縁よりも内側に位置している場合に比べ、光透過部材13とパッケージ2との接触面積が増えて、光透過部材13とパッケージ2との間で熱が伝わり易い(具体的には、温度調節素子50の発熱領域50bからパッケージ2を介して光透過部材13に熱が伝わり易い)。更に、光検出装置1Aでは、光透過部材13の側面13cがパッケージ2に接触しているため、光透過部材13とパッケージ2との接触面積がより大きくなる。よって、光透過部材13において結露が発生するのをより確実に抑制することができる。更に、この構成によれば、ファブリペロー干渉フィルタ10に接続されたワイヤ12が撓んだとしても、絶縁性の光透過部材13によって、ワイヤ12とパッケージ2との接触が防止される。これにより、ファブリペロー干渉フィルタ10を制御するための電気信号がパッケージ2に流れることを防止し、ファブリペロー干渉フィルタ10の高精度な制御が可能となる。
 光検出装置1Aでは、温度調節素子50がパッケージ2内に配置されており、光検出器8が温度調節素子50上に配置されており、光検出器8が温度調節素子50とファブリペロー干渉フィルタ10との間に位置するようにファブリペロー干渉フィルタ10が温度調節素子50上に配置されている。これにより、小型且つ簡易な構成で効率良く、ファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができる。
 一例として、ラインLに平行な方向において、温度調節素子50の厚さは0.7~2mmであり、配線基板7の厚さは0.3mmであり、支持部材9の厚さは0.6mmであり、ファブリペロー干渉フィルタ10の厚さは0.6mmである。また、リードピン11のうちステム3の上面から突出する部分の高さは0.2~1mmであり、例えば0.5mmである。すなわち、温度調節素子50は、配線基板7、支持部材9及びファブリペロー干渉フィルタ10のそれぞれよりも厚い。温度調節素子50が厚いため、発熱領域50bから発する熱の影響を、光検出器8及びファブリペロー干渉フィルタ10が受け難い。その一方で、配線基板7、支持部材9及びファブリペロー干渉フィルタ10が薄いため、吸熱領域50aによる冷却が効率的に行われる。
 また、光検出装置1Aでは、リードピン11の上面が、温度調節素子50、配線基板7、支持部材9及びファブリペロー干渉フィルタ10のそれぞれの上面よりも低い位置にある。これにより、光検出器8及びファブリペロー干渉フィルタ10からリードピン11へのワイヤ12の接続が行い易い(特にファブリペロー干渉フィルタ10に上方を覆われるように配置される光検出器8や温度補償用素子から引き出されるワイヤ12がファブリペロー干渉フィルタ10に干渉するのを抑制することができる)。
 なお、ファブリペロー干渉フィルタ10からリードピン11へのワイヤ12の接続の行い易さを考慮すると、ステム3からのファブリペロー干渉フィルタ10の高さは高過ぎないほうが好ましい。したがって、配線基板7、支持部材9及びファブリペロー干渉フィルタ10の積層の下に温度調節素子50が配置された構成は、ファブリペロー干渉フィルタ10のステム3からの高さが高くなってしまうため、リードピン11へのワイヤの接続という観点では好ましくない。しかし、光検出装置1Aでは、配線基板7、支持部材9及びファブリペロー干渉フィルタ10の厚さを薄く抑えることで、ファブリペロー干渉フィルタ10のステム3からの高さを抑制して、デメリットを最小限に留めている。
 光検出装置1Aでは、ファブリペロー干渉フィルタ10と光透過部材13とが、空隙を介して互いに離間している。これにより、ファブリペロー干渉フィルタ10が、光検出装置1Aの使用環境温度の影響、並びに、パッケージ2及び光透過部材13からの熱の影響を受けるのを抑制することができる。特に、光検出装置1Aでは、ファブリペロー干渉フィルタ10の上側の空間(ファブリペロー干渉フィルタ10の上面と光透過部材13の光出射面13bとの間の空間)の体積が、ファブリペロー干渉フィルタ10の下側の空間(ファブリペロー干渉フィルタ10の下面と配線基板7の上面との間の空間)の体積よりも大きい。このため、ファブリペロー干渉フィルタ10と光透過部材13との間における熱の伝達が効果的に抑制される。
 光検出装置1Aでは、ファブリペロー干渉フィルタ10の底面10bのうち光透過領域10aの外側の部分を支持する支持部材9と、ファブリペロー干渉フィルタ10の側面10c、及び支持部材9と接触する熱伝導部材15と、が設けられている。これにより、例えば、ファブリペロー干渉フィルタ10の側面10c、及び支持部材9と接触する熱伝導部材15が設けられていない場合に比べ、ファブリペロー干渉フィルタ10と温度調節素子50の吸熱領域50aとの間で、支持部材9を介して熱が伝わり易い(具体的には、ファブリペロー干渉フィルタ10から支持部材9を介して温度調節素子50の吸熱領域50aに熱が伝わり易い)。よって、効率良く、ファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができる。
 光検出装置1Aでは、熱伝導部材15が、ファブリペロー干渉フィルタ10と支持部材9とを接着する接着部材である。これにより、支持部材9上におけるファブリペロー干渉フィルタ10の保持状態を安定させることができる。
 光検出装置1Aでは、熱伝導部材15が隅部Cに配置され、ファブリペロー干渉フィルタ10の側面10cの一部、及び支持部材9の載置面9aの一部のそれぞれと接触している。これにより、より効率良く、ファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができると共に、支持部材9上におけるファブリペロー干渉フィルタ10の保持状態をより確実に安定させることができる。特に、熱伝導部材15を隅部Cに配置することは、熱伝導部材15の体積を大きくすることができ、また、熱伝導部材15の姿勢を安定させることができるので、有効である。
[第2実施形態]
[光検出装置の構成]
 図6に示されるように、光検出装置1Bは、SMD(Surface Mount Device)として構成されている点で、上述した光検出装置1Aと異なっている。光検出装置1Bは、光検出器8及びファブリペロー干渉フィルタ10を収容するパッケージ2を構成する本体部200を備えている。本体部200の材料としては、例えば、セラミック、樹脂等を用いることができる。本体部200には、複数の配線(図示省略)が敷設されている。本体部200の底面200aには、複数の実装用電極パッド207が設けられている。互いに対応する配線(図示省略)と実装用電極パッド207とは、互いに電気的に接続されている。
 本体部200には、第1拡幅部201、第2拡幅部202、第3拡幅部203、第4拡幅部204、及び凹部205が形成されている。凹部205、第4拡幅部204、第3拡幅部203、第2拡幅部202、及び第1拡幅部201は、直線である所定のラインLを中心線として、底面200a側からこの順序で並んでおり、底面200aの反対側に開口する1つの空間を形成している。
 凹部205の底面には、光検出器8が固定されている。凹部205の底面と光検出器8の底面とは、例えば熱伝導の良い接着部材(図示省略)を介して接着されている。光検出器8は、ラインL上に配置されている。より具体的には、光検出器8は、その受光部の中心線がラインLに一致するように配置されている。第3拡幅部203の底面には、ファブリペロー干渉フィルタ10が熱伝導部材15を介して固定されている。すなわち、第3拡幅部203の底面とファブリペロー干渉フィルタ10の底面10bとは、熱伝導部材15を介して接着されている。ファブリペロー干渉フィルタ10は、ラインL上に配置されている。より具体的には、ファブリペロー干渉フィルタ10は、その光透過領域10aの中心線がラインLに一致するように配置されている。第1拡幅部201の底面には、板状の光透過部材13が例えば熱伝導の良い接着部材を介して固定されている。光透過部材13の光出射面13bには、バンドパスフィルタ14が設けられている。なお、本体部200には、温度補償用素子(図示省略)が埋設されている。
 光検出器8の端子、温度補償用素子の端子、及びファブリペロー干渉フィルタ10の端子のそれぞれは、ワイヤ12及び配線(図示省略)を介して、又は配線(図示省略)のみを介して、対応する実装用電極パッド207と電気的に接続されている。これにより、光検出器8、温度補償用素子、及びファブリペロー干渉フィルタ10のそれぞれに対する電気信号の入出力等が可能である。
 更に、パッケージ2の壁部である本体部200の所定の部分には、温度調節素子50が埋設されている。より詳細には、本体部200のうち、凹部205の底面と本体部200の底面200aとの間の部分、第4拡幅部204の底面と本体部200の底面200aとの間の部分、及び第3拡幅部203の底面と本体部200の底面200aとの間の部分の全体に渡って、温度調節素子50が埋設されている。
 温度調節素子50は、例えばペルチェ素子である。温度調節素子50においては、複数のN型半導体層51と複数のP型半導体層52とが交互に並んでいる。交互に並んだ全てのN型半導体層51及びP型半導体層52が直列に接続されるように、隣り合うN型半導体層51及びP型半導体層52のうち底面200aの反対側の端部同士は、第1金属部材53を介して互いに接続され、隣り合うN型半導体層51及びP型半導体層52のうち底面200a側の端部同士は、第2金属部材54を介して互いに接続されている。
 第1金属部材53によって互いに接続されたN型半導体層51及びP型半導体層52に着目した場合に、N型半導体層51からP型半導体層52という方向に電流が流されると、第1金属部材53において吸熱現象が発生する。これにより、第3拡幅部203の底面、第4拡幅部204の底面、及び凹部205の底面は、吸熱領域50aとして機能する。
 第2金属部材54によって互いに接続されたP型半導体層52及びN型半導体層51に着目した場合に、P型半導体層52からN型半導体層51という方向に電流が流されると、第2金属部材54において発熱現象が発生する。これにより、本体部200の底面200aは、発熱領域50bとして機能する。
 温度調節素子50の端子は、配線(図示省略)を介して、対応する実装用電極パッド207と電気的に接続されている。これにより、温度調節素子50に対する電気信号の入出力等が可能である。温度調節素子50では、交互に並んだ全てのN型半導体層51及びP型半導体層52が直列に接続されている。そのため、所定の方向に電流が流されると、第1金属部材53ではN型半導体層51からP型半導体層52という方向に電流が流れて、第3拡幅部203の底面、第4拡幅部204の底面、及び凹部205の底面が吸熱領域50aとして機能し、一方、第2金属部材54ではP型半導体層52からN型半導体層51という方向に電流が流れて、本体部200の底面200aが発熱領域50bとして機能する。
 光検出装置1Bでは、パッケージ2は、光検出器8、熱伝導部材15、及びファブリペロー干渉フィルタ10を収容している。パッケージ2の壁部には、温度補償用素子(図示省略)、及び温度調節素子50が埋設されている。光検出器8は、温度調節素子50の吸熱領域50aである凹部205の底面上に配置されている。吸熱領域50aである凹部205の底面は、光検出器8と熱的に接続されている。ファブリペロー干渉フィルタ10は、光検出器8が温度調節素子50とファブリペロー干渉フィルタ10との間に位置するように、熱伝導部材15を介して、温度調節素子50の吸熱領域50aである第3拡幅部203の底面上に配置されている。吸熱領域50aである第3拡幅部203の底面は、ファブリペロー干渉フィルタ10と熱的に接続されている。
 温度調節素子50の発熱領域50bである本体部200の底面200aには、例えば熱伝導の良い接着部材を介して、ヒートシンク60が接着されている。これにより、発熱領域50bから生じた熱を、ヒートシンク60を介して効率的に放熱させることができる。ヒートシンク60が電極パッド207よりも厚い場合には、光検出装置1Bを実装する外部の配線基板にヒートシンク60が干渉しないように貫通穴を設けておくことで、外部の配線基板に光検出装置1Bを実装することができる。或いは、外部の配線基板に貫通穴を設けず、電極パッド207を本体部200の側面に配置し、ラインLが外部の配線基板の表面に略水平になるように光検出装置1Bを実装してもよい。或いは、電極パッド207よりも薄い金属板を本体部200の底面200aに接着し、ヒートシンク60として用いてもよい。この場合、金属板を電極パッド207と同じ材質(例えば、金、銀、銅、アルミニウム、タングステン等)とすれば、底面200aへの形成工程を同時に行うことができる。
 光検出器8は、ラインL上においてファブリペロー干渉フィルタ10に対して一方の側(ここでは、本体部200の底面200a側)に位置しており、温度調節素子50の吸熱領域50aである凹部205の底面は、ラインL上において光検出器8に対して一方の側(ここでは、本体部200の底面200a側)に位置している。パッケージ2の開口(第1拡幅部201)及び光透過部材13は、ラインL上においてファブリペロー干渉フィルタ10に対して他方の側(一方の側の反対側)(ここでは、本体部200の底面200aの反対側)に位置している。なお、ファブリペロー干渉フィルタ10と光透過部材13とは、空隙を介して互いに離間している。
 光検出装置1Bでは、熱伝導部材15は、ファブリペロー干渉フィルタ10の側面と第3拡幅部203の内面との隙間に沿うように、第3拡幅部203の底面に配置されている。熱伝導部材15は、ファブリペロー干渉フィルタ10の側面と第3拡幅部203の内面との隙間に沿って配置された第1部分、及び第3拡幅部203の底面とファブリペロー干渉フィルタ10の底面との間に配置された第2部分を含んでいる。このように、熱伝導部材15は、ファブリペロー干渉フィルタ10の底面の一部及び側面の一部、並びに第3拡幅部203の底面のそれぞれと接触している。なお、上記第1部分は、ファブリペロー干渉フィルタ10の基板21の側面に至っている。
 以上のように構成された光検出装置1Bにおいては、外部から、パッケージ2の開口(第1拡幅部201)、光透過部材13及びバンドパスフィルタ14を介して、ファブリペロー干渉フィルタ10の光透過領域10aに光が入射すると、光透過領域10aにおける第1ミラー35と第2ミラー36との距離に応じて、所定の波長を有する光が選択的に透過させられる。ファブリペロー干渉フィルタ10の光透過領域10aを透過した光は、光検出器8の受光部に入射して、光検出器8によって検出される。光検出装置1Bでは、ファブリペロー干渉フィルタ10に印加する電圧を変化させながら(すなわち、ファブリペロー干渉フィルタ10において第1ミラー35と第2ミラー36との距離を変化させながら)、ファブリペロー干渉フィルタ10の光透過領域10aを透過した光を光検出器8で検出することで、分光スペクトルを得ることができる。
[作用及び効果]
 光検出装置1Bでは、温度調節素子50の吸熱領域50aのうち凹部205の底面がラインL上において光検出器8に対して一方の側に位置している。更に、温度調節素子50の吸熱領域50aのうち第3拡幅部203の底面がファブリペロー干渉フィルタ10に対して一方の側に位置している。これらにより、ファブリペロー干渉フィルタ10及び光検出器8が均一に冷却される。特に、凹部205の底面及び光検出器8の下面、並びに、第3拡幅部203の底面及びファブリペロー干渉フィルタ10の下面は、それぞれ、接着剤等を介して互いに面接触している。これにより、例えば各部材が点接触している場合に比べ、冷却が効率的に行われる。更に、ラインL上においては、光透過部材13と凹部205の底面との間にファブリペロー干渉フィルタ10及び光検出器8が配置されている。更に、光透過部材13と第3拡幅部203の底面との間にファブリペロー干渉フィルタ10が配置されている。これらにより、光透過部材13が過度に冷却されて光透過部材13の温度と外気温(光検出装置1Bの使用環境温度)との差が大きくなることに起因する光透過部材13における結露の発生が抑制される。よって、光検出装置1Bによれば、パッケージ2内に光を入射させるための光透過部材13において結露が発生するのを抑制することができると共に、パッケージ2に収容されたファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができる。
 光検出装置1Bでは、熱伝導部材15が、ファブリペロー干渉フィルタ10と本体部200とを接着する接着部材である。これにより、本体部200の第3拡幅部203におけるファブリペロー干渉フィルタ10の保持状態を安定させることができる。
 光検出装置1Bでは、熱伝導部材15が、ファブリペロー干渉フィルタ10の側面と第3拡幅部203の内面との隙間に沿うように、第3拡幅部203の底面に配置され、ファブリペロー干渉フィルタ10の側面の一部、及び第3拡幅部203の底面のそれぞれと接触している。これにより、より効率良く、ファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができると共に、本体部200の第3拡幅部203におけるファブリペロー干渉フィルタ10の保持状態をより確実に安定させることができる。
 光検出装置1Bでは、温度調節素子50がパッケージ2の壁部に埋設されている。これにより、パッケージ2内の空間の体積を小さくすることができ、その結果、より効率良く、ファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができる。
[変形例]
 以上、本開示の第1実施形態及び第2実施形態について説明したが、本開示の光検出装置は、上述した第1実施形態及び第2実施形態に限定されるものではない。例えば、各構成の材料及び形状には、上述した材料及び形状に限らず、様々な材料及び形状を採用することができる。
 また、図7に示されるように、第2実施形態の光検出装置1Bの変形例として、温度調節素子50、光検出器8、熱伝導部材15及びファブリペロー干渉フィルタ10を囲む環状の溝206が、本体部200に形成されていてもよい。この構成によれば、温度調節素子50、光検出器8、熱伝導部材15及びファブリペロー干渉フィルタ10を熱的に分離することができ、その結果、より効率良く、ファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができる。
