WO2016047442A1 - In-wheel motor drive apparatus - Google Patents

In-wheel motor drive apparatus Download PDF

Info

Publication number
WO2016047442A1
WO2016047442A1 PCT/JP2015/075587 JP2015075587W WO2016047442A1 WO 2016047442 A1 WO2016047442 A1 WO 2016047442A1 JP 2015075587 W JP2015075587 W JP 2015075587W WO 2016047442 A1 WO2016047442 A1 WO 2016047442A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed reducer
wheel
input shaft
motor drive
drive device
Prior art date
Application number
PCT/JP2015/075587
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 稔
朋久 魚住
Original Assignee
Ntn株式会社
鈴木 稔
朋久 魚住
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 鈴木 稔, 朋久 魚住 filed Critical Ntn株式会社
Publication of WO2016047442A1 publication Critical patent/WO2016047442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
  • a conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example.
  • the in-wheel motor driving device disclosed in Patent Document 1 includes a motor unit that generates a driving force inside a casing that is attached to a vehicle body via a suspension device (suspension), and a wheel bearing unit that is connected to a wheel. And a speed reducer unit that is disposed between the motor unit and the wheel bearing unit and decelerates the rotation of the motor unit and transmits it to the wheel bearing unit.
  • the speed reducer part employing this cycloid speed reducer has a pair of eccentric parts, and is rotated via a rolling bearing on the outer periphery of the speed reducer input shaft rotated by the motor part and the eccentric part of the speed reducer input shaft.
  • a pair of curved plates held freely, a plurality of outer pins that engage with the outer peripheral surface of the curved plate and cause the curved plate to rotate, and an inner peripheral surface of the through hole of the curved plate
  • the main part is composed of a plurality of inner pins that transmit the rotation of the plate to the output shaft of the reduction gear.
  • the reducer input shaft is driven at high speed by the motor part, and a large load (radial load or moment load) is repeatedly applied to the rolling bearing through a curved plate or the like. Be loaded. Therefore, as the rolling bearing, a cylindrical roller bearing that can cope with high-speed rotation and is excellent in load carrying capacity is adopted.
  • the applicant of the present application is particularly interested in downsizing the components of the speed reducer, and in particular, a rolling bearing (cylindrical roller bearing) that holds a curved plate rotatably. Focused on. That is, it is preferable to reduce the size of the cylindrical roller bearing in order to suppress the amount of heat generated inside the bearing accompanying the high speed rotation of the reduction gear input shaft and to prevent the occurrence of seizure as much as possible.
  • the curved plate is provided with an axial backlash of about 1.5 mm. This axial backlash may cause misalignment such as tilt in the curved plate.
  • the cylindrical roller bearing is in a state where a radial load or a moment load is applied from the curved plate and an excessive stress is easily generated. Under such circumstances, a local excessive load is applied to the end of the cylindrical roller bearing. As a result, the bearing life is reduced, and sound and vibration due to the contact between the curved plate and the cylindrical roller bearing are generated.
  • the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to reduce the vibration and noise generated in the speed reducer, and to drive an in-wheel motor excellent in quietness and durability. To provide an apparatus.
  • the present invention is an in-wheel motor drive device comprising a motor part, a reduction gear part and a wheel bearing part, and the reduction gear part has an eccentric part.
  • a reduction gear input shaft that is rotationally driven by the motor unit, and a revolving motion centered on the rotation shaft center with the rotation of the reduction gear input shaft that is rotatably held on the outer periphery of the eccentric portion via a rolling bearing.
  • the roller that constitutes the rolling bearing is crowned on the outer peripheral surface of the roller plate. It is characterized by.
  • the roller in the present invention is crowned with a radial displacement of 2 to 15 ⁇ m at a measurement point located 1.5 mm inward in the axial direction from the end face. In this way, it is possible to realize a roller having an optimum crowning. As a result, it is possible to reliably suppress the occurrence of a local excessive load based on the misalignment of the curved plate at the roller end portion. In addition, sound and vibration due to contact with the curved plate can be reliably suppressed, and the bearing life can be improved.
  • a cylindrical roller bearing composed of a plurality of cylindrical rollers and a cage that holds the cylindrical rollers is suitable.
  • a local excessive load at the roller end portion is generated even in a situation where a radial load or a moment load is applied and an excessive stress is likely to occur due to misalignment such as the inclination of the curved plate. It becomes difficult. Further, it is possible to suppress the sound and vibration caused by the contact with the curved plate, and to prevent the roller from being damaged in advance and to ensure the bearing life. As a result, it is possible to reduce the vibration and noise generated in the speed reducer, and to realize an in-wheel motor drive device that is excellent in silence and durability.
  • FIG. 1 is a longitudinal sectional view showing an overall configuration of an in-wheel motor drive device in an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. It is a principal part expanded sectional view which shows the reduction gear part of FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG. It is a cross-sectional view which shows the rotary pump of FIG. It is a principal part expanded sectional view which shows the cylindrical roller bearing which hold
  • FIG. 9 is a rear sectional view showing the electric vehicle of FIG. 8.
  • FIG. 8 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted
  • FIG. 9 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear.
  • the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14.
  • the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms.
  • the suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
  • the electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. .
  • the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
  • the in-wheel motor drive device 21 of this embodiment has the following structure. 1 is a longitudinal sectional view showing a schematic configuration of an in-wheel motor drive device 21, FIG. 2 is a sectional view taken along line PP in FIG. 1, FIG. 3 is an enlarged sectional view showing a reduction gear section B, and FIG. FIG. 5 is a cross-sectional view showing the rotary pump 51. FIG. 5 is an explanatory view showing the load acting on the plate 26a. Before describing the characteristic configuration of this embodiment, the overall configuration of the in-wheel motor drive device 21 will be described.
  • the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and an output from the speed reducer part B. And a wheel bearing portion C that transmits to a rear wheel 14 (see FIGS. 8 and 9) as a drive wheel.
  • the motor part A and the speed reducer part B are accommodated in the casing 22 and attached to the wheel housing 12a (see FIG. 9) of the electric vehicle 11.
  • the casing 22 is a divided structure including a motor housing in which the motor part A is accommodated and a speed reducer housing in which the speed reducer part B is accommodated, and is fastened and integrated by bolts.
  • the motor portion A is a stator 23a fixed to the casing 22, a rotor 23b disposed to face the inner side in the radial direction of the stator 23a with a gap, and a radial inner side of the rotor 23b so as to rotate integrally with the rotor 23b.
  • a radial gap motor including a motor rotating shaft 24.
  • the stator 23a is configured by winding a coil 23d around the outer periphery of a magnetic core 23c, and the rotor 23b is configured by a permanent magnet or a magnetic material.
  • the rotor 23b of the motor rotating shaft 24 is held by a holder portion 24d that extends integrally outward in the radial direction.
  • the holder portion 24d has a configuration in which a concave groove in which the rotor 23b is fitted and fixed is formed in an annular shape.
  • the motor rotating shaft 24 is rotatable with respect to the casing 22 by one end in the axial direction (right side in FIG. 1) on the rolling bearing 36a and the other end in the axial direction (left side in FIG. 1) by the rolling bearing 36b. It is supported by.
  • the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) as a rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) as a rolling bearing 37b. Is supported so as to be freely rotatable.
  • the reduction gear input shaft 25 has eccentric portions 25 a and 25 b in the reduction gear portion B.
  • the two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion.
  • the reduction gear input shaft 25 and the above-described motor rotation shaft 24 are connected by spline fitting, and the driving force of the motor part A is transmitted to the reduction gear part B.
  • the reducer portion B includes curved plates 26a and 26b that are rotatably held by the eccentric portions 25a and 25b of the reducer input shaft 25, and a plurality of outer pins 27 that engage with the outer peripheral portions of the curved plates 26a and 26b. And a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a and 26b to the speed reducer output shaft 28, and a counterweight 29 provided on the speed reducer input shaft 25 adjacent to the eccentric portions 25a and 25b.
  • the reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b.
  • a plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28.
  • the shaft portion 28 b is connected to a hub wheel 32 as an inner member of the wheel bearing portion C so as to be able to transmit torque by spline fitting, and transmits the output of the speed reducer portion B to the rear wheel 14.
  • the reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46.
  • the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plates 26a, 26b, and receive the inner pin 31 described above.
  • the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b.
  • the curved plates 26a and 26b are rotatably supported with respect to the eccentric portions 25a and 25b by a cylindrical roller bearing 41 which is a rolling bearing.
  • the outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25.
  • the outer pin 27 is rotatably held by the outer pin housing 60 by a needle roller bearing 27a. Thereby, the contact resistance between the curved plates 26a and 26b can be reduced.
  • the outer pin housing 60 is prevented from rotating with respect to the casing 22 and is supported in a floating state.
  • the counterweight 29 has a through hole that engages with the speed reducer input shaft 25 to counteract the unbalanced inertia couple generated by the rotation of the curved plates 26a and 26b.
  • the eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at positions adjacent to the eccentric portions 25a and 25b.
  • the motion conversion mechanism includes a plurality of inner pins 31 that are held by the speed reducer output shaft 28 and extend in the axial direction, and through holes 30a provided in the curved plates 26a and 26b.
  • the inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and one axial end thereof is fixed to the flange 28 a of the reduction gear output shaft 28. Yes. Further, in order to reduce the frictional resistance with the curved plates 26a, 26b, needle roller bearings 31a are provided at positions where they contact the inner wall surfaces of the through holes 30a of the curved plates 26a, 26b.
  • the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is set larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a). ing.
  • the stabilizer 31b is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG.
  • the stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner peripheral surface of the annular portion 31c.
  • the ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c. Since the load applied to some of the inner pins 31 from the curved plates 26a, 26b is supported by all the inner pins 31 via the flanges 28a and the stabilizers 31b, the stress acting on the inner pins 31 is reduced, and the durability is improved. Can be improved.
  • Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25.
  • the outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated concave portions 26c that are depressed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 26c are arranged in the circumferential direction around the axis O.
  • the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2.
  • An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a.
  • the reduction gear output shaft 28 is rotated.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. .
  • the resultant force Fs of the plurality of loads Fi and Fj is applied to the speed reducer input shaft 25.
  • the direction of the resultant force Fs changes depending on geometrical conditions such as the corrugated shape of the curved plate 26a, the number of concave portions 26c, and the influence of centrifugal force.
  • the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. It fluctuates with.
  • the directions and magnitudes of the loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25.
  • the resultant force Fs acting on the speed reducer input shaft 25 is also different from the direction of the load.
  • the size varies.
  • the wheel bearing 33 of the wheel bearing portion C is fitted to a hub wheel 32 in which an inner raceway surface 33 f is directly formed on the outer peripheral surface and a small diameter step portion 32 a on the outer peripheral surface of the hub wheel 32.
  • the inner ring 33a having the inner raceway surface 33g formed on the outer peripheral surface constitutes an inner member, fitted and fixed to the inner peripheral surface of the casing 22, and outer raceway surfaces 33h and 33i are formed on the inner peripheral surface.
  • the rear wheel 14 (see FIGS. 8 and 9) is connected and fixed to the hub wheel 32 of the wheel bearing 33 by bolts 34.
  • This lubricating mechanism supplies lubricating oil to the motor part A and cools the reducing part B to cool the motor part A.
  • the lubrication mechanism includes a rotary pump 51, oil passages 22a, 24a, 24b and an oil hole 24c provided in the motor part A, an oil passage 25c provided in the reduction gear part B, and
  • the oil holes 25d and 25e and the oil tank 22d disposed below the casing 22 are mainly configured.
  • the oil passage 22a provided in the casing 22 extends radially outward from the rotary pump 51, bends in the axial direction, further bends, extends radially inward, and is connected to the oil passage 24a.
  • the oil passage 24a extends along the axial direction inside the motor rotating shaft 24 and is connected to the oil passage 25c.
  • the oil passage 24b of the motor rotating shaft 24 communicates with the oil passage 24a extending along the axial direction, and extends toward the holder portion 24d located on the radially outer side to communicate with the oil hole 24c.
  • the oil hole 24c is formed in the end face of the holder part 24d on the inboard side and the outboard side, and opens into the motor part A.
  • the oil passage 25c extends along the axial direction inside the reduction gear input shaft 25.
  • the oil hole 25d communicates with an oil passage 25c extending along the axial direction, extends in the radial direction on the outer peripheral surface of the speed reducer input shaft 25, and opens inside the speed reducer portion B.
  • the oil hole 25e communicates with an oil passage 25c extending along the axial direction, and opens from the shaft end of the speed reducer input shaft 25 to the inside of the speed reducer part B.
  • an oil passage 22b communicating with the inside of the motor part A and the inside of the speed reducer part B is provided, and the bottom part of the casing 22 at the position of the motor part A Is provided with an oil passage 22f for discharging the lubricating oil inside the motor part A to the oil tank 22d.
  • an oil passage 22 e for returning the lubricating oil from the oil tank 22 d to the rotary pump 51 is provided in the casing 22.
  • the rotary pump 51 for forcibly circulating the lubricating oil is provided between the oil passage 22e and the oil passage 22a of the casing 22.
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the speed reducer output shaft 28 (see FIG. 1), an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber. 54, a cycloid pump including a suction port 55 communicating with the oil passage 22e and a discharge port 56 communicating with the oil passage 22a.
  • the inner rotor 52 has a tooth profile composed of a cycloid curve on the outer peripheral surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve.
  • the inner rotor 52 is fitted to the outer peripheral surface of a cylindrical portion 31d (see FIGS. 1 and 3) provided in the stabilizer 31b and rotates integrally with the speed reducer output shaft 28.
  • the outer rotor 53 has a tooth profile formed of a cycloid curve on the inner peripheral surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve.
  • the outer rotor 53 is rotatably supported by the casing 22.
  • Inner rotor 52 rotates around a rotation center c 1
  • the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the oil passage 22a.
  • the white arrow given in the lubrication mechanism indicates the flow of the lubricating oil.
  • the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a and 24a, and a part of the lubricating oil passes through the oil passage 24b by the centrifugal force and the pump pressure accompanying the rotation of the motor rotating shaft 24. 23b is cooled.
  • lubricating oil is discharged from the oil holes 24c of the holder portion 24d to cool the stator 23a. In this way, the motor part A is cooled.
  • the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a, 24a, 25c, and a part thereof is caused by the centrifugal force and the pump pressure accompanying the rotation of the speed reducer input shaft 25.
  • the oil is discharged from the oil holes 25d and 25e to the speed reducer part B.
  • the lubricating oil discharged from the oil hole 25d is supplied into the bearing from an oil hole 42c (see FIG. 3) provided in the inner ring 42 of the cylindrical roller bearing 41 that supports the curved plates 26a and 26b.
  • Lubricating oil that has cooled the motor part A and lubricated and cooled the speed reducer part B travels along the inner wall surface of the casing 22 and moves downward by gravity.
  • the lubricating oil that has moved to the lower part of the speed reducer part B moves from the oil passage 22b to the motor part A.
  • the lubricating oil that has moved to the lower part of the motor part A is discharged from the oil passage 22f together with the lubricating oil from the speed reducer part B, and is temporarily stored in the oil tank 22d.
  • the oil tank 22d is provided, even if lubricating oil that cannot be completely discharged by the rotary pump 51 is temporarily generated, it can be stored in the oil tank 22d. As a result, an increase in torque loss of the reduction gear unit B can be prevented.
  • the overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
  • the cylindrical roller bearing 41 that rotatably supports the curved plates 26a, 26b is fitted to the outer peripheral surfaces of the eccentric portions 25a, 25b, and the inner ring 42 in which the inner raceway surface 42a is formed on the outer peripheral surface.
  • an outer raceway surface 43 (see FIGS. 2 and 3) directly formed on the inner circumferential surface of the through hole 30b of the curved plates 26a and 26b, and a plurality disposed between the inner raceway surface 42a and the outer raceway surface 43.
  • the cylindrical roller 44 and a retainer 45 for holding the cylindrical roller 44 are provided.
  • the inner ring 42 has flanges 42b that protrude radially outward from both axial ends of the inner raceway surface 42a.
  • part except crowning length CL of both ends) of the outer peripheral surface 44a of this cylindrical roller 44 is made into the flat surface parallel to an axial direction.
  • the axial dimension (for example, 11 mm) of the cylindrical roller 44 is set to be larger than the axial dimension (for example, 8 mm) of the curved plates 26a and 26b.
  • the curved plates 26a and 26b are provided with an axial backlash of about 1.5 mm.
  • This axial backlash may cause misalignment such as tilt in the curved plates 26a and 26b.
  • crowning is performed on the outer peripheral surface 44 a of the cylindrical roller 44 even under a situation where radial stress or moment load is easily applied due to misalignment such as inclination of the curved plates 26 a and 26 b. By giving, it becomes difficult to generate the local excessive load in a roller edge part.
  • the sound and vibration caused by the contact between the curved plates 26a and 26b and the cylindrical roller 44 can be suppressed, and the cylindrical roller 44 can be prevented from being damaged and the bearing life can be ensured.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates. .
  • the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates
  • the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25.
  • the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer portion B and transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the rear wheel 14 The necessary torque can be transmitted.
  • the reduction ratio of the reduction gear B is calculated as (Z A ⁇ Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b.
  • a very large reduction ratio of 1/11 can be obtained.
  • the reduction gear unit B that can obtain a large reduction ratio without using a multistage configuration, a compact and high reduction ratio in-wheel motor drive device 21 can be obtained.
  • the needle roller bearings 27a and 31a are provided on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced. Transmission efficiency is improved.
  • the oil passage 24b is provided in the motor rotating shaft 24, the oil hole 25d is provided in the eccentric portions 25a and 25b, and the oil hole 25e is provided in the shaft end of the speed reducer input shaft 25.
  • the present invention is not limited to this, and the motor rotation shaft 24 and the reduction gear input shaft 25 can be provided at arbitrary positions.
  • the example of the cycloid pump was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. Further, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the example in which two curved plates 26a and 26b of the speed reducer part B are provided with a 180 ° phase shift has been shown.
  • the number of curved plates can be arbitrarily set.
  • the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve boards 26a and 26b, it was not restricted to this but a reduction gear It is possible to adopt an arbitrary configuration that can transmit the rotation of the part B to the hub wheel 32.
  • it may be a motion conversion mechanism constituted by an inner pin fixed to the curved plates 26a and 26b and a hole formed in the reduction gear output shaft 28.
  • a radial gap motor is adopted as the motor part A, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied.
  • it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
  • the electric vehicle 11 shown in FIGS. 8 and 9 shows an example in which the rear wheel 14 is a drive wheel
  • the present invention is not limited to this, and the front wheel 13 may be a drive wheel and is a four-wheel drive vehicle. May be.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

An in-wheel motor drive apparatus 21 is configured from a motor part A, a speed reducer part B and a vehicle wheel bearing part C, the speed reducer part B comprising: a speed reducer input shaft 25 which has eccentric parts 25a, 25b and is rotatably driven by the motor part A; curved plates 26a, 26b which are rotatably held on the outer circumferences of the eccentric parts 25a, 25b through cylindrical roller bearings 41 and revolve around the revolution center thereof according to the rotation of the speed reducer input shaft 25; and a motion converting mechanism which converts the rotational motion generated in the curved plates 26a, 26b which are revolving, into a rotary motion of a speed reducer output shaft 28, wherein a cylindrical roller 44 constituting the cylindrical roller bearing 41 has a crowned outer circumferential surface.

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、例えば、電動モータの出力軸と車輪用軸受とを減速機を介して連結したインホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
 従来のインホイールモータ駆動装置は、例えば、特許文献1に開示された構造のものがある。この特許文献1に開示されたインホイールモータ駆動装置は、懸架装置(サスペンション)を介して車体に取り付けられるケーシングの内部で駆動力を発生させるモータ部と、車輪に接続される車輪用軸受部と、モータ部と車輪用軸受部との間に配置され、モータ部の回転を減速して車輪用軸受部に伝達する減速機部とを備えている。 A conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example. The in-wheel motor driving device disclosed in Patent Document 1 includes a motor unit that generates a driving force inside a casing that is attached to a vehicle body via a suspension device (suspension), and a wheel bearing unit that is connected to a wheel. And a speed reducer unit that is disposed between the motor unit and the wheel bearing unit and decelerates the rotation of the motor unit and transmits it to the wheel bearing unit.
 前述の構成からなるインホイールモータ駆動装置において、装置のコンパクト化の観点から、モータ部には低トルクで高速回転の小型モータが採用されている。一方、車輪用軸受部で車輪を駆動するために大きなトルクが必要となることから、減速機部には、コンパクトで高い減速比が得られるサイクロイド減速機が採用されている。 In the in-wheel motor drive device having the above-described configuration, a small motor with low torque and high speed rotation is adopted for the motor unit from the viewpoint of compactness of the device. On the other hand, since a large torque is required to drive the wheel by the wheel bearing portion, a cycloid reduction gear that is compact and obtains a high reduction ratio is employed for the reduction gear portion.
 このサイクロイド減速機を採用した減速機部は、一対の偏心部を有し、モータ部により回転駆動される減速機入力軸と、この減速機入力軸の偏心部の外周に転がり軸受を介して回転自在に保持された一対の曲線板と、その曲線板の外周面に係合して曲線板に自転運動を生じさせる複数の外ピンと、曲線板の貫通孔の内周面に係合して曲線板の自転運動を減速機出力軸に伝達する複数の内ピンとで主要部が構成されている。 The speed reducer part employing this cycloid speed reducer has a pair of eccentric parts, and is rotated via a rolling bearing on the outer periphery of the speed reducer input shaft rotated by the motor part and the eccentric part of the speed reducer input shaft. A pair of curved plates held freely, a plurality of outer pins that engage with the outer peripheral surface of the curved plate and cause the curved plate to rotate, and an inner peripheral surface of the through hole of the curved plate The main part is composed of a plurality of inner pins that transmit the rotation of the plate to the output shaft of the reduction gear.
 このインホイールモータ駆動装置を構成する減速機部では、モータ部により減速機入力軸が高速回転で駆動し、また、曲線板などを介して大きな荷重(ラジアル荷重やモーメント荷重)が転がり軸受に繰り返し負荷される。そのため、転がり軸受としては、高速回転に対応することができ、かつ、荷重負荷能力に優れた円筒ころ軸受が採用されている。 In the reducer part that constitutes this in-wheel motor drive device, the reducer input shaft is driven at high speed by the motor part, and a large load (radial load or moment load) is repeatedly applied to the rolling bearing through a curved plate or the like. Be loaded. Therefore, as the rolling bearing, a cylindrical roller bearing that can cope with high-speed rotation and is excellent in load carrying capacity is adopted.
特開2012-148725号公報JP 2012-148725 A
 本出願人は、インホイールモータ駆動装置の軽量コンパクト化を実現するため、減速機部の構成部品の小型化を図る上で、特に、曲線板を回転自在に保持する転がり軸受(円筒ころ軸受)に着目した。すなわち、減速機入力軸の高速回転に伴う軸受内部での発熱量を抑え、焼付き等の発生を可及的に防止するには、円筒ころ軸受を小型化することが好ましいからである。 In order to realize a lightweight and compact in-wheel motor drive device, the applicant of the present application is particularly interested in downsizing the components of the speed reducer, and in particular, a rolling bearing (cylindrical roller bearing) that holds a curved plate rotatably. Focused on. That is, it is preferable to reduce the size of the cylindrical roller bearing in order to suppress the amount of heat generated inside the bearing accompanying the high speed rotation of the reduction gear input shaft and to prevent the occurrence of seizure as much as possible.
 しかしながら、曲線板を回転自在に支持する円筒ころ軸受には、減速機入力軸の回転に伴って曲線板から大きな荷重が繰り返し負荷される。つまり、曲線板をスムーズに公転運動および自転運動させるため、その曲線板には1.5mm程度の軸方向ガタが設けられている。この軸方向ガタにより曲線板に傾き等のミスアライメントが発生することがある。 However, a large load is repeatedly applied from the curved plate to the cylindrical roller bearing that rotatably supports the curved plate as the speed reducer input shaft rotates. That is, in order to smoothly rotate and rotate the curved plate, the curved plate is provided with an axial backlash of about 1.5 mm. This axial backlash may cause misalignment such as tilt in the curved plate.
 その場合、円筒ころ軸受は、曲線板からラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下にある。このような状況下において、円筒ころ軸受の端部には、局所的な過大荷重が負荷される。その結果、軸受寿命が低下すると共に、曲線板と円筒ころ軸受との当たりによる音および振動が発生する。 In that case, the cylindrical roller bearing is in a state where a radial load or a moment load is applied from the curved plate and an excessive stress is easily generated. Under such circumstances, a local excessive load is applied to the end of the cylindrical roller bearing. As a result, the bearing life is reduced, and sound and vibration due to the contact between the curved plate and the cylindrical roller bearing are generated.
 そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、減速機部で発生する振動や騒音を低減し、静粛性および耐久性に優れたインホイールモータ駆動装置を提供することにある。 Accordingly, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to reduce the vibration and noise generated in the speed reducer, and to drive an in-wheel motor excellent in quietness and durability. To provide an apparatus.
 前述の目的を達成するための技術的手段として、本発明は、モータ部、減速機部および車輪用軸受部を構成されたインホイールモータ駆動装置であって、減速機部は、偏心部を有し、モータ部により回転駆動される減速機入力軸と、偏心部の外周に転がり軸受を介して回転自在に保持され、減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、公転運転中の曲線板に生じる自転運動を減速機出力軸の回転運動に変換する運動変換機構とを備え、転がり軸受を構成するころは、その外周面にクラウニングが施されていることを特徴とする。 As technical means for achieving the above-mentioned object, the present invention is an in-wheel motor drive device comprising a motor part, a reduction gear part and a wheel bearing part, and the reduction gear part has an eccentric part. A reduction gear input shaft that is rotationally driven by the motor unit, and a revolving motion centered on the rotation shaft center with the rotation of the reduction gear input shaft that is rotatably held on the outer periphery of the eccentric portion via a rolling bearing. The roller that constitutes the rolling bearing is crowned on the outer peripheral surface of the roller plate. It is characterized by.
 本発明では、曲線板を回転自在に保持する転がり軸受のころの外周面にクラウニングを施したことにより、曲線板の傾き等のミスアライメントにより、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下にあっても、ころ端部における局所的な過大荷重が発生し難くなる。また、曲線板ところとの当たりによる音および振動を抑制することができ、ころの破損を未然に防止して軸受寿命を確保することができる。その結果、減速機部で発生する振動や騒音を低減でき、静粛性および耐久性に優れたインホイールモータ駆動装置を実現できる。 In the present invention, by applying crowning to the outer peripheral surface of the roller of the rolling bearing that rotatably holds the curved plate, radial stress or moment load is applied due to misalignment such as inclination of the curved plate and excessive stress is generated. Even in a situation where it is easy to do, a local excessive load is hardly generated at the roller end. Further, it is possible to suppress the sound and vibration caused by the contact with the curved plate, and to prevent the roller from being damaged in advance and to ensure the bearing life. As a result, it is possible to reduce the vibration and noise generated in the speed reducer, and to realize an in-wheel motor drive device that is excellent in silence and durability.
 本発明におけるころは、その端面から軸方向内側へ1.5mmの位置にある測定点で2~15μmの径方向変位量を持つクラウニングが施されていることが望ましい。このようにすれば、最適なクラウニングを持つころを実現することができる。その結果、ころ端部において、曲線板のミスアライメントに基づく局所的な過大荷重の発生を確実に抑制することができる。また、曲線板ところとの当たりによる音および振動も確実に抑制することができ、軸受寿命の向上が図れる。 It is desirable that the roller in the present invention is crowned with a radial displacement of 2 to 15 μm at a measurement point located 1.5 mm inward in the axial direction from the end face. In this way, it is possible to realize a roller having an optimum crowning. As a result, it is possible to reliably suppress the occurrence of a local excessive load based on the misalignment of the curved plate at the roller end portion. In addition, sound and vibration due to contact with the curved plate can be reliably suppressed, and the bearing life can be improved.
 本発明における転がり軸受としては、減速機入力軸の外周に装着した内輪の外周に形成された内側軌道面と、曲線板の内周に形成された外側軌道面と、両軌道面間に介在する複数の円筒ころと、円筒ころを保持する保持器とで構成された円筒ころ軸受が好適である。 As the rolling bearing in the present invention, an inner raceway surface formed on the outer periphery of the inner ring mounted on the outer periphery of the speed reducer input shaft, an outer raceway surface formed on the inner periphery of the curved plate, and interposed between both raceway surfaces. A cylindrical roller bearing composed of a plurality of cylindrical rollers and a cage that holds the cylindrical rollers is suitable.
 本発明によれば、曲線板の傾き等のミスアライメントにより、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下にあっても、ころ端部における局所的な過大荷重が発生し難くなる。また、曲線板ところとの当たりによる音および振動を抑制することができ、ころの破損を未然に防止して軸受寿命を確保することができる。その結果、減速機部で発生する振動や騒音を低減でき、静粛性および耐久性に優れたインホイールモータ駆動装置を実現できる。 According to the present invention, a local excessive load at the roller end portion is generated even in a situation where a radial load or a moment load is applied and an excessive stress is likely to occur due to misalignment such as the inclination of the curved plate. It becomes difficult. Further, it is possible to suppress the sound and vibration caused by the contact with the curved plate, and to prevent the roller from being damaged in advance and to ensure the bearing life. As a result, it is possible to reduce the vibration and noise generated in the speed reducer, and to realize an in-wheel motor drive device that is excellent in silence and durability.
本発明の実施形態で、インホイールモータ駆動装置の全体構成を示す縦断面図である。1 is a longitudinal sectional view showing an overall configuration of an in-wheel motor drive device in an embodiment of the present invention. 図1のP-P線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. 図1の減速機部を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the reduction gear part of FIG. 図1の曲線板に作用する荷重を示す説明図である。It is explanatory drawing which shows the load which acts on the curve board of FIG. 図1の回転ポンプを示す横断面図である。It is a cross-sectional view which shows the rotary pump of FIG. 図1の曲線板を回転自在に保持する円筒ころ軸受を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the cylindrical roller bearing which hold | maintains the curve board of FIG. 1 rotatably. 図6の円筒ころ軸受における円筒ころを示す要部拡大断面図である。It is a principal part expanded sectional view which shows the cylindrical roller in the cylindrical roller bearing of FIG. インホイールモータ駆動装置を搭載した電気自動車の概略構成を示す平面図である。It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device. 図8の電気自動車を示す後方断面図である。FIG. 9 is a rear sectional view showing the electric vehicle of FIG. 8.
 本発明に係るインホイールモータ駆動装置の実施形態を図面に基づいて詳述する。 Embodiments of an in-wheel motor drive device according to the present invention will be described in detail with reference to the drawings.
 図8は、インホイールモータ駆動装置21を搭載した電気自動車11の概略平面図、図9は、電気自動車11を後方から見た概略断面図である。図8に示すように、電気自動車11は、シャシー12と、操舵輪としての前輪13と、駆動輪としての後輪14と、後輪14に駆動力を伝達するインホイールモータ駆動装置21とを装備する。図9に示すように、後輪14は、シャシー12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャシー12の下部に固定されている。 FIG. 8 is a schematic plan view of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted, and FIG. 9 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear. As shown in FIG. 8, the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14. Equip. As shown in FIG. 9, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が地面から受ける振動を吸収してシャシー12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時などの車体の傾きを抑制するスタビライザが設けられている。懸架装置12bは、路面の凹凸に対する追従性を向上させ、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式としている。 The suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms. The suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface.
 電気自動車11は、ホイールハウジング12aの内部に、左右それぞれの後輪14を駆動するインホイールモータ駆動装置21を設けることによって、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構などを設ける必要がなくなる。その結果、客室スペースを広く確保でき、かつ、左右の後輪14の回転をそれぞれ制御することができるという利点を有する。電気自動車11の走行安定性およびNVH特性を向上させるためにばね下重量を抑える必要がある。さらに、広い客室スペースを確保するためにインホイールモータ駆動装置21の小型化が求められる。 The electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. . As a result, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled. In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight. Furthermore, the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
 そこで、この実施形態のインホイールモータ駆動装置21は、以下の構造を具備する。図1はインホイールモータ駆動装置21の概略構成を示す縦断面図、図2は図1のP-P線に沿う断面図、図3は減速機部Bを示す拡大断面図、図4は曲線板26aに作用する荷重を示す説明図、図5は回転ポンプ51を示す横断面図である。なお、この実施形態の特徴的な構成を説明する前にインホイールモータ駆動装置21の全体構成を説明する。 Therefore, the in-wheel motor drive device 21 of this embodiment has the following structure. 1 is a longitudinal sectional view showing a schematic configuration of an in-wheel motor drive device 21, FIG. 2 is a sectional view taken along line PP in FIG. 1, FIG. 3 is an enlarged sectional view showing a reduction gear section B, and FIG. FIG. 5 is a cross-sectional view showing the rotary pump 51. FIG. 5 is an explanatory view showing the load acting on the plate 26a. Before describing the characteristic configuration of this embodiment, the overall configuration of the in-wheel motor drive device 21 will be described.
 図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速機部Bと、減速機部Bからの出力を駆動輪としての後輪14(図8および図9参照)に伝達する車輪用軸受部Cとを備えている。モータ部Aと減速機部Bはケーシング22に収納されて、電気自動車11のホイールハウジング12a(図9参照)内に取り付けられる。ケーシング22は、モータ部Aが収容されたモータハウジングと減速機部Bが収容された減速機ハウジングとからなる分割構造で、ボルトにより締結一体化されている。 As shown in FIG. 1, the in-wheel motor drive device 21 includes a motor part A that generates a driving force, a speed reducer part B that decelerates and outputs the rotation of the motor part A, and an output from the speed reducer part B. And a wheel bearing portion C that transmits to a rear wheel 14 (see FIGS. 8 and 9) as a drive wheel. The motor part A and the speed reducer part B are accommodated in the casing 22 and attached to the wheel housing 12a (see FIG. 9) of the electric vehicle 11. The casing 22 is a divided structure including a motor housing in which the motor part A is accommodated and a speed reducer housing in which the speed reducer part B is accommodated, and is fastened and integrated by bolts.
 モータ部Aは、ケーシング22に固定されたステータ23aと、ステータ23aの径方向内側に隙間をもって対向するように配置されたロータ23bと、ロータ23bの径方向内側に配置されてロータ23bと一体回転するモータ回転軸24とを備えたラジアルギャップモータである。ステータ23aは磁性体コア23cの外周にコイル23dを巻回することによって構成され、ロータ23bは永久磁石または磁性体で構成されている。 The motor portion A is a stator 23a fixed to the casing 22, a rotor 23b disposed to face the inner side in the radial direction of the stator 23a with a gap, and a radial inner side of the rotor 23b so as to rotate integrally with the rotor 23b. A radial gap motor including a motor rotating shaft 24. The stator 23a is configured by winding a coil 23d around the outer periphery of a magnetic core 23c, and the rotor 23b is configured by a permanent magnet or a magnetic material.
 モータ回転軸24は、径方向外側へ一体的に延びるホルダ部24dによりロータ23bが保持されている。このホルダ部24dは、ロータ23bが嵌め込み固定された凹溝を環状に形成した構成としている。モータ回転軸24は、その軸方向一方側端部(図1の右側)が転がり軸受36aに、軸方向他方側端部(図1の左側)が転がり軸受36bによって、ケーシング22に対して回転自在に支持されている。 The rotor 23b of the motor rotating shaft 24 is held by a holder portion 24d that extends integrally outward in the radial direction. The holder portion 24d has a configuration in which a concave groove in which the rotor 23b is fitted and fixed is formed in an annular shape. The motor rotating shaft 24 is rotatable with respect to the casing 22 by one end in the axial direction (right side in FIG. 1) on the rolling bearing 36a and the other end in the axial direction (left side in FIG. 1) by the rolling bearing 36b. It is supported by.
 減速機入力軸25は、その軸方向一方側略中央部(図1の右側)が転がり軸受37aに、軸方向他方側端部(図1の左側)が転がり軸受37bによって、減速機出力軸28に対して回転自在に支持されている。この減速機入力軸25は、減速機部B内に偏心部25a,25bを有する。2つの偏心部25a,25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相をずらして設けられている。減速機入力軸25と前述のモータ回転軸24とは、スプライン嵌合によって連結されてモータ部Aの駆動力が減速機部Bに伝達される。 The reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) as a rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) as a rolling bearing 37b. Is supported so as to be freely rotatable. The reduction gear input shaft 25 has eccentric portions 25 a and 25 b in the reduction gear portion B. The two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion. The reduction gear input shaft 25 and the above-described motor rotation shaft 24 are connected by spline fitting, and the driving force of the motor part A is transmitted to the reduction gear part B.
 減速機部Bは、減速機入力軸25の偏心部25a,25bに回転自在に保持される曲線板26a,26bと、その曲線板26a,26bの外周部に係合する複数の外ピン27と、曲線板26a,26bの自転運動を減速機出力軸28に伝達する運動変換機構と、偏心部25a,25bに隣接して減速機入力軸25に設けられたカウンタウェイト29とを備える。 The reducer portion B includes curved plates 26a and 26b that are rotatably held by the eccentric portions 25a and 25b of the reducer input shaft 25, and a plurality of outer pins 27 that engage with the outer peripheral portions of the curved plates 26a and 26b. And a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a and 26b to the speed reducer output shaft 28, and a counterweight 29 provided on the speed reducer input shaft 25 adjacent to the eccentric portions 25a and 25b.
 減速機出力軸28は、フランジ部28aと軸部28bとを有する。フランジ部28aには、減速機出力軸28の回転軸心を中心とする円周上に複数の内ピン31が等間隔に固定されている。また、軸部28bは、車輪用軸受部Cの内方部材としてのハブ輪32にスプライン嵌合によってトルク伝達可能に連結され、減速機部Bの出力を後輪14に伝達する。この減速機出力軸28は、転がり軸受46によって外ピンハウジング60に回転自在に支持されている。 The reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b. A plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28. The shaft portion 28 b is connected to a hub wheel 32 as an inner member of the wheel bearing portion C so as to be able to transmit torque by spline fitting, and transmits the output of the speed reducer portion B to the rear wheel 14. The reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46.
 図2および図3に示すように、曲線板26a,26bは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する貫通孔30a,30bを有する。貫通孔30aは、曲線板26a,26bの自転軸心を中心とする円周上に等間隔に複数個設けられており、前述の内ピン31を受け入れる。また、貫通孔30bは、曲線板26a,26bの中心に設けられており、偏心部25a,25bに嵌合する。この曲線板26a,26bは、転がり軸受である円筒ころ軸受41によって偏心部25a,25bに対して回転自在に支持されている。 As shown in FIGS. 2 and 3, the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b. A plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plates 26a, 26b, and receive the inner pin 31 described above. Further, the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b. The curved plates 26a and 26b are rotatably supported with respect to the eccentric portions 25a and 25b by a cylindrical roller bearing 41 which is a rolling bearing.
 外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に設けられている。曲線板26a,26bが公転運動すると、曲線形状の波形と外ピン27とが係合して、曲線板26a,26bに自転運動を生じさせる。外ピン27は、針状ころ軸受27aによって外ピンハウジング60に回転自在に保持されている。これにより、曲線板26a,26bとの間の接触抵抗を低減することができる。この外ピンハウジング60は、ケーシング22に対して回り止めされ、かつ、フローティング状態で支持されている。 The outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25. When the curved plates 26a and 26b revolve, the curved waveform and the outer pin 27 are engaged to cause the curved plates 26a and 26b to rotate. The outer pin 27 is rotatably held by the outer pin housing 60 by a needle roller bearing 27a. Thereby, the contact resistance between the curved plates 26a and 26b can be reduced. The outer pin housing 60 is prevented from rotating with respect to the casing 22 and is supported in a floating state.
 カウンタウェイト29は、略扇形状で、図3に示すように、減速機入力軸25と嵌合する貫通孔を有し、曲線板26a,26bの回転によって生じる不釣合い慣性偶力を打ち消すために、偏心部25a,25bと隣接する位置に偏心部25a,25bと180°位相をずらして配置される。2枚の曲線板26a,26b間の回転軸心方向の中心点をGとすると、その中心点Gの右側について、中心点Gと曲線板26aの中心との距離をL、曲線板26a、転がり軸受41および偏心部25aの質量の和をm、曲線板26aの重心の回転軸心からの偏心量をεとし、中心点Gとカウンタウェイト29との距離をL、カウンタウェイト29の質量をm、カウンタウェイト29の重心の回転軸心からの偏心量をεとすると、L×m×ε=L×m×εを満たす関係となっている。L×m×ε=L×m×εの関係は、不可避的に生じる誤差を許容する。中心点Gの左側の曲線板26bとカウンタウェイト29との間にも同様の関係が成立する。 As shown in FIG. 3, the counterweight 29 has a through hole that engages with the speed reducer input shaft 25 to counteract the unbalanced inertia couple generated by the rotation of the curved plates 26a and 26b. The eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at positions adjacent to the eccentric portions 25a and 25b. Assuming that the center point in the direction of the rotational axis between the two curved plates 26a, 26b is G, the distance between the center point G and the center of the curved plate 26a on the right side of the central point G is L 1 , the curved plates 26a, The sum of the masses of the rolling bearing 41 and the eccentric portion 25a is m 1 , the amount of eccentricity of the center of gravity of the curved plate 26a from the rotational axis is ε 1 , the distance between the center point G and the counter weight 29 is L 2 , and the counter weight 29 mass m 2 of the eccentricity amount from the rotation axis of the center of gravity of the counterweight 29 and epsilon 2, and has a relationship that satisfies L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2. The relationship of L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2 allows errors that inevitably occur. A similar relationship is established between the curved plate 26 b on the left side of the center point G and the counterweight 29.
 運動変換機構は、減速機出力軸28に保持されて軸方向に延びる複数の内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成されている。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に設けられており、その軸方向一方側端部が減速機出力軸28のフランジ28aに固定されている。また、曲線板26a,26bとの摩擦抵抗を低減するために、曲線板26a,26bの貫通孔30aの内壁面に当接する位置に針状ころ軸受31aが設けられている。貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(針状ころ軸受31aを含む最大外径)より大きく設定されている。 The motion conversion mechanism includes a plurality of inner pins 31 that are held by the speed reducer output shaft 28 and extend in the axial direction, and through holes 30a provided in the curved plates 26a and 26b. The inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and one axial end thereof is fixed to the flange 28 a of the reduction gear output shaft 28. Yes. Further, in order to reduce the frictional resistance with the curved plates 26a, 26b, needle roller bearings 31a are provided at positions where they contact the inner wall surfaces of the through holes 30a of the curved plates 26a, 26b. The through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is set larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a). ing.
 内ピン31の軸方向他方側端部には、スタビライザ31bが設けられている。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内周面から軸方向に延びる円筒部31dとを含む。複数の内ピン31の軸方向他方側端部は、円環部31cに固定されている。曲線板26a,26bから一部の内ピン31に負荷される荷重はフランジ28aおよびスタビライザ31bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ、耐久性を向上させることができる。 The stabilizer 31b is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG. The stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner peripheral surface of the annular portion 31c. The ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c. Since the load applied to some of the inner pins 31 from the curved plates 26a, 26b is supported by all the inner pins 31 via the flanges 28a and the stabilizers 31b, the stress acting on the inner pins 31 is reduced, and the durability is improved. Can be improved.
 曲線板26a,26bに作用する荷重の状態を図4に基づいて説明する。偏心部25aの軸心Oは減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aの外周には、曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、径方向に窪んだ波形の凹部26cを周方向等間隔に有する。曲線板26aの周囲には、凹部26cと係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。 The state of the load acting on the curved plates 26a and 26b will be described with reference to FIG. Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25. The outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a. The outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated concave portions 26c that are depressed in the radial direction at equal intervals in the circumferential direction. Around the curved plate 26a, a plurality of outer pins 27 that engage with the recesses 26c are arranged in the circumferential direction around the axis O.
 図4において、減速機入力軸25と共に偏心部25aが紙面上で反時計周りに回転すると、偏心部25aは軸心Oを中心とする公転運動を行うので、曲線板26aの凹部26cが、外ピン27と周方向に順次当接する。この結果、矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。 In FIG. 4, when the eccentric part 25a rotates counterclockwise on the paper surface together with the speed reducer input shaft 25, the eccentric part 25a performs a revolving motion around the axis O, so that the concave part 26c of the curved plate 26a The pin 27 is sequentially brought into contact with the circumferential direction. As a result, as indicated by the arrow, the curved plate 26a receives the load Fi from the plurality of outer pins 27 and rotates clockwise.
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されている。各貫通孔30aには、軸心Oと同軸に配置された減速機出力軸28と結合する内ピン31が挿通する。貫通孔30aの内径は、内ピン31の外径よりも所定寸法大きいため、内ピン31は曲線板26aの公転運動の障害とはならず、内ピン31は曲線板26aの自転運動を取り出して減速機出力軸28を回転させる。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、図4に矢印で示すように、曲線板26aは、複数の内ピン31から荷重Fjを受ける。これら複数の荷重Fi,Fjの合力Fsが減速機入力軸25にかかる。 Further, the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2. An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a. The reduction gear output shaft 28 is rotated. At this time, the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. . The resultant force Fs of the plