WO2017154725A1 - 特殊トーチを用いた溶接方法 - Google Patents

特殊トーチを用いた溶接方法 Download PDF

Info

Publication number
WO2017154725A1
WO2017154725A1 PCT/JP2017/008280 JP2017008280W WO2017154725A1 WO 2017154725 A1 WO2017154725 A1 WO 2017154725A1 JP 2017008280 W JP2017008280 W JP 2017008280W WO 2017154725 A1 WO2017154725 A1 WO 2017154725A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
welding
wire
metal
cored wire
Prior art date
Application number
PCT/JP2017/008280
Other languages
English (en)
French (fr)
Inventor
直樹 迎井
徳治 丸山
励一 鈴木
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201780014393.3A priority Critical patent/CN108698156B/zh
Priority to KR1020187028039A priority patent/KR102115729B1/ko
Priority to RU2018134782A priority patent/RU2707763C1/ru
Priority to EP17763065.4A priority patent/EP3427883A4/en
Priority to US16/077,456 priority patent/US11203080B2/en
Publication of WO2017154725A1 publication Critical patent/WO2017154725A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories
    • B23K9/325Devices for supplying or evacuating shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3607Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means
    • B23K9/291Supporting devices adapted for making use of shielding means the shielding means being a gas
    • B23K9/295Supporting devices adapted for making use of shielding means the shielding means being a gas using consumable electrode-wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/24Features related to electrodes
    • B23K9/28Supporting devices for electrodes
    • B23K9/29Supporting devices adapted for making use of shielding means
    • B23K9/298Supporting devices adapted for making use of shielding means the shielding means being a powder