 また、図8に示されるように、第2実施形態の光検出装置1Bの変形例として、ファブリペロー干渉フィルタ10の端子、及び光検出器8の端子が、本体部200に敷設された配線(図示省略)に、バンプ16によって接続されてもよい。この構成によれば、ワイヤ12が不要となるので、光検出装置1Bを小型化することができる。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいて、バンドパスフィルタ14は、光透過部材13の光入射面13aに設けられていてもよいし、光透過部材13の光入射面13a及び光出射面13bの両方に設けられていてもよい。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいて、ファブリペロー干渉フィルタ10は、基板21の光出射側の表面21bに設けられた積層構造(反射防止層41、第3積層体42、中間層43、第4積層体44、遮光層45及び保護層46)を備えていなくてもよい。また、必要に応じて一部の層のみ(例えば、反射防止層41及び保護層46のみ)を備えていてもよい。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいて、ラインLに平行な方向から見た場合に、ファブリペロー干渉フィルタ10の光透過領域10aの外縁が開口2aの外縁よりも外側に位置していてもよい。この場合、開口2aから入射した光のうち光透過領域10aに入り込む光の割合が増し、開口2aから入射した光の利用効率が高くなる。また、光透過領域10aに対する開口2aの位置が多少ずれたとしても、開口2aからの入射した光が光透過領域10aに入り込むため、光検出装置1A,1Bの組立時における位置精度の要求が緩和される。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいて、熱伝導部材15は、第1部分15aを含んでいれば、第2部分15bを含んでいなくてもよい。熱伝導部材15は、上述した材料に限定されず、半田等の金属であってもよい。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいて、温度調節素子50の吸熱領域50aは、ファブリペロー干渉フィルタ10と直接接触することでファブリペロー干渉フィルタ10と熱的に接続されていてもよいし、何らかの部材を介してファブリペロー干渉フィルタ10と熱的に接続されていてもよい。同様に、温度調節素子50の吸熱領域50aは、光検出器8と直接接触することで光検出器8と熱的に接続されていてもよいし、何らかの部材を介して光検出器8と熱的に接続されていてもよい。
 また、第1実施形態の光検出装置1Aにおいて、温度調節素子50の発熱領域50bは、パッケージ2と直接接触することでパッケージ2と熱的に接続されていてもよいし、何らかの部材を介してパッケージ2と熱的に接続されていてもよい。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいて、光検出器8は、温度調節素子50上に直接配置されていてもよいし、何らかの部材を介して温度調節素子50上に配置されていてもよい。
 また、第1実施形態の光検出装置1A及び第2実施形態の光検出装置1Bのそれぞれにおいては、パッケージ2内を冷却する目的で温度調節素子50を用いた。これは、ファブリペロー干渉フィルタ10及び光検出器8の設定温度(適切な動作温度)よりも光検出装置1A,1Bの使用環境温度が高い場合に有効である。これに対し、ファブリペロー干渉フィルタ10及び光検出器8の設定温度よりも光検出装置1A,1Bの使用環境温度が低い場合には、パッケージ2内を加熱する目的で温度調節素子50を用いてもよい。すなわち、温度調節素子50において、吸熱領域50aとして機能していた領域(ファブリペロー干渉フィルタ10及び光検出器8と熱的に接続された第1領域)を発熱領域50bとして機能させ、発熱領域50bとして機能していた領域(第1実施形態の光検出装置1Aでは、パッケージ2と熱的に接続された第2領域)を吸熱領域50aとして機能させてもよい。これにより、光検出装置1A,1Bの使用環境温度が低い場合でも、パッケージ2に収容されたファブリペロー干渉フィルタ10及び光検出器8を均一な温度に維持することができ、特に、光検出装置1A,1Bの使用環境温度の変化に起因する透過光の波長シフトを抑制することができる。また、光透過部材13が過度に加熱されて光透過部材13の温度と外気温(光検出装置1A,1Bの使用環境温度)との差が大きくなることに起因する光透過部材13の破損(低い外気温によって収縮する光入射面13aと加熱されて膨張する光出射面13bとの間の応力差に起因する割れの発生等)を抑制することができる。なお、温度調節素子50としてペルチェ素子を用いれば、ペルチェ素子において電流が流れる方向を切り替えることで、吸熱領域と発熱領域とを容易に切り替えることができる。
 1A,1B…光検出装置、2…パッケージ、2a…開口、8…光検出器、9…支持部材、9a…載置面、10…ファブリペロー干渉フィルタ、10a…光透過領域、10b…底面、10c…側面、13…光透過部材、15…熱伝導部材、35…第1ミラー、36…第2ミラー、50…温度調節素子、50a…吸熱領域、50b…発熱領域、C…隅部、L…ライン。

Claims (8)

  1.  互いの距離が可変とされた第1ミラー及び第2ミラーを有し、前記第1ミラーと前記第2ミラーとの距離に応じた光を透過させる光透過領域が所定のライン上に設けられたファブリペロー干渉フィルタと、
     前記ライン上において前記ファブリペロー干渉フィルタに対して一方の側に配置され、前記光透過領域を透過した光を検出する光検出器と、
     前記ライン上において前記ファブリペロー干渉フィルタに対して他方の側に位置する開口を有し、前記ファブリペロー干渉フィルタ及び前記光検出器を収容するパッケージと、
     前記開口を塞ぐように前記パッケージに設けられた光透過部材と、
     前記ファブリペロー干渉フィルタ及び前記光検出器と熱的に接続されて吸熱領域及び発熱領域の一方として機能する第1領域を有する温度調節素子と、を備え、
     前記第1領域は、少なくとも前記ライン上において前記光検出器に対して前記一方の側に位置している、光検出装置。
  2.  前記ラインに平行な方向から見た場合に、前記開口の外縁は、前記ファブリペロー干渉フィルタの外縁よりも内側に位置しており、
     前記温度調節素子は、前記パッケージと熱的に接続されて前記吸熱領域及び前記発熱領域の他方として機能する第2領域を有する、請求項1記載の光検出装置。
  3.  前記ラインに平行な方向から見た場合に、前記光透過部材の外縁は、前記ファブリペロー干渉フィルタの外縁よりも外側に位置している、請求項2記載の光検出装置。
  4.  前記温度調節素子は、前記パッケージ内に配置されており、
     前記光検出器は、前記温度調節素子上に配置されており、
     前記ファブリペロー干渉フィルタは、前記光検出器が前記温度調節素子と前記ファブリペロー干渉フィルタとの間に位置するように前記温度調節素子上に配置されている、請求項1~3のいずれか一項記載の光検出装置。
  5.  前記ファブリペロー干渉フィルタの底面のうち前記光透過領域の外側の部分を支持する支持部材と、
     前記ファブリペロー干渉フィルタの側面、及び前記支持部材と接触する熱伝導部材と、を更に備える、請求項1~4のいずれか一項記載の光検出装置。
  6.  前記熱伝導部材は、前記ファブリペロー干渉フィルタと前記支持部材とを接着する接着部材である、請求項5記載の光検出装置。
  7.  前記支持部材は、前記ファブリペロー干渉フィルタの前記底面のうち前記光透過領域の外側の前記部分が載置された載置面を有し、
     前記ファブリペロー干渉フィルタの前記側面の少なくとも一部は、前記載置面の一部が前記側面の外側に配置されるように、前記載置面上に位置しており、
     前記熱伝導部材は、前記側面、及び前記載置面の前記一部によって形成された隅部に配置され、前記側面、及び前記載置面の前記一部のそれぞれと接触している、請求項5又は6記載の光検出装置。
  8.  前記温度調節素子は、前記パッケージの壁部に埋設されている、請求項1~7のいずれか一項記載の光検出装置。
PCT/JP2017/008483 2016-03-09 2017-03-03 光検出装置 WO2017154773A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202210293509.4A CN114659632A (zh) 2016-03-09 2017-03-03 光检测装置
EP17763113.2A EP3428589B1 (en) 2016-03-09 2017-03-03 Light detection device
CN201780015575.2A CN108780007B (zh) 2016-03-09 2017-03-03 光检测装置
EP24189138.1A EP4425574A2 (en) 2016-03-09 2017-03-03 Light detection device
KR1020187026622A KR102487457B1 (ko) 2016-03-09 2017-03-03 광 검출 장치
FIEP17763113.2T FI3428589T3 (fi) 2016-03-09 2017-03-03 Valonilmaisulaite
US16/082,616 US11448553B2 (en) 2016-03-09 2017-03-03 Light detection device
EP24159648.5A EP4350430A3 (en) 2016-03-09 2017-03-03 Light detection device
US17/847,881 US20220333988A1 (en) 2016-03-09 2022-06-23 Light detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-045513 2016-03-09
JP2016045513A JP7039160B2 (ja) 2016-03-09 2016-03-09 光検出装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/082,616 A-371-Of-International US11448553B2 (en) 2016-03-09 2017-03-03 Light detection device
US17/847,881 Continuation US20220333988A1 (en) 2016-03-09 2022-06-23 Light detection device

Publications (1)

Publication Number Publication Date
WO2017154773A1 true WO2017154773A1 (ja) 2017-09-14

Family

ID=59789551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008483 WO2017154773A1 (ja) 2016-03-09 2017-03-03 光検出装置

Country Status (8)

Country Link
US (2) US11448553B2 (ja)
EP (3) EP4425574A2 (ja)
JP (1) JP7039160B2 (ja)
KR (1) KR102487457B1 (ja)
CN (2) CN114659632A (ja)
FI (1) FI3428589T3 (ja)
TW (1) TWI747887B (ja)
WO (1) WO2017154773A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024161736A1 (ja) * 2023-01-30 2024-08-08 浜松ホトニクス株式会社 蛍光計測装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039160B2 (ja) * 2016-03-09 2022-03-22 浜松ホトニクス株式会社 光検出装置
JP6871043B2 (ja) * 2017-03-31 2021-05-12 浜松ホトニクス株式会社 光検出装置
JP6899314B2 (ja) * 2017-11-17 2021-07-07 浜松ホトニクス株式会社 吸着方法
US10295482B1 (en) * 2017-12-22 2019-05-21 Visera Technologies Company Limited Spectrum-inspection device and method for forming the same
JP7202160B2 (ja) * 2018-12-05 2023-01-11 浜松ホトニクス株式会社 光学フィルタ装置、及び光学フィルタ装置の制御方法
DE102019213285A1 (de) * 2019-09-03 2021-03-04 Robert Bosch Gmbh Interferometereinrichtung und Verfahren zum Herstellen einer Interferometereinrichtung
DE102019213286A1 (de) * 2019-09-03 2021-03-04 Robert Bosch Gmbh Spektrometer-Package mit MEMS Fabry-Pérot-Interferometer
DE102019213284A1 (de) * 2019-09-03 2021-03-04 Robert Bosch Gmbh Interferometereinrichtung und Verfahren zum Herstellen einer Interferometereinrichtung
DE102019213270A1 (de) * 2019-09-03 2021-03-04 Robert Bosch Gmbh Interferometereinrichtung und Verfahren zum Herstellen einer Interferometereinrichtung
WO2021192244A1 (ja) * 2020-03-27 2021-09-30 ギガフォトン株式会社 センサ劣化判定方法
JP2022170447A (ja) * 2021-04-28 2022-11-10 株式会社ジャパンディスプレイ 検出装置
JP2024080068A (ja) * 2022-12-01 2024-06-13 浜松ホトニクス株式会社 フィルタユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153531U (ja) * 1986-03-24 1987-09-29
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JP2006250707A (ja) * 2005-03-10 2006-09-21 Mitsubishi Electric Corp 赤外線検出器および赤外線検出器のガス吸着手段活性化方法
WO2015064758A1 (ja) * 2013-10-31 2015-05-07 浜松ホトニクス株式会社 光検出装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2749815B2 (ja) 1988-03-31 1998-05-13 キヤノン株式会社 干渉計
US5550373A (en) 1994-12-30 1996-08-27 Honeywell Inc. Fabry-Perot micro filter-detector
JP2000039360A (ja) 1998-07-22 2000-02-08 Mitsubishi Electric Corp 光スペクトル測定装置
US20020130403A1 (en) 2000-03-01 2002-09-19 Takayuki Onodera Optical semiconductor module and light amplifier
JP2006112870A (ja) 2004-10-13 2006-04-27 Hamamatsu Photonics Kk 光検出装置
US7492798B2 (en) 2005-12-20 2009-02-17 Finisar Corporation Modular transistor outline can with internal components
JP4432947B2 (ja) * 2006-09-12 2010-03-17 株式会社デンソー 赤外線式ガス検出器
EP3215816A1 (en) * 2014-11-06 2017-09-13 Spectral Engines OY Optical measurement system
WO2016071571A1 (en) * 2014-11-06 2016-05-12 Spectral Engines Oy Optical measurement method and system
KR20180062463A (ko) * 2015-10-02 2018-06-08 하마마츠 포토닉스 가부시키가이샤 광 검출 장치
JP7039160B2 (ja) * 2016-03-09 2022-03-22 浜松ホトニクス株式会社 光検出装置
JP6862216B2 (ja) * 2017-02-28 2021-04-21 浜松ホトニクス株式会社 光検出装置
JP6871043B2 (ja) * 2017-03-31 2021-05-12 浜松ホトニクス株式会社 光検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153531U (ja) * 1986-03-24 1987-09-29
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JP2006250707A (ja) * 2005-03-10 2006-09-21 Mitsubishi Electric Corp 赤外線検出器および赤外線検出器のガス吸着手段活性化方法
WO2015064758A1 (ja) * 2013-10-31 2015-05-07 浜松ホトニクス株式会社 光検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3428589A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024161736A1 (ja) * 2023-01-30 2024-08-08 浜松ホトニクス株式会社 蛍光計測装置

Also Published As

Publication number Publication date
CN108780007B (zh) 2022-04-12
EP4350430A3 (en) 2024-06-12
EP4425574A2 (en) 2024-09-04
EP4350430A2 (en) 2024-04-10
EP3428589B1 (en) 2024-04-10
JP2017161336A (ja) 2017-09-14
US20190072431A1 (en) 2019-03-07
US11448553B2 (en) 2022-09-20
JP7039160B2 (ja) 2022-03-22
TWI747887B (zh) 2021-12-01
KR20180122353A (ko) 2018-11-12
FI3428589T3 (fi) 2024-05-07
EP3428589A4 (en) 2019-11-13
CN108780007A (zh) 2018-11-09
EP3428589A1 (en) 2019-01-16
TW201735330A (zh) 2017-10-01
CN114659632A (zh) 2022-06-24
US20220333988A1 (en) 2022-10-20
KR102487457B1 (ko) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2017154773A1 (ja) 光検出装置
US11835388B2 (en) Light detection device
JPWO2015064758A1 (ja) 光検出装置
US11035726B2 (en) Light detection device
JP2015087318A (ja) 光検出装置
JP2007227676A (ja) 赤外線デバイス集積装置
JP2024086931A (ja) 光検出装置
JP7351610B2 (ja) 光検出装置
JP6632647B2 (ja) 光検出装置
JP7139401B2 (ja) 光検出装置
CN113167995B (zh) 光学滤光器装置及光学滤光器装置的控制方法
JP2020106542A (ja) 光検出装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187026622

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017763113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763113

Country of ref document: EP

Effective date: 20181009

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763113

Country of ref document: EP

Kind code of ref document: A1