WO2017154729A1 - 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法 - Google Patents

燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法 Download PDF

Info

Publication number
WO2017154729A1
WO2017154729A1 PCT/JP2017/008293 JP2017008293W WO2017154729A1 WO 2017154729 A1 WO2017154729 A1 WO 2017154729A1 JP 2017008293 W JP2017008293 W JP 2017008293W WO 2017154729 A1 WO2017154729 A1 WO 2017154729A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
flow path
side inlet
cooling
around
Prior art date
Application number
PCT/JP2017/008293
Other languages
English (en)
French (fr)
Inventor
岸田 宏明
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020187022970A priority Critical patent/KR102161961B1/ko
Priority to CN201780009325.8A priority patent/CN108603443B/zh
Priority to US16/076,422 priority patent/US10837365B2/en
Priority to GB1812966.8A priority patent/GB2562668B/en
Publication of WO2017154729A1 publication Critical patent/WO2017154729A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies

Definitions

  • the present invention relates to a combustor panel, a combustor, a combustion apparatus, a gas turbine, and a method for cooling the combustor panel that define a flow path through which combustion gas flows.
  • the combustor of the gas turbine includes a tail cylinder (or combustion cylinder) that defines a flow path of combustion gas, and a fuel injector that injects fuel together with air into the tail cylinder.
  • a tail cylinder or combustion cylinder
  • a fuel injector that injects fuel together with air into the tail cylinder.
  • the fuel burns and the combustion gas generated by the combustion of the fuel flows. For this reason, the inner peripheral surface of the transition piece is exposed to extremely high-temperature combustion gas.
  • an opening for supplying air from the outer peripheral side to the combustion gas flow path on the inner peripheral side is formed in the transition piece disclosed in Patent Document 1 below.
  • the fuel burns and the combustion gas generated by the combustion of the fuel flows. For this reason, the panel which comprises a transition piece is exposed to a very high temperature combustion gas.
  • the panel which comprises a transition piece is exposed to a very high temperature combustion gas, the improvement of durability is desired.
  • an object of the present invention is to provide a combustor panel, a combustor, a combustion apparatus, and a cooling method for the combustor panel that can enhance durability.
  • a combustor panel as a first aspect according to the invention for achieving the above object is as follows: It is a combustor panel that defines the periphery of a combustion gas flow path in which combustion gas flows from the upstream side to the downstream side in the axial direction in which the axis extends.
  • the combustor panel includes an inner surface facing the combustion gas, an outer surface facing a side opposite to the inner surface, an opening penetrating from the outer surface to the inner surface, and a space between the inner surface and the outer surface.
  • a plurality of cooling passages extending in the direction along which the cooling medium flows are formed.
  • Each of the plurality of cooling flow paths has an inlet that opens at the outer surface and guides the cooling medium therein, and an outlet that opens at the inner surface and discharges the cooling medium that has flowed inside.
  • the plurality of cooling channels extending in a direction along the inner surface from a position along the edge of the opening form a channel around the opening.
  • the flow paths around the opening where the inlet is formed on the opening side with respect to the outlet each form an opening-side inlet flow path.
  • the number of the opening-side inlet channels is greater than half of all the openings-around channels, or all the openings-around channels are the opening-side inlet channels.
  • the stress generated during the opening formation process often remains around the opening. That is, there is often a residual stress around the opening. Further, the outlet of the cooling channel is formed on the inner surface of the combustor panel. For this reason, residual stress often exists on the inner surface of the combustor panel and around the outlet.
  • the outlet of the channel around the opening is formed on the opening side, the outlet of the channel around the opening is very close to the edge of the opening. For this reason, higher stress remains on the inner surface of the combustor panel facing the high-temperature combustion gas and around the opening. Therefore, when the shortest distance from the edge of the opening to the flow path around the opening is increased, a wide uncooled region is generated around the opening, and high thermal stress is generated in the uncooled region. Furthermore, since the cooling air that reaches the outlet of the channel around the opening is the cooling air that has flown through the channel around the opening, it is heated in the process of flowing through the channel around the opening, and the cooling capacity is low. Therefore, the cooling capacity around the opening is lowered, and from this viewpoint, a high thermal stress is generated around the opening.
  • the number of the opening-side inlet channels is larger than half of all the channels around the openings, or all the channels around the openings are used as the opening-side inlet channels.
  • the inlet of the channel around the opening is formed on the outer surface of the combustor panel. Therefore, the residual stress around the opening on the inner surface of the combustor panel facing the high-temperature combustion gas can be made smaller than when the outlet of the passage around the opening is formed on the opening side. For this reason, the shortest distance from the edge of the opening to the flow path around the opening can be reduced.
  • the cooling air that has flowed into the inlet of the flow path around the opening is cooling air that has not yet flowed through the flow path around the opening, the cooling capacity is high. Therefore, in the combustor panel, the cooling capability around the air opening is increased, and the generation of thermal stress around the opening can be suppressed.
  • a combustor panel as a second aspect according to the invention for achieving the above object is as follows:
  • a part of the plurality of flow paths around the opening is the opening-side inlet flow path, and the remaining part is formed on the opening side with respect to the outlet.
  • a non-opening-side inlet channel, and the non-opening-side inlet channel is adjacent to the opening-side inlet channel in a direction along an edge of the opening, and other non-opening-side inlet channels Not adjacent.
  • the region with a low cooling capacity around the opening can be made extremely narrow.
  • a combustor panel as a third aspect according to the invention for achieving the above object is as follows: In the combustor panel according to any one of the above, two of the plurality of flow passages around the opening that are adjacent to each other in the direction along the edge of the opening are both on the opening side. It is an inlet channel, and the two opening side inlet channels have different channel lengths.
  • the outlet of one opening side inlet channel is the other opening in the extending direction of the one opening side inlet channel.
  • the position is substantially the same as the position of the outlet of the side inlet channel. That is, the outlets of the two opening-side inlet channels are close to each other.
  • the cooling air that reaches the outlet of the opening-side inlet channel is cooling air that has flowed through the opening-side inlet channel, and therefore has a low cooling capacity. Therefore, a region including each end on the side far from the openings of the two opening-side inlet channels is a region having a low cooling capacity.
  • an opening-side inlet channel having a short channel length and an opening-side inlet channel having a long channel length are adjacent to each other.
  • the distance between the outlets of the two opening-side inlet channels is increased, and the region having a low cooling capacity can be made discrete and narrow.
  • a combustor panel as a fourth aspect according to the invention for achieving the above object is as follows:
  • the first opening side inlet channel is adjacent to the first opening side inlet channel.
  • a first adjacent flow path as a cooling flow path is disposed.
  • a second adjacent flow path as the cooling flow path adjacent to the second opening side inlet flow path is formed on an extension line of the second opening side inlet flow path having a long flow path length between the two opening side inlet flow paths.
  • the first adjacent flow path has the outlet formed on the opening side of the inlet
  • the second adjacent flow path has the inlet formed on the opening side of the outlet.
  • the inlet of the second adjacent channel disposed on the extension line of the second opening side inlet channel having a long channel length is formed on the opening side. That is, in the combustor panel, the outlet of the second opening side inlet channel and the inlet of the second adjacent channel are adjacent to each other in the extending direction of the second opening side inlet channel. For this reason, even if it is an outlet on the side farther from the opening in the second opening side inlet channel, the outlet of the second opening side inlet channel is included by the cooling air flowing in from the inlet of the second adjacent channel. A decrease in the cooling capacity in the region can be suppressed.
  • the outlet of the first adjacent flow path disposed on the extension line of the first opening side inlet flow path having a short flow path length is formed on the opening side. For this reason, the cooling capacity in the region including the outlet of the first opening side inlet channel cannot be supplemented with the cooling air flowing through the first adjacent channel.
  • the first opening-side inlet channel has a channel length shorter than that of the second opening-side inlet channel, the cooling capacity of the cooling air reaching the outlet of the first opening-side inlet channel is not so lowered. For this reason, the cooling capacity in the basin including the outlet of the first opening side inlet channel is not so low.
  • the combustor panel it is possible to make the cooling capacity uniform in a region including the boundary between the cooling flow path excluding the flow path around the opening and the opening-side inlet flow path of the flow path around the opening.
  • a combustor panel as a fifth aspect according to the invention for achieving the above object is as follows:
  • an interval in a direction along an edge of the opening between the two opening-side inlet channels is one of the two opening-side inlet channels.
  • the intervals are the same at a plurality of positions in the channel extending direction in which the channel extends.
  • the cooling capacity at a plurality of positions in the channel extending direction between the two opening-side inlet channels and one of the two opening-side inlet channels extending. Can be made uniform.
  • a combustor panel as a sixth aspect according to the invention for achieving the above object is as follows.
  • the inner surface and the outer surface gradually increase in a radial direction with respect to the axis line as the combustion gas flow moves toward the edge of the opening.
  • a bend is formed that bends outward from the road.
  • the opening-side inlet flow path has an opening-side end formed in the curved portion.
  • a combustor panel as a seventh aspect according to the invention for achieving the above object is as follows: In any one of the above-described combustor panels, the direction in which the plurality of flow paths around the openings extend is a direction including the axial direction component.
  • a combustor as an eighth aspect according to the invention for achieving the above object is as follows: And a fuel injector for injecting fuel and air into the combustion gas passage from the upstream side of the combustion gas passage defined by the combustor panel. .
  • a combustion apparatus as a ninth aspect according to the invention for achieving the above object is as follows:
  • a gas turbine as a tenth aspect according to the invention for achieving the above object is as follows: The combustion apparatus according to the ninth aspect, and a turbine driven by combustion gas generated in the combustor.
  • a method for cooling a combustor panel as an eleventh aspect according to the invention for achieving the above object is as follows:
  • the combustor panel includes an inner surface facing the combustion gas, an outer surface facing the outer surface opposite to the inner surface, an opening penetrating from the outer surface to the inner surface, and a space between the inner surface and the outer surface.
  • a plurality of cooling passages extending in the direction along which the cooling medium flows are formed.
  • the plurality of cooling channels extending in a direction along the inner surface from a position along the edge of the opening form a channel around the opening.
  • the number of the opening-side inlet channels among the plurality of openings-around channels is greater than half of all the openings-around channels, or all the openings-around channels are the opening-side inlet channels.
  • the cooling medium is supplied from the outside of the opening side inlet channel to the opening side inlet channel from the outside, and the cooling medium is supplied from the position where the cooling medium is supplied in the opening side inlet channel.
  • the cooling medium that has flowed through the opening-side inlet channel is caused to flow out from the inner surface at a position far from the opening.
  • the durability of the combustor panel can be improved.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 4. It is a top view of the panel for combustors in the modification of embodiment which concerns on this invention.
  • the gas turbine of the present embodiment includes a compressor 1 that compresses outside air Ao to generate compressed air A, and a combustion apparatus that generates combustion gas G by burning fuel F in the compressed air A. 2 and a turbine 3 driven by the combustion gas G.
  • the compressor 1 includes a compressor rotor 1a that rotates about the rotation axis Xr, and a compressor casing 1b that rotatably covers the compressor rotor 1a.
  • the turbine 3 includes a turbine rotor 3a that rotates about the rotation axis Xr, and a turbine casing 3b that rotatably covers the turbine rotor 3a.
  • the rotation axis Xr of the compressor rotor 1a and the rotation axis Xr of the turbine rotor 3a are located on the same straight line.
  • the compressor rotor 1 a and the turbine rotor 3 a are connected to each other to form a gas turbine rotor 5.
  • a rotor of a generator GEN is connected to the gas turbine rotor 5.
  • the gas turbine further includes an intermediate casing 4 that covers the gas turbine rotor 5 rotatably.
  • the compressor casing 1b, the intermediate casing 4, and the turbine casing 3b are arranged in this order in the direction in which the rotation axis Xr extends.
  • the compressor casing 1b, the intermediate casing 4, and the turbine casing 3b are connected to each other to form a gas turbine casing 6.
  • the combustion apparatus 2 includes a plurality of combustors 10. As shown in FIG. 2, the combustor 10 includes a tail cylinder 20 in which the fuel F burns, and a fuel injector 11 that sends the fuel F and the compressed air A into the tail cylinder 20.
  • the plurality of combustors 10 are fixed to the intermediate casing 4 along the circumferential direction around the rotation axis Xr. Each combustor 10 is disposed in an intermediate casing 4 where the compressed air A compressed by the compressor 1 drifts.
  • the combustion apparatus 2 further includes an air supply pipe 15 that supplies the compressed air A into the tail cylinder 20 of each of the plurality of combustors, and a valve 16 that adjusts the flow rate of the air flowing through the air supply pipe 15. Both the air supply pipe 15 and the valve 16 are disposed in the intermediate casing 4.
  • the compressed air A in the intermediate casing 4 can be supplied into the tail cylinder 20 via the valve 16 and the air supply pipe 15.
  • the fuel injector 11 includes a plurality of burners 12 that inject the fuel F and the compressed air A, and a burner holding cylinder 13 that holds the plurality of burners 12.
  • the plurality of burners 12 are all supported by a burner holding cylinder 13 in parallel with the combustor axis Xc. Further, each of the plurality of burners 12 injects fuel F from one side of the axial direction Da in which the combustor axis Xc extends to the other side. Further, each of the plurality of burners 12 injects compressed air A as primary air A1 from one side in the axial direction Da toward the other side.
  • the tail cylinder 20 forms a cylinder around the combustor axis Xc and defines the periphery of the combustion gas passage 21 through which the combustion gas G flows.
  • the one side in the axial direction Da is referred to as an upstream side Su
  • the other side in the axial direction Da is referred to as a downstream side Sd.
  • the circumferential direction with respect to the combustor axis Xc is simply referred to as the circumferential direction Dc
  • the radial direction with respect to the combustor axis Xc is simply referred to as the radial direction Dr.
  • the side away from the combustor axis Xc in the radial direction is defined as a radially outer side Dro, and the opposite side is defined as a radially inner side Dri.
  • the tail cylinder 20 and the burner holding cylinder 13 may be integrated to be called a combustion cylinder.
  • the tail cylinder 20 of the present embodiment includes a cylindrical body part 30 and an outlet flange part 25 joined to the downstream side Sd of the body part 30 as shown in FIG.
  • the outlet flange portion 25 is formed in a cylindrical shape around the combustor axis Xc, and includes a cylinder 26 that defines a part of the combustion gas flow path 21 and a flange 27 that is formed at the downstream end of the cylinder 26. As shown in FIG. 2, the flange 27 is for connecting the transition piece 20 to the combustion gas inlet 3 i of the turbine 3.
  • the cylinder 26 and the flange 27 are integrally formed by casting or the like, for example, and form the outlet flange portion 25.
  • a thermal barrier coating (Thermal Barrier Coating Coat: TBC) layer (not shown) is applied.
  • the body portion 30 is formed in a cylindrical shape around the combustor axis Xc, and defines a part of the combustion gas flow path 21.
  • the body portion 30 includes a plurality of curved combustor panels 31.
  • the plurality of curved combustor panels 31 are arranged in the circumferential direction Dc, and the ends of each combustor panel 31 in the circumferential direction Dc are joined together by welding to form a cylinder.
  • drum 30 shown in FIG. 3 arranges the panel 31 for 2 combustors in the circumferential direction Dc.
  • the body portion 30 may be, for example, three or more, for example, four combustor panels 31 arranged in the circumferential direction Dc.
  • the body portion 30 may be formed by bending one combustor panel 31 into a cylindrical shape and joining the ends of the one combustor panel 31 by welding.
  • the combustor panel 31 includes an outer plate 32 and an inner plate 34. Of the pair of surfaces facing the opposite directions in the outer plate 32, one surface forms the outer surface 32o and the other surface forms the bonding surface 32c. Of the pair of surfaces facing in opposite directions in the inner plate 34, one surface forms a bonding surface 34c and the other surface forms an inner surface 34i.
  • the joining surface 32c of the outer side plate 32 is formed with a plurality of long grooves 33 that are recessed toward the outer surface 32o and are long in a certain direction.
  • the outer plate 32 and the inner plate 34 are joined together by brazing or the like to form a combustor panel 31.
  • the opening of the long groove 33 formed in the outer plate 32 is closed by the inner plate 34, and the inside of the long groove 33 becomes the cooling flow path 35. Therefore, the plurality of cooling flow paths 35 extend in a direction along the inner surface 34 i between the outer surface 32 o and the inner surface 34 i of the combustor panel 31.
  • each cooling flow path 35 has an independent inlet and an independent outlet.
  • the inlet 36i is formed at the position of one of the two ends in the extending direction of the cooling flow path 35.
  • the outlet 36o is formed at the position of the other end of the two ends in the extending direction of the cooling flow path 35.
  • the inner surface 34 i of the inner plate 34 faces the inner peripheral side of the transition piece 20
  • the outer surface 32 o of the outer plate 32 faces the outer peripheral side of the transition piece 20
  • the plurality of cooling channels 35 are arranged such that the extending direction of the first and second electrodes extends in the axial direction Da, and the ends in the circumferential direction Dc are joined to each other as described above. For this reason, all of the plurality of cooling channels 35 of the body part 30 substantially extend in the axial direction Da, and the interval between the two cooling channels 35 adjacent in the circumferential direction Da is at any position in the axial direction Da. The intervals are substantially the same.
  • a thermal barrier coating layer 39 is applied to the inner surface 34 i of the combustor panel 31. Therefore, the outer surface 32 o of the outer side plate 32 becomes the outer surface of the body part 30, and the surface of the thermal barrier coating layer 39 becomes the inner surface of the body part 30.
  • a secondary air opening 37 that penetrates from the radially outer side Dro to the radially inner side Dri is formed in the body portion 30.
  • one combustor panel 31 is formed with a secondary air opening 37 penetrating from the outer surface 32o of the combustor panel 31 to the inner surface 34i.
  • the aforementioned air supply pipe 15 is connected to the edge of the secondary air opening 37.
  • the connection between the air supply pipe 15 and the edge of the secondary air opening 37 may be a flange connection.
  • the compressed air A in the intermediate casing 4 is converted to secondary air A 2 from the secondary air opening 37 through the valve 16 and the air supply pipe 15 as necessary. Supplied.
  • the inner surface 34 i and the outer surface 32 o of the combustor panel 31 gradually have a diameter around the secondary air opening 37 of the combustor panel 31 as they approach the edge of the secondary air opening 37.
  • a curved portion 38 that bends outward in the direction Dro is formed.
  • the curved portion 38 is formed by plastic processing such as press molding, for example.
  • each of the plurality of cooling channels 35 extending in the direction along the inner surface 34 i from the position along the edge of the secondary air opening 37 is arranged around each of the openings. It is set as the flow path 35a. Therefore, there is no other cooling channel 35 in the region that forms the shortest distance from the end of the opening-side channel 35 a to the edge of the secondary air opening 37.
  • all the opening surrounding flow paths 35a are formed with an inlet 36i at an opening side end to form an opening-side inlet flow path 35ai. For this reason, the outlet passages 36 o are formed at the ends far from the secondary air openings 37 in all the passages 35 a around the openings.
  • the plurality of openings-around channels 35a include a first opening side inlet channel 35ai1 having a short channel length and a second opening side inlet channel 35ai2 having a long channel length.
  • the first opening side inlet channel 35ai1 and the second opening side inlet channel 35ai2 are alternately arranged in the direction along the edge of the secondary air opening 37.
  • one opening side inlet channel 35ai forms the first opening side inlet channel 35ai1
  • the other The opening side inlet flow path 35ai of the second side forms the second opening side inlet flow path 35ai2.
  • the cooling channel 35 that is on the extension line of the first opening side inlet channel 35ai1 and that is adjacent to the first opening side inlet channel 35ai1 in the axial direction Da is the first An adjacent flow path 35b1 is formed.
  • the first adjacent flow path 35b1 has an outlet 36o formed at the end on the opening side, and an inlet 36i formed on the end far from the secondary air opening 37. Therefore, the outlet 36o of the first opening side inlet channel 35ai1 and the outlet 36o of the first adjacent channel 35b1 are adjacent in the axial direction Da.
  • the cooling channel 35 on the extension line of the second opening side inlet channel 35ai2 and adjacent to the second opening side inlet channel 35ai2 in the axial direction Da is:
  • a second adjacent flow path 35b2 is formed.
  • the second adjacent channel 35 b 2 has an inlet 36 i formed at the end on the opening side and an outlet 36 o formed at the end far from the secondary air opening 37. Therefore, the outlet 36o of the second opening-side inlet channel 35ai2 and the inlet 36i of the second adjacent channel 35b2 are adjacent in the axial direction Da.
  • an inlet 36i is formed at the opening side end of one cooling channel 35b.
  • An outlet 36o is formed at the opening side end of the other cooling channel 35b. That is, the inlet 36i of one cooling channel 35b of the two cooling channels 35b adjacent in the axial direction Da and the outlet 36o of the other cooling channel 35b are adjacent in the axial direction Da.
  • the opening-side ends of the plurality of openings-around flow paths 35a are formed in a curved portion 38 around the openings as shown in FIG. Therefore, the curved portion 38 is formed with an opening-around channel 35a, that is, an inlet 36i of the opening-side inlet channel 35ai.
  • Compressor 1 sucks outside air Ao and compresses it to generate compressed air A as shown in FIG.
  • the compressed air A flows through the intermediate casing 4 as the primary air A1 into the burner holding cylinder 13 of the combustor 10.
  • the primary air A ⁇ b> 1 flowing into the burner holding cylinder 13 is injected from the burner holding cylinder 13 into the tail cylinder 20.
  • the primary air A ⁇ b> 1 that has flowed into the burner holding cylinder 13 flows into the burner 12 in the burner holding cylinder 13, and is injected from the burner 12 into the tail cylinder 20.
  • Fuel F is supplied to each burner 12 of the combustor 10 from the outside.
  • the fuel F flowing into the burner 12 is injected from the burner 12 into the transition piece 20.
  • the fuel F injected into the transition piece 20 burns in the primary air A1.
  • combustion gas G is generated in the transition piece 20.
  • the compressed air A in the intermediate casing 4 is supplied as secondary air A ⁇ b> 2 from the secondary air opening 37 of the body portion 30 through the valve 16 and the air supply pipe 15 into the body portion 30 of the tail cylinder 20.
  • This secondary air A2 is used for adjusting the fuel-air ratio in the transition piece 20, for example.
  • the high-temperature and high-pressure combustion gas G generated in the tail cylinder 20 flows downstream into the tail cylinder 20 and flows into the turbine 3 from the combustion gas inlet 3 i of the turbine 3.
  • the turbine rotor 3a is rotated by the combustion gas G.
  • the turbine rotor 3a rotates, for example, the rotor of the generator GEN connected to the turbine rotor 3a rotates, and the generator GEN generates power.
  • the inner surface 34 i of the tail cylinder 20 is exposed to the high-temperature combustion gas G. For this reason, a thermal barrier coating layer 39 is applied to the inner surface 34 i of the transition piece 20. Furthermore, the compressed air A existing outside the tail cylinder 20 flows into the cooling flow path 35 of the combustor panel 31 constituting the tail cylinder 20 as cooling air (cooling medium) Ac, and is combusted by the cooling air Ac. The device panel 31 is cooled.
  • Compressed air A flows as cooling air Ac into the cooling flow path 35 from an inlet 36i opened at the outer surface 32o of the combustor panel 31.
  • the cooling air Ac exchanges heat with the combustor panel 31 in the process of flowing through the cooling flow path 35 to cool the combustor panel 31.
  • the cooling air Ac flows out into the combustion gas flow path 21 from the outlet 36o opened at the inner surface 34i of the combustor panel 31.
  • a part of the cooling air Ac flowing out to the combustion gas passage 21 flows along the inner surface 34i of the tail cylinder 20, and the inner surface 34i is film-cooled.
  • the outlet 36o of the opening-around flow path 35a is very close to the edge of the secondary air opening 37. Therefore, higher stress remains on the inner surface 34 i of the combustor panel 31 facing the high-temperature combustion gas G and around the secondary air opening 37. Therefore, when the shortest distance from the edge of the secondary air opening 37 to the opening-side flow path 35a is increased, a wide uncooled region is generated around the secondary air opening 37, and high thermal stress is generated in the uncooled region. To do.
  • the cooling air Ac reaching the outlet 36o of the flow path 35a around the opening is the cooling air Ac that has flown through the flow path 35a around the opening, it is heated in the process of flowing through the flow path 35a around the opening, The ability is low. Therefore, the cooling capacity around the secondary air opening 37 is reduced, and a high thermal stress is generated around the secondary air opening 37 also from this viewpoint.
  • the inlet 36i is formed at the end on the opening side with respect to all the flow paths 35a around the opening.
  • An inlet 36i of the opening-around channel 35a is formed on the outer surface 32o of the combustor panel 31. Therefore, the residual stress around the secondary air opening 37 on the inner surface 34i of the combustor panel 31 facing the high-temperature combustion gas G is formed at the end of the outlet 36o of the opening-around flow path 35a on the opening side. It can be made smaller than the case. Therefore, the shortest distance from the edge of the secondary air opening 37 to the opening surrounding flow path 35a can be reduced, and the uncooled region around the secondary air opening 37 can be extremely reduced.
  • the cooling air Ac that has flowed into the inlet 36i of the opening-around channel 35a is the cooling air Ac that has not yet flowed through the opening-around channel 35a, the cooling capacity is high. Therefore, the cooling capacity around the secondary air opening 37 is enhanced, and the generation of thermal stress around the secondary air opening 37 can be suppressed.
  • the inlet 36i is formed at the end on the opening side for all the flow paths 35a around the openings, and the flow path lengths of the plurality of flow paths 35a are the same.
  • the positions of the outlets 36o of the two opening-circulating channels 35a (opening-side inlet channels 35ai) adjacent in the direction along the edge of the secondary air opening 37 are substantially the same in the axial direction Da.
  • the outlets 36 o of the two opening-circulating passages 35 a are close to each other in the direction along the edge of the secondary air opening 37.
  • the cooling air Ac that reaches the outlet 36o of the opening-around channel 35a is the cooling air Ac that has flowed through the opening-around channel 35a, and thus has a low cooling capacity. Therefore, the region including each end on the side farther from the secondary air opening 37 of the two flow channels 35a around the opening is a region having a low cooling capacity.
  • the first opening side inlet channel 35ai1 having a short channel length and the second opening side inlet channel 35ai2 having a long channel length are alternately arranged.
  • the distance between the outlets 36o of the two opening-side inlet channels 35ai is increased, and the region having a low cooling capacity can be made discrete and narrow.
  • the inlet 36i of the second adjacent channel 35b2 arranged on the extension line of the second opening side inlet channel 35ai2 having a long channel length is formed at the end on the opening side. That is, in the present embodiment, the outlet 36o of the second opening-side inlet channel 35ai2 and the inlet 36i of the second adjacent channel 35b2 are adjacent in the axial direction Da. For this reason, even if the end of the second opening side inlet channel 35ai2 far from the secondary air opening 37 is the outlet 36o, the cooling air Ac flowing in from the inlet 36i of the second adjacent channel 35b2 It is possible to suppress a decrease in cooling capacity in a region including the outlet 36o of the second opening side inlet channel 35ai2.
  • the outlet 36o of the first adjacent channel 35b1 disposed on the extension line of the first opening side inlet channel 35ai1 having a short channel length is formed at the end on the opening side. For this reason, the cooling capacity in the region including the outlet 36o of the first opening-side inlet channel 35ai1 cannot be supplemented by the cooling air Ac flowing through the first adjacent channel 35b1.
  • the first opening side inlet channel 35ai1 has a shorter channel length than the second opening side inlet channel 35ai2
  • the cooling capacity of the cooling air Ac reaching the outlet 36o of the first opening side inlet channel 35ai1 is not so much. It has not declined. For this reason, the cooling capacity in the basin including the outlet 36o of the first opening side inlet channel 35ai1 is not so low.
  • the inlet 36i of one cooling channel 35b and the outlet 36o of the other cooling channel 35b of the two cooling channels 35b adjacent in the axial direction Da are adjacent in the axial direction Da. is doing. For this reason, the cooling capacity in the region including the outlet 36o of the other cooling channel 35b can be supplemented by the cooling air Ac flowing through the one cooling channel 35b. Therefore, it is possible to make the cooling capacity uniform in the region where the plurality of cooling flow paths 35b except the opening-around flow path 35a are arranged.
  • the region including the boundary between the cooling flow path 35b excluding the opening-around flow path 35a and the opening-around flow path 35a and the cooling flow path 35b excluding the opening-around flow path 35a are arranged. This makes it possible to make the cooling capacity uniform in the area where it is located. For this reason, in this embodiment, generation
  • the secondary air opening 37 of the present embodiment is an opening that guides the secondary air A2 from the outer surface 32o side of the combustor panel 31 to the inner surface 34i side.
  • this opening may be an opening penetrating from the outer surface 32o of the combustor panel 31 to the inner surface 34i of the combustor panel 31, and may not lead the secondary air A2 to the inner surface 34i side.
  • All of the opening-circulation channels 35a in the present embodiment are the opening-side inlet channels 35ai in which the inlet 36i is formed at the opening-side end.
  • an opening-side inlet channel 35ai in which an inlet 36i is formed at an end on the opening side may be the non-opening side inlet channel 35ao in which the inlet 36i is not formed at the end on the opening side.
  • the number of the opening-side inlet channels 35ai should be larger than half of all the aperture-around channels 35a.
  • the number of opening-side inlet channels 35ai should be greater than the number of non-opening-side inlet channels 35ao. Further, in this case, it is desirable that the non-opening side inlet flow path 35ao is adjacent to the opening-side inlet flow path 35ai and not adjacent to the other non-opening side inlet flow path 35ao.
  • an inlet 36i is formed at one of the two ends in the extending direction of the cooling flow path 35, and the other end
  • An outlet 36o is formed at the position.
  • the inlet 36i and the outlet 36o may not be formed at the end position in the extending direction of the cooling flow path 35.
  • the plurality of cooling channels 35 extending in the direction along the inner surface 34i from the position along the edge of the secondary air opening 37 are defined as the around-opening channel 35a.
  • the cooling flow path 35 in which at least a part of the flow path exists in the region from the portion X where the curved portion 38 starts to the opening 37 is provided as a flow path around the opening. It is good also as 35a.
  • a cooling flow path 35 in which at least a part exists in a region from the opening 37 to a certain distance Y may be used as an opening surrounding flow path 35 a.
  • the distance Y that defines this region is such that the number of the opening-side inlet channels 35ai is more than half of all the cooling channels 35 that are partially present in the region, or the opening-side inlet channels 35ai are The distance that is all.
  • all of the cooling flow path 35 including the opening surrounding flow path 35a extends linearly in a plane along the inner surface 34i of the combustor panel 31.
  • the cooling flow path 35 may have a portion bent in a plane along the inner surface 34 i of the combustor panel 31.
  • All the cooling channels 35 in the present embodiment have substantially the same cross-sectional area at any position in the channel extending direction.
  • the cross-sectional area of any of the cooling channels 35 may change as the position of the channel in the extending direction changes. For example, in a region that is easily heated, the cross-sectional area of the channel may be increased.
  • the combustor panel 31 is configured by joining two plates, the outer plate 32 and the inner plate 34.
  • the combustor panel 31 may be formed of a single plate.
  • the durability of the combustor panel can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