Definitions

  • the present disclosure relates to a welding method using a special torch, and more particularly, to a welding method using a special torch having a suction nozzle and a specific flux cored wire.
  • FIG. 3 is a diagram for explaining a process in which diffusible hydrogen is absorbed by the weld metal.
  • the welding wire will be described assuming that a flux cored wire that is a flux-cored welding wire is used.
  • FIG. 4 is a figure which shows the cross section of a flux cored wire.
  • a welding wire 201 which is a flux cored wire, is composed of a steel outer shell 202 and a central portion 203 that constitute the outer periphery.
  • the central portion 203 includes a flux obtained by mixing metal powder such as iron powder or alloy, and / or metal oxide powder, metal fluoride powder, and the like.
  • the rising temperature may reach 100 ° C. at about 5 mm from the tip of the contact tip 208 and may rise to about 600 ° C. near the tip of the wire 20 mm from the tip of the contact tip 208.
  • the hydrogen source 205 on the wire surface is vaporized and released from the welding wire 201.
  • the central portion 203 is heated by heat conduction from the heated steel outer sheath 202, the hydrogen source 205 in the flux is also vaporized, and is discharged out of the welding wire 201 through the seam 204 which is a joint.
  • a part of the hydrogen source 205 released from the welding wire 201 is caused by the arc plasma air flow and the flow of shield gas supplied from the nozzle 206 to the welded portion in the case of gas shielded arc welding (direction indicated by the arrow 207). It flows in the direction indicated by 213 and is guided to the arc 209.
  • the hydrogen source 205 for example, H 2 O, dissociates to become diffusible hydrogen 212, and is absorbed by the droplets and the weld metal 210 in the arc column and enters the weld metal 210. Get in.
  • the hydrogen source present on the surface of the wire and the hydrogen source contained in the flux used for the welding wire are vaporized in the wire protrusion heated to a high temperature.
  • the vaporized hydrogen source is transported in and near the arc column by the flow of shield plasma supplied in the case of arc plasma flow and gas shield arc welding.
  • the transported hydrogen source is dissociated into hydrogen atoms and absorbed into the weld metal.
  • preheating and afterheating may be performed to promote the diffusion of diffusible hydrogen from the weld metal to the outside.
  • a flux cored wire in the welding by adding a fluoride such as CaF 2, Na 3 AlF 6 in a flux, a method of reducing the diffusible hydrogen is also used.
  • a method of mixing a small amount of CF 4 with a shield gas supplied in gas shield arc welding has also been proposed.
  • the hydrogen source in the welding wire is contained in oil and moisture adhering to the wire surface, flux cored wire and metal cored wire (flux cored wire in which the flux contained in the wire is composed only of metal powder). Moisture and organic matter adhering to the flux.
  • a method may be employed in which the flux is heated at a high temperature to remove the hydrogen source before the welding wire is manufactured.
  • it is necessary to prevent moisture absorption during the manufacturing process, but it is very expensive.
  • moisture is adsorbed from the air during storage and during work at a high-humidity welding site, so there are various obstacles to reducing the hydrogen source.
  • solid wire (FIG. 1A) or seamless flux cored wire (FIG. 1B) is mainly used as a welding material in consideration of the amount of diffusible hydrogen in the weld metal.
  • the flux cored wire has beneficial effects such as a beautiful bead obtained by the effect of the flux, a posture welding that is easy and capable of welding under high-efficiency welding conditions, and a large welding amount.
  • a seamless flux cored wire is more preferably used.
  • the flux cored wire with seam (FIG. 1C) was limited in use for welding high-strength steel and thick plates due to the above-mentioned problems. This is because the seamed flux cored wire absorbs moisture from the atmosphere through the seam, so it contains a hydrogen source more easily than the seamless flux cored wire, and the amount of diffusible hydrogen in the weld metal tends to be high. caused by.
  • the seam part of the wire with seam is closed by TIG welding or laser welding, and the pipe is filled with flux, and rolling and wire drawing are repeated to form the wire.
  • productivity is limited by the welding speed and efficiency is not increased, and in the latter, the number of rolling / drawing processes increases and productivity decreases. Therefore, the seamless flux cored wire is more expensive than the seamed flux cored wire, and an improvement has been desired.
  • Patent Document 1 sucks fume from an opening that surrounds the periphery of the welding wire protruding from the contact tip and faces the tip of the wire.
  • Patent Document 1 has no idea about the effect of reducing diffusible hydrogen, and does not describe an optimal combination wire design. Also, a torch configuration for effectively expressing the hydrogen suction performance has not been studied.
  • Patent Document 2 discloses a flux cored wire in which a steel sheath is filled with a flux having a specific composition. It has been shown that the flux cored wire contains 0.1 to 5% by weight of an alkali metal to stabilize the arc and prevent the metal from being melted during thin plate welding. Because of its high affinity, when used as a seam-flux cored wire, the wire contains a large amount of moisture. Therefore, when applied to high-strength steel and thick steel plate, there is a risk of cold cracking.
  • Patent Document 3 discloses a slag flux cored wire having a specific composition.
  • the slag-based flux cored wire is a high-strength steel welding wire that can provide good low-temperature toughness to the weld metal even when the content of Ni in the weld metal is small.
  • an object of the embodiment of the present invention is to provide a welding method for high-strength steel and thick plates using a seamed flux cored wire with good welding workability and welding efficiency and low cost.
  • the embodiment of the present invention relates to the following [1] to [10].
  • a welding method using a special torch and a flux cored wire The special torch has a suction nozzle between the contact tip and the shield nozzle, The flux cored wire is welded having a seam portion in which a steel core is filled with a flux, and both ends of the metal in the width direction of the steel core are butted or overlapped in the longitudinal direction of the flux cored wire.
  • Method [2] In the cross section of the seam portion, the length of the portion where the clearance of both ends of the metal in the width direction of the steel shell is less than 20 ⁇ m is La, and the length of the portion where the clearance is 20 ⁇ m or more and less than 40 ⁇ m is Lb.
  • the diameter of the flux cored wire is 1.2 to 2.0 mm, and the ratio of the flux to the total mass of the flux cored wire is 8 to 30% by mass. ] Or the welding method according to [2].
  • the flux contains a slag former, and the slag former comprises at least one compound selected from the group consisting of metal oxides, metal fluorides and metal carbonates and impurities, and the flux cored
  • the slag former comprises at least one compound selected from the group consisting of metal oxides, metal fluorides and metal carbonates and impurities, and the flux cored
  • the slag forming agent is a ratio to the total mass of the flux cored wire, Metal oxide: 3.5 to 20.5% by mass, Metal fluoride: 0 to 0.5 mass% (including 0), and Metal carbonate: 0 to 0.5 mass% (including 0)
  • the metal oxide is a ratio to the total mass of the flux cored wire, TiO 2 : 1.5 to 15.0 mass%, SiO 2 : 0.15 to 4.0% by mass, ZrO 2 : 0 to 3.0% by mass (including 0), Al 2 O 3 : 0 to 2.0% by mass (including 0), and (Na 2 O + K 2 O + Li 2 O): 0.01 to 0.8% by mass
  • the slag forming agent is a ratio to the total mass of the flux cored wire, Metal oxide: 0 to 1.5% by mass (including 0), Metal fluoride: 1.5 to 8.5% by mass, and
  • the distance D t ⁇ k along the longitudinal direction and the distance D t ⁇ b are D t ⁇ k (mm) ⁇ 0.3 ⁇ D t ⁇ b (mm) and D t ⁇ k (mm) ⁇ D t ⁇ b (mm) -8
  • the embodiment of the present invention it is possible to prevent the amount of diffusible hydrogen in the weld metal from being increased, and to use a high-tension flux cored wire that has good welding workability and welding efficiency and is inexpensive and has a seam. Steel and thick plate can be welded.
  • FIG. 1A is a schematic cross-sectional view showing the form of a solid wire.
  • FIG. 1B is a schematic cross-sectional view showing a form of a seamless flux cored wire.
  • FIG. 1C is a schematic cross-sectional view showing a form of a seamed flux cored wire.
  • FIG. 2A is a schematic cross-sectional view showing a cross-sectional shape of a seamed flux cored wire called a bat shape.
  • FIG. 2B is a schematic cross-sectional view showing a cross-sectional shape of a seamed flux cored wire called a wrap shape.
  • FIG. 2C is a schematic cross-sectional view showing a cross-sectional shape of a seamed flux cored wire called an apple shape.
  • FIG. 3 is a diagram for explaining a process in which diffusible hydrogen is absorbed by the weld metal.
  • FIG. 4 is a view showing a cross section of the flux cored wire.
  • a welding method is a welding method using a special torch and a flux cored wire, and the special torch has a suction nozzle between a contact tip and a shield nozzle, and the flux cored
  • the wire has a seam portion in which a flux is filled in the steel outer shell (that is, the inner side of the steel outer shell), and both ends of the metal of the steel outer shell are butted or overlapped in the longitudinal direction of the flux cored wire.
  • the flux means a substance obtained by mixing metal powder such as iron powder or alloy, metal oxide powder, metal fluoride powder and the like.
  • the temperature of the wire fed between the contact tip and the base metal rises due to Joule heat generation because the welding current flows from the tip of the tip to the wire.
  • the flux possesses a large amount of moisture, and it is preferable to discharge the moisture out of the system.
  • the wire structure is a seamless flux cored wire
  • there is no moisture outlet on the side of the wire so moisture is retained up to the melted part by arc, and hydrogen is easily absorbed by the molten metal.
  • the seam portion serves as a moisture outlet, and moisture can be discharged out of the wire by thermal energy before reaching the arc region.
  • the moisture discharged out of the wire is transferred to the arc by riding on a shield gas stream, and is consequently absorbed by the molten metal.
  • contact between the molten metal and moisture (dissociated at a high temperature in the arc and understood as hydrogen atoms) is prevented and rendered harmless. It is possible.
  • Embodiments of the present invention relate to a welding method for effectively realizing this effect. Furthermore, in the welding method using a seamed flux cored wire and a special torch, it has been found that better results can be obtained by the structure of the seamed flux cored wire and the design of the flux.
  • the flux cored wire is a seam portion in which a steel sheath is filled with flux, and both ends of the metal of the steel sheath are butted or overlapped in the longitudinal direction of the flux cored wire. It has (flux cored wire with seam).
  • the steel outer skin means a rolled steel strip.
  • the composition (mass ratio) of the flux cored wire is a design value, but a flux cored wire having the same composition as the design value can be obtained.
  • composition of the wire can be identified by the composition identification of the flux particles by electron beam microanalyzer or X-ray diffraction method and the chemical analysis of the solution in which the entire wire is dissolved (ICP emission spectroscopy, atomic absorption spectrophotometry, etc.). it can.
  • Lseam is defined as a coefficient relating to the alignment allowance in which both ends of the metal of the steel sheath of the flux cored wire are overlapped, and a preferable range is defined from the viewpoint of moisture discharge efficiency.
  • the seam part means a part where both ends in the band width direction are butted or overlapped when a flux cored wire is manufactured using a band steel (steel hull) and a flux. It is on the entire longitudinal line of the ard wire.
  • the flux cored wire which melt-bonded the seam of the wire is a seamless flux cored wire.
  • Lseam is a seam portion (cross section of the seam portion) in which the clearance between both ends of the metal of the steel outer shell is less than 20 ⁇ m (the length of the portion less than 20 ⁇ m) is La, and is 20 ⁇ m or more and less than 40 ⁇ m
  • Lb is the length (the length of the part that is 20 ⁇ m or more and less than 40 ⁇ m)
  • Lc is the length that is 40 ⁇ m or more and less than 100 ⁇ m (the length of the part that is 40 ⁇ m or more and less than 100 ⁇ m).
  • 0.0 ⁇ La + 1.5 ⁇ Lb + Lc The value of Lseam can be obtained by observing the cross section of the wire, and is an average value when any three cross sections of the wire are observed.
  • the seamed flux cored wire can be classified into a bat shape, a wrap shape, an apple shape, or the like from its cross-sectional shape depending on the butt end of the steel outer sheath or the difference in superposition, and is not particularly limited.
  • a bat shape, a wrap shape, and an apple shape are preferable because moisture is easily discharged from the inside of the wire.
  • the bat shape is a butt shape so that the positions of both ends of the steel outer shell coincide with each other as shown in the schematic cross-sectional view of FIG. 2A.
  • the wrap shape is obtained by processing so that the vicinity of both ends of the steel outer shell overlaps vertically.
  • the apple shape is formed by bending the vicinity of both ends of the steel outer shell so that the bent portions coincide with each other.
  • the clearance width of less than 20 ⁇ m is La
  • the length of 20 ⁇ m or more and less than 40 ⁇ m is Lb
  • the length of 40 ⁇ m or more and less than 100 ⁇ m is Lc
  • the length of 100 ⁇ m or more is the value of Lseam.
  • La, Lb, and Lc may each be 0 ⁇ m (not present).
  • the value of Lseam is more preferably 0.1 to 1.5 mm, and further preferably 0.15 mm or more. Moreover, 1.2 mm or less is further more preferable, and 1.0 mm or less is further more preferable.
