WO2017154252A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2017154252A1
WO2017154252A1 PCT/JP2016/079335 JP2016079335W WO2017154252A1 WO 2017154252 A1 WO2017154252 A1 WO 2017154252A1 JP 2016079335 W JP2016079335 W JP 2016079335W WO 2017154252 A1 WO2017154252 A1 WO 2017154252A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
wheel
gear
rotary pump
motor
Prior art date
Application number
PCT/JP2016/079335
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 勝則
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017154252A1 publication Critical patent/WO2017154252A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/06Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with parallel axes

Definitions

  • the present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
  • the in-wheel motor drive device Since the in-wheel motor drive device is mounted inside the wheel, an increase in the weight of the drive device leads to an increase in the unsprung load of the vehicle. Since an increase in unsprung load deteriorates running stability and NVH characteristics, it is important to reduce the size and weight of the driving device. Also, from the viewpoint of avoiding interference with the vehicle body and suspension parts when mounted on the vehicle, the drive device must be downsized.
  • the in-wheel motor drive device is provided with a lubrication mechanism that supplies lubricating oil pumped by an oil pump to the motor and reducer via an oil path in order to lubricate and cool components such as motors, bearings, and gears. It is done. If the oil pump of the lubrication mechanism is driven by the output of the wheel driving motor, it is not necessary to separately install a motor dedicated to the pump, which is advantageous for cost reduction and space saving.
  • Patent Document 1 discloses an in-wheel motor drive device that drives an oil pump with a gear shaft of a counter gear that constitutes a speed reduction mechanism. .
  • the oil pump is arranged inside the counter gear. Therefore, if the oil pump is replaced with a large-sized product having a large axial dimension for the purpose of increasing the capacity of the pump, the oil pump may protrude from the counter gear in the axial direction.
  • various components are densely arranged in the axial direction inside the drive device. Placed in. For this reason, if the oil pump protrudes from the counter gear in the axial direction, the axial dimension of the motor portion, and hence the axial dimension of the entire in-wheel motor drive device, increases, which is contrary to the above requirement.
  • the counter gear web needs to be thinned or offset in the axial direction with respect to the tooth surface of the counter gear, which may reduce the strength of the counter gear.
  • the problem with the conventional in-wheel motor driving device is that the size change of the oil pump (increase in axial dimension) directly affects the axial dimension of the entire in-wheel motor driving device.
  • an object of the present invention is to provide an in-wheel motor drive device that can avoid an increase in axial dimension even when the size of the oil pump is changed.
  • the present invention includes a motor unit for driving a wheel, a speed reducer unit composed of a parallel shaft gear reducer composed of a plurality of gears, a wheel bearing unit,
  • a motor unit for driving a wheel a speed reducer unit composed of a parallel shaft gear reducer composed of a plurality of gears
  • a wheel bearing unit In an in-wheel motor drive device having a rotary pump that pumps lubricating oil, an intermediate shaft having an intermediate gear is disposed between an input shaft and an output shaft of a reduction gear unit, and the rotary pump is driven by the intermediate shaft.
  • the rotary pump is arranged on the outer diameter side of the motor unit so as to overlap the motor unit in the radial direction.
  • the rotary pump since the rotary pump is driven by the intermediate shaft, the rotary pump can be driven at a low rotational speed, and the quietness and durability of the rotary pump can be enhanced.
  • the rotary pump overlaps with the motor part in the radial direction and is arranged on the outer diameter side of the motor part, the axial dimension of the motor part increases and the in-wheel motor drive device even when the rotary pump is enlarged It is possible to prevent an increase in the axial dimension.
  • the in-wheel motor drive device limits the increase in the axial dimension in consideration of the installation space of the suspension device, but the present invention makes it unnecessary to change the design of the suspension device, and the existing suspension device is utilized as it is. be able to. In this case, it is preferable that the tooth surface of the intermediate gear and the rotary pump are arranged apart from each other in the axial direction.
  • the parallel shaft gear reducer is provided with a plurality of intermediate shafts, and the rotary pump is driven by an intermediate shaft other than the intermediate shaft on the most upstream side in the torque transmission direction among the plurality of intermediate shafts, the rotary pump is driven. It becomes easy to separate the intermediate shaft in the radial direction of the motor unit. Therefore, it becomes easy to arrange the rotary pump on the outer diameter side of the motor unit.
  • the intermediate gear provided on the intermediate shaft for driving the rotary pump is configured with an idler gear, the reduction ratio between the input shaft and the output shaft can be prevented from becoming excessively large. For this reason, it is possible to increase the degree of freedom in selecting the reduction ratio between the input shaft and the output shaft.
  • FIG. 2 is a cross-sectional view taken along the line PP connecting the centers Oa, O1, O2, and Ob in FIG.
  • FIG. 2 is a cross-sectional view taken along the line QQ connecting the centers Oa and O2 in FIG.
  • FIG. 5 is a cross-sectional view taken along the line RR connecting the centers Oa, O1, O2, and Ob in FIG.
  • RR connecting the centers Oa, O1, O2, and Ob in FIG.
  • FIG. 5 is a cross-sectional view taken along the line SS connecting the centers Oa and O2 in FIG. It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device.
  • FIG. 8 is a rear sectional view showing the electric vehicle of FIG. 7.
  • FIG. 7 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted
  • FIG. 8 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear.
  • the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a driving wheel, and an in-wheel motor driving device 21 that transmits driving force to the rear wheel 14.
  • the rear wheel 14 is accommodated in a tire house 15 of the chassis 12 and fixed to the lower portion of the chassis 12 via a suspension device (suspension) 16.
  • the suspension device 16 supports the rear wheel 14 by a suspension arm that extends to the left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber.
  • a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms.
  • the suspension device 16 is an independent suspension type in which the left and right wheels are independently moved up and down in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
  • the electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the tire house 15, thereby eliminating the need for a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
  • the overall configuration of the in-wheel motor drive device 21 will be described with reference to FIGS. 1 and 2.
  • the side closer to the outside of the vehicle is referred to as the outboard side
  • the side closer to the center is referred to as the inboard side.
  • FIG. 1 is a front view showing a schematic configuration when the in-wheel motor drive device 21 disposed in the inner space of the wheel W of the rear wheel 14 is viewed from the inboard side.
  • FIG. 2 is a cross-sectional view taken along line PP connecting the motor center Oa, the two intermediate shaft centers O1 and O2, and the axle center Ob in FIG.
  • the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and a speed reducer part B. Is provided with a wheel bearing portion C that transmits the output to the rear wheel 14 as a drive wheel.
  • the motor part A, the speed reducer part B, and the wheel bearing part C are each accommodated in the casing 22.
  • the casing 22 may have a monolithic structure or a separable structure.
  • the motor part A is arranged on the stator 23 fixed to the casing 22, the rotor 24 arranged so as to face the inner side in the radial direction of the stator 23 with a gap, and the inner side in the radial direction of the rotor 24.
  • a radial gap type electric motor 26 having a motor rotating shaft 25 that rotates integrally with the rotor 24 is formed.
  • the motor rotating shaft 25 can rotate at a high speed of about 10,000 to 1000 rotations per minute.
  • the stator 23 is configured by winding a coil around the outer periphery of the magnetic core, and the rotor 24 is configured by a permanent magnet or the like.
  • the motor rotating shaft 25 is connected to the casing 22 by the rolling bearing 40 at one end in the axial direction (left side in FIG. 2) and by the rolling bearing 41 at the other end in the axial direction (right side in FIG. 2). Each is supported rotatably.
  • the reduction gear unit B includes an input gear 30, a first intermediate gear 31, a second intermediate gear 32, a third intermediate gear 33, a fourth intermediate gear 34, and an output gear 35 as a plurality of intermediate gears.
  • the input gear 30 integrally has an input shaft 30a, and the input shaft 30a is connected to the motor rotating shaft 25 coaxially by spline fitting (including serration fitting, the same applies hereinafter).
  • the first intermediate gear 31 is formed integrally with the first intermediate shaft S1
  • the second intermediate gear 32 is connected to the first intermediate shaft S1 by spline fitting.
  • the fourth intermediate gear 34 is formed integrally with the second intermediate shaft S2, and the third intermediate gear 33 is connected to the second intermediate shaft S2 by spline fitting.
  • the output gear 35 is formed integrally with a hollow output shaft 36.
  • the input shaft 30a, the first intermediate shaft S1, the second intermediate shaft S2, and the output shaft 36 are arranged in parallel to each other.
  • the input shaft 30a is provided with rolling bearings 42 and 43
  • the first intermediate shaft S1 is provided with rolling bearings 44 and 45
  • the second intermediate shaft S2 is provided with rolling bearings 46 and 47
  • the output shaft 36 is provided with rolling bearings 48 and 49, respectively. 22 is supported rotatably.
  • the input gear 30 and the first intermediate gear 31 are engaged, the second intermediate gear 32 and the third intermediate gear 33 are engaged, and the fourth intermediate gear 34 and the output gear 35 are engaged.
  • the number of teeth of the first intermediate gear 31 is larger than the number of teeth of the input gear 30 and the second intermediate gear 32 on both sides of the torque transmission direction
  • the number of teeth of the third intermediate gear 33 is the second intermediate gear on both sides of the torque transmission direction.
  • 32 and the number of teeth of the fourth intermediate gear 34 is larger than the number of teeth of the fourth intermediate gear 34.
  • helical gears are used as the input gear 30, the intermediate gears 30 to 34, and the output gear 35 that constitute the parallel shaft gear reducer 39.
  • Helical gears are effective in that the number of teeth engaged simultaneously increases and the tooth contact is dispersed, so that the sound is quiet and torque fluctuation is small. It is preferable to set the modules of each gear to about 1 to 3 in consideration of the meshing ratio of gears and the limit number of rotations.
  • the wheel bearing portion C is composed of a wheel bearing 57 having the following configuration.
  • the wheel bearing 57 is an outer ring rotating type, and includes an axle 51 fixed to a knuckle (not shown), two inner rings 52 fitted and fixed to the outer peripheral surface of the axle 51, and a hub wheel disposed on the outer peripheral side of the inner ring 52. 53, a plurality of balls 54 disposed between an inner race formed on the outer peripheral surface of the inner ring 52 and an outer race formed on the inner peripheral surface of the hub ring 53, and a cage 55 that holds each ball 54. Double row angular contact ball bearings.
  • the nut 56 is screwed into and tightened with the male thread portion formed at the shaft end of the axle 51, thereby preventing separation of the wheel bearing 57 and applying a preload inside the bearing.
  • the wheel W (see FIG. 1) is fixed to a flange 53a provided on the hub wheel 53 via a hub bolt (not shown).
  • the hub wheel 53 is disposed on the inner periphery of the hollow output shaft 36 of the parallel shaft gear reducer 39 and is connected to the output shaft 36 by spline fitting. Thereby, the output of the reduction gear part B is transmitted to the rear wheel 14.
  • the outer ring rotation type is used as the wheel bearing 57, but the inner ring rotation type can also be used as the wheel bearing 57 by changing the position of the output gear 35.
  • the center Oa (motor center) of the motor 26 is at a position eccentric in the radial direction of the motor 26 with respect to the center Ob (axle center) of the axle 51.
  • the center O1 (first intermediate shaft center) of the first intermediate shaft S1 and the center O2 (second intermediate shaft center) of the second intermediate shaft S2 are on one side with respect to a line connecting the motor center Oa and the axle center Ob. In the area.
  • the second intermediate shaft center O2 is located between the motor center Oa and the axle center Ob.
  • FIG. 1 illustrates a case where the in-wheel motor driving device 21 is disposed in the wheel W in such a posture that a line connecting the motor center Oa and the axle center Ob is substantially horizontal.
  • the in-wheel motor drive device 21 Since the in-wheel motor drive device 21 is housed in the tire house 15 (see FIG. 8) and becomes an unsprung load, a reduction in size and weight is essential.
  • the parallel shaft gear reducer 39 By combining the parallel shaft gear reducer 39 with the electric motor 26, it is possible to use a small electric motor 26 of low torque and high rotation type.
  • the electric motor 26 can be reduced in size by using the electric motor 26 that rotates at a high speed of about ten thousand rotations per minute. Thereby, the compact in-wheel motor drive device 21 can be realized, and the electric vehicle 11 excellent in running stability and NVH characteristics can be obtained while suppressing the unsprung weight.
  • FIG. 3 is a sectional view taken along the line QQ connecting the motor center Oa and the second intermediate shaft center O2 in FIG.
  • the lubrication mechanism cools the motor part A and the speed reducer part B and circulates and supplies lubricating oil to them for further lubrication.
  • the lubrication mechanism of this embodiment mainly includes a rotary pump 60 and oil passages 65, 66, and 67 disposed in the casing 22.
  • the discharge port 63 and the suction port 64 of the rotary pump 60 are provided in the casing 22.
  • An oil passage 65 extending from the discharge port 63 of the rotary pump 60 extends to the motor portion A and is connected to a circulating oil passage 67 that circulates in the vicinity of the outer diameter end portion of the motor 26 inside the motor portion A.
  • the circulation oil passage 67 is provided with distribution ports 68 facing the stator 23 of the motor 26 at a plurality of locations in the circumferential direction.
  • An oil passage (not shown) for supplying lubricating oil to various parts of the parallel shaft gear reducer 39 is connected to the discharge port 63 of the rotary pump 60 as necessary.
  • the suction port 64 of the rotary pump 60 is connected to one end of a reflux oil passage 66 for returning the lubricating oil to the rotary pump 60.
  • the other end of the reflux oil passage 66 extends downward and opens into a space in the casing 22 near the bottom wall of the casing 22.
  • the lubricating oil is stored in the lower part of the casing 22, and the oil level X is in a position where the lower region of the output gear 35 is immersed in the lubricating oil.
  • the other end of the reflux oil passage 66 is in the lubricating oil stored in the lower portion of the casing 22.
  • the rotary pump 60 is a cycloid pump including an inner rotor 61 having a plurality of external teeth and an outer rotor 62 having a plurality of internal teeth.
  • the rotary pump 60 is incorporated in the casing 22 by a presser plate 69.
  • the second intermediate shaft S2 is attached to the inner rotor 61 via a detent such as a D-cut or a two-sided width. Accordingly, the inner rotor 61 is rotationally driven by the rotation of the second intermediate shaft S2. Further, the outer rotor 62 is rotatably supported with respect to the casing 22 so as to be driven and rotated as the inner rotor 61 rotates. Since the inner rotor 61 and the outer rotor 62 are in an eccentric state, the volume of the pump chamber formed between the inner rotor 61 and the outer rotor 62 is continuously changed while the inner rotor 61 and the outer rotor 62 are rotating.
  • the lubricating oil sucked from the suction port 64 is pumped from the discharge port 63 to the oil passage 65.
  • the number of teeth of the inner rotor 61 is n
  • the lubricating oil sucked up from the oil reservoir at the bottom of the casing 22 through the circulating oil passage 66 is pumped from the discharge port 63 of the rotary pump 60 and distributed via the oil passages 65 and 67. It is discharged from the mouth 68. Thereby, the motor 26 is cooled. Further, the lubricating oil in the oil sump at the bottom of the casing 22 is splashed by the rotation of the output gear 35 at various locations in the parallel shaft gear reducer 39, and cooling and lubrication are performed at various locations.
  • lubricating oil is supplied from the discharge port 63 to various portions of the parallel shaft gear reducer 39 through an oil passage (not shown), and the reducer B is cooled and lubricated.
  • the motor rotation shaft 25, the first intermediate shaft S1, and the second intermediate shaft S2 are provided with an axial oil passage and a radial oil passage extending from the axial oil passage to the meshing portion of the tooth surfaces.
  • the lubricating oil that has cooled and lubricated the motor part A and the speed reducer part B travels along the inner wall surface of the casing 22 by gravity and accumulates at the bottom of the casing 22.
  • the lubricating oil is sucked up from the oil passage 66 and returned to the suction port 64 of the rotary pump 60, whereby the lubricating oil can be circulated and supplied to the motor part A and the speed reducer part B.
  • the overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
  • the rotary pump 60 is coupled to the second intermediate shaft S2 of the speed reducer part B, and the rotary pump 60 is driven by the rotation of the second intermediate shaft S2. Therefore, the rotary pump 60 can be driven at a low rotational speed, and the silence and durability of the rotary pump 60 can be improved.
  • the rotary pump 60 coupled to the second intermediate shaft S2 is arranged on the outer diameter side of the motor part A in a state of overlapping with the motor part A in the radial direction.
  • the inner rotor 61 and the out rotor 62 of the rotary pump 60 are arranged adjacent to the outer diameter side of a partial region in the axial direction of the motor 26 (for example, the stator 23). Therefore, even if the axial dimension of the rotary pump 60 is increased, the axial dimension of the motor part A does not increase. Therefore, the capacity of the rotary pump 60 can be increased without increasing the axial dimension of the in-wheel motor drive device 21.
  • the rotary pump 60 does not overlap the tooth surfaces of the third intermediate gear 33 and the tooth surfaces of the fourth intermediate gear 34 provided on the second intermediate shaft S2 in the radial direction. It is in a position separated in the direction. In this respect, the configuration is different from that of the in-wheel motor driving device described in Patent Document 1.
  • the axial dimension of the in-wheel motor drive device 21 is maintained, so that it is not necessary to change the design of the suspension device including the suspension arm and the like. Therefore, when the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the existing suspension device can be used, and the development cost can be reduced.
  • the space in the wheel W is reduced by the volume of the rotary pump 60.
  • the effect is slight compared with an increase in the axial dimension of the entire motor unit A, and the suspension is suspended. Does not adversely affect device design.
  • two intermediate shafts S1 and S2 are disposed between the input shaft 30a and the output shaft 36 of the parallel shaft gear reducer 39, and the second intermediate shaft S2 is selected from the two intermediate shafts S1 and S2.
  • a rotary pump 60 is coupled.
  • the second intermediate shaft S2 positioned on the downstream side in the torque transmission direction is easily disposed at a position further away from the motor unit A than the first intermediate shaft S1 on the upstream side. Therefore, even when the outer diameter of the motor part A is large, it becomes easy to arrange the rotary pump 60 on the outer diameter side of the motor part A as described above. If the rotary pump 60 can be arranged on the outer diameter side of the motor part A, the rotary pump 60 may be coupled to the first intermediate shaft S1.
  • the parallel shaft gear reducer 39 can be provided with three or more intermediate shafts. Even in that case, it is preferable to connect the rotary pump 60 to any intermediate shaft except the intermediate shaft on the most upstream side in the torque transmission direction. Of course, if it is possible to arrange the rotary pump 60 on the outer diameter side of the motor part A, the number of the intermediate shafts of the parallel shaft gear reducer 39 is one, and the rotary pump 60 is coupled to the intermediate shaft. You can also.
  • FIG. 4 is a front view showing a schematic configuration when the in-wheel motor drive device 21 disposed in the inner space of the wheel W of the rear wheel 14 is viewed from the inboard side.
  • 5 is a cross-sectional view taken along the line RR connecting the motor center Oa, the two intermediate shaft centers O1, O2 and the axle center Ob in FIG. 4, and
  • FIG. 6 is a motor view in FIG.
  • FIG. 6 is a cross-sectional view taken along line SS connecting the center Oa and the second intermediate axis center O2.
  • the parallel shaft gear reducer 39 performs three-stage deceleration, the reduction ratio between the input shaft 30a and the output shaft 36 tends to increase.
  • the third intermediate gear 33 and the fourth intermediate gear 34 (see FIG. 1 and FIG. 2) is omitted, and an idler gear 37 is provided on the second intermediate shaft S2, and the idle gear 37 is engaged with the second intermediate gear 32 and the output gear 38, respectively.
  • the rotary pump 60 is coupled to the second intermediate shaft S2.
  • the output gear 38 can be provided directly on the outer peripheral surface of the output shaft 36.
  • the hub wheel 53 of the wheel bearing portion C is disposed on the inner periphery of the output shaft 36, and the output shaft 36 and the hub wheel 53 are connected by spline fitting, so that the hub wheel 53 is rotationally driven by the rotation of the output shaft 36. be able to.
  • As the wheel bearing portion C an inner ring rotation type wheel bearing may be used. Except for the configuration and function described above, the configuration and function of the embodiment shown in FIGS. 4 to 6 are the same as those of the embodiment of FIGS.
  • the gear provided on the intermediate shaft of the parallel shaft gear reducer 39 is constituted by the idle gear 37, no deceleration is performed between the first intermediate shaft S1 and the axle 51. Therefore, the reduction ratio between the input shaft 30a and the output shaft 36 can be reduced, and thereby the degree of freedom in designing the reduction ratio of the parallel shaft gear reducer 39 can be increased.
  • the second intermediate shaft S2 can be arranged at a position farther from the motor part A than the first intermediate shaft S1, so that it is coupled to the second intermediate shaft S2. It becomes easy to arrange the rotary pump 60 on the outer diameter side of the motor part A. Accordingly, similarly to the embodiment shown in FIGS. 1 to 3, the capacity of the rotary pump 60 can be increased without increasing the axial dimension of the in-wheel motor drive device 21.
  • the radial gap type electric motor 26 is exemplified as the motor portion A, but a motor having an arbitrary configuration can be applied.
  • an axial gap type electric motor including a stator fixed to a casing and a rotor arranged so as to face the inner side in the axial direction of the stator with a gap may be used.
  • the cycloid pump is exemplified as the rotary pump 60.
  • the rotary pump 60 is not limited to this, and is driven by using the rotation of the first intermediate shaft S1 or the second intermediate shaft S2 of the speed reducer unit B. Any rotary pump can be used.
  • the motor unit A is supplied with electric power to drive the motor unit and the power from the motor unit A is transmitted to the rear wheel 14 is shown.
  • the vehicle decelerates.
  • the power from the rear wheel 14 side is converted into high-rotation low-torque rotation by the reducer B and transmitted to the motor A, and the motor A generates power.
  • the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
  • the electric vehicle 11 having the rear wheel 14 as a drive wheel is illustrated, but the front wheel 13 may be a drive wheel or a four-wheel drive vehicle.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle.