燃焼器用パネルの外面と内面との間には、複数の冷却流路(35)が形成されている。冷却流路(35)は、外面で開口して内部に冷却媒体を導く入口(36i)と、内面で開口して内部を流れてきた冷却媒体を排出する出口(36o)と、を有する。複数の冷却流路(35)のうち、燃焼器用パネルの開口(37)の縁に沿った位置から延びる複数の冷却流路(35)は、それぞれ開口周り流路(35a)を成す。複数の開口周り流路(35a)のうち、出口(36o)よりも入口(36i)が開口(37)側に形成されている開口周り流路(35a)は、それぞれ開口側入口流路(35ai)を成す。開口側入口流路(35ai)の数は、全ての開口周り流路(35i)の半数より多い。

Description

燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
 本発明は、燃焼ガスが流れる流路を画定する燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法に関する。
 本願は、2016年3月10日に、日本国に出願された特願2016-047352号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンの燃焼器は、燃焼ガスの流路を画定する尾筒(又は燃焼筒)と、この尾筒内に空気と共に燃料を噴射する燃料噴射器と、を備えている。尾筒内では、燃料が燃焼すると共に、燃料の燃焼で生成された燃焼ガスが流れる。このため、尾筒の内周面は、極めて高温の燃焼ガスに晒される。
 例えば、以下の特許文献1に開示されている尾筒には、外周側から内周側の燃焼ガス流路に空気を供給するための開口が形成されている。
実開昭61-135169号公報
 尾筒内では、燃料が燃焼すると共に、燃料の燃焼で生成された燃焼ガスが流れる。このため、尾筒を構成するパネルは、極めて高温の燃焼ガスに晒される。このように、尾筒を構成するパネルは、極めて高温の燃焼ガスに晒されるものの、耐久性の向上が望まれている。
 そこで、本発明は、耐久性を高めることができる燃焼器用パネル、燃焼器、燃焼装置、及び燃焼器用パネルの冷却方法を提供することを目的とする。
 上記目的を達成するための発明に係る第一態様としての燃焼器用パネルは、
 軸線が延びる軸方向の上流側から下流側に燃焼ガスが流れる燃焼ガス流路の周囲を画定する燃焼器用パネルである。この燃焼器用パネルには、前記燃焼ガスに対向する内面と、前記内面と相反する側を向く外面と、前記外面から前記内面に貫通した開口と、前記内面と前記外面との間を前記内面に沿った方向に延びて、内部を冷却媒体が流れる複数の冷却流路と、が形成されている。複数の前記冷却流路は、それぞれ、前記外面で開口して内部に冷却媒体を導く入口と、前記内面で開口して内部を流れてきた前記冷却媒体を排出する出口と、を有する。複数の前記冷却流路のうち、前記開口の縁に沿った位置から前記内面に沿った方向に延びる複数の前記冷却流路が、それぞれ開口周り流路を成す。複数の前記開口周り流路のうち、前記出口よりも前記入口が前記開口側に形成されている開口周り流路は、それぞれ開口側入口流路を成す。前記開口側入口流路の数は、全ての前記開口周り流路の半数より多い、又は、全ての前記開口周り流路が前記開口側入口流路である。
 燃焼器用パネル中で開口の周りには、開口の形成過程で生じた応力が残っていることが多い。つまり、開口の周りには残留応力が存在する場合が多い。また、冷却流路の出口は、燃焼器用パネルの内面に形成されている。このため、燃焼器用パネルの内面であって、この出口の周りにも、残留応力が存在する場合が多い。
 仮に、開口周り流路の出口を開口側に形成すると、開口の縁に開口周り流路の出口が極めて近接する。このため、高温の燃焼ガスに対向する燃焼器用パネルの内面であって、開口の周りには、より高い応力が残ることになる。そこで、開口の縁から開口周り流路までの最短距離を大きくすると、開口周りに広い無冷却領域が生じることになり、この無冷却領域に高い熱応力が発生する。さらに、開口周り流路の出口に至る冷却空気は、開口周り流路を流れてきた冷却空気であるため、開口周り流路を流れている過程で加熱されており、冷却能力が低い。よって、開口周りの冷却能力が低下し、この観点からも、この開口周りに高い熱応力が発生する。
 そこで、当該燃焼器用パネルでは、全ての開口周り流路の半数より開口側入口流路の数を多くしている、又は、全ての開口周り流路を開口側入口流路にしている。開口周り流路の入口は、燃焼器用パネルの外面に形成される。このため、高温の燃焼ガスに対向する燃焼器用パネルの内面であって、開口の周りの残留応力を、開口周り流路の出口を開口側に形成した場合よりも小さくすることができる。このため、開口の縁から開口周り流路までの最短距離を小さくすることができる。さらに、開口周り流路の入口に流入してきた冷却空気は、未だ開口周り流路を流れていない冷却空気であるため、冷却能力が高い。よって、当該燃焼器用パネルでは、空気開口周りの冷却能力が高まり、この開口周りの熱応力の発生を抑えることができる。
 上記目的を達成するための発明に係る第二態様としての燃焼器用パネルは、
 前記第一態様の前記燃焼器用パネルにおいて、複数の前記開口周り流路のうち、一部が前記開口側入口流路であり、残りの一部が前記出口よりも前記入口が前記開口側に形成されていない非開口側入口流路であり、前記非開口側入口流路は、前記開口の縁に沿った方向で前記開口側入口流路に隣接し、他の前記非開口側入口流路と隣接していない。
 当該燃焼器用パネルでは、開口周りで、冷却能力の低い領域を極めて狭くすることができる。
 上記目的を達成するための発明に係る第三態様としての燃焼器用パネルは、
 以上のいずれか一の前記燃焼器用パネルにおいて、複数の前記開口周り流路のうち、前記開口の縁に沿った方向で互いに隣接している二つの開口周り流路は、いずれも、前記開口側入口流路であり、前記二つの開口側入口流路は、流路長が互いに異なる。
 互いに隣接する二つの開口側入口流路のそれぞれの流路長が同じである場合、一の開口側入口流路の出口が、この一の開口側入口流路の延在方向で、他の開口側入口流路の出口の位置とほぼ同じ位置になる。すなわち、二つの開口側入口流路の出口が互いに近接することになる。開口側入口流路の出口に至る冷却空気は、開口側入口流路を流れてきた冷却空気であるため、冷却能力が低い。よって、二つの開口側入口流路の開口に対して遠い側の各端を含む領域は、冷却能力の低い領域になる。
 そこで、当該燃焼器用パネルでは、流路長の短い開口側入口流路と流路長の長い開口側入口流路とを隣接させている。この結果、二つの開口側入口流路の出口の相互間距離が大きくなり、冷却能力が低い領域を離散させ且つ狭くすることができる。
 上記目的を達成するための発明に係る第四態様としての燃焼器用パネルは、
 前記第三態様の前記燃焼器用パネルにおいて、前記二つの開口側入口流路のうち流路長の短い第一開口側入口流路の延長線上に、前記第一開口側入口流路に隣接する前記冷却流路としての第一隣接流路が配置されている。前記二つの開口側入口流路のうち流路長の長い第二開口側入口流路の延長線上に、前記第二開口側入口流路に隣接する前記冷却流路としての第二隣接流路が配置されている。前記第一隣接流路は、前記入口よりも前記開口側に前記出口が形成され、前記第二隣接流路は、前記出口よりも前記開口側に前記入口が形成されている。
 当該燃焼器用パネルでは、流路長の長い第二開口側入口流路の延長線上に配置されている第二隣接流路の入口を開口側に形成している。すなわち、当該燃焼器用パネルでは、第二開口側入口流路の出口と第二隣接流路の入口とが、第二開口側入口流路の延在方向で隣接している。このため、第二開口側入口流路で開口に対して遠い側に出口であっても、第二隣接流路の入口から流入する冷却空気により、この第二開口側入口流路の出口を含む領域における冷却能力の低下を抑えることができる。
 また、当該燃焼器用パネルでは、流路長の短い第一開口側入口流路の延長線上に配置されている第一隣接流路の出口を開口側に形成している。このため、第一開口側入口流路の出口を含む領域における冷却能力を、第一隣接流路を流れる冷却空気で補うことができない。しかしながら、第一開口側入口流路は、第二開口側入口流路より流路長が短いため、第一開口側入口流路の出口に至った冷却空気の冷却能力はそれほど低下していない。このため、第一開口側入口流路の出口を含む流域における冷却能力は、それほど低くない。
 よって、当該燃焼器用パネルでは、開口周り流路を除く冷却流路と開口周り流路のうちの開口側入口流路との境界を含む領域での冷却能力の均一化を図ることができる。
 上記目的を達成するための発明に係る第五態様としての燃焼器用パネルは、
 前記第三又は第四態様の前記燃焼器用パネルにおいて、前記二つの開口側入口流路の間の前記開口の縁に沿った方向における間隔は、前記二つの開口側入口流路のうち、一方の流路が延びている流路延在方向における複数の位置で同じ間隔である。
 当該燃焼器用パネルでは、二つの開口側入口流路の間であって、二つの開口側入口流路のうち、一方の流路が延びている流路延在方向における複数の位置での冷却能力の均一化を図ることができる。
 上記目的を達成するための発明に係る第六態様としての燃焼器用パネルは、
 以上のいずれか一の前記燃焼器用パネルにおいて、前記開口の周りには、前記内面及び前記外面が、前記開口の縁に近づくに連れて、次第に、前記軸線に対する径方向であって前記燃焼ガス流路から遠ざかる外側に曲がる曲部が形成されている。複数の前記開口周り流路のうち、前記開口側入口流路は、前記開口側の端が前記曲部中に形成されている。
 開口の周りに、プレス加工で曲部を形成した場合、燃焼器用パネルの外面であって開口の周りには、プレス加工により圧縮応力が残留応力として残る。よって、この燃焼器用パネルの外面であって開口の周りに、開口側入口流路の入口を形成しても、この入口の縁には圧縮応力が作用するため、クラックが発生し難い。
 上記目的を達成するための発明に係る第七態様としての燃焼器用パネルは、
 以上のいずれか一の前記燃焼器用パネルにおいて、複数の前記開口周り流路が延びる方向は、いずれも、前記軸方向の方向成分を含む方向である。
 当該燃焼器用パネルでは、二つの開口周り流路の間であって、軸方向における各位置での冷却能力の均一化を図ることができる。
 上記目的を達成するための発明に係る第八態様としての燃焼器は、
 以上のいずれか一の前記燃焼器用パネルと、前記燃焼器用パネルにより画定される前記燃焼ガス流路の前記上流側から前記燃焼ガス流路内に燃料及び空気を噴射する燃料噴射器と、を備える。
 上記目的を達成するための発明に係る第九態様としての燃焼装置は、
 前記第八態様の前記燃焼器と、前記開口から前記燃焼ガス流路中に空気を供給する空気供給管と、前記空気供給管を流れる空気の流量を調節する弁と、を備える。
 上記目的を達成するための発明に係る第十態様としてのガスタービンは、
 前記第九態様の前記燃焼装置と、前記燃焼器内で生成された燃焼ガスにより駆動するタービンと、を備える。
 上記目的を達成するための発明に係る第十一態様としての燃焼器用パネルの冷却方法は、
 燃焼ガスが流れる燃焼ガス流路の周囲を画定する燃焼器用パネルの冷却方法である。前記燃焼器用パネルには、前記燃焼ガスに対向する内面と、前記内面と相反する外側を向く外面と、前記外面から前記内面に貫通した開口と、前記内面と前記外面との間を前記内面に沿った方向に延びて、内部を冷却媒体が流れる複数の冷却流路と、が形成されている。複数の前記冷却流路のうち、前記開口の縁に沿った位置から前記内面に沿った方向に延びる複数の前記冷却流路が、それぞれ開口周り流路を成す。複数の前記開口周り流路のうちの開口側入口流路の数は、全ての前記開口周り流路の半数より多い、又は、全ての前記開口周り流路が前記開口側入口流路である。前記開口側入口流路に対して、前記開口側入口流路の前記開口側で且つ前記外側から前記冷却媒体を供給し、前記開口側入口流路中で前記冷却媒体が供給された位置より前記開口から遠い位置で且つ前記内面から、前記開口側入口流路を流れた前記冷却媒体を流出させる。
 本発明に係る一態様では、燃焼器用パネルの耐久性を高めることができる。
本発明に係る一実施形態におけるガスタービンの構成を示す模式図である。 本発明に係る一実施形態におけるガスタービンの燃焼器周りの断面図である。 本発明に係る一実施形態における尾筒の斜視図である。 本発明に係る実施形態における燃焼器用パネルの平面図である。 図4におけるV-V線断面図である。 図4におけるVI-VI線断面図である。 本発明に係る実施形態の変形例における燃焼器用パネルの平面図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 「実施形態」
 本実施形態のガスタービンは、図1に示すように、外気Aoを圧縮して圧縮空気Aを生成する圧縮機1と、燃料Fを圧縮空気A中で燃焼させ燃焼ガスGを生成する燃焼装置2と、燃焼ガスGにより駆動するタービン3と、を備えている。
 圧縮機1は、回転軸線Xrを中心として回転する圧縮機ロータ1aと、圧縮機ロータ1aを回転可能に覆う圧縮機車室1bと、を有する。タービン3は、回転軸線Xrを中心として回転するタービンロータ3aと、タービンロータ3aを回転可能に覆うタービン車室3bと、を有する。圧縮機ロータ1aの回転軸線Xrとタービンロータ3aの回転軸線Xrとは、同一直線上に位置している。この圧縮機ロータ1aとこのタービンロータ3aとは、互いに連結されてガスタービンロータ5を構成する。ガスタービンロータ5には、例えば、発電機GENのロータが連結されている。
 ガスタービンは、さらに、ガスタービンロータ5を回転可能に覆う中間車室4を備えている。圧縮機車室1b、中間車室4、及びタービン車室3bは、この順序で、回転軸線Xrが延びる方向に並んでいる。圧縮機車室1b、中間車室4、及びタービン車室3bは、相互に接続されて、ガスタービン車室6を構成する。
 燃焼装置2は、複数の燃焼器10を備える。燃焼器10は、図2に示すように、内部で燃料Fが燃焼する尾筒20と、尾筒20内に燃料F及び圧縮空気Aを送る燃料噴射器11と、を有する。複数の燃焼器10は、回転軸線Xrを中心として周方向に並んで、中間車室4に固定されている。各燃焼器10は、圧縮機1で圧縮された圧縮空気Aが漂う中間車室4内に配置されている。燃焼装置2は、さらに、複数の燃焼器毎の尾筒20内に圧縮空気Aを供給する空気供給管15と、この空気供給管15を流れる空気の流量を調節する弁16と、を有する。空気供給管15及び弁16は、いずれも、中間車室4内に配置されている。尾筒20内には、弁16及び空気供給管15を介して、中間車室4内の圧縮空気Aを供給することができる。
 燃料噴射器11は、燃料F及び圧縮空気Aを噴射する複数のバーナ12と、複数のバーナ12を保持するバーナ保持筒13と、を備えている。複数のバーナ12は、いずれも、燃焼器軸線Xcと平行にバーナ保持筒13により支持されている。また、複数のバーナ12は、いずれも、燃焼器軸線Xcが延びる軸方向Daの一方側から他方側に向かって燃料Fを噴射する。さらに、複数のバーナ12は、いずれも、軸方向Daの一方側から他方側に向かって圧縮空気Aを一次空気A1として噴射する。
 尾筒20は、図2及び図3に示すように、燃焼器軸線Xc周りに筒状を成して、燃焼ガスGが流れる燃焼ガス流路21の周囲を画定する。なお、以下では、軸方向Daの前記一方側を上流側Su、軸方向Daの前記他方側を下流側Sdとする。また、燃焼器軸線Xcに対する周方向を単に周方向Dcとし、燃焼器軸線Xcに対する径方向を単に径方向Drする。さらに、この径方向で燃焼器軸線Xcから遠ざかる側を径方向外側Dro、この反対側を径方向内側Driとする。なお、尾筒20とバーナ保持筒13とが一体化して、燃焼筒と呼ばれることもある。
 本実施形態の尾筒20は、図3に示すように、筒状の胴体部30と、この胴体部30の下流側Sdに接合されている出口フランジ部25と、を有する。
 出口フランジ部25は、燃焼器軸線Xc周りに筒状を成し、燃焼ガス流路21の一部を画定する筒26と、筒26の下流端に形成されているフランジ27と、を有する。フランジ27は、図2に示すように、尾筒20をタービン3の燃焼ガス入口部3iに接続するためのものである。筒26とフランジ27は、例えば、鋳造等により一体成型され、出口フランジ部25を成す。筒26の内周面には、図示されていない遮熱コーティング(Thermal Barrier Coating : TBC)層が施されている。
 胴体部30は、燃焼器軸線Xc周りに筒状を成し、燃焼ガス流路21の一部を画定する。この胴体部30は、湾曲した複数の燃焼器用パネル31を有して構成される。湾曲した複数の燃焼器用パネル31は、周方向Dcに並べられ、各燃焼器用パネル31の周方向Dcの端相互を溶接で接合されて、筒状に形成される。なお、図3に示す胴体部30は、二枚の燃焼器用パネル31を周方向Dcに並べたものである。しかしながら、胴体部30は、例えば、三枚以上、例えば、四枚の燃焼器用パネル31を周方向Dcに並べたものであってもよい。また、胴体部30は、一枚の燃焼器用パネル31を筒状に湾曲させ、一枚の燃焼器用パネル31の端相互を溶接で接合したものであってもよい。
 燃焼器用パネル31は、図5に示すように、外側板32と内側板34とを有する。外側板32で相反する方向を向いている一対の面のうち、一方の面が外面32oを成し、他方の面が接合面32cを成す。また、内側板34で相反する方向を向いている一対の面のうち、一方の面が接合面34cを成し、他方の面が内面34iを成す。外側板32の接合面32cには、外面32o側に凹み、一定の方向に長い複数の長溝33が形成されている。外側板32と内側板34とは、互いの接合面32c,34c相互がろう付け等で接合されて、燃焼器用パネル31を形成する。外側板32と内側板34との接合により、外側板32に形成されている長溝33の開口が内側板34により塞がり、この長溝33内が冷却流路35になる。よって、複数の冷却流路35は、燃焼器用パネル31の外面32oと内面34iとの間を、内面34iに沿った方向に延びている。
 複数の冷却流路35は、それぞれ、燃焼器用パネル31の外面32oで開口して内部に圧縮空気Aを導く入口36iと、燃焼器用パネル31の内面34iで開口して内部を流れてきた圧縮空気Aを排出する出口36oと、を有する。すなわち、本実施形態では、各冷却流路は、それぞれ、独立した一の入口、及び独立した一の出口を有する。入口36iは、冷却流路35の延在方向の二つの端のうち、一方の端の位置に形成される。また、出口36oは、冷却流路35の延在方向の二つの端のうち、他方の端の位置に形成される。
 複数の燃焼器用パネル31は、それぞれ、内側板34の内面34iが尾筒20の内周側を向き且つ外側板32の外面32oが尾筒20の外周側を向き、且つ複数の冷却流路35の延びる方向が軸方向Daになるように配置されて、前述したように、周方向Dcの端相互が接合される。このため、胴体部30の複数の冷却流路35は、いずれも実質的に軸方向Daに延び、周方向Daで隣り合う二つの冷却流路35の間隔は、軸方向Daのいずれの位置でも実質的に同じ間隔である。燃焼器用パネル31の内面34iには、遮熱コーティング層39が施される。よって、外側板32の外面32oは、胴体部30の外面となり、遮熱コーティング層39の表面が胴体部30の内面となる。
 胴体部30には、図2~図4に示すように、径方向外側Droから径方向内側Driに貫通する二次空気開口37が形成されている。言い換えると、複数の燃焼器用パネル31のうち、一の燃焼器用パネル31には、この燃焼器用パネル31の外面32oから内面34iに貫通する二次空気開口37が形成されている。前述の空気供給管15は、この二次空気開口37の縁に接続される。なお、空気供給管15と二次空気開口37の縁との接続は、フランジ接続でもよい。尾筒20の胴体部30内には、弁16及び空気供給管15を介して、この二次空気開口37から、この中間車室4内の圧縮空気Aが必要に応じて二次空気A2として供給される。
 燃焼器用パネル31の二次空気開口37の周りには、図6に示すように、この燃焼器用パネル31の内面34i及び外面32oが、二次空気開口37の縁に近づくに連れて、次第に径方向外側Droに曲がる曲部38が形成されている。この曲部38は、例えば、プレス成形等の塑性加工により形成される。
 ここで、図4に示すように、複数の冷却流路35のうち、二次空気開口37の縁に沿った位置から内面34iに沿った方向に延びる複数の冷却流路35を、それぞれ開口周り流路35aとする。よって、開口周り流路35aの開口側の端から二次空気開口37の縁までの最短距離を成す領域には、他の冷却流路35は存在しない。本実施形態において、全ての開口周り流路35aは、開口側の端に入口36iが形成され、開口側入口流路35aiを成す。このため、全ての開口周り流路35aは、二次空気開口37に対して遠い側の端に出口36oが形成されている。
 複数の開口周り流路35aには、流路長の短い第一開口側入口流路35ai1と流路長の長い第二開口側入口流路35ai2とがある。第一開口側入口流路35ai1と第二開口側入口流路35ai2とは、二次空気開口37の縁に沿った方向で、交互に配置されている。言い換えると、二次空気開口37の縁に沿った方向で隣り合う二つの開口側入口流路35aiのうち、一方の開口側入口流路35aiが第一開口側入口流路35ai1を成し、他方の開口側入口流路35aiが第二開口側入口流路35ai2を成す。
 複数の冷却流路35のうち、第一開口側入口流路35ai1の延長線上であって、この第一開口側入口流路35ai1に対して軸方向Daで隣接する冷却流路35は、第一隣接流路35b1を成す。この第一隣接流路35b1は、開口側の端に出口36oが形成され、二次空気開口37に対して遠い側の端に入口36iが形成されている。よって、第一開口側入口流路35ai1の出口36oと、第一隣接流路35b1の出口36oとは、軸方向Daで隣接している。また、複数の冷却流路35のうち、第二開口側入口流路35ai2の延長線上であって、この第二開口側入口流路35ai2に対して軸方向Daで隣接する冷却流路35は、第二隣接流路35b2を成す。この第二隣接流路35b2は、開口側の端に入口36iが形成され、二次空気開口37に対して遠い側の端に出口36oが形成されている。よって、第二開口側入口流路35ai2の出口36oと、第二隣接流路35b2の入口36iとは、軸方向Daで隣接している。
 開口周り流路35aを除く複数の冷却流路35bのうち、軸方向Daで隣接する二つの冷却流路35bでは、一方の冷却流路35bの開口側の端に入口36iが形成されている場合、他方の冷却流路35bの開口側の端に出口36oが形成されている。すなわち、軸方向Daで隣接する二つの冷却流路35bのうちの一方の冷却流路35bの入口36iと、他方の冷却流路35bの出口36oとが、軸方向Daで隣接している。
 複数の開口周り流路35aの開口側の端は、図6に示すように、開口周りの曲部38中に形成されている。よって、この曲部38には、開口周り流路35a、つまり開口側入口流路35aiの入口36iが形成されている。
 以上で説明した本実施形態におけるガスタービンの動作及び作用について説明する。
 圧縮機1は、図1に示すように、外気Aoを吸い込み、これを圧縮して圧縮空気Aを生成する。この圧縮空気Aは、中間車室4を経て、燃焼器10のバーナ保持筒13内に一次空気A1として流入する。バーナ保持筒13に流入した一次空気A1は、このバーナ保持筒13から尾筒20内に噴射される。場合によって、バーナ保持筒13に流入した一次空気A1は、このバーナ保持筒13内のバーナ12内に流入し、このバーナ12から尾筒20内に噴射される。燃焼器10の各バーナ12には、外部から燃料Fが供給される。バーナ12に流入した燃料Fは、このバーナ12から尾筒20内に噴射される。尾筒20内に噴射された燃料Fは、一次空気A1中で燃焼する。この結果、この尾筒20内では、燃焼ガスGが生成される。
 尾筒20の胴体部30内には、弁16及び空気供給管15を介して、胴体部30の二次空気開口37から、中間車室4内の圧縮空気Aが二次空気A2として供給される場合がある。この二次空気A2は、例えば、尾筒20内の燃空比の調節のため利用させる。
 尾筒20内で生成された高温高圧の燃焼ガスGは、尾筒20内に下流側Sdに流れ、タービン3の燃焼ガス入口部3iからタービン3内に流入する。タービンロータ3aは、この燃焼ガスGにより回転する。タービンロータ3aが回転すると、例えば、これに連結されている発電機GENのロータが回転し、この発電機GENは発電する。
 尾筒20の内面34iは、高温の燃焼ガスGに晒される。このため、尾筒20の内面34iには、遮熱コーティング層39が施されている。さらに、尾筒20を構成する燃焼器用パネル31における冷却流路35には、この尾筒20の外側に存在する圧縮空気Aが冷却空気(冷却媒体)Acとして流入し、この冷却空気Acにより燃焼器用パネル31が冷却される。
 圧縮空気Aは、冷却空気Acとして、燃焼器用パネル31の外面32oで開口している入口36iから冷却流路35内に流入する。冷却空気Acは、冷却流路35を流れる過程で、燃焼器用パネル31と熱交換し、この燃焼器用パネル31を冷却する。冷却空気Acは、燃焼器用パネル31の内面34iで開口している出口36oから燃焼ガス流路21に流出する。燃焼ガス流路21に流出した冷却空気Acの一部は、尾筒20の内面34iに沿って流れ、この内面34iをフィルム冷却する。
 燃焼器用パネル31中で二次空気開口37の周りには、二次空気開口37の形成過程で生じた応力が残っていることが多い。つまり、二次空気開口37の周りには残留応力が存在する場合が多い。また、冷却流路35の出口36oは、燃焼器用パネル31の内面34iに形成されている。このため、燃焼器用パネル31の内面34iであって、この出口36oの周りにも、残留応力が存在する場合が多い。
 仮に、開口周り流路35aの開口側の端に出口36oを形成すると、二次空気開口37の縁に開口周り流路35aの出口36oが極めて近接する。このため、高温の燃焼ガスGに対向する燃焼器用パネル31の内面34iであって、二次空気開口37の周りには、より高い応力が残ることになる。そこで、二次空気開口37の縁から開口周り流路35aまでの最短距離を大きくすると、二次空気開口37周りに広い無冷却領域が生じることになり、この無冷却領域に高い熱応力が発生する。さらに、開口周り流路35aの出口36oに至る冷却空気Acは、開口周り流路35aを流れてきた冷却空気Acであるため、開口周り流路35aを流れている過程で加熱されており、冷却能力が低い。よって、二次空気開口37周りの冷却能力が低下し、この観点からも、この二次空気開口37周りに高い熱応力が発生する。
 また、二次空気開口37の周りに、前述した曲部38をプレス加工で形成した場合、二次空気開口37の周りに、より高い応力(残留応力)が残ることになる。特に、燃焼器用パネル31の内面34iであって二次空気開口37の周りには、プレス加工により引張応力が残留応力として残る。この燃焼器用パネル31の内面34iであって二次空気開口37の周りに、開口周り流路35aの出口36oを形成すると、この出口36oの縁に引張応力が作用し、この出口36oの縁を起点にして、クラックが発生し易い。
 そこで、本実施形態では、全ての開口周り流路35aに関して、開口側の端に入口36iを形成している。開口周り流路35aの入口36iは、燃焼器用パネル31の外面32oに形成される。このため、高温の燃焼ガスGに対向する燃焼器用パネル31の内面34iであって、二次空気開口37の周りの残留応力を、開口周り流路35aの出口36oを開口側に端に形成した場合よりも小さくすることができる。よって、二次空気開口37の縁から開口周り流路35aまでの最短距離を小さくすることができ、二次空気開口37周りの無冷却領域を極めて小さくすることができる。さらに、開口周り流路35aの入口36iに流入してきた冷却空気Acは、未だ開口周り流路35aを流れていない冷却空気Acであるため、冷却能力が高い。よって、二次空気開口37周りの冷却能力が高まり、この二次空気開口37周りの熱応力の発生を抑えることができる。
 また、二次空気開口37の周りに、前述した曲部38をプレス加工で形成した場合、燃焼器用パネル31の外面32oであって二次空気開口37の周りには、プレス加工により圧縮応力が残留応力として残る。この燃焼器用パネル31の外面32oであって二次空気開口37の周りに、開口周り流路35aの入口36iを形成しても、この入口36iの縁には圧縮応力が作用するため、クラックが発生し難い。
 よって、本実施形態では、燃焼器用パネル31における二次空気開口37周りの耐久性を高めることができる。
 ここで、全ての開口周り流路35aに関して、開口側の端に入口36iを形成し、且つ複数の開口周り流路35aの流路長を互いに同じにした場合について説明する。この場合、二次空気開口37の縁に沿った方向で隣接する二つの開口周り流路35a(開口側入口流路35ai)のそれぞれの出口36oの位置が、軸方向Daでほぼ同じ位置になる。すなわち、二つの開口周り流路35aの出口36oが二次空気開口37の縁に沿った方向で互いに近接することになる。前述したように、開口周り流路35aの出口36oに至る冷却空気Acは、開口周り流路35aを流れてきた冷却空気Acであるため、冷却能力が低い。よって、二つの開口周り流路35aの二次空気開口37に対して遠い側の各端を含む領域は、冷却能力の低い領域になる。
 そこで、本実施形態では、流路長の短い第一開口側入口流路35ai1と流路長の長い第二開口側入口流路35ai2とを交互に配置している。この結果、二つの開口側入口流路35aiの出口36oの相互間距離が大きくなり、冷却能力が低い領域を離散させ且つ狭くすることができる。
 さらに、本実施形態では、流路長の長い第二開口側入口流路35ai2の延長線上に配置されている第二隣接流路35b2の入口36iを開口側の端に形成している。すなわち、本実施形態では、第二開口側入口流路35ai2の出口36oと第二隣接流路35b2の入口36iとが、軸方向Daで隣接している。このため、第二開口側入口流路35ai2で二次空気開口37に対して遠い側の端が出口36oであっても、第二隣接流路35b2の入口36iから流入する冷却空気Acにより、この第二開口側入口流路35ai2の出口36oを含む領域における冷却能力の低下を抑えることができる。
 また、本実施形態では、流路長の短い第一開口側入口流路35ai1の延長線上に配置されている第一隣接流路35b1の出口36oを開口側の端に形成している。このため、第一開口側入口流路35ai1の出口36oを含む領域における冷却能力を、第一隣接流路35b1を流れる冷却空気Acで補うことができない。しかしながら、第一開口側入口流路35ai1は、第二開口側入口流路35ai2より流路長が短いため、第一開口側入口流路35ai1の出口36oに至った冷却空気Acの冷却能力はそれほど低下していない。このため、第一開口側入口流路35ai1の出口36oを含む流域における冷却能力は、それほど低くない。
 よって、本実施形態では、開口周り流路35aを除く冷却流路35bと開口周り流路35aとの境界を含む領域での冷却能力の均一化を図ることができる。
 また、本実施形態では、軸方向Daで隣接する二つの冷却流路35bのうちの一方の冷却流路35bの入口36iと、他方の冷却流路35bの出口36oとが、軸方向Daで隣接している。このため、他方の冷却流路35bの出口36oを含む領域における冷却能力を、一方の冷却流路35bを流れる冷却空気Acで補うことができる。よって、開口周り流路35aを除く複数の冷却流路35bが配置されている領域での冷却能力の均一化を図ることができる。
 以上のように、本実施形態では、開口周り流路35aを除く冷却流路35bと開口周り流路35aとの境界を含む領域、及び、開口周り流路35aを除く冷却流路35bが配置されている領域での冷却能力の均一化を図ることができる。このため、本実施形態では、これらの領域での熱応力の発生を抑えることができる。よって、本実施形態では、これらの領域の耐久性も高めることができる。
 「各種変形例」
 本実施形態の二次空気開口37は、燃焼器用パネル31の外面32o側から内面34i側に二次空気A2を導く開口である。しかしながら、この開口は、燃焼器用パネル31の外面32oから燃焼器用パネル31の内面34iに貫通した開口であればよく、二次空気A2を内面34i側に導くものでなくてもよい。
 本実施形態の全ての開口周り流路35aは、開口側の端に入口36iが形成されている開口側入口流路35aiである。しかしながら、図7に示すように、燃焼器用パネル31aに形成されている複数の開口周り流路35aのうち、一部が開口側の端に入口36iが形成されている開口側入口流路35aiであり、残りの一部が開口側の端に入口36iが形成されていない非開口側入口流路35aoであってもよい。但し、この場合、開口側入口流路35aiの数は、全ての開口周り流路35aの半数より多くすべきである。言い換えると、開口側入口流路35aiの数は、非開口側入口流路35aoの数より多くすべきである。さらに、この場合、非開口側入口流路35aoは、開口側入口流路35aiに隣接し、他の非開口側入口流路35aoに隣接しないことが望ましい。
 本実施形態における開口周り流路35aを含む冷却流路35の全ては、冷却流路35の延在方向の二つの端のうち、一方の端の位置に入口36iが形成され、他方の端の位置に出口36oが形成されている。しかしながら、入口36i及び出口36oは、冷却流路35の延在方向の端の位置に形成されていなくてもよい。
 上記実施形態では、複数の冷却流路35のうち、二次空気開口37の縁に沿った位置から内面34iに沿った方向に延びる複数の冷却流路35を開口周り流路35aとし、開口周り流路35aの開口側の端から二次空気開口37の縁までの最短距離を成す領域には、他の冷却流路35は存在しない。しかしながら、燃焼器用パネル31中で、図6に示すように、曲部38が始まる部分Xから開口37までの領域内に、流路の少なくとも一部が存在する冷却流路35を開口周り流路35aとしてもよい。また、図7に示すように、開口37から一定の距離Yまでの領域内に、少なくとも一部が存在する冷却流路35を開口周り流路35aとしてもよい。この場合、この領域を定める距離Yは、当該領域内に一部が存在する全冷却流路35のうち、開口側入口流路35aiの数が半数以上になる、又は開口側入口流路35aiが全てである距離である。
 本実施形態における開口周り流路35aを含む冷却流路35の全ては、燃焼器用パネル31の内面34iに沿った面内で直線的に延びている。しかしながら、冷却流路35は、燃焼器用パネル31の内面34iに沿った面内で曲がっている部分を有してもよい。
 本実施形態における全ての冷却流路35は、流路の延在方向におけるいずれの位置でも断面積が実質的に同一である。しかしながら、いずれかの冷却流路35は、流路の延在方向の位置変化に伴って断面積が変化してもよい。例えば、加熱されやすい領域では、流路の断面積を大きくしてもよい。
 以上の各実施形態において、燃焼器用パネル31は、外側板32と内側板34との二枚が接合されて構成成されている。しかしながら、燃焼器用パネル31は、単板で構成されてもよい。
 本発明の一態様によれば、燃焼器用パネルの耐久性を高めることができる。
1:圧縮機
1a:圧縮機ロータ
1b:圧縮機車室
2:燃焼装置
3:タービン
3a:タービンロータ
3b:タービン車室
3i:燃焼ガス入口部
4:中間車室
5:ガスタービンロータ
6:ガスタービン車室
10:燃焼器
11:燃料噴射器
12:バーナ
13:バーナ保持筒
15:空気供給管
16:弁
20:尾筒
21:燃焼ガス流路
25:出口フランジ部
30:胴体部
31,31a:燃焼器用パネル
32:外側板
32o:外面
34:内側板
34i:内面
35,35b:冷却流路
35a:開口周り流路
35ai:開口側入口流路
35ai1:第一開口側入口流路
35ai2:第二開口側入口流路
35ao:非開口側入口流路
35b1:第一隣接流路
35b2:第二隣接流路
36i:入口
36o:出口
37:二次空気開口(又は、単に開口)
38:曲部
39:遮熱コーティング層
A:圧縮空気
A1:一次空気
A2:二次空気
Ac:冷却空気(冷却媒体)
F:燃料
G:燃焼ガス
Xr:回転軸線
Xc:燃焼器軸線
Da:軸方向
Su:上流側
Sd:下流側
Dc:周方向
Dr:径方向
Dri:径方向内側
Dro:径方向外側

Claims (11)

  1.  軸線が延びる軸方向の上流側から下流側に燃焼ガスが流れる燃焼ガス流路の周囲を画定する燃焼器用パネルにおいて、
     前記燃焼ガスに対向する内面と、
     前記内面と相反する側を向く外面と、
     前記外面から前記内面に貫通した開口と、
     前記内面と前記外面との間を前記内面に沿った方向に延びて、内部を冷却媒体が流れる複数の冷却流路と、
     が形成され、
     複数の前記冷却流路は、それぞれ、前記外面で開口して内部に冷却媒体を導く入口と、前記内面で開口して内部を流れてきた前記冷却媒体を排出する出口と、を有し、
     複数の前記冷却流路のうち、前記開口の縁に沿った位置から前記内面に沿った方向に延びる複数の前記冷却流路が、それぞれ開口周り流路を成し、
     複数の前記開口周り流路のうち、前記出口よりも前記入口が前記開口側に形成されている開口周り流路は、それぞれ開口側入口流路を成し、
     前記開口側入口流路の数は、全ての前記開口周り流路の半数より多い、又は、全ての前記開口周り流路が前記開口側入口流路である、
     燃焼器用パネル。
  2.  請求項1に記載の燃焼器用パネルにおいて、
     複数の前記開口周り流路のうち、一部が前記開口側入口流路であり、残りの一部が前記出口よりも前記入口が前記開口側に形成されていない非開口側入口流路であり、
     前記非開口側入口流路は、前記開口の縁に沿った方向で前記開口側入口流路に隣接し、他の前記非開口側入口流路と隣接していない、
     燃焼器用パネル。
  3.  請求項1又は2に記載の燃焼器用パネルにおいて、
     複数の前記開口周り流路のうち、前記開口の縁に沿った方向で互いに隣接している二つの開口周り流路は、いずれも、前記開口側入口流路であり、
     前記二つの開口側入口流路は、流路長が互いに異なる、
     燃焼器用パネル。
  4.  請求項3に記載の燃焼器用パネルにおいて、
     前記二つの開口側入口流路のうち流路長の短い第一開口側入口流路の延長線上に、前記第一開口側入口流路に隣接する前記冷却流路としての第一隣接流路が配置され、
     前記二つの開口側入口流路のうち流路長の長い第二開口側入口流路の延長線上に、前記第二開口側入口流路に隣接する前記冷却流路としての第二隣接流路が配置され、
     前記第一隣接流路は、前記入口よりも前記開口側に前記出口が形成され、
     前記第二隣接流路は、前記出口よりも前記開口側に前記入口が形成されている、
     燃焼器用パネル。
  5.  請求項3又は4に記載の燃焼器用パネルにおいて、
     前記二つの開口側入口流路の間の前記開口の縁に沿った方向における間隔は、前記二つの開口側入口流路のうち、一方の流路が延びている流路延在方向における複数の位置で同じ間隔である、
     燃焼器用パネル。
  6.  請求項1から5のいずれか一項に記載の燃焼器用パネルにおいて、
     前記開口の周りには、前記内面及び前記外面が、前記開口の縁に近づくに連れて、次第に、前記軸線に対する径方向であって前記燃焼ガス流路から遠ざかる外側に曲がる曲部が形成され、
     複数の前記開口周り流路のうち、前記開口側入口流路は、前記開口側の端が前記曲部中に形成されている、
     燃焼器用パネル。
  7.  請求項1から6のいずれか一項に記載の燃焼器用パネルにおいて、
     複数の前記開口周り流路が延びる方向は、いずれも、前記軸方向の方向成分を含む方向である、
     燃焼器用パネル。
  8.  請求項1から7のいずれかに一項に記載の燃焼器用パネルと、
     前記燃焼器用パネルにより画定される前記燃焼ガス流路の前記上流側から前記燃焼ガス流路内に燃料及び空気を噴射する燃料噴射器と、
     を備える燃焼器。
  9.  請求項8に記載の燃焼器と、
     前記開口から前記燃焼ガス流路中に空気を供給する空気供給管と、
     前記空気供給管を流れる空気の流量を調節する弁と、
     を備える燃焼装置。
  10.  請求項9に記載の燃焼装置と、
     前記燃焼器内で生成された燃焼ガスにより駆動するタービンと、
     を備えるガスタービン。
  11.  燃焼ガスが流れる燃焼ガス流路の周囲を画定する燃焼器用パネルの冷却方法において、
     前記燃焼器用パネルは、
     前記燃焼ガスに対向する内面と、
     前記内面と相反する外側を向く外面と、
     前記外面から前記内面に貫通した開口と、
     前記内面と前記外面との間を前記内面に沿った方向に延びて、内部を冷却媒体が流れる複数の冷却流路と、
     が形成され、
     複数の前記冷却流路のうち、前記開口の縁に沿った位置から前記内面に沿った方向に延びる複数の前記冷却流路が、それぞれ開口周り流路を成し、
     複数の前記開口周り流路のうちの開口側入口流路の数は、全ての前記開口周り流路の半数より多い、又は、全ての前記開口周り流路が前記開口側入口流路であり、
     前記開口側入口流路に対して、前記開口側入口流路の前記開口側で且つ前記外側から前記冷却媒体を供給し、
     前記開口側入口流路中で前記冷却媒体が供給された位置より前記開口から遠い位置で且つ前記内面から、前記開口側入口流路を流れた前記冷却媒体を流出させる、
     燃焼器用パネルの冷却方法。
PCT/JP2017/008293 2016-03-10 2017-03-02 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法 WO2017154729A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187022970A KR102161961B1 (ko) 2016-03-10 2017-03-02 연소기용 패널, 연소기, 연소 장치, 가스 터빈, 및 연소기용 패널의 냉각 방법
CN201780009325.8A CN108603443B (zh) 2016-03-10 2017-03-02 燃烧器用面板、燃烧器、燃烧装置、燃气轮机、以及燃烧器用面板的冷却方法
US16/076,422 US10837365B2 (en) 2016-03-10 2017-03-02 Combustor panel, combustor, combustion device, gas turbine, and method of cooling combustor panel
GB1812966.8A GB2562668B (en) 2016-03-10 2017-03-02 Combustor panel, combustor, combustion device, gas turbine, and method of cooling combustor panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016047352A JP6026028B1 (ja) 2016-03-10 2016-03-10 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
JP2016-047352 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154729A1 true WO2017154729A1 (ja) 2017-09-14

Family

ID=57326572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008293 WO2017154729A1 (ja) 2016-03-10 2017-03-02 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法

Country Status (7)

Country Link
US (1) US10837365B2 (ja)
JP (1) JP6026028B1 (ja)
KR (1) KR102161961B1 (ja)
CN (1) CN108603443B (ja)
GB (1) GB2562668B (ja)
TW (1) TWI641757B (ja)
WO (1) WO2017154729A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
US10808929B2 (en) * 2016-07-27 2020-10-20 Honda Motor Co., Ltd. Structure for cooling gas turbine engine
GB201903879D0 (en) * 2019-03-21 2019-05-08 Rolls Royce Plc A combustor tile for a combustor of a gas turbine engine
CA3141337A1 (en) * 2019-05-24 2020-12-03 Piedmont Animal Health Inc. Long-acting injectable formulations and use thereof
US11391460B2 (en) 2019-07-16 2022-07-19 Raytheon Technologies Corporation Effusion cooling for dilution/quench hole edges in combustor liner panels
US11371709B2 (en) 2020-06-30 2022-06-28 General Electric Company Combustor air flow path
KR20230121858A (ko) 2021-02-25 2023-08-21 미츠비시 파워 가부시키가이샤 연소기용 통, 연소기, 및 가스 터빈
JP7326399B2 (ja) * 2021-09-30 2023-08-15 三菱重工業株式会社 トランジションピース、燃焼器及びガスタービンエンジン
JP7370364B2 (ja) * 2021-09-30 2023-10-27 三菱重工業株式会社 トランジションピース、燃焼器及びガスタービンエンジン
JP7539532B2 (ja) 2022-08-24 2024-08-23 三菱重工業株式会社 燃焼器用筒、燃焼器、及びガスタービン

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130758A (ja) * 1998-07-16 2000-05-12 General Electric Co <Ge> 遷移多穴燃焼器ライナ
JP2006292362A (ja) * 2002-05-16 2006-10-26 United Technol Corp <Utc> 遮熱パネル
JP2007107541A (ja) * 2007-01-31 2007-04-26 Mitsubishi Heavy Ind Ltd 燃焼器尾筒の冷却構造
JP2013040574A (ja) * 2011-08-12 2013-02-28 Mitsubishi Heavy Ind Ltd 燃焼器の尾筒、及びこれを備えているガスタービン
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3031844A (en) * 1960-08-12 1962-05-01 William A Tomolonius Split combustion liner
US4004056A (en) * 1975-07-24 1977-01-18 General Motors Corporation Porous laminated sheet
JPS6026028B2 (ja) 1977-06-14 1985-06-21 凸版印刷株式会社 多層容器
JPS60143272A (ja) 1983-12-29 1985-07-29 Aisin Warner Ltd 自動変速機のエクステンションハウジング軸受部の潤滑装置
US4522967A (en) 1984-06-08 1985-06-11 Kimberly-Clark Corporation Heat sealable water dispersible adhesive
JPS61135169A (ja) 1984-12-06 1986-06-23 Nec Corp 半導体受光素子
JPS62150543A (ja) 1985-12-24 1987-07-04 Matsushita Electric Ind Co Ltd 再生装置
GB9018014D0 (en) * 1990-08-16 1990-10-03 Rolls Royce Plc Gas turbine engine combustor
US5289686A (en) * 1992-11-12 1994-03-01 General Motors Corporation Low nox gas turbine combustor liner with elliptical apertures for air swirling
JP2950720B2 (ja) * 1994-02-24 1999-09-20 株式会社東芝 ガスタービン燃焼装置およびその燃焼制御方法
FR2733582B1 (fr) * 1995-04-26 1997-06-06 Snecma Chambre de combustion comportant une multiperforation d'inclinaison axiale et tangentielle variable
JP3110338B2 (ja) * 1997-02-12 2000-11-20 東北電力株式会社 燃焼器の蒸気による冷却構造
US5819525A (en) * 1997-03-14 1998-10-13 Westinghouse Electric Corporation Cooling supply manifold assembly for cooling combustion turbine components
JP3626861B2 (ja) * 1998-11-12 2005-03-09 三菱重工業株式会社 ガスタービン燃焼器の冷却構造
US7086232B2 (en) * 2002-04-29 2006-08-08 General Electric Company Multihole patch for combustor liner of a gas turbine engine
US7216485B2 (en) * 2004-09-03 2007-05-15 General Electric Company Adjusting airflow in turbine component by depositing overlay metallic coating
US7614235B2 (en) * 2005-03-01 2009-11-10 United Technologies Corporation Combustor cooling hole pattern
FR2892180B1 (fr) * 2005-10-18 2008-02-01 Snecma Sa Amelioration des perfomances d'une chambre de combustion par multiperforation des parois
US7631502B2 (en) * 2005-12-14 2009-12-15 United Technologies Corporation Local cooling hole pattern
JP4690905B2 (ja) * 2006-02-17 2011-06-01 三菱重工業株式会社 シール装置及び該装置を備えたガスタービン
JP4823186B2 (ja) * 2007-09-25 2011-11-24 三菱重工業株式会社 ガスタービン燃焼器
JP4969384B2 (ja) * 2007-09-25 2012-07-04 三菱重工業株式会社 ガスタービン燃焼器の冷却構造
JP5653705B2 (ja) * 2010-09-30 2015-01-14 三菱重工業株式会社 回収式空気冷却ガスタービン燃焼器冷却構造
US8887508B2 (en) * 2011-03-15 2014-11-18 General Electric Company Impingement sleeve and methods for designing and forming impingement sleeve
FR2982008B1 (fr) * 2011-10-26 2013-12-13 Snecma Paroi annulaire de chambre de combustion a refroidissement ameliore au niveau des trous primaires et de dilution
US8834154B2 (en) * 2012-11-28 2014-09-16 Mitsubishi Heavy Industries, Ltd. Transition piece of combustor, and gas turbine having the same
US20140216044A1 (en) * 2012-12-17 2014-08-07 United Technologoes Corporation Gas turbine engine combustor heat shield with increased film cooling effectiveness
US10317080B2 (en) * 2013-12-06 2019-06-11 United Technologies Corporation Co-swirl orientation of combustor effusion passages for gas turbine engine combustor
EP3077640B1 (en) * 2013-12-06 2021-06-02 Raytheon Technologies Corporation Combustor quench aperture cooling
JP6177187B2 (ja) * 2014-04-30 2017-08-09 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器、ガスタービン、制御装置及び制御方法
US9840924B2 (en) * 2014-08-15 2017-12-12 Siemens Aktiengesellschaft Gas turbine system with a transition duct having axially extending cooling channels
US9915428B2 (en) * 2014-08-20 2018-03-13 Mitsubishi Hitachi Power Systems, Ltd. Cylinder of combustor, method of manufacturing of cylinder of combustor, and pressure vessel
CN205014429U (zh) * 2015-09-23 2016-02-03 三菱日立电力系统株式会社 尾筒、燃烧器、以及具备尾筒和燃烧器的燃气轮机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000130758A (ja) * 1998-07-16 2000-05-12 General Electric Co <Ge> 遷移多穴燃焼器ライナ
JP2006292362A (ja) * 2002-05-16 2006-10-26 United Technol Corp <Utc> 遮熱パネル
JP2007107541A (ja) * 2007-01-31 2007-04-26 Mitsubishi Heavy Ind Ltd 燃焼器尾筒の冷却構造
JP2013040574A (ja) * 2011-08-12 2013-02-28 Mitsubishi Heavy Ind Ltd 燃焼器の尾筒、及びこれを備えているガスタービン
JP6026028B1 (ja) * 2016-03-10 2016-11-16 三菱日立パワーシステムズ株式会社 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法

Also Published As

Publication number Publication date
US20190048799A1 (en) 2019-02-14
KR20180101498A (ko) 2018-09-12
CN108603443A (zh) 2018-09-28
JP2017160874A (ja) 2017-09-14
GB2562668A (en) 2018-11-21
JP6026028B1 (ja) 2016-11-16
TW201809453A (zh) 2018-03-16
TWI641757B (zh) 2018-11-21
KR102161961B1 (ko) 2020-10-06
GB201812966D0 (en) 2018-09-26
CN108603443B (zh) 2021-02-12
GB2562668B (en) 2021-10-06
US10837365B2 (en) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2017154729A1 (ja) 燃焼器用パネル、燃焼器、燃焼装置、ガスタービン、及び燃焼器用パネルの冷却方法
KR101829572B1 (ko) 연소기용 통체, 연소기 및 가스 터빈
US11525364B2 (en) Transition piece, combustor provided with same, and gas turbine provided with combustor
JP5391225B2 (ja) トランジションダクト界面における燃焼器ライナ冷却及びその関連する方法
CA2598506C (en) Cooled transition duct for a gas turbine engine
CN103851645B (zh) 用于燃气涡轮燃烧器的阻尼装置
JP5679883B2 (ja) 流れスリーブを有する燃焼器
JP2018119779A (ja) 燃料供給導管アセンブリにおける燃料流出物を消散させるためのシステム
WO2013046825A1 (ja) 燃焼器の尾筒、これを備えているガスタービン、及び尾筒の製造方法
JP2016104988A (ja) エンジンケーシングエレメント
AU2008303598B2 (en) Gas turbine having welded combustion chamber shells
JP5567180B1 (ja) タービン翼の冷却構造
CN106123031A (zh) 混合系统
KR20190041933A (ko) 가스 터빈 천이부 부품을 위한 후방 프레임 조립체
CN105972637B (zh) 具有双壁的燃烧室
JP7005173B2 (ja) 管延長部を有する集束管燃料ノズル組立体、燃焼器、及び、これらを製造する方法
US20200240290A1 (en) Engine component with at least one cooling channel and method of manufacturing
KR102720223B1 (ko) 냉각 마이크로채널을 갖는 이중 연료 랜스
KR101574489B1 (ko) 시일 구조체
US8973376B2 (en) Interface between a combustor basket and a transition of a gas turbine engine
KR20200026729A (ko) 냉각 마이크로채널을 갖는 이중 연료 랜스
JP2007309247A (ja) ガスタービン
JP2006144694A (ja) ガスタービン燃焼器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022970

Country of ref document: KR

Kind code of ref document: A

Ref document number: 201812966

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20170302

WWE Wipo information: entry into national phase

Ref document number: 1020187022970

Country of ref document: KR

Ref document number: 1812966.8

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763069

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763069

Country of ref document: EP

Kind code of ref document: A1