  • the wire diameter of the flux cored wire is not particularly limited, but in the welding of high-tensile steel and thick plate intended by the welding method according to the embodiment of the present invention, the wire diameter is 1.0 mm or more from the viewpoint of construction efficiency. Is preferred. Moreover, from a viewpoint of welding workability, 2.0 mm or less is preferable, More preferably, it is 1.2 mm or more, and 1.6 mm or less is more preferable.
  • the ratio of the flux to the total mass of the flux cored wire is preferably 8 to 30% by mass, more preferably 10% by mass or more, and more preferably 25% by mass or less from the viewpoint of wire manufacturability.
  • the flux types in the flux cored wire can be broadly divided into two types: metal flux and slag flux.
  • a metal flux cored wire (metal cored wire) is mainly intended for high welding efficiency, and a slag flux cored wire is mainly intended for good welding workability, a beautiful bead appearance, and the like.
  • a slag forming agent is contained in the flux. Since the slag forming agent contains at least one compound selected from the group consisting of metal oxides, metal fluorides, and metal carbonates, it is easy to adsorb moisture on the surface and is welded using a slag flux cored wire. Since the amount of diffusible hydrogen in the metal tends to increase, it is usually necessary to take care in welding with high-strength steel and thick plates.
  • the slag forming agent contains impurities in addition to the above compounds.
  • the ratio of the slag forming agent to the total mass of the wire is preferably 3 to 21% by mass from the viewpoint of welding workability, more preferably 5% by mass or more, and more preferably 20% by mass or less.
  • seizure of the slag is likely to occur on the surface of the weld bead, and when the amount is too large, the bead tends to have a convex shape.
  • the slag forming agent contains an oxide as the main slag component
  • the metal oxide is in a ratio with respect to the total mass of the flux cored wire, TiO 2 : 1.5 to 15.0 mass%, SiO 2 : 0.15 to 4.0 mass%, ZrO 2 : 0. It is more preferable to contain -3.0% by mass (including 0) and Al 2 O 3 : 0-2.0% by mass (including 0) from the viewpoint of obtaining a better bead appearance, bead shape, and the like.
  • the TiO 2 content is more preferably 2.5% by mass or more, and further preferably 12.0% by mass or less.
  • SiO 2 is more preferably 0.2% by mass or more, and further preferably 3.0% by mass or less.
  • ZrO 2 is more preferably 2.5% by mass or less
  • Al 2 O 3 is more preferably 1.5% by mass or less.
  • an alkali metal oxide such as Na 2 O, K 2 O, Li 2 O or the like is further added as an arc stabilizer for obtaining better arc stability. It is preferable to do. It is more preferable that the total sum of (Na 2 O + K 2 O + Li 2 O) is 0.01% by mass or more, and more preferably 0.02% by mass or more in terms of the total mass of the wire.
  • alkali metals have a high affinity with water and are very easy to adsorb moisture. Therefore, excess alkali metal leads to an increase in the amount of diffusible hydrogen in the weld metal. Moreover, since the arc stabilization effect by the alkali metal oxide is saturated in a small amount, it is more preferable that the total of (Na 2 O + K 2 O + Li 2 O) is 0.8% by mass or less in terms of the total mass of the wire. More preferably, it is 5 mass% or less.
  • Flux cored wires whose main slag component is a slag forming agent are special in that the weld metal has particularly excellent toughness and can be welded without using shielding gas (referred to as self-shielding). Some have an effect.
  • metal oxide 0 to 1.5 mass% (including 0)
  • metal fluoride 1.5 to 8.5 mass%
  • metal carbonate 0 in proportion to the total mass of the wire. It is preferable from the viewpoint of welding workability that it contains ⁇ 5.0 mass% (including 0).
  • the metal fluoride is in a ratio to the total mass of the flux cored wire, CaF 2 : 0 to 5.0 mass% (including 0), BaF 2 : 0 to 5.0 mass% (including 0) ), SrF 2 : 0 to 5.0% by mass (including 0), and (CaF 2 + BaF 2 + SrF 2 ): 1.5 to 8.0% by mass, better bead appearance, bead shape It is more preferable from the point of obtaining.
  • the metal carbonate preferably contains (CaCO 3 + BaCO 3 ): 0 to 5% by mass (including 0) as a percentage of the total mass of the flux cored wire. When the content is 2% by mass or more, weld metal performance (blow hole resistance) when welding without using a shielding gas is improved.
  • Metal fluoride powder tends to become fine powder during the pulverization process, and its surface area increases, so it tends to adsorb moisture. Therefore, it leads to an increase in the amount of diffusible hydrogen in the weld metal, and may not be applicable for welding high-strength steel and thick plates.
  • a welding method that combines a special torch with a slag-based flux cored wire containing a slag forming agent containing the above metal fluoride as the main slag component, a flux cored wire that provides high toughness and self-shielding properties. Low hydrogenity can be obtained, and it can be easily applied to welding of high-strength steel and thick plates.
  • examples of the metal oxide include MgO, CaO, BaO, V 2 O 5 , Cr 2 O 3 , Nb 2 O 5 , Y 2 O 3 , La 2 O 3. , Ce 2 O 3 , Pr 2 O 3 , Nd 2 O 3 , BiO and the like.
  • examples of the metal fluoride include AlF 3 , CeF 3 , MgF 2 , KF, NaF, LiF, K 2 SiF 6 (potassium silicofluoride), Na 3 AlF 6 (cryolite), and the like.
  • examples of the metal carbonate include MgCO 3 , FeCO 3 , MnCO 3 , K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 and the like.
  • the structure of the special torch and the tip of the contact tip and the base material in the special torch during welding there is a more favorable relationship between the distances D tb along the longitudinal direction of the welding wire. That is, when the distance along the longitudinal direction of the welding wire from the tip of the contact tip to the tip of the suction nozzle is D tk , the distance D tb and the distance D tk are expressed by the following relational expression: It is more preferable to satisfy. D t ⁇ k (mm) ⁇ 0.3 ⁇ D t ⁇ b (mm) and D t ⁇ k (mm) ⁇ D t ⁇ b (mm) ⁇ 8
  • the distance D tb has a preferable range (15 to 40 mm).
  • the distance D t ⁇ b is more preferably 20 mm or more, and more preferably 35 mm or less.
  • the suction nozzle is preferably 8 mm or more away from the base material (D t ⁇ k (mm) ⁇ D t ⁇ b (mm) ⁇ 8), preferably 10 mm or more. More preferred.
  • the distance D t ⁇ k is 30% (0.3) or more of the distance D t ⁇ b , suction can be performed from a higher temperature portion of the wire (a range where a large amount of hydrogen source is released). It is preferable from the point of reduction rate, and 35% or more is more preferable. Further, if the values of the distance D t ⁇ k and the distance D t ⁇ b are too close, there is a risk of damage due to radiant heat. Therefore, it is preferable to satisfy the above two relational expressions.
  • a welding wire is automatically fed into the cylinder, and arc welding is performed using the welding wire.
  • the torch barrel has a mechanism that supports the shield nozzle and the tip body.
  • the torch barrel can supply the supplied welding wire to the tip of the tip body (the rear end of the contact tip) via the inner tube in a state where the tip body is mounted.
  • the torch barrel applies a welding current to the tip body, and further supplies a shielding gas to a space formed between the inner tube and the tip body.
  • the tip body includes a mechanism that supports the orifice, the contact tip, and the suction nozzle.
  • the chip body is formed of a material having electrical conductivity such as metal.
  • the orifice has a mechanism for rectifying the shield gas. That is, the orifice usually has a cylindrical shape and is mounted by being inserted from the front end side of the outer periphery of the chip body.
  • the contact tip supplies a welding current to the welding wire and includes a mechanism for guiding the welding wire to a workpiece to be welded.
  • the contact chip is formed of a material having electrical conductivity such as metal.
  • the suction nozzle is arranged so as to surround the contact tip and the welding wire supplied from the tip of the contact tip, and the shield nozzle is arranged so as to surround the suction nozzle.
  • the shield gas supplied to the tip body is further supplied from the tip body through the orifice to the space between the shield nozzle and the suction nozzle to protect the arc and the weld metal.
  • the gas in the space between the suction nozzle and the contact chip is sucked by negative pressure through a suction gas path different from the shield gas supply formed in the chip body.
  • the method for generating the negative pressure may be a pump, an ejector, or the like, but is not particularly limited.
  • the detailed structure of the welding apparatus and the torch, shield gas, welding conditions, materials to be welded can be generally used conventionally. Can be used.
  • the weld metal obtained by the welding method according to the embodiment of the present invention preferably has a hydrogen reduction rate of 30% or more, more preferably 40% or more, as compared to the case where welding is usually performed using a torch.
  • the method for measuring the hydrogen reduction rate is as described in [Examples].
  • slag seizure “A” means that there was no seizure after slag peeling, and “B” means seizure after slag peeling, but there was no problem in construction, “C” means that there is a lot of seizure after the slag is peeled off, and it is judged that maintenance by a grinder and / or a wire brush is necessary between passes in multi-layer welding construction.
  • Examples 1 to 34 and Comparative Examples 1 to 4 The composition of the flux cored wire used, the length index (Lseam value) of the seam-coating portion, and the wire diameter are as shown in the table.
  • Distance D t-k along the welding wire longitudinally from the distal end of the welding wire longitudinally along a distance D t-b and the contact tip of the tip and the base material of a special torch contact tip used for welding to the tip of the suction nozzle Is as shown in the table.
  • “welded metal strength class” indicates that the tensile strength of the weld metal is equal to or higher than that value, and means that the weld metal can be applied to a base material having the strength or less shown here.
  • Examples 1 to 20, 27 to 34 and Comparative Examples 1 to 4 are the results of using flux cored wires containing a metal oxide as a main slag component and further containing an alkali metal and a slag forming agent.
  • Examples 21 to 26 are results of using a flux cored wire including a slag forming agent containing metal fluoride as a main slag component.
  • Examples 1 to 9 are the results of changing the Lseam value with the same slag design. As Lseam increased, the hydrogen reduction rate decreased.
  • Example 1 is an example in which Lseam is a small value. This wire has a low rating of flux spillage.
  • Example 16 is an example in which the slag rate and the amount of alkali metal oxide added are low. With this wire, the evaluation of slag seizure and arc stability is low. Since Examples 27 to 34 are examples using the same wire as that of Example 4, evaluation of flux spillage is omitted.
  • Examples 4 and 27 to 30 the distance D tb between the tip of the contact tip and the base metal along the longitudinal direction of the welding wire is changed, and the distance along the longitudinal direction of the welding wire from the tip of the contact tip to the tip of the suction nozzle is changed.
  • D tk is adjusted appropriately. All have good hydrogen reduction rates.
  • Examples 4 and 31 to 34 are examples in which the distance D t ⁇ k is changed with the distance D t ⁇ b being the same. As the distance D t ⁇ k increases, the hydrogen reduction rate tends to increase.
  • Examples 10 to 15 and 17 to 20 are examples in which Lseam, wire diameter, flux rate, slag rate, metal oxide amount, metal fluoride amount, metal carbonate amount, and alkali metal oxide amount were appropriately changed. is there. All have good hydrogen reduction rates.
  • Examples 21 to 26 are examples using a flux cored wire containing a slag forming agent containing metal fluoride as a main slag component. All have good hydrogen reduction rates. Since all of Comparative Examples 1 to 4 did not have a seam portion, the hydrogen reduction rate was as low as less than 30%.
  • a welding method using a special torch and a flux cored wire The special torch has a suction nozzle between the contact tip and the shield nozzle,
  • the flux cored wire has a seam portion in which a steel core is filled with a flux, and both ends of the metal in the width direction of the steel shell are butted or overlapped in the longitudinal direction of the flux cored wire.
  • the flux contains a slag forming agent, and the slag forming agent comprises at least one compound selected from the group consisting of metal oxides, metal fluorides and metal carbonates and impurities,
  • the slag forming agent comprises at least one compound selected from the group consisting of metal oxides, metal fluorides and metal carbonates and impurities,
  • the welding method according to any one of aspects 1 to 3, wherein the ratio of the slag forming agent to the mass is 3 to 21% by mass.
  • the slag forming agent is a ratio to the total mass of the flux cored wire, Metal oxide: 3.5 to 20.5% by mass, Metal fluoride: 0 to 0.5 mass% (including 0), and Metal carbonate: 0 to 0.5 mass% (including 0)
  • the welding method according to aspect 4 comprising: (Aspect 6)
  • the metal oxide is a ratio to the total mass of the flux cored wire, TiO 2 : 1.5 to 15.0 mass%, SiO 2 : 0.15 to 4.0% by mass, ZrO 2 : 0 to 3.0% by mass (including 0), Al 2 O 3 : 0 to 2.0% by mass (including 0), and (Na 2 O + K 2 O + Li 2 O): 0.01 to 0.8% by mass
  • the slag forming agent is a ratio to the total mass of the flux cored wire, Metal oxide: 0 to 1.5% by mass (including 0), Metal fluoride: 1.5 to 8.
  • the welding method according to the embodiment of the present invention shows that the amount of diffusible hydrogen in the weld metal is high even when high-strength steel and thick plates are welded using an inexpensive seam-fluxed cored wire. It can be prevented, and good welding workability and welding efficiency can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Abstract

特殊トーチ及びフラックスコアードワイヤを用いる溶接方法であって、前記特殊トーチは、コンタクトチップとシールドノズルとの間に吸引ノズルを有し、前記フラックスコアードワイヤは、鋼製外皮の内側にフラックスが充填され、かつ、フラックスコアードワイヤの長手方向に前記鋼製外皮の幅方向の金属の両端が突合せ又は重ね合わされたシーム部を有する溶接方法。

Description

特殊トーチを用いた溶接方法
 本開示は、特殊トーチを用いた溶接方法に関し、より詳細には、吸引ノズルを有する特殊トーチと特定のフラックスコアードワイヤとを用いた溶接方法に関する。
 溶接産業において、溶接金属中の拡散性水素による溶接金属の水素脆化及び水素割れが問題となっている。溶接金属中の拡散性水素は、鋼組織の粒界、微小空間等に集まり水素分子(H)となり、体積を膨張させる。この膨張圧力は、溶接金属に割れを生じさせ、構造物の破壊を招く。このような水素割れについては、鋼の強度が増すに従って水素割れ感受性が高まるが、近年、溶接において強度の高い高張力鋼が使われる傾向にある。
 図3は、拡散性水素が溶接金属に吸収されるプロセスを説明するための図である。図3において、溶接ワイヤは、フラックス入りの溶接ワイヤであるフラックスコアードワイヤが用いられるものとして説明する。また、図4は、フラックスコアードワイヤの断面を示す図である。
 フラックスコアードワイヤである溶接ワイヤ201は、外周を構成する鋼製外皮202と中心部203とから構成されている。フラックスコアードワイヤの場合、中心部203には、鉄粉又は合金などの金属粉、及び又は金属酸化物粉、金属フッ化物粉等を混合したフラックスが含まれる。そして、溶接ワイヤ201がコンタクトチップ208を通して送られると同時に、溶接電流がコンタクトチップ208から溶接ワイヤ201に流れて、溶接ワイヤ201先端のアーク209によって溶接ワイヤ201が溶けて溶接金属210となる。このとき、コンタクトチップ208から突き出された溶接ワイヤ201のワイヤ突出し部211には溶接電流が流れるため、抵抗発熱が生じ、温度が上昇する。この上昇温度は、例えば、コンタクトチップ208の先端から5mm程度で100℃に達し、コンタクトチップ208の先端から20mmのワイヤ先端近傍では約600℃まで上昇する場合がある。
 ワイヤ突出し部211の温度が100℃を超えて上昇すると、まず、ワイヤ表面の水素源205が気化して溶接ワイヤ201から放出される。続いて、加熱された鋼製外皮202からの熱伝導により中心部203が加熱され、フラックス内の水素源205も気化して、継ぎ目であるシーム204を通して溶接ワイヤ201外に放出される。溶接ワイヤ201から放出された水素源205の一部は、アークプラズマ気流、及びガスシールドアーク溶接の場合にノズル206から溶接部に供給されるシールドガスの流れ(矢印207に示す方向)によって、矢印213に示す方向に流れて、アーク209に導かれる。アーク209は数千度の高温であるため、水素源205、例えばHOは、解離して拡散性水素212となり、アーク柱内の溶滴及び溶接金属210に吸収されて溶接金属210内に入り込む。
 このようにして、ワイヤ表面に存在する水素源、及び溶接ワイヤに使われるフラックスに含まれる水素源が、高温に加熱されたワイヤ突出し部において気化する。そして、気化した水素源は、アークプラズマ気流及びガスシールドアーク溶接の場合に供給されるシールドガスの流れによって、アーク柱内及びその近傍に運ばれる。運ばれた水素源は、解離して水素原子となり、溶接金属中に吸収される。
拡散性水素により発生する水素脆化及び水素割れの対策としては、拡散性水素が溶接金属から外部に放出されることを促すために、予熱や後熱が行われる場合がある。また、溶接においてフラックスコアードワイヤを使う場合には、フラックスにCaF、NaAlFなどのフッ化物を添加することにより、拡散性水素を低減させる方法も用いられている。更に、ガスシールドアーク溶接において供給されるシールドガスにCFを微量に混合する手法も提案されている。
特表2002-506736号公報 特許第1633976号公報 特公平02-040435号公報
 溶接ワイヤにおける水素源は、ワイヤ表面に付着している油及び水分、フラックスコアードワイヤ及びメタルコアードワイヤ(ワイヤ内部に含有されるフラックスが金属粉のみで構成されるフラックスコアードワイヤ)に内包されるフラックスに付着している水分及び有機物である。一般に、溶接ワイヤ表面に付着している水素源よりも、フラックスに付着している水素源のほうが比較的多い。そのため、フラックスに付着する水素源を減らすために、溶接ワイヤを製造する前に、フラックスを高温で加熱し、水素源を除去する手法が採られる場合がある。また、製造工程の中で吸湿するのを防止することも必要であるが、多大なコストがかかる。更には、製品化された後でも、保管中及び湿度の高い溶接現場での作業中にも空気中から水分が吸着するので、水素源を減少させることには様々な障害が存在する。
 また、水素脆化及び水素割れの対策として、予熱及び後熱を行う場合には、150~250℃もの加熱を行うこととなり、多大なエネルギー費用及び労力がかかる。また、高温の作業であり溶接作業者に過酷な負担をかけるという問題がある。フラックスにフッ化物を添加する場合には、添加物の量を増加させるにつれてアークの安定性を劣化させるために、拡散性水素が十分に低減しない場合がある。更に、シールドガスにCFを混合する手法においても、安全性の問題及びアークの安定性が劣化する問題があり、普及するには障害があるといえる。
 そこで、高張力鋼及び厚板の溶接を行う場合、溶接材料として、溶接金属の拡散性水素量を懸念してソリッドワイヤ(図1A)又はシームレスフラックスコアードワイヤ(図1B)が主に使用される。
 フラックスコアードワイヤはフラックスの効果によって美しいビードが得られるもの、姿勢溶接が容易かつ高能率な溶接条件で溶接が可能となるもの、大溶着量が得られるもの等、有益な効果がある。また、ソリッドワイヤでは、ビード形状、姿勢溶接が難しい等の溶接作業性面で劣る場合があることから、シームレスフラックスコアードワイヤがより好ましく用いられる。
 一方、シーム有りのフラックスコアードワイヤ(図1C)は、高張力鋼及び厚板の溶接での使用は上述の問題から限定的であった。これは、シーム有りフラックスコアードワイヤは、シーム部を通して大気から水分を吸収する為、シームレスフラックスコアードワイヤと比較して水素源を含有し易く、溶接金属の拡散性水素量が高くなり易いことに起因する。
 シームレスフラックスコアードワイヤを製造するためには、シーム有りのワイヤのシーム部にTIG溶接又はレーザ溶接を行ってシームを閉じる方法、及びパイプにフラックスを詰め込み、圧延・伸線加工を繰り返してワイヤに仕上げる方法がある。しかし、前者は溶接速度に生産性が律速され、効率が上がらず、後者は圧延・伸線加工の回数が増大し生産性が低下する。そのため、シームレスフラックスコアードワイヤはシーム有りフラックスコアードワイヤと比較して高コストとなり、改善が望まれていた。
 特許文献1に示すトーチは、コンタクトチップから突き出された溶接ワイヤの周囲を囲みワイヤ先端部に向いた開口部からヒュームを吸引する。特許文献1には示されていないが、このトーチでは、溶接中に溶接ワイヤから離脱した水素源をヒュームと同時に吸引し、溶接部外に排出し、溶接金属中の拡散性水素量を低減すると解される。
 しかし特許文献1には拡散性水素低減効果についての着想は無く、最適な組み合わせワイヤ設計については記載されていない。また、水素吸引性能を効果的に発現させる為のトーチ構成についても当然検討されていない。
 一方、ガスシールドアーク溶接に用いられるワイヤとして、特許文献2には、鋼製外皮中に特定組成のフラックスが充填されたフラックスコアードワイヤが開示されている。当該フラックスコアードワイヤは、アルカリ金属を0.1~5重量%含むことによりアークが安定化し、薄板溶接時の溶け落ちを防止することができることが示されているが、アルカリ金属は水分との親和性が高いため、シーム有りフラックスコアードワイヤとして用いると、ワイヤは多量の水分を含有することから、高張力鋼及び厚鋼板に適用すると、低温割れのおそれがある。
 また、特許文献3には、特定の組成のスラグ系フラックスコアードワイヤが開示されている。当該スラグ系フラックスコアードワイヤは、溶着金属中のNiの含有量が少ない場合においても、溶着金属に良好な低温靱性が得られる高張力鋼用溶接ワイヤである。しかし、シーム有りフラックスコアードワイヤとしつつ、良好なアーク安定性及び溶接性を得るには、アルカリ金属を適量含有する必要があるが、該アルカリ金属は拡散性水素量増加の要因となる為、積極的に含有させることができない。
 そこで本発明の実施形態では、溶接作業性及び溶着効率が良好で安価なシーム有りのフラックスコアードワイヤを用いた高張力鋼及び厚板の溶接方法を提供することを目的とする。
 発明者らは、鋭意研究を重ねた結果、吸引ノズルを有する溶接トーチ(特殊トーチ)を用いることで、シーム部を有するフラックスコアードワイヤを用いることができることを見出し、本発明を完成するに至った。
 すなわち、本発明の実施形態は、以下の[1]~[10]に係るものである。
[1] 特殊トーチ及びフラックスコアードワイヤを用いる溶接方法であって、
 前記特殊トーチは、コンタクトチップとシールドノズルとの間に吸引ノズルを有し、
 前記フラックスコアードワイヤは、鋼製外皮の内側にフラックスが充填され、かつ、フラックスコアードワイヤの長手方向に前記鋼製外皮の幅方向の金属の両端が突合せ又は重ね合わされたシーム部を有する溶接方法。
[2] 前記シーム部の横断面において、前記鋼製外皮の幅方向の金属の両端のクリアランスが20μm未満である部分の長さをLaとし、20μm以上40μm未満である部分の長さをLbとし、40μm以上100μm未満である部分の長さをLcとした際に、Lseam=2.0×La+1.5×Lb+Lcで表される値が0.1~1.5mmである、前記[1]に記載の溶接方法。
[3] 前記フラックスコアードワイヤのワイヤ径が直径1.2~2.0mmであり、かつ、前記フラックスコアードワイヤの全質量に対する前記フラックスの割合が8~30質量%である、前記[1]又は[2]に記載の溶接方法。
[4] 前記フラックス中にスラグ形成剤を含有し、前記スラグ形成剤は金属酸化物、金属フッ化物及び金属炭酸塩からなる群より選ばれる少なくとも1の化合物と不純物とからなり、前記フラックスコアードワイヤの全質量に対する前記スラグ形成剤の割合が3~21質量%である、前記[1]又は[2]に記載の溶接方法。
[5] 前記スラグ形成剤が、前記フラックスコアードワイヤの全質量に対する割合で、
 金属酸化物:3.5~20.5質量%、
 金属フッ化物:0~0.5質量%(0を含む)、及び
 金属炭酸塩:0~0.5質量%(0を含む)
を含む、前記[4]に記載の溶接方法。
[6] 前記金属酸化物が、前記フラックスコアードワイヤの全質量に対する割合で、
 TiO:1.5~15.0質量%、
 SiO:0.15~4.0質量%、
 ZrO:0~3.0質量%(0を含む)、
 Al:0~2.0質量%(0を含む)、及び
 (NaO+KO+LiO):0.01~0.8質量%
を含む、前記[5]に記載の溶接方法。
[7] 前記スラグ形成剤が、前記フラックスコアードワイヤの全質量に対する割合で、
 金属酸化物:0~1.5質量%(0を含む)、
 金属フッ化物:1.5~8.5質量%、及び
 金属炭酸塩:0~5.0質量%(0を含む)
を含む、前記[4]に記載の溶接方法。
[8] 前記金属フッ化物が、前記フラックスコアードワイヤの全質量に対する割合で、
 CaF:0~5.0質量%(0を含む)、
 BaF:0~5.0質量%(0を含む)、
 SrF:0~5.0質量%(0を含む)、及び
 (CaF+BaF+SrF):1.5~8.0質量%
を含む、前記[7]に記載の溶接方法。
[9] 前記金属炭酸塩が、前記フラックスコアードワイヤの全質量に対する割合で、
 (CaCO+BaCO):0~5質量%(0を含む)
を含む、前記[4]に記載の溶接方法。
[10] 前記特殊トーチにおける前記コンタクトチップの先端と母材との溶接ワイヤ長手方向に沿う距離Dt-bが15~40mmであり、前記コンタクトチップの先端から前記吸引ノズルの先端までの溶接ワイヤ長手方向に沿う距離Dt-kと前記距離Dt-bとが
 Dt-k(mm)≧0.3×Dt-b(mm)、かつ
 Dt-k(mm)≦Dt-b(mm)-8
の関係を満たす、前記[1]又は[2]に記載の溶接方法。
 本発明の実施形態によれば、溶接金属の拡散性水素量が高くなるのを防ぐことができ、溶接作業性及び溶着効率が良好で安価なシーム有りのフラックスコアードワイヤを用いて、高張力鋼及び厚板の溶接を行うことができる。
図1Aはソリッドワイヤの形態を示す模式断面図である。 図1Bはシームレスフラックスコアードワイヤの形態を示す模式断面図である。 図1Cはシーム有りフラックスコアードワイヤの形態を示す模式断面図である。 図2Aは、バット形状と呼ばれるシーム有りフラックスコアードワイヤの断面形状を示す模式断面図である。 図2Bは、ラップ形状と呼ばれるシーム有りフラックスコアードワイヤの断面形状を示す模式断面図である。 図2Cは、アップル形状と呼ばれるシーム有りフラックスコアードワイヤの断面形状を示す模式断面図である。 図3は、拡散性水素が溶接金属に吸収されるプロセスを説明するための図である。 図4は、フラックスコアードワイヤの断面を示す図である。
 以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。また、明細書中、「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 本発明の実施形態に係る溶接方法は、特殊トーチ及びフラックスコアードワイヤを用いる溶接方法であって、前記特殊トーチは、コンタクトチップとシールドノズルとの間に吸引ノズルを有し、前記フラックスコアードワイヤは、鋼製外皮中(すなわち、鋼製外皮の内側)にフラックスが充填され、かつ、フラックスコアードワイヤの長手方向に前記鋼製外皮の金属の両端が突合せ又は重ね合わされたシーム部を有することを特徴とする。
 ここで、フラックスとは、鉄粉又は合金などの金属粉、及び、金属酸化物粉、金属フッ化物粉等を混合した物質を意味する。
 溶接中、コンタクトチップと母材間に送給されたワイヤは、チップ先端からワイヤへ溶接電流が流れる為に、ジュール発熱を受け温度が上昇する。フラックスコアードワイヤを用いた溶接においてワイヤが保有する拡散性水素源としては、フラックスが保有する水分が多く、その水分を系外に排出することが好ましい。
 この時、ワイヤ構造がシームレスフラックスコアードワイヤであった場合、ワイヤ側面に水分の排出口が存在しない為、アークによる溶融部まで水分が保持され、溶融金属に容易に水素が吸収されることになる。
 一方、シーム有りフラックスコアードワイヤでは、シーム部が水分の排出口となり、アーク領域に到達する前に熱エネルギーにより水分をワイヤ外に排出できる。ワイヤ外に排出された水分は、一般的なガスシールドアーク溶接では、シールドガスの気流に乗ってアークに移送され、結果的に溶融金属に吸収される。
 また、特殊トーチを用いてシールドガスの一部を吸引することにより、該溶融金属と水分(アーク中では高温で解離し、水素原子となると解される)との接触を防止し、無害化することが可能である。
 すなわち、本発明者らは、製造時にフラックスが既に保有していた水分について、シームレスフラックスコアードワイヤにおいては特殊トーチを用いても有効に低減することができないが、シーム有りフラックスコアードワイヤにおいては有効に低減させることができることを見出した。本発明の実施形態はこの効果を有効に具現化する為の溶接方法に関する。
 さらに、シーム有りフラックスコアードワイヤと特殊トーチを用いた溶接方法において、適用するシーム有りフラックスコアードワイヤの構造及びフラックスの設計によって、さらに良好な結果が得られることを見出した。
[シーム有りフラックスコアードワイヤ]
 本発明の実施形態におけるフラックスコアードワイヤとは、鋼製外皮中にフラックスが充填され、かつ、フラックスコアードワイヤの長手方向に前記鋼製外皮の金属の両端が突合せ又は重ね合わされたシーム部を有するもの(シーム有りフラックスコアードワイヤ)である。
 ここで、鋼製外皮とは、圧延鋼帯のことを意味する。
 また、本明細書において、フラックスコアードワイヤの組成(質量割合)はいずれも設計値であるが、該設計値と概ね同組成のフラックスコアードワイヤが得られる。また、ワイヤの組成は、電子線マイクロアナライザ又はX線回折法によるフラックス粒子の組成同定とワイヤ全体を溶解した溶液の化学分析(ICP発光分光分析法、原子吸光光度法等)により同定することができる。
 シーム有りフラックスコアードワイヤ(以下、単に「ワイヤ」と称することがある。)においても、水分の排出経路が長くなると、溶接時の水分排出効率が低下してしまう場合がある。
 そこで、シーム部において、フラックスコアードワイヤの鋼製外皮の金属の両端を重ね合わせた合わせ代に関する係数としてLseamを定義し、水分排出効率の点から好ましい範囲を規定する。
 シーム部とは、帯鋼(鋼製外皮)とフラックスとを用いてフラックスコアードワイヤを製造する際の、帯鋼幅方向の両端が突合せ、又は重ね合わされた部分を意味し、シーム有りフラックスコアードワイヤの長手方向の全線にある。なお、該ワイヤのシームを溶融接合したフラックスコアードワイヤはシームレスフラックスコアードワイヤである。
 Lseamとは、シーム部(シーム部の横断面)において、前記鋼製外皮の金属の両端のクリアランスが20μm未満である長さ(20μm未満である部分の長さ)をLaとし、20μm以上40μm未満である長さ(20μm以上40μm未満である部分の長さ)をLbとし、40μm以上100μm未満である長さ(40μm以上100μm未満である部分の長さ)をLcとした際に、Lseam=2.0×La+1.5×Lb+Lcで表される値である。このLseamの値は、ワイヤの横断面の観察により求めることができ、ワイヤの任意の3断面を観察した際の平均値である。
 シーム有りフラックスコアードワイヤは、鋼製外皮両端の突合せ、又は重ね合わせの違いにより、その断面形状からバット形状、ラップ形状、アップル形状等に分類することができ、特に限定されない。中でも、バット形状、ラップ形状及びアップル形状が、ワイヤ内部から水分が排出されやすいことから好ましい。
 なお、バット形状とは、図2Aに模式断面図を示すように、鋼製外皮の両端の位置が一致するように突き合わせたものである。ラップ形状とは、図2Bに模式断面図を示すように、鋼製外皮の両端近傍が上下に重なり合うように加工したものである。アップル形状とは、図2Cに模式断面図を示すように、鋼製外皮の両端近傍を折り曲げた後に、折り曲げ部が一致するように突き合せたものである。
 図2A中、クリアランスの幅Wは一定でもバラバラであってもよく、幅Wが20μm未満である長さをLa、20μm以上40μm未満である長さをLb、40μm以上100μm未満である長さをLcとする。また、幅Wが100μm以上の長さについては、Lseamの値には影響しない。また、La、Lb及びLcはそれぞれ0μmの(存在しない)場合もあり得る。
 また、図2B及び図2Cについても同様に、任意の箇所におけるクリアランスの幅W1とW2が、W1≠W2のように等しくない場合もあるし、W1=W2と等しい場合もある。クリアランスの幅が20μm未満である長さをLa、20μm以上40μm未満である長さをLb、40μm以上100μm未満である長さをLcとし、幅が100μm以上の長さについては、Lseamの値には影響しない。また、La、Lb及びLcはそれぞれ0μmの(存在しない)場合もあり得る。
 Lseamの値は、具体的には、Lseamは0.1~1.5mmがより好ましく、0.15mm以上がさらに好ましい。また1.2mm以下がさらに好ましく、1.0mm以下がよりさらに好ましい。
 Lseamが過剰に小さいと、ワイヤ送給経路内での変形を受け容易に合わせ部が開放してしまい、フラックスのこぼれが発生する場合がある。フラックスのこぼれにより、ワイヤ成分設計が維持されなくなること、及び送給経路内での詰まりに伴うワイヤ送給トラブルを引き起こす場合がある。一方、Lseamが過剰に大きいと、水素排出効率が劣る場合がある。
 フラックスコアードワイヤのワイヤ径は特に限定されないが、本発明の実施形態に係る溶接法が目的とする高張力鋼及び厚板の溶接においては施工効率の観点で、ワイヤの直径は1.0mm以上が好ましい。また、溶接作業性の観点から、2.0mm以下が好ましく、より好ましくは1.2mm以上、また1.6mm以下がより好ましい。
 また、フラックスコアードワイヤ全質量に対するフラックスの割合は、ワイヤの製造性の観点から、8~30質量%が好ましく、10質量%以上がより好ましく、25質量%以下がより好ましい。
 フラックスコアードワイヤにおけるフラックス種類としては、メタル系フラックスとスラグ系フラックスの2つに大別できる。メタル系フラックスコアードワイヤ(メタルコアードワイヤ)は、高溶着効率を主な目的とし、スラグ系フラックスコアードワイヤは、良好な溶接作業性、美しいビード外観等を主な目的とする。
 スラグ系フラックスコアードワイヤの場合、フラックス中にスラグ形成剤を含有する。スラグ形成剤は、金属酸化物、金属フッ化物及び金属炭酸塩からなる群より選ばれる少なくとも1の化合物を含むため、表面に水分を吸着し易く、スラグ系フラックスコアードワイヤを用いて溶接した溶接金属中の拡散性水素量が増加し易いことから通常、高張力鋼及び厚板での溶接には使用上の注意が必要である。スラグ形成剤には、上記化合物以外に不純物が含まれる。
 上記スラグ形成剤を含むワイヤを用い、特殊トーチを組み合わせて溶接を行うことで、より良好な溶接作業性と低水素による扱いやすさ(低温割れの懸念が少なくなる)を両立することができる。
 スラグ形成剤のワイヤ全質量に対する割合は3~21質量%が溶接作業性の点から好ましく、5質量%以上がより好ましく、20質量%以下がより好ましい。
 スラグ形成剤が少ない場合には溶接ビード表面にスラグの焼き付きが発生しやすく、多過ぎる場合にはビードが凸形状となる傾向がある。
 スラグ形成剤が酸化物を主スラグ成分とする場合には、ワイヤの全質量に対する割合で、金属酸化物:3.5~20.5質量%、金属フッ化物:0~0.5質量%(0を含む)、及び金属炭酸塩:0~0.5質量%(0を含む)を含むことが溶接作業性の点から好ましい。
 中でも、前記金属酸化物が、前記フラックスコアードワイヤの全質量に対する割合で、TiO:1.5~15.0質量%、SiO:0.15~4.0質量%、ZrO:0~3.0質量%(0を含む)及びAl:0~2.0質量%(0を含む)を含むことが、より良好なビード外観、ビード形状などを得る点からより好ましい。
 TiOは2.5質量%以上がさらに好ましく、12.0質量%以下がさらに好ましい。SiOは0.2質量%以上がさらに好ましく、3.0質量%以下がさらに好ましい。ZrOは2.5質量%以下がさらに好ましく、Alは1.5質量%以下がさらに好ましい。
 また、酸化物を主スラグ成分とするスラグ形成剤において、さらに良好なアーク安定性を得る為のアーク安定剤として、さらにNaO、KO、LiO等のアルカリ金属酸化物を添加することが好ましい。(NaO+KO+LiO)の総和がワイヤ全質量に対する割合で0.01質量%以上含むことがより好ましく、0.02質量%以上がさらに好ましい。
 一方で、アルカリ金属は水との親和性が高く、非常に水分を吸着し易い。そのため過剰なアルカリ金属は、溶接金属中の拡散性水素量を増加させることにつながる。また、アルカリ金属酸化物によるアーク安定化効果は少量で飽和することから、(NaO+KO+LiO)の総和がワイヤ全質量に対する割合で0.8質量%以下含むことがより好ましく、0.5質量%以下がさらに好ましい。
 上記金属酸化物を主スラグ成分とし、さらにアルカリ金属酸化物を添加したスラグ形成剤を含むスラグ系フラックスコアードワイヤと特殊トーチを組み合わせた溶接法を適用することにより、さらに良好なアーク安定性と低水素性を両立した溶接が可能となる。
 スラグ形成剤がフッ化物を主スラグ成分とするフラックスコアードワイヤには、溶接金属の靱性が特に優れるものやシールドガスを使用せずに溶接が可能(セルフシールドと呼ぶ)であるなどの特殊な効果を有するものがある。この場合には、ワイヤの全質量に対する割合で、金属酸化物:0~1.5質量%(0を含む)、金属フッ化物:1.5~8.5質量%、及び金属炭酸塩:0~5.0質量%(0を含む)を含むことが溶接作業性の点から好ましい。
 中でも、前記金属フッ化物が、前記フラックスコアードワイヤの全質量に対する割合で、CaF:0~5.0質量%(0を含む)、BaF:0~5.0質量%(0を含む)、SrF:0~5.0質量%(0を含む)、及び(CaF+BaF+SrF):1.5~8.0質量%を含むことが、より良好なビード外観、ビード形状などを得る点からより好ましい。
 また、前記金属炭酸塩が、前記フラックスコアードワイヤの全質量に対する割合で、(CaCO+BaCO):0~5質量%(0を含む)含むことも好ましく、少量の含有ではアークの集中性が向上し、2質量%以上の含有ではシールドガスを使用せずに溶接する場合の溶接金属性能(耐ブローホール性)が向上する為好ましい。
 金属フッ化物の粉末は粉砕過程で微粉末になり易く、表面積が増大する為に、水分を吸着し易い。その為、溶接金属中の拡散性水素量を増加させることにつながり、高張力鋼及び厚板の溶接用には適用できない場合もある。しかし上記金属フッ化物を主スラグ成分としたスラグ形成剤を含むスラグ系フラックスコアードワイヤと特殊トーチを組み合わせた溶接法を適用することにより、高靱性及びセルフシールド性が得られるフラックスコアードワイヤにおいて低水素性が得られ、高張力鋼及び厚板の溶接に適用が容易となる。
 スラグ形成剤に含まれる上記以外の成分として、金属酸化物としては、例えば、MgO、CaO、BaO、V、Cr、Nb、Y、La、Ce、Pr、Nd、BiO等が挙げられる。
 金属フッ化物としては、AlF、CeF、MgF、KF、NaF、LiF、KSiF(珪フッ化カリウム)、NaAlF(氷晶石)等が挙げられる。
 金属炭酸塩としては、MgCO、FeCO、MnCO、KCO、NaCO、LiCO等が挙げられる。
[特殊トーチ]
 本発明の実施形態に係る溶接方法には、コンタクトチップとシールドノズルとの間に吸引ノズルを有する特殊トーチを使用する。特殊トーチがかかる構造を有することによって、アーク領域に近いガスを吸引することができる。
 また、溶接中に上記シーム有りフラックスコアードワイヤのシーム部から排出された水分を効率良く吸引する為には、特殊トーチの構造と、溶接中の特殊トーチにおけるコンタクトチップの先端と母材との溶接ワイヤ長手方向に沿う距離Dt-bの間により好ましい関係がある。
 すなわち、前記コンタクトチップの先端から前記吸引ノズルの先端までの溶接ワイヤ長手方向に沿う距離をDt-kとした場合に、前記距離Dt-bと前記距離Dt-kとが下記関係式を満たすことがより好ましい。
 Dt-k(mm)≧0.3×Dt-b(mm)、かつ
 Dt-k(mm)≦Dt-b(mm)-8
 溶接中において、溶接ワイヤはコンタクトチップから離れる程、溶接電流によるジュール加熱時間が長くなり、高温となる。高温になる程、水分の排出率は向上することから、特殊トーチによるガスの吸引は可能な限りアーク領域に近いガスを吸引することが好ましい。そのため、吸引ノズルによる溶接ワイヤのカバー範囲を長くすることが求められる。
 一方、溶接作業性の観点から、距離Dt-bには好ましい範囲(15~40mm)がある。距離Dt-bは20mm以上がより好ましく、35mm以下がより好ましい。
 さらに、アークの輻射熱による損傷を避ける為には、吸引ノズルは母材から8mm以上離すこと(Dt-k(mm)≦Dt-b(mm)-8)が好ましく、10mm以上離すことがより好ましい。
 また、距離Dt-kは距離Dt-bの30%(0.3)以上であることでワイヤのより高温部(水素源が多く放出される範囲)から吸引を行うことができ、水素低減率の点から好ましく、35%以上がより好ましい。また、距離Dt-kと距離Dt-bの値が近くなりすぎると、輻射熱で損傷するおそれがあるので、前記2つの関係式を満たすことが好ましい。
 本発明の実施形態に用いられる特殊トーチの一例として、以下に構造を示すが、この構造に限定されるものではない。
 溶接ワイヤが筒内に自動的に送給され、溶接ワイヤを用いてアーク溶接を行うものである。
 トーチ銃身は、シールドノズル及びチップボディを支持する機構を備えている。トーチ銃身は、チップボディが装着された状態で、供給される溶接ワイヤを、インナチューブを介してチップボディの先端(コンタクトチップの後端)まで供給することができる。また、トーチ銃身は、溶接電流をチップボディに通電し、さらに、インナチューブとチップボディとの間に形成される空間にシールドガスを供給する。チップボディは、オリフィス及びコンタクトチップ、及び吸引ノズルを支持する機構を備えている。尚、チップボディは、金属等の通電性を有する材料で形成されている。
 また、オリフィスは、シールドガスの整流を行う機構を備えている。すなわち、オリフィスは通常円筒形状をなし、チップボディの外周の先端側から挿入することで装着される。コンタクトチップは、溶接電流を溶接ワイヤに給電すると共に、溶接対象のワークへ溶接ワイヤをガイドする機構を備えている。尚、チップボディ同様、コンタクトチップについても金属等の通電性を有する材料で形成されている。
 吸引ノズルはコンタクトチップ及びコンタクトチップ先端から供給される溶接ワイヤの周囲を囲むように配置されており、さらにシールドノズルは吸引ノズルの周囲を囲むように配置されている。
 チップボディに供給されたシールドガスは、さらにチップボディからオリフィスを介してシールドノズルと吸引ノズル間の空間に供給され、アーク及び溶接金属を保護する。
 吸引ノズルとコンタクトチップ間の空間のガスは、チップボディ内に形成されたシールドガス供給とは別の吸引ガス経路を介して、負圧により吸引される。負圧の発生方法は、ポンプ、エジェクタ等が考えられるが、特に問わない。
 その他、本発明の実施形態に係る溶接方法においては、溶接装置及びトーチの詳細な構造、シールドガス、溶接条件、被溶接材(ワーク、母材)等に関し、従来一般的に用いることができるものを使用することができる。
<溶接金属>
 本発明の実施形態に係る溶接方法により得られた溶接金属は、通常トーチを用いて溶接した場合に比べて、水素低減率が30%以上となることが好ましく、40%以上がより好ましい。
 水素低減率の測定方法は[実施例]にて記載したとおりである。
 溶接の前後において、フラックスのこぼれ(まき散らし等)は少ないほど好ましい。フラックスこぼれが多いと、その分、トーチ用の溶接用コンジットライナーの清掃が必要となる。
 溶接時のアーク安定性としては、アークのふらつき及びアーク切れが少ないほど好ましい。また、溶接ビード外観は、平坦であるほど好ましい。また、スラグを剥離した後の焼き付きは少ないほど好ましい。
 以下に、実施例を挙げて本発明の実施形態をさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することが可能であり、それらはいずれも本発明の技術的範囲に包含される。
[評価方法]
(水素低減率)
 本発明の実施形態に係る溶接方法により得られた溶接金属について、通常トーチと特殊トーチの両方を用いて拡散性水素量を測定し、その比から水素低減率を求めた。
 具体的には、水素低減率は、通常トーチ又は特殊トーチを用いて「JIS Z 3118(2007)鋼溶接部の水素量測定方法」に基づいて実施した結果を、「JIS Z3118(2007) 7.2項 溶着金属の質量当たりの水素量の算出」に示される式から求めた値を拡散性水素量とし、その比から求めた。
 溶接条件は以下のとおりであり、溶接は移動台車を用いた自動溶接とした。また、試行数3回の平均値を結果値として採用した。なお、コンタクトチップ-母材間距離は一部の試験ではJIS準拠としておらず、実施例に記載した。
 ・溶接電流:270A
 ・アーク電圧:32V
 ・溶接速度:350mm/min
 ・溶接姿勢:下向き
(フラックスこぼれ)
 事前に質量を計測した、長さ3.5mトーチ用の溶接用コンジットライナーを直径300mmの円状に3周させ、その中にフラックスコアードワイヤを通過させた。ワイヤを2kg通過させた後に、コンジットライナーの質量を測定し、ワイヤ通過前後の質量の変化をフラックスのこぼれとみなした。
 フラックスこぼれの評価結果を表に示すが、表中「A」とは質量変化が0~0.20gであり、長時間の連続溶接が可能で非常に良好であったことを意味する。また、「B」とは質量変化が0.20g超0.50g以下であり、数時間毎のコンジットライナー清掃が望ましいものの、良好であったことを意味する。「C」とは質量変化が0.50g超であり、数時間毎の定期的なコンジットライナーの清掃が必要の普通の評価であったことを意味する。
(ビード外観・アーク安定性)
 SM490A 12mmtの母材を組み合わせて水平すみ肉溶接を行った。溶接長は250mmとし、自動台車を使用して行った。溶接中のアークふらつき及びアーク切れを総合的に官能評価した後、ビードの平坦性とスラグ焼き付きを目視試験により評価した。
 溶接条件は以下のとおりである。
 ・溶接電流:270A
 ・アーク電圧:適正(23~32Vでワイヤによって調整)
 ・溶接速度:400mm/min
 評価結果を表に示すが、「アーク安定性」に関し、「A」とはアークふらつき及びアーク切れが無く、非常に良好であったことを意味し、「B」とはややアークのふらつきが見られるがアーク切れの発生は無く良好であったことを意味し、「C」とはアークのふらつきが大きい、又はアーク切れが見られたことを意味する。
 また、「ビード外観」として、「ビードの平坦性」に関し、「A」とは平坦なビードであったことを意味し、「B」はやや凸形状だが施工に問題ないビードであったことを意味し、「C」は凸形状のビードであり、多層溶接施工ではパス間にグラインダによる手入れが必要と判断されたことを意味する。
 「スラグ焼き付き」に関し、「A」とはスラグ剥離後に焼き付きが無かったことを意味し、「B」とはスラグ剥離後に焼き付きが見られるが、施工に問題無い程度であったことを意味し、「C」とはスラグ剥離後に焼き付きが多く、多層溶接施工ではパス間にグラインダ及び/又はワイヤブラシによる手入れが必要と判断されたことを意味する。
[実施例1~34及び比較例1~4]
 用いたフラックスコアードワイヤの組成、シームの外皮合わせ部の長さ指数(Lseam値)、ワイヤ径等については表に示したとおりである。
 溶接に用いた特殊トーチのコンタクトチップの先端と母材との溶接ワイヤ長手方向に沿う距離Dt-b及びコンタクトチップの先端から吸引ノズルの先端までの溶接ワイヤ長手方向に沿う距離Dt-kは表に示したとおりである。
 また、表中、「溶接金属強度クラス」とは溶接金属の引張強さがその数値以上となることを示しており、ここに示した強度以下の母材に適用可能であることを意味する。
 なお、実施例1~20、27~34及び比較例1~4は金属酸化物を主スラグ成分とし、さらにアルカリ金属を添加したスラグ形成剤を含むフラックスコアードワイヤを用いた結果であり、実施例21~26は金属フッ化物を主スラグ成分としたスラグ形成剤を含むフラックスコアードワイヤを用いた結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例1~9はスラグ設計を同一として、Lseam値を変化させた結果である。Lseamが大きくなるほど、水素低減率は小さくなった。
 実施例1はLseamが小さな値の例である。このワイヤではフラックスのこぼれの評価が低くなる。実施例16はスラグ率とアルカリ金属酸化物の添加量が低い例である。このワイヤではスラグ焼き付きとアーク安定性の評価が低くなる。実施例27~34は実施例4と同一のワイヤを用いた例である為、フラックスこぼれの評価は省略している。
 また、実施例4および27~30はコンタクトチップ先端と母材との溶接ワイヤ長手方向に沿う距離Dt-bを変化させ、かつコンタクトチップ先端から吸引ノズル先端までの溶接ワイヤ長手方向に沿う距離Dt-kを適切に調整した例である。どれも良好な水素低減率が得られている。
 実施例4および31~34は距離Dt-bを同一として距離Dt-kを変化させた例である。距離Dt-kが長くなる程、水素低減率が高くなる傾向がある。
 実施例10~15及び17~20は、Lseam、ワイヤ径、フラックス率、スラグ率、金属酸化物量、金属フッ化物量、金属炭酸塩量及びアルカリ金属酸化物量の各々を適切に変化させた例である。どれも良好な水素低減率が得られている。
 前述したように、実施例21~26は、金属フッ化物を主スラグ成分としたスラグ形成剤を含むフラックスコアードワイヤを用いた例である。どれも良好な水素低減率が得られている。
 比較例1~4は、いずれもシーム部を有さないため、水素低減率が30%未満と低くなった。
 本明細書の開示内容は、以下の態様を含む。
(態様1)
 特殊トーチ及びフラックスコアードワイヤを用いる溶接方法であって、
 前記特殊トーチは、コンタクトチップとシールドノズルとの間に吸引ノズルを有し、
 前記フラックスコアードワイヤは、鋼製外皮の内側にフラックスが充填され、かつ、フラックスコアードワイヤの長手方向に前記鋼製外皮の幅方向の金属の両端が突合せ又は重ね合わされたシーム部を有する溶接方法。
(態様2)
 前記シーム部の横断面において、前記鋼製外皮の幅方向の金属の両端のクリアランスが20μm未満である部分の長さをLaとし、20μm以上40μm未満である部分の長さをLbとし、40μm以上100μm未満である部分の長さをLcとした際に、Lseam=2.0×La+1.5×Lb+Lcで表される値が0.1~1.5mmである、態様1に記載の溶接方法。
(態様3)
 前記フラックスコアードワイヤのワイヤ径が直径1.2~2.0mmであり、かつ、前記フラックスコアードワイヤの全質量に対する前記フラックスの割合が8~30質量%である、態様1又は2に記載の溶接方法。
(態様4)
 前記フラックス中にスラグ形成剤を含有し、前記スラグ形成剤は金属酸化物、金属フッ化物及び金属炭酸塩からなる群より選ばれる少なくとも1の化合物と不純物とからなり、前記フラックスコアードワイヤの全質量に対する前記スラグ形成剤の割合が3~21質量%である、態様1~3のいずれかに記載の溶接方法。
(態様5)
 前記スラグ形成剤が、前記フラックスコアードワイヤの全質量に対する割合で、
 金属酸化物:3.5~20.5質量%、
 金属フッ化物:0~0.5質量%(0を含む)、及び
 金属炭酸塩:0~0.5質量%(0を含む)
を含む、態様4に記載の溶接方法。
(態様6)
 前記金属酸化物が、前記フラックスコアードワイヤの全質量に対する割合で、
 TiO:1.5~15.0質量%、
 SiO:0.15~4.0質量%、
 ZrO:0~3.0質量%(0を含む)、
 Al:0~2.0質量%(0を含む)、及び
 (NaO+KO+LiO):0.01~0.8質量%
を含む、態様4又は5に記載の溶接方法。
(態様7)
 前記スラグ形成剤が、前記フラックスコアードワイヤの全質量に対する割合で、
 金属酸化物:0~1.5質量%(0を含む)、
 金属フッ化物:1.5~8.5質量%、及び
 金属炭酸塩:0~5.0質量%(0を含む)
を含む、態様4に記載の溶接方法。
(態様8)
 前記金属フッ化物が、前記フラックスコアードワイヤの全質量に対する割合で、
 CaF:0~5.0質量%(0を含む)、
 BaF:0~5.0質量%(0を含む)、
 SrF:0~5.0質量%(0を含む)、及び
 (CaF+BaF+SrF):1.5~8.0質量%
を含む、態様4又は7に記載の溶接方法。
(態様9)
 前記金属炭酸塩が、前記フラックスコアードワイヤの全質量に対する割合で、
 (CaCO+BaCO):0~5質量%(0を含む)
を含む、態様4、7及び8のいずれかに記載の溶接方法。
(態様10)
 前記特殊トーチにおける前記コンタクトチップの先端と母材との溶接ワイヤ長手方向に沿う距離Dt-bが15~40mmであり、前記コンタクトチップの先端から前記吸引ノズルの先端までの溶接ワイヤ長手方向に沿う距離Dt-kと前記距離Dt-bとが
 Dt-k(mm)≧0.3×Dt-b(mm)、かつ
 Dt-k(mm)≦Dt-b(mm)-8
の関係を満たす、態様1~9のいずれかに記載の溶接方法。
 本出願は、出願日が2016年3月8日である日本国特許出願、特願第2016-044223号を基礎出願とする優先権主張を伴う。特願第2016-044223号は参照することにより本明細書に取り込まれる。
 本発明の実施形態に係る溶接方法は、安価なシーム有りフラックスコアードワイヤを用いて、高張力鋼及び厚板の溶接を行った場合にも、溶接金属の拡散性水素量が高くなることを防ぐことができかつ、良好な溶接作業性及び溶着効率を実現することができる。
1 鋼製ワイヤ
2 水素源
3 鋼製外皮
4 シーム部

Claims (10)

  1.  特殊トーチ及びフラックスコアードワイヤを用いる溶接方法であって、
     前記特殊トーチは、コンタクトチップとシールドノズルとの間に吸引ノズルを有し、
     前記フラックスコアードワイヤは、鋼製外皮の内側にフラックスが充填され、かつ、フラックスコアードワイヤの長手方向に前記鋼製外皮の幅方向の金属の両端が突合せ又は重ね合わされたシーム部を有する溶接方法。
  2.  前記シーム部の横断面において、前記鋼製外皮の幅方向の金属の両端のクリアランスが20μm未満である部分の長さをLaとし、20μm以上40μm未満である部分の長さをLbとし、40μm以上100μm未満である部分の長さをLcとした際に、Lseam=2.0×La+1.5×Lb+Lcで表される値が0.1~1.5mmである、請求項1に記載の溶接方法。
  3.  前記フラックスコアードワイヤのワイヤ径が直径1.2~2.0mmであり、かつ、前記フラックスコアードワイヤの全質量に対する前記フラックスの割合が8~30質量%である、請求項1又は請求項2に記載の溶接方法。
  4.  前記フラックス中にスラグ形成剤を含有し、前記スラグ形成剤は金属酸化物、金属フッ化物及び金属炭酸塩からなる群より選ばれる少なくとも1の化合物と不純物とからなり、前記フラックスコアードワイヤの全質量に対する前記スラグ形成剤の割合が3~21質量%である、請求項1又は請求項2に記載の溶接方法。
  5.  前記スラグ形成剤が、前記フラックスコアードワイヤの全質量に対する割合で、
     金属酸化物:3.5~20.5質量%、
     金属フッ化物:0~0.5質量%(0を含む)、及び
     金属炭酸塩:0~0.5質量%(0を含む)
    を含む、請求項4に記載の溶接方法。
  6.  前記金属酸化物が、前記フラックスコアードワイヤの全質量に対する割合で、
     TiO:1.5~15.0質量%、
     SiO:0.15~4.0質量%、
     ZrO:0~3.0質量%(0を含む)、
     Al:0~2.0質量%(0を含む)、及び
     (NaO+KO+LiO):0.01~0.8質量%
    を含む、請求項5に記載の溶接方法。
  7.  前記スラグ形成剤が、前記フラックスコアードワイヤの全質量に対する割合で、
     金属酸化物:0~1.5質量%(0を含む)、
     金属フッ化物:1.5~8.5質量%、及び
     金属炭酸塩:0~5.0質量%(0を含む)
    を含む、請求項4に記載の溶接方法。
  8.  前記金属フッ化物が、前記フラックスコアードワイヤの全質量に対する割合で、
     CaF:0~5.0質量%(0を含む)、
     BaF:0~5.0質量%(0を含む)、
     SrF:0~5.0質量%(0を含む)、及び
     (CaF+BaF+SrF):1.5~8.0質量%
    を含む、請求項7に記載の溶接方法。
  9.  前記金属炭酸塩が、前記フラックスコアードワイヤの全質量に対する割合で、
     (CaCO+BaCO):0~5質量%(0を含む)
    を含む、請求項4に記載の溶接方法。
  10.  前記特殊トーチにおける前記コンタクトチップの先端と母材との溶接ワイヤ長手方向に沿う距離Dt-bが15~40mmであり、前記コンタクトチップの先端から前記吸引ノズルの先端までの溶接ワイヤ長手方向に沿う距離Dt-kと前記距離Dt-bとが
     Dt-k(mm)≧0.3×Dt-b(mm)、かつ
     Dt-k(mm)≦Dt-b(mm)-8
    の関係を満たす、請求項1又は請求項2に記載の溶接方法。
PCT/JP2017/008280 2016-03-08 2017-03-02 特殊トーチを用いた溶接方法 WO2017154725A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780014393.3A CN108698156B (zh) 2016-03-08 2017-03-02 使用特殊焊炬的焊接方法
KR1020187028039A KR102115729B1 (ko) 2016-03-08 2017-03-02 특수 토치를 이용한 용접 방법
RU2018134782A RU2707763C1 (ru) 2016-03-08 2017-03-02 Способ сварки с использованием специальной сварочной горелки
EP17763065.4A EP3427883A4 (en) 2016-03-08 2017-03-02 WELDING METHOD USING SPECIAL TORCH
US16/077,456 US11203080B2 (en) 2016-03-08 2017-03-02 Welding method using special torch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-044223 2016-03-08
JP2016044223A JP6683505B2 (ja) 2016-03-08 2016-03-08 特殊トーチを用いた溶接方法

Publications (1)

Publication Number Publication Date
WO2017154725A1 true WO2017154725A1 (ja) 2017-09-14

Family

ID=59789239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008280 WO2017154725A1 (ja) 2016-03-08 2017-03-02 特殊トーチを用いた溶接方法

Country Status (7)

Country Link
US (1) US11203080B2 (ja)
EP (1) EP3427883A4 (ja)
JP (1) JP6683505B2 (ja)
KR (1) KR102115729B1 (ja)
CN (1) CN108698156B (ja)
RU (1) RU2707763C1 (ja)
WO (1) WO2017154725A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196431A1 (ja) * 2019-03-26 2020-10-01 株式会社神戸製鋼所 高Crフェライト系耐熱鋼用被覆アーク溶接棒
JP7231476B2 (ja) * 2019-05-09 2023-03-01 株式会社神戸製鋼所 フラックス入りワイヤ、溶接方法及び溶接金属
US20210229204A1 (en) * 2020-01-29 2021-07-29 Lincoln Global, Inc. Systems and methods for multi-wire submerged arc welding using a flux-cored wire electrode
CN113681197B (zh) * 2021-09-17 2023-07-07 哈尔滨焊接研究院有限公司 一种适用于窄间隙激光焊接的自保护药芯焊丝
CN114346517B (zh) * 2022-01-20 2023-05-02 上海工程技术大学 一种抗过热堆焊用高散热性高强钢气保焊药芯焊丝

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150295A (ja) * 1995-09-29 1997-06-10 Nippon Steel Corp ステンレス鋼溶接用フラックス入りワイヤ
GB2466254A (en) * 2008-12-17 2010-06-23 Boc Group Ltd Welding torch fume retention by outwardly dispersed gas and through-torch fume extraction.
JP2010188378A (ja) * 2009-02-18 2010-09-02 Kobe Steel Ltd フラックス入り溶接ワイヤの製造方法
JP2015110247A (ja) * 2013-11-08 2015-06-18 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ及び極低温用鋼の溶接方法ならびに溶接継手の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633748Y2 (ja) 1980-06-26 1988-01-29
JPH0240435B2 (ja) 1986-07-15 1990-09-11 Kobe Steel Ltd Gasushiirudoaakuyosetsuyofuratsukusuiriwaiya
SU1579683A1 (ru) * 1987-09-07 1990-07-23 Ворошиловградский Ремонтно-Монтажный Комбинат Горелка дл дуговой сварки
NL1008631C2 (nl) 1998-03-18 1999-09-21 Tno Inverse lastoorts-afzuiging.
US20100276396A1 (en) * 2006-03-21 2010-11-04 Paul Cooper Apparatus and method for welding
CN101426609A (zh) * 2006-03-21 2009-05-06 Boc有限公司 用于焊接的装置和方法
JP4771900B2 (ja) 2006-09-14 2011-09-14 日鐵住金建材株式会社 溶接鋼管製造用の溶接装置
EP2042257A2 (en) 2007-09-26 2009-04-01 BOC Limited Method for controlling weld quality
CN101804534B (zh) 2009-02-18 2012-11-21 株式会社神户制钢所 药芯焊丝及其制造方法
CN102161137B (zh) 2011-04-27 2013-02-27 武汉铁锚焊接材料股份有限公司 一种药芯焊丝及其制备和应用
CN202388108U (zh) * 2011-12-06 2012-08-22 郑州正宇环保科技有限公司 焊接机及其吸气焊枪
US10065272B2 (en) * 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
KR20140084654A (ko) * 2012-12-27 2014-07-07 주식회사 포스코 충격인성이 우수한 초고강도 플럭스 코어드 아크 용접이음부
US9505088B2 (en) 2013-01-31 2016-11-29 Nippon Steel & Sumitomo Metal Corporation Flux-cored wire, welding method using flux-cored wire, method for manufacturing weld joint using flux-cored wire, and weld joint
JP6091974B2 (ja) * 2013-04-16 2017-03-08 株式会社神戸製鋼所 溶接物の製造方法、溶接方法、溶接装置
KR101674743B1 (ko) * 2013-11-08 2016-11-09 신닛테츠스미킨 카부시키카이샤 가스 실드 아크 용접용 플럭스 내장 와이어 및 극저온용 강의 용접 방법 및 용접 조인트의 제조 방법
JP1633976S (ja) 2018-11-29 2019-06-10

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09150295A (ja) * 1995-09-29 1997-06-10 Nippon Steel Corp ステンレス鋼溶接用フラックス入りワイヤ
GB2466254A (en) * 2008-12-17 2010-06-23 Boc Group Ltd Welding torch fume retention by outwardly dispersed gas and through-torch fume extraction.
JP2010188378A (ja) * 2009-02-18 2010-09-02 Kobe Steel Ltd フラックス入り溶接ワイヤの製造方法
JP2015110247A (ja) * 2013-11-08 2015-06-18 新日鐵住金株式会社 ガスシールドアーク溶接用フラックス入りワイヤ及び極低温用鋼の溶接方法ならびに溶接継手の製造方法

Also Published As

Publication number Publication date
KR102115729B1 (ko) 2020-05-27
RU2707763C1 (ru) 2019-11-29
EP3427883A1 (en) 2019-01-16
US11203080B2 (en) 2021-12-21
EP3427883A4 (en) 2019-08-28
US20190030636A1 (en) 2019-01-31
KR20180121936A (ko) 2018-11-09
JP6683505B2 (ja) 2020-04-22
CN108698156A (zh) 2018-10-23
JP2017159307A (ja) 2017-09-14
CN108698156B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2017154725A1 (ja) 特殊トーチを用いた溶接方法
EP2489461B1 (en) Wire containing flux for gas-sealed arc welding, allowing all-position welding
EP3539715B1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
US9604315B2 (en) Aluminum deoxidizing welding wire
US20100276396A1 (en) Apparatus and method for welding
JP4786402B2 (ja) Uoe鋼管の製造方法
RU2600466C2 (ru) Решение для сварки корневого прохода
CN104625486A (zh) 气体保护电弧焊接用填充焊剂金属丝及极低温用钢的焊接方法以及焊接接头的制造方法
JP2009255125A (ja) 純Arシールドガス溶接用MIGフラックス入りワイヤ及びMIGアーク溶接方法
JP6488637B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤの製造方法
CA3013886A1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
EP3444063A2 (en) Electrodes for forming austenitic and duplex steel weld metal
JP7160734B2 (ja) フラックス入りワイヤ
JP2020157315A (ja) エレクトロガスアーク溶接用フラックス入りワイヤ
EP4056312A1 (en) Fluxed core wire and method for manufacturing weld joint
JP2022157587A (ja) フラックス入りワイヤ及び溶接継手の製造方法
JP4667898B2 (ja) 消耗電極式ガスシールドアーク溶接方法
JP2020175399A (ja) エレクトロガスアーク溶接用フラックス入りワイヤ
JP2795992B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
JP2022157454A (ja) フラックス入りカットワイヤ及び溶接継手の製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187028039

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017763065

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017763065

Country of ref document: EP

Effective date: 20181008

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763065

Country of ref document: EP

Kind code of ref document: A1