Abstract

An in-wheel motor drive device (21) has: a motor section (A); a speed reducer section (B) constituted by a parallel shaft gear speed reducer (39) comprising a plurality of gears; a bearing section (C) for a wheel; and a rotary pump (60) for delivering lubricating oil under pressure. An intermediate shaft (S2) having intermediate gears (33, 34) is disposed between the input shaft (30a) of the speed reducer section (B) and an output shaft (36), and the intermediate shaft (S2) drives the rotary pump (60). The rotary pump (60) is disposed on the outer diameter side of the motor section (A) so as to radially overlap the motor section (A).

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、例えば、電動モータの出力軸と車輪用軸受とを減速機を介して連結したインホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
 インホイールモータ駆動装置は、ホイールの内部に搭載されるため、該駆動装置の重量増加は車両のばね下荷重の増加につながる。ばね下荷重の増加は走行安定性やNVH特性を悪化させるため、該駆動装置の小型化や軽量化は重要である。また、車両搭載時における車体や懸架部品との干渉回避の観点からも、該駆動装置の小型化が必要とされる。 Since the in-wheel motor drive device is mounted inside the wheel, an increase in the weight of the drive device leads to an increase in the unsprung load of the vehicle. Since an increase in unsprung load deteriorates running stability and NVH characteristics, it is important to reduce the size and weight of the driving device. Also, from the viewpoint of avoiding interference with the vehicle body and suspension parts when mounted on the vehicle, the drive device must be downsized.
 モータの出力トルクはモータサイズ及び重量に比例するため、モータ単体で車両の駆動に必要なトルクを発生させようとすると、大型のモータが必要となる。大型モータを使用すると、重量増につながるだけでなく、車輪が操舵方向に回転し、あるいは上下に振動した際に、インホイールモータ駆動装置が車体や懸架部品に干渉するおそれもある。そのため、従来のインホイールモータ駆動装置では、高回転低トルクのモータの回転を、減速機構を介してホイールに伝達することで、モータの小型化を図る場合が多い。 ∙ Since the output torque of the motor is proportional to the motor size and weight, a large motor is required to generate the torque necessary for driving the vehicle with the motor alone. If a large motor is used, not only will the weight increase, but the in-wheel motor drive device may interfere with the vehicle body and suspension parts when the wheel rotates in the steering direction or vibrates up and down. For this reason, in the conventional in-wheel motor drive device, the rotation of the motor with high rotation and low torque is transmitted to the wheel via the speed reduction mechanism, so that the motor is often downsized.
 インホイールモータ駆動装置には、モータ、軸受、歯車等の構成部品に対する潤滑および冷却を行うため、オイルポンプで圧送した潤滑油を、油路を介してモータおよび減速機に供給する潤滑機構が設けられる。潤滑機構のオイルポンプを車輪駆動用モータの出力で駆動すれば、ポンプ専用のモータを別途設置する必要がなくなるため、低コスト化や省スペース化を図る上で有利となる。 The in-wheel motor drive device is provided with a lubrication mechanism that supplies lubricating oil pumped by an oil pump to the motor and reducer via an oil path in order to lubricate and cool components such as motors, bearings, and gears. It is done. If the oil pump of the lubrication mechanism is driven by the output of the wheel driving motor, it is not necessary to separately install a motor dedicated to the pump, which is advantageous for cost reduction and space saving.
 以上に述べた潤滑機構の一例として、例えば特許第4501911号公報(特許文献1)には、減速機構を構成するカウンターギヤのギヤ軸でオイルポンプを駆動するインホイールモータ駆動装置が開示されている。 As an example of the lubrication mechanism described above, for example, Japanese Patent No. 4501911 (Patent Document 1) discloses an in-wheel motor drive device that drives an oil pump with a gear shaft of a counter gear that constitutes a speed reduction mechanism. .
特許第4501911号公報Japanese Patent No. 4501911
 しかしながら、特許文献1のインホイールモータ駆動装置では、オイルポンプがカウンターギヤの内部に配置される。そのため、ポンプの大容量化等を目的としてオイルポンプを軸方向寸法の大きい大型品に置き換えると、オイルポンプがカウンターギヤから軸方向にはみ出すおそれがある。インホイールモータ駆動装置では、懸架装置の配置スペースとの関係で、その軸方向寸法を極力小さくすることが望まれており、これを受けて該駆動装置の内部には各種部品が軸方向に密に配置される。そのため、オイルポンプがカウンターギヤから軸方向にはみ出せば、モータ部の軸方向寸法、延いてはインホイールモータ駆動装置全体の軸方向寸法が増すことになり、上記の要請に反する結果となる。 However, in the in-wheel motor drive device of Patent Document 1, the oil pump is arranged inside the counter gear. Therefore, if the oil pump is replaced with a large-sized product having a large axial dimension for the purpose of increasing the capacity of the pump, the oil pump may protrude from the counter gear in the axial direction. In an in-wheel motor drive device, it is desired to reduce its axial dimension as much as possible in relation to the arrangement space of the suspension device. In response to this, various components are densely arranged in the axial direction inside the drive device. Placed in. For this reason, if the oil pump protrudes from the counter gear in the axial direction, the axial dimension of the motor portion, and hence the axial dimension of the entire in-wheel motor drive device, increases, which is contrary to the above requirement.
 また、オイルポンプの収容スペースを確保するため、カウンターギヤのウェブを薄肉化し、あるいはカウンターギヤの歯面に対して軸方向にオフセットさせる必要があるため、カウンターギヤの強度が低下するおそれがある。 Also, in order to secure an accommodation space for the oil pump, the counter gear web needs to be thinned or offset in the axial direction with respect to the tooth surface of the counter gear, which may reduce the strength of the counter gear.
 このように、従来のインホイールモータ駆動装置は、オイルポンプのサイズ変更(軸方向寸法の増大)がインホイールモータ駆動装置全体の軸方向寸法に直接影響を与える点が問題となる。 Thus, the problem with the conventional in-wheel motor driving device is that the size change of the oil pump (increase in axial dimension) directly affects the axial dimension of the entire in-wheel motor driving device.
 そこで、本発明は、オイルポンプのサイズ変更時にも軸方向寸法の大型化を回避できるインホイールモータ駆動装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an in-wheel motor drive device that can avoid an increase in axial dimension even when the size of the oil pump is changed.
 前述の目的を達成するための技術的手段として、本発明は、車輪を駆動するモータ部と、複数の歯車からなる平行軸歯車減速機で構成された減速機部と、車輪用軸受部と、潤滑油を圧送する回転ポンプとを有するインホイールモータ駆動装置において、減速機部の入力軸と出力軸の間に、中間ギヤを有する中間軸を配置し、該中間軸で前記回転ポンプを駆動し、回転ポンプを前記モータ部と径方向でオーバーラップさせて前記モータ部の外径側に配置したことを特徴とする。 As technical means for achieving the above-mentioned object, the present invention includes a motor unit for driving a wheel, a speed reducer unit composed of a parallel shaft gear reducer composed of a plurality of gears, a wheel bearing unit, In an in-wheel motor drive device having a rotary pump that pumps lubricating oil, an intermediate shaft having an intermediate gear is disposed between an input shaft and an output shaft of a reduction gear unit, and the rotary pump is driven by the intermediate shaft. The rotary pump is arranged on the outer diameter side of the motor unit so as to overlap the motor unit in the radial direction.
 本発明のインホイールモータ駆動装置では、中間軸で回転ポンプを駆動するため、低い回転数で回転ポンプを駆動させて回転ポンプの静粛性や耐久性を高めることができる。特に回転ポンプをモータ部と径方向でオーバーラップさせてモータ部の外径側に配置することにより、回転ポンプを大型化した場合でもモータ部の軸方向寸法の増大、さらにはインホイールモータ駆動装置の軸方向寸法の増大を防止できる。インホイールモータ駆動装置では、懸架装置の設置スペースとの兼ね合いで、その軸方向寸法の増大が制限されるが、本発明により懸架装置の設計変更等が不要となり、既存の懸架装置をそのまま活用することができる。この場合、中間ギヤの歯面と回転ポンプを軸方向に離間させて配置するのが好ましい。 In the in-wheel motor drive device of the present invention, since the rotary pump is driven by the intermediate shaft, the rotary pump can be driven at a low rotational speed, and the quietness and durability of the rotary pump can be enhanced. Especially when the rotary pump overlaps with the motor part in the radial direction and is arranged on the outer diameter side of the motor part, the axial dimension of the motor part increases and the in-wheel motor drive device even when the rotary pump is enlarged It is possible to prevent an increase in the axial dimension. The in-wheel motor drive device limits the increase in the axial dimension in consideration of the installation space of the suspension device, but the present invention makes it unnecessary to change the design of the suspension device, and the existing suspension device is utilized as it is. be able to. In this case, it is preferable that the tooth surface of the intermediate gear and the rotary pump are arranged apart from each other in the axial direction.
 前記平行軸歯車減速機に複数の中間軸を設け、前記回転ポンプを、複数の中間軸のうち、トルク伝達方向の最上流側の中間軸を除く中間軸で駆動すれば、回転ポンプを駆動する中間軸をモータ部の半径方向へ離間させ易くなる。従って、回転ポンプをモータ部の外径側に配置することが容易となる。 If the parallel shaft gear reducer is provided with a plurality of intermediate shafts, and the rotary pump is driven by an intermediate shaft other than the intermediate shaft on the most upstream side in the torque transmission direction among the plurality of intermediate shafts, the rotary pump is driven. It becomes easy to separate the intermediate shaft in the radial direction of the motor unit. Therefore, it becomes easy to arrange the rotary pump on the outer diameter side of the motor unit.
 前記回転ポンプを駆動する中間軸に設けた中間ギヤをアイドラギヤで構成すれば、入力軸と出力軸の間の減速比が過剰に大きくなることを防止できる。そのため、入力軸と出力軸間の減速比の選択自由度を高めることが可能となる。 If the intermediate gear provided on the intermediate shaft for driving the rotary pump is configured with an idler gear, the reduction ratio between the input shaft and the output shaft can be prevented from becoming excessively large. For this reason, it is possible to increase the degree of freedom in selecting the reduction ratio between the input shaft and the output shaft.
 本発明によれば、回転ポンプのサイズ変更時にもモータ部、さらにはインホイールモータ駆動装置の軸方向寸法の大型化を回避することができる。 According to the present invention, it is possible to avoid an increase in the axial dimension of the motor unit and further the in-wheel motor drive device even when the size of the rotary pump is changed.
ホイールの内側空間に配置したインホイールモータ駆動装置をインボード側から見た時の概略構成を示す正面図である。It is a front view which shows schematic structure when the in-wheel motor drive device arrange | positioned in the inner space of the wheel is seen from the inboard side. 図1中の中心Oa、O1、O2、Obを結んだP-P線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line PP connecting the centers Oa, O1, O2, and Ob in FIG. 図1中の中心Oa、O2を結んだQ-Q線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line QQ connecting the centers Oa and O2 in FIG. ホイールの内側空間に配置したインホイールモータ駆動装置をインボード側から見た時の概略構成を示す正面図である。It is a front view which shows schematic structure when the in-wheel motor drive device arrange | positioned in the inner space of the wheel is seen from the inboard side. 図4中の中心Oa、O1、O2、Obを結んだR-R線に沿う断面図である。FIG. 5 is a cross-sectional view taken along the line RR connecting the centers Oa, O1, O2, and Ob in FIG. 図4中の中心Oa、O2を結んだS-S線に沿う断面図である。FIG. 5 is a cross-sectional view taken along the line SS connecting the centers Oa and O2 in FIG. インホイールモータ駆動装置を搭載した電気自動車の概略構成を示す平面図である。It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device. 図7の電気自動車を示す後方断面図である。FIG. 8 is a rear sectional view showing the electric vehicle of FIG. 7.
 本発明に係るインホイールモータ駆動装置の実施形態を図面に基づいて詳述する。 Embodiments of an in-wheel motor drive device according to the present invention will be described in detail with reference to the drawings.
 図7は、インホイールモータ駆動装置21を搭載した電気自動車11の概略平面図、図8は、電気自動車11を後方から見た概略断面図である。 FIG. 7 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted, and FIG. 8 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear.
 電気自動車11は、図7に示すように、シャシー12と、操舵輪としての前輪13と、駆動輪としての後輪14と、後輪14に駆動力を伝達するインホイールモータ駆動装置21とを装備する。後輪14は、図8に示すように、シャシー12のタイヤハウス15の内部に収容され、懸架装置(サスペンション)16を介してシャシー12の下部に固定されている。 As shown in FIG. 7, the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a driving wheel, and an in-wheel motor driving device 21 that transmits driving force to the rear wheel 14. Equip. As shown in FIG. 8, the rear wheel 14 is accommodated in a tire house 15 of the chassis 12 and fixed to the lower portion of the chassis 12 via a suspension device (suspension) 16.
 懸架装置16は、左右に延びるサスペンションアームにより後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットにより、後輪14が地面から受ける振動を吸収してシャシー12の振動を抑制する。左右のサスペンションアームの連結部分には、旋回時などの車体の傾きを抑制するスタビライザが設けられている。懸架装置16は、路面の凹凸に対する追従性を向上させ、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させる独立懸架式としている。 The suspension device 16 supports the rear wheel 14 by a suspension arm that extends to the left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. A stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms. The suspension device 16 is an independent suspension type in which the left and right wheels are independently moved up and down in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
 電気自動車11は、タイヤハウス15の内部に、左右それぞれの後輪14を駆動するインホイールモータ駆動装置21を設けることによって、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構などを設ける必要がなくなるので、客室スペースを広く確保でき、かつ、左右の後輪14の回転をそれぞれ制御することができるという利点を有する。 The electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the tire house 15, thereby eliminating the need for a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
 この実施形態の特徴的な構成を説明する前にインホイールモータ駆動装置21の全体構成を図1および図2に基づいて説明する。以下の説明では、インホイールモータ駆動装置21を車両に搭載した状態で、車両の外側寄りとなる側をアウトボード側と称し、中央寄りとなる側をインボード側と称する。 Before describing the characteristic configuration of this embodiment, the overall configuration of the in-wheel motor drive device 21 will be described with reference to FIGS. 1 and 2. In the following description, in a state where the in-wheel motor drive device 21 is mounted on the vehicle, the side closer to the outside of the vehicle is referred to as the outboard side, and the side closer to the center is referred to as the inboard side.
 図1は、後輪14のホイールWの内側空間に配置したインホイールモータ駆動装置21をインボード側から見た時の概略構成を示す正面図である。図2は、図1中のモータ中心Oa、二つの中間軸中心O1,O2、および車軸中心Obを結んだP-P線に沿う断面図である。 FIG. 1 is a front view showing a schematic configuration when the in-wheel motor drive device 21 disposed in the inner space of the wheel W of the rear wheel 14 is viewed from the inboard side. FIG. 2 is a cross-sectional view taken along line PP connecting the motor center Oa, the two intermediate shaft centers O1 and O2, and the axle center Ob in FIG.
 図1および図2に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速機部Bと、減速機部Bからの出力を駆動輪としての後輪14に伝達する車輪用軸受部Cとを備えている。モータ部A、減速機部B、および車輪用軸受部Cは、それぞれケーシング22に収容される。ケーシング22は図2に示すように一体構造とする他、分割可能な構造にすることもできる。 As shown in FIGS. 1 and 2, the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and a speed reducer part B. Is provided with a wheel bearing portion C that transmits the output to the rear wheel 14 as a drive wheel. The motor part A, the speed reducer part B, and the wheel bearing part C are each accommodated in the casing 22. As shown in FIG. 2, the casing 22 may have a monolithic structure or a separable structure.
 図2に示すように、モータ部Aは、ケーシング22に固定されたステータ23と、ステータ23の径方向内側に隙間をもって対向するように配置されたロータ24と、ロータ24の径方向内側に配置されてロータ24と一体回転するモータ回転軸25とを備えたラジアルギャップ型の電動モータ26で構成されている。モータ回転軸25は、毎分一万数千回転程度で高速回転可能である。ステータ23は磁性体コアの外周にコイルを巻回することによって構成され、ロータ24は永久磁石等で構成されている。 As shown in FIG. 2, the motor part A is arranged on the stator 23 fixed to the casing 22, the rotor 24 arranged so as to face the inner side in the radial direction of the stator 23 with a gap, and the inner side in the radial direction of the rotor 24. Thus, a radial gap type electric motor 26 having a motor rotating shaft 25 that rotates integrally with the rotor 24 is formed. The motor rotating shaft 25 can rotate at a high speed of about 10,000 to 1000 rotations per minute. The stator 23 is configured by winding a coil around the outer periphery of the magnetic core, and the rotor 24 is configured by a permanent magnet or the like.
 モータ回転軸25は、その軸方向一方側の端部(図2の左側)が転がり軸受40により、軸方向他方側の端部(図2の右側)が転がり軸受41により、ケーシング22に対してそれぞれ回転自在に支持されている。 The motor rotating shaft 25 is connected to the casing 22 by the rolling bearing 40 at one end in the axial direction (left side in FIG. 2) and by the rolling bearing 41 at the other end in the axial direction (right side in FIG. 2). Each is supported rotatably.
 減速機部Bは、入力ギヤ30と、複数の中間ギヤとしての第1中間ギヤ31、第2中間ギヤ32、第3中間ギヤ33、および第4中間ギヤ34と、出力ギヤ35とを有する。入力ギヤ30は入力軸30aを一体に有しており、この入力軸30aはスプライン嵌合(セレーション嵌合を含む。以下、同じ)によってモータ回転軸25と同軸に連結されている。第1中間ギヤ31は、第1中間軸S1と一体に形成され、この第1中間軸S1に第2中間ギヤ32がスプライン嵌合により連結されている。また、第4中間ギヤ34は、第2中間軸S2と一体に形成され、この第2中間軸S2に第3中間ギヤ33がスプライン嵌合により連結されている。出力ギヤ35は、中空の出力軸36と一体に形成されている。 The reduction gear unit B includes an input gear 30, a first intermediate gear 31, a second intermediate gear 32, a third intermediate gear 33, a fourth intermediate gear 34, and an output gear 35 as a plurality of intermediate gears. The input gear 30 integrally has an input shaft 30a, and the input shaft 30a is connected to the motor rotating shaft 25 coaxially by spline fitting (including serration fitting, the same applies hereinafter). The first intermediate gear 31 is formed integrally with the first intermediate shaft S1, and the second intermediate gear 32 is connected to the first intermediate shaft S1 by spline fitting. The fourth intermediate gear 34 is formed integrally with the second intermediate shaft S2, and the third intermediate gear 33 is connected to the second intermediate shaft S2 by spline fitting. The output gear 35 is formed integrally with a hollow output shaft 36.
 入力軸30a、第1中間軸S1、第2中間軸S2、および出力軸36は互いに平行に配置されている。入力軸30aは転がり軸受42,43によって、第1中間軸S1は転がり軸受44,45によって、第2中間軸S2は転がり軸受46,47によって、出力軸36は転がり軸受48,49によって、それぞれケーシング22に対して回転自在に支持されている。 The input shaft 30a, the first intermediate shaft S1, the second intermediate shaft S2, and the output shaft 36 are arranged in parallel to each other. The input shaft 30a is provided with rolling bearings 42 and 43, the first intermediate shaft S1 is provided with rolling bearings 44 and 45, the second intermediate shaft S2 is provided with rolling bearings 46 and 47, and the output shaft 36 is provided with rolling bearings 48 and 49, respectively. 22 is supported rotatably.
 この減速機部Bでは、入力ギヤ30と第1中間ギヤ31とが噛合し、第2中間ギヤ32と第3中間ギヤ33とが噛合し、第4中間ギヤ34と出力ギヤ35とが噛合している。第1中間ギヤ31の歯数は、トルク伝達方向両側の入力ギヤ30および第2中間ギヤ32の歯数よりも多く、第3中間ギヤ33の歯数は、トルク伝達方向両側の第2中間ギヤ32および第4中間ギヤ34の歯数よりも多い。また、出力ギヤ35の歯数は第4中間ギヤ34の歯数よりも多い。以上の構成から、モータ回転軸25の回転運動を3段階に減速する平行軸歯車減速機39が構成される。 In this reduction gear section B, the input gear 30 and the first intermediate gear 31 are engaged, the second intermediate gear 32 and the third intermediate gear 33 are engaged, and the fourth intermediate gear 34 and the output gear 35 are engaged. ing. The number of teeth of the first intermediate gear 31 is larger than the number of teeth of the input gear 30 and the second intermediate gear 32 on both sides of the torque transmission direction, and the number of teeth of the third intermediate gear 33 is the second intermediate gear on both sides of the torque transmission direction. 32 and the number of teeth of the fourth intermediate gear 34. Further, the number of teeth of the output gear 35 is larger than the number of teeth of the fourth intermediate gear 34. From the above configuration, the parallel shaft gear reducer 39 is configured to decelerate the rotational motion of the motor rotating shaft 25 in three stages.
 本実施形態では、平行軸歯車減速機39を構成する入力ギヤ30、各中間ギヤ30~34、および出力ギヤ35として、はすば歯車を用いている。はすば歯車は、同時に噛合う歯数が増え、歯当たりが分散されるので音が静かで、トルク変動が少ない点で有効である。歯車のかみあい率や限界の回転数などを考慮して、各ギヤのモジュールは1~3程度に設定するのが好ましい。 In this embodiment, helical gears are used as the input gear 30, the intermediate gears 30 to 34, and the output gear 35 that constitute the parallel shaft gear reducer 39. Helical gears are effective in that the number of teeth engaged simultaneously increases and the tooth contact is dispersed, so that the sound is quiet and torque fluctuation is small. It is preferable to set the modules of each gear to about 1 to 3 in consideration of the meshing ratio of gears and the limit number of rotations.
 車輪用軸受部Cは以下の構成の車輪用軸受57で構成されている。車輪用軸受57は外輪回転タイプであり、図示しないナックルに固定された車軸51と、車軸51の外周面に嵌合固定された二つの内輪52と、内輪52の外周側に配置されたハブ輪53と、内輪52の外周面に形成したインナレースとハブ輪53の内周面に形成したアウタレースとの間に配置された複数の玉54と、各玉54を保持する保持器55とを備えた複列アンギュラ玉軸受である。 The wheel bearing portion C is composed of a wheel bearing 57 having the following configuration. The wheel bearing 57 is an outer ring rotating type, and includes an axle 51 fixed to a knuckle (not shown), two inner rings 52 fitted and fixed to the outer peripheral surface of the axle 51, and a hub wheel disposed on the outer peripheral side of the inner ring 52. 53, a plurality of balls 54 disposed between an inner race formed on the outer peripheral surface of the inner ring 52 and an outer race formed on the inner peripheral surface of the hub ring 53, and a cage 55 that holds each ball 54. Double row angular contact ball bearings.
 車軸51の軸端に形成した雄ねじ部にナット56を螺合させて締め付けることにより、車輪用軸受57の分離が防止されると共に、軸受内部に予圧が付与される。また、ハブ輪53に設けたフランジ53aにホイールW(図1参照)が図示しないハブボルトを介して固定される。ハブ輪53は、平行軸歯車減速機39の中空の出力軸36の内周に配置され、当該出力軸36とスプライン嵌合によって連結される。これにより、減速機部Bの出力が後輪14に伝達される。本実施形態では、車輪用軸受57として外輪回転タイプを使用しているが、出力ギヤ35の位置を変更することで、車輪用軸受57として内輪回転タイプを使用することもできる。 The nut 56 is screwed into and tightened with the male thread portion formed at the shaft end of the axle 51, thereby preventing separation of the wheel bearing 57 and applying a preload inside the bearing. The wheel W (see FIG. 1) is fixed to a flange 53a provided on the hub wheel 53 via a hub bolt (not shown). The hub wheel 53 is disposed on the inner periphery of the hollow output shaft 36 of the parallel shaft gear reducer 39 and is connected to the output shaft 36 by spline fitting. Thereby, the output of the reduction gear part B is transmitted to the rear wheel 14. In the present embodiment, the outer ring rotation type is used as the wheel bearing 57, but the inner ring rotation type can also be used as the wheel bearing 57 by changing the position of the output gear 35.
 図1および図2に示すように、モータ26の中心Oa(モータ中心)は、車軸51の中心Ob(車軸中心)に対してモータ26の半径方向に偏心した位置にある。第1中間軸S1の中心O1(第1中間軸中心)および第2中間軸S2の中心O2(第2中間軸中心)は、モータ中心Oaと車軸中心Obとを結ぶ線に対して一方側の領域にある。第2中間軸中心O2は、モータ中心Oaと車軸中心Obの間に位置している。図1では、モータ中心Oaと車軸中心Obを結ぶ線が略水平となるような姿勢で、インホイールモータ駆動装置21をホイールW内に配置した場合を例示している。 As shown in FIGS. 1 and 2, the center Oa (motor center) of the motor 26 is at a position eccentric in the radial direction of the motor 26 with respect to the center Ob (axle center) of the axle 51. The center O1 (first intermediate shaft center) of the first intermediate shaft S1 and the center O2 (second intermediate shaft center) of the second intermediate shaft S2 are on one side with respect to a line connecting the motor center Oa and the axle center Ob. In the area. The second intermediate shaft center O2 is located between the motor center Oa and the axle center Ob. FIG. 1 illustrates a case where the in-wheel motor driving device 21 is disposed in the wheel W in such a posture that a line connecting the motor center Oa and the axle center Ob is substantially horizontal.
 インホイールモータ駆動装置21は、タイヤハウス15(図8参照)の内部に収められ、ばね下荷重となるため、小型軽量化が必須である。平行軸歯車減速機39を電動モータ26と組み合わせることで、低トルクかつ高回転型の小型電動モータ26を使用することが可能となる。例えば、減速比11の平行軸歯車減速機39を用いた場合、毎分一万数千回転程度の高速回転の電動モータ26を使用することにより電動モータ26を小型化することができる。これにより、コンパクトなインホイールモータ駆動装置21を実現することができ、ばね下重量を抑えて走行安定性およびNVH特性に優れた電気自動車11を得ることができる。 Since the in-wheel motor drive device 21 is housed in the tire house 15 (see FIG. 8) and becomes an unsprung load, a reduction in size and weight is essential. By combining the parallel shaft gear reducer 39 with the electric motor 26, it is possible to use a small electric motor 26 of low torque and high rotation type. For example, when the parallel shaft gear reducer 39 having a reduction ratio of 11 is used, the electric motor 26 can be reduced in size by using the electric motor 26 that rotates at a high speed of about ten thousand rotations per minute. Thereby, the compact in-wheel motor drive device 21 can be realized, and the electric vehicle 11 excellent in running stability and NVH characteristics can be obtained while suppressing the unsprung weight.
 次に、このインホイールモータ駆動装置21における潤滑機構を図1~図3に基づいて説明する。ここで、図3は、図1中のモータ中心Oaおよび第2中間軸中心O2を結んだQ-Q線に沿う断面図である。 Next, the lubrication mechanism in the in-wheel motor drive device 21 will be described with reference to FIGS. Here, FIG. 3 is a sectional view taken along the line QQ connecting the motor center Oa and the second intermediate shaft center O2 in FIG.
 潤滑機構は、モータ部Aおよび減速機部Bを冷却し、さらに潤滑を行うためにこれらに潤滑油を循環供給するものである。この実施形態の潤滑機構は、図1に示すように、回転ポンプ60と、ケーシング22内に配設された油路65,66,67とを主な構成としている。 The lubrication mechanism cools the motor part A and the speed reducer part B and circulates and supplies lubricating oil to them for further lubrication. As shown in FIG. 1, the lubrication mechanism of this embodiment mainly includes a rotary pump 60 and oil passages 65, 66, and 67 disposed in the casing 22.
 図1および図3に示すように、回転ポンプ60の吐出口63および吸入口64がケーシング22に設けられている。回転ポンプ60の吐出口63から延びる油路65は、モータ部Aまで延び、モータ部Aの内部でモータ26の外径端部付近を周回する周回油路67に接続されている。周回油路67には、その円周方向の複数箇所にモータ26のステータ23と対向する分配口68が設けられている。また、回転ポンプ60の吐出口63には、必要に応じて平行軸歯車減速機39の各所に潤滑油を供給する油路(図示省略)が接続される。 1 and 3, the discharge port 63 and the suction port 64 of the rotary pump 60 are provided in the casing 22. An oil passage 65 extending from the discharge port 63 of the rotary pump 60 extends to the motor portion A and is connected to a circulating oil passage 67 that circulates in the vicinity of the outer diameter end portion of the motor 26 inside the motor portion A. The circulation oil passage 67 is provided with distribution ports 68 facing the stator 23 of the motor 26 at a plurality of locations in the circumferential direction. An oil passage (not shown) for supplying lubricating oil to various parts of the parallel shaft gear reducer 39 is connected to the discharge port 63 of the rotary pump 60 as necessary.
 回転ポンプ60の吸入口64には、回転ポンプ60へ潤滑油を還流させるための還流油路66の一端が接続される。還流油路66の他端は、下方に向けて延びてケーシング22の底壁近傍でケーシング22内の空間に開口している。潤滑油は、図1に示すように、ケーシング22の下部に貯留され、その油面Xは出力ギヤ35の下側領域が潤滑油中に浸漬される位置にある。インホイールモータ駆動装置21の駆動中および停止中を問わず、還流油路66の他端は、ケーシング22の下部に貯留された潤滑油中にある。 The suction port 64 of the rotary pump 60 is connected to one end of a reflux oil passage 66 for returning the lubricating oil to the rotary pump 60. The other end of the reflux oil passage 66 extends downward and opens into a space in the casing 22 near the bottom wall of the casing 22. As shown in FIG. 1, the lubricating oil is stored in the lower part of the casing 22, and the oil level X is in a position where the lower region of the output gear 35 is immersed in the lubricating oil. Regardless of whether the in-wheel motor drive device 21 is driven or stopped, the other end of the reflux oil passage 66 is in the lubricating oil stored in the lower portion of the casing 22.
 図1および図2に示すように、回転ポンプ60は、複数の外歯を有するインナロータ61と、複数の内歯を有するアウタロータ62とを備えたサイクロイドポンプである。この回転ポンプ60は、押え板69によりケーシング22に組み込まれている。 As shown in FIGS. 1 and 2, the rotary pump 60 is a cycloid pump including an inner rotor 61 having a plurality of external teeth and an outer rotor 62 having a plurality of internal teeth. The rotary pump 60 is incorporated in the casing 22 by a presser plate 69.
 インナロータ61には第2中間軸S2がDカットや二面幅等の回り止めを介して取り付けられる。従って、第2中間軸S2が回転することでインナロータ61が回転駆動される。また、アウタロータ62は、インナロータ61の回転に伴って従動回転するように、ケーシング22に対して回転自在に支持されている。インナロータ61とアウタロータ62とは偏心した状態にあるため、インナロータ61およびアウタロータ62の回転中は、インナロータ61とアウタロータ62の間に形成されるポンプ室の容積が連続的に変化する。これにより、吸入口64から吸い込まれた潤滑油が吐出口63から油路65に圧送される。インナロータ61の歯数をnとすると、アウタロータ62の歯数は(n+1)となる。なお、この実施形態においては、n=7としている。 The second intermediate shaft S2 is attached to the inner rotor 61 via a detent such as a D-cut or a two-sided width. Accordingly, the inner rotor 61 is rotationally driven by the rotation of the second intermediate shaft S2. Further, the outer rotor 62 is rotatably supported with respect to the casing 22 so as to be driven and rotated as the inner rotor 61 rotates. Since the inner rotor 61 and the outer rotor 62 are in an eccentric state, the volume of the pump chamber formed between the inner rotor 61 and the outer rotor 62 is continuously changed while the inner rotor 61 and the outer rotor 62 are rotating. As a result, the lubricating oil sucked from the suction port 64 is pumped from the discharge port 63 to the oil passage 65. When the number of teeth of the inner rotor 61 is n, the number of teeth of the outer rotor 62 is (n + 1). In this embodiment, n = 7.
 回転ポンプ60を駆動することにより、ケーシング22底部の油溜まりから循環油路66を介して吸い上げられた潤滑油が回転ポンプ60の吐出口63から圧送され、油路65,67を経由して分配口68から吐出される。これにより、モータ26の冷却が行われる。また、平行軸歯車減速機39内の各所には、ケーシング22底部の油溜まり中の潤滑油が出力ギヤ35の回転によって跳ね掛けられ、各所で冷却および潤滑が行われる。併せて、図示しない油路を介して平行軸歯車減速機39の各所に吐出口63から潤滑油が供給され、減速機部Bの冷却および潤滑が行われる。モータ回転軸25、第1中間軸S1、および第2中間軸S2に、軸心方向の油路と、この軸心方向の油路から歯面同士の噛み合い部に至る半径方向の油路とを形成することで、遠心力および回転ポンプ60の圧送力で歯面同士の噛み合い部に潤滑油を供給する、いわゆる軸心給油構造を採用することもできる。 By driving the rotary pump 60, the lubricating oil sucked up from the oil reservoir at the bottom of the casing 22 through the circulating oil passage 66 is pumped from the discharge port 63 of the rotary pump 60 and distributed via the oil passages 65 and 67. It is discharged from the mouth 68. Thereby, the motor 26 is cooled. Further, the lubricating oil in the oil sump at the bottom of the casing 22 is splashed by the rotation of the output gear 35 at various locations in the parallel shaft gear reducer 39, and cooling and lubrication are performed at various locations. At the same time, lubricating oil is supplied from the discharge port 63 to various portions of the parallel shaft gear reducer 39 through an oil passage (not shown), and the reducer B is cooled and lubricated. The motor rotation shaft 25, the first intermediate shaft S1, and the second intermediate shaft S2 are provided with an axial oil passage and a radial oil passage extending from the axial oil passage to the meshing portion of the tooth surfaces. By forming, it is also possible to employ a so-called shaft center oil supply structure in which the lubricating oil is supplied to the meshing portion between the tooth surfaces by the centrifugal force and the pumping force of the rotary pump 60.
 モータ部Aと減速機部Bの冷却および潤滑を行った潤滑油は、ケーシング22の内壁面を伝って重力により下部へ移動し、ケーシング22の底部に溜まる。この潤滑油が油路66から吸い上げられて回転ポンプ60の吸入口64へ還流することで、モータ部Aや減速機部Bに潤滑油を循環供給することが可能となる。 The lubricating oil that has cooled and lubricated the motor part A and the speed reducer part B travels along the inner wall surface of the casing 22 by gravity and accumulates at the bottom of the casing 22. The lubricating oil is sucked up from the oil passage 66 and returned to the suction port 64 of the rotary pump 60, whereby the lubricating oil can be circulated and supplied to the motor part A and the speed reducer part B.
 この実施形態におけるインホイールモータ駆動装置21の全体構成は、前述のとおりであるが、その特徴的な構成を以下に詳述する。 The overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
 この実施形態では、減速機部Bの第2中間軸S2に回転ポンプ60を結合し、第2中間軸S2の回転で回転ポンプ60を駆動している。そのため、低い回転数で回転ポンプ60を駆動させて、回転ポンプ60の静粛性や耐久性を高めることができる。 In this embodiment, the rotary pump 60 is coupled to the second intermediate shaft S2 of the speed reducer part B, and the rotary pump 60 is driven by the rotation of the second intermediate shaft S2. Therefore, the rotary pump 60 can be driven at a low rotational speed, and the silence and durability of the rotary pump 60 can be improved.
 また、この実施形態では、第2中間軸S2に結合した回転ポンプ60をモータ部Aと径方向でオーバーラップさせた状態でモータ部Aの外径側に配置している。具体的には、回転ポンプ60のインナロータ61およびアウトロータ62がモータ26(例えばステータ23)の軸方向一部領域の外径側に隣接して配置されている。そのため、回転ポンプ60の軸方向寸法が大きくなっても、モータ部Aの軸方向寸法が増大することはない。従って、インホイールモータ駆動装置21の軸方向寸法を増大させることなく、回転ポンプ60の容量アップを図ることが可能となる。なお、回転ポンプ60は、第2中間軸S2に設けられる第3中間ギヤ33の歯面および第4中間ギヤ34の歯面とは径方向でオーバーラップしておらず、これらの歯面から軸方向に離間した位置にある。この点で、特許文献1に記載のインホイールモータ駆動装置とは構成を異にする。 Further, in this embodiment, the rotary pump 60 coupled to the second intermediate shaft S2 is arranged on the outer diameter side of the motor part A in a state of overlapping with the motor part A in the radial direction. Specifically, the inner rotor 61 and the out rotor 62 of the rotary pump 60 are arranged adjacent to the outer diameter side of a partial region in the axial direction of the motor 26 (for example, the stator 23). Therefore, even if the axial dimension of the rotary pump 60 is increased, the axial dimension of the motor part A does not increase. Therefore, the capacity of the rotary pump 60 can be increased without increasing the axial dimension of the in-wheel motor drive device 21. The rotary pump 60 does not overlap the tooth surfaces of the third intermediate gear 33 and the tooth surfaces of the fourth intermediate gear 34 provided on the second intermediate shaft S2 in the radial direction. It is in a position separated in the direction. In this respect, the configuration is different from that of the in-wheel motor driving device described in Patent Document 1.
 このようにインホイールモータ駆動装置21の軸方向寸法が維持されることで、サスペンションアーム等を含む懸架装置の設計変更が不要となる。従って、インホイールモータ駆動装置21の電気自動車11への搭載に際し、既存の懸架装置を活用することができ、開発コストを低廉化することが可能となる。本実施形態の構成では、ホイールW内のスペースが回転ポンプ60の容積分だけ減少することになるが、モータ部A全体の軸方向寸法が増すことに比べれば、その影響は軽微であり、懸架装置の設計に悪影響を及ぼすことがない。 Thus, the axial dimension of the in-wheel motor drive device 21 is maintained, so that it is not necessary to change the design of the suspension device including the suspension arm and the like. Therefore, when the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the existing suspension device can be used, and the development cost can be reduced. In the configuration of the present embodiment, the space in the wheel W is reduced by the volume of the rotary pump 60. However, the effect is slight compared with an increase in the axial dimension of the entire motor unit A, and the suspension is suspended. Does not adversely affect device design.
 特に本実施形態では、平行軸歯車減速機39の入力軸30aと出力軸36の間に二つの中間軸S1,S2を配置し、二つの中間軸S1,S2のうち、第2中間軸S2に回転ポンプ60を結合している。トルク伝達方向の下流側に位置する第2中間軸S2は、上流側の第1中間軸S1よりもモータ部Aからより離れた位置に配置し易い。従って、モータ部Aの外径寸法が大きい場合でも、上記のように回転ポンプ60をモータ部Aの外径側に配置することが容易となる。回転ポンプ60をモータ部Aの外径側に配置できるのであれば、第1中間軸S1に回転ポンプ60を結合しても構わない。 In particular, in the present embodiment, two intermediate shafts S1 and S2 are disposed between the input shaft 30a and the output shaft 36 of the parallel shaft gear reducer 39, and the second intermediate shaft S2 is selected from the two intermediate shafts S1 and S2. A rotary pump 60 is coupled. The second intermediate shaft S2 positioned on the downstream side in the torque transmission direction is easily disposed at a position further away from the motor unit A than the first intermediate shaft S1 on the upstream side. Therefore, even when the outer diameter of the motor part A is large, it becomes easy to arrange the rotary pump 60 on the outer diameter side of the motor part A as described above. If the rotary pump 60 can be arranged on the outer diameter side of the motor part A, the rotary pump 60 may be coupled to the first intermediate shaft S1.
 平行軸歯車減速機39には三つ以上の中間軸を配置することもできる。その場合でも、トルク伝達方向の最上流側の中間軸を除く何れかの中間軸に回転ポンプ60を結合するのが好ましい。もちろん、回転ポンプ60をモータ部Aの外径側に配置することが可能であれば、平行軸歯車減速機39の中間軸の数を一つとし、当該中間軸に回転ポンプ60を結合することもできる。 The parallel shaft gear reducer 39 can be provided with three or more intermediate shafts. Even in that case, it is preferable to connect the rotary pump 60 to any intermediate shaft except the intermediate shaft on the most upstream side in the torque transmission direction. Of course, if it is possible to arrange the rotary pump 60 on the outer diameter side of the motor part A, the number of the intermediate shafts of the parallel shaft gear reducer 39 is one, and the rotary pump 60 is coupled to the intermediate shaft. You can also.
 次に本発明の他の実施形態を図4~図6に基づいて説明する。図4は、後輪14のホイールWの内側空間に配置したインホイールモータ駆動装置21をインボード側から見た時の概略構成を示す正面図である。また、図5は、図4中のモータ中心Oa、二つの中間軸中心O1,O2、および車軸中心Obを結んだR-R線に沿う断面図であり、図6は、図4中のモータ中心Oaおよび第2中間軸中心O2を結んだS-S線に沿う断面図である。 Next, another embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a front view showing a schematic configuration when the in-wheel motor drive device 21 disposed in the inner space of the wheel W of the rear wheel 14 is viewed from the inboard side. 5 is a cross-sectional view taken along the line RR connecting the motor center Oa, the two intermediate shaft centers O1, O2 and the axle center Ob in FIG. 4, and FIG. 6 is a motor view in FIG. FIG. 6 is a cross-sectional view taken along line SS connecting the center Oa and the second intermediate axis center O2.
 図1~図3に示す実施形態では、平行軸歯車減速機39で3段階の減速を行っているため、入力軸30aと出力軸36の間の減速比が大きくなる傾向にある。入力軸30aと出力軸36の間の減速比が大きすぎる場合の対策として、図4~図6に示す実施形態では、第2中間軸S2の第3中間ギヤ33および第4中間ギヤ34(図1および図2参照)を省略すると共に、第2中間軸S2にアイドラギヤ37を設け、このアイドルギヤ37を第2中間ギヤ32および出力ギヤ38のそれぞれに噛合させている。図1~図3に示す実施形態と同様に、回転ポンプ60は第2中間軸S2に結合されている。 In the embodiment shown in FIGS. 1 to 3, since the parallel shaft gear reducer 39 performs three-stage deceleration, the reduction ratio between the input shaft 30a and the output shaft 36 tends to increase. As a countermeasure when the reduction ratio between the input shaft 30a and the output shaft 36 is too large, in the embodiment shown in FIGS. 4 to 6, the third intermediate gear 33 and the fourth intermediate gear 34 (see FIG. 1 and FIG. 2) is omitted, and an idler gear 37 is provided on the second intermediate shaft S2, and the idle gear 37 is engaged with the second intermediate gear 32 and the output gear 38, respectively. Similar to the embodiment shown in FIGS. 1 to 3, the rotary pump 60 is coupled to the second intermediate shaft S2.
 この場合、出力ギヤ38は出力軸36の外周面に直接設けることができる。出力軸36の内周に車輪用軸受部Cのハブ輪53を配置し、出力軸36とハブ輪53をスプライン嵌合によって連結することにより、出力軸36の回転でハブ輪53を回転駆動することができる。車輪用軸受部Cとして、内輪回転タイプの車輪用軸受を使用しても構わない。以上に述べた構成および機能以外を除き、図4~図6に示す実施形態の構成および機能は、図1~図3の実施形態と共通するため、重複説明を省略する。 In this case, the output gear 38 can be provided directly on the outer peripheral surface of the output shaft 36. The hub wheel 53 of the wheel bearing portion C is disposed on the inner periphery of the output shaft 36, and the output shaft 36 and the hub wheel 53 are connected by spline fitting, so that the hub wheel 53 is rotationally driven by the rotation of the output shaft 36. be able to. As the wheel bearing portion C, an inner ring rotation type wheel bearing may be used. Except for the configuration and function described above, the configuration and function of the embodiment shown in FIGS. 4 to 6 are the same as those of the embodiment of FIGS.
 このように平行軸歯車減速機39の中間軸に設けるギヤをアイドルギヤ37で構成した場合、第1中間軸S1と車軸51との間では減速が行われない。そのため、入力軸30aと出力軸36の間の減速比を小さくすることができ、これにより平行軸歯車減速機39の減速比の設計自由度を高めることが可能となる。その一方で、図1~図3に示す実施形態と同様に、第2中間軸S2は第1中間軸S1よりもモータ部Aからより離れた位置に配置できるので、第2中間軸S2と結合した回転ポンプ60をモータ部Aの外径側に配置することが容易となる。従って、図1~図3に示す実施形態と同様に、インホイールモータ駆動装置21の軸方向寸法を増大させることなく、回転ポンプ60の容量を大型化することが可能となる。 Thus, when the gear provided on the intermediate shaft of the parallel shaft gear reducer 39 is constituted by the idle gear 37, no deceleration is performed between the first intermediate shaft S1 and the axle 51. Therefore, the reduction ratio between the input shaft 30a and the output shaft 36 can be reduced, and thereby the degree of freedom in designing the reduction ratio of the parallel shaft gear reducer 39 can be increased. On the other hand, as in the embodiment shown in FIGS. 1 to 3, the second intermediate shaft S2 can be arranged at a position farther from the motor part A than the first intermediate shaft S1, so that it is coupled to the second intermediate shaft S2. It becomes easy to arrange the rotary pump 60 on the outer diameter side of the motor part A. Accordingly, similarly to the embodiment shown in FIGS. 1 to 3, the capacity of the rotary pump 60 can be increased without increasing the axial dimension of the in-wheel motor drive device 21.
 以上の実施形態の説明では、モータ部Aとしてラジアルギャップ型の電動モータ26を例示したが、任意の構成のモータを適用可能である。例えば、ケーシングに固定されたステータと、ステータの軸方向内側に隙間をもって対向するように配置されたロータとを備えるアキシャルギャップ型の電動モータであってもよい。また、この実施形態では、回転ポンプ60としてサイクロイドポンプを例示したが、これに限定されることなく、減速機部Bの第1中間軸S1あるいは第2中間軸S2の回転を利用して駆動される、あらゆる回転型ポンプを採用することができる。 In the above description of the embodiment, the radial gap type electric motor 26 is exemplified as the motor portion A, but a motor having an arbitrary configuration can be applied. For example, an axial gap type electric motor including a stator fixed to a casing and a rotor arranged so as to face the inner side in the axial direction of the stator with a gap may be used. In this embodiment, the cycloid pump is exemplified as the rotary pump 60. However, the rotary pump 60 is not limited to this, and is driven by using the rotation of the first intermediate shaft S1 or the second intermediate shaft S2 of the speed reducer unit B. Any rotary pump can be used.
 また、以上の説明では、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を後輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、後輪14側からの動力を減速機部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させることや、車両に備えられた他の電動機器などの作動に用いてもよい。 In the above description, the case where the motor unit A is supplied with electric power to drive the motor unit and the power from the motor unit A is transmitted to the rear wheel 14 is shown. On the contrary, the vehicle decelerates. When driving down or going down a hill, the power from the rear wheel 14 side is converted into high-rotation low-torque rotation by the reducer B and transmitted to the motor A, and the motor A generates power. Good. Furthermore, the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
 この実施形態では、図7および図8に示すように、後輪14を駆動輪とした電気自動車11を例示したが、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等も含むものである。 In this embodiment, as shown in FIGS. 7 and 8, the electric vehicle 11 having the rear wheel 14 as a drive wheel is illustrated, but the front wheel 13 may be a drive wheel or a four-wheel drive vehicle. In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.
 21 インホイールモータ駆動装置
 25 モータ回転軸
 30 入力ギヤ
 30a 入力軸
 31~34 中間ギヤ
 35 出力ギヤ
 36 出力軸
 37 アイドラギヤ
 38 出力ギヤ
 39 平行軸歯車減速機
 60 回転ポンプ
  A モータ部
  B 減速機部
  C 車輪用軸受部
  S1 第1中間軸
  S2 第2中間軸
  W ホイール
DESCRIPTION OF SYMBOLS 21 In-wheel motor drive device 25 Motor rotating shaft 30 Input gear 30a Input shaft 31-34 Intermediate gear 35 Output gear 36 Output shaft 37 Idler gear 38 Output gear 39 Parallel shaft gear reducer 60 Rotary pump A Motor part B Reducer part C Wheel Bearing part S1 1st intermediate shaft S2 2nd intermediate shaft W Wheel

Claims (4)

  1.   モータ部と、複数の歯車からなる平行軸歯車減速機で構成された減速機部と、車輪用軸受部と、潤滑油を圧送する回転ポンプとを有するインホイールモータ駆動装置において、
      減速機部の入力軸と出力軸の間に、中間ギヤを有する中間軸を配置し、該中間軸で前記回転ポンプを駆動し、回転ポンプを前記モータ部と径方向でオーバーラップさせて前記モータ部の外径側に配置したことを特徴とするインホイールモータ駆動装置。
    In an in-wheel motor drive device having a motor unit, a speed reducer unit composed of a parallel shaft gear reducer composed of a plurality of gears, a wheel bearing unit, and a rotary pump that pumps lubricating oil,
    An intermediate shaft having an intermediate gear is disposed between an input shaft and an output shaft of the reduction gear unit, the rotary pump is driven by the intermediate shaft, and the rotary pump is overlapped in the radial direction with the motor unit to thereby form the motor. An in-wheel motor drive device characterized by being arranged on the outer diameter side of the portion.
  2.   前記中間ギヤの歯面と回転ポンプを軸方向に離間させて配置した請求項1記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein the tooth surface of the intermediate gear and the rotary pump are spaced apart in the axial direction.
  3.   前記平行軸歯車減速機に複数の中間軸を設け、前記回転ポンプを、複数の中間軸のうち、トルク伝達方向の最上流側の中間軸を除く中間軸で駆動する請求項1又は2に記載のインホイールモータ駆動装置。 The parallel shaft gear reducer is provided with a plurality of intermediate shafts, and the rotary pump is driven by an intermediate shaft excluding the intermediate shaft on the most upstream side in the torque transmission direction among the plurality of intermediate shafts. In-wheel motor drive device.
  4.   前記回転ポンプを駆動する中間軸に設けた中間ギヤを、アイドラギヤで構成した請求項1~3何れか1項に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 3, wherein an intermediate gear provided on an intermediate shaft for driving the rotary pump is an idler gear.
PCT/JP2016/079335 2016-03-10 2016-10-03 In-wheel motor drive device WO2017154252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016046940A JP6843511B2 (en) 2016-03-10 2016-03-10 In-wheel motor drive
JP2016-046940 2016-03-10

Publications (1)

Publication Number Publication Date
WO2017154252A1 true WO2017154252A1 (en) 2017-09-14

Family

ID=59790217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079335 WO2017154252A1 (en) 2016-03-10 2016-10-03 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP6843511B2 (en)
WO (1) WO2017154252A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367357B2 (en) * 2019-07-03 2023-10-24 株式会社アイシン In-wheel motor type vehicle drive system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319111A (en) * 1992-05-21 1993-12-03 Nissan Motor Co Ltd Driving unit for industrial vehicle
JP2009303466A (en) * 2008-06-17 2009-12-24 Toyota Motor Corp Cooling mechanism
JP2011148470A (en) * 2010-01-25 2011-08-04 Toyota Motor Corp Wheel independent driving unit
US20140132058A1 (en) * 2012-11-12 2014-05-15 Hyundai Mobis Co., Ltd. In-wheel motor system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501911B2 (en) * 2006-08-11 2010-07-14 トヨタ自動車株式会社 In-wheel motor structure
JP2010111362A (en) * 2008-11-10 2010-05-20 Toyota Motor Corp In-wheel motor cooling structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319111A (en) * 1992-05-21 1993-12-03 Nissan Motor Co Ltd Driving unit for industrial vehicle
JP2009303466A (en) * 2008-06-17 2009-12-24 Toyota Motor Corp Cooling mechanism
JP2011148470A (en) * 2010-01-25 2011-08-04 Toyota Motor Corp Wheel independent driving unit
US20140132058A1 (en) * 2012-11-12 2014-05-15 Hyundai Mobis Co., Ltd. In-wheel motor system

Also Published As

Publication number Publication date
JP6843511B2 (en) 2021-03-17
JP2017159817A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP5778433B2 (en) In-wheel motor drive device
JP5066925B2 (en) Wheel drive device
JP2016181954A (en) In-wheel motor drive unit
JP2011079484A (en) In-wheel motor driving device
JP2017065671A (en) In-wheel motor drive device
WO2015141387A1 (en) In-wheel motor drive device
JP5687839B2 (en) In-wheel motor drive device
JP2015137733A (en) In-wheel motor drive unit
JP2016070358A (en) Lubrication device of in-wheel motor drive unit
JP6781608B2 (en) In-wheel motor drive
WO2012111411A1 (en) Device for driving in-wheel motor
WO2016047442A1 (en) In-wheel motor drive apparatus
JP2017093002A (en) Motor drive unit
WO2015016058A1 (en) Lubrication device of in-wheel motor drive device
WO2017154252A1 (en) In-wheel motor drive device
JP2017159883A (en) In-wheel motor driving device
WO2016174984A1 (en) In-wheel motor drive device
JP2016160980A (en) Vehicular motor drive device
JP6333579B2 (en) In-wheel motor drive device
JP2017024655A (en) In-wheel motor drive device
JP2017124749A (en) In-wheel motor drive device
WO2019172255A1 (en) Vehicle driving device
JP2016151321A (en) In-wheel motor drive device
WO2018083810A1 (en) In-wheel motor drive device
JP2015175410A (en) In-wheel motor driving device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16893576

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16893576

Country of ref document: EP

Kind code of ref document: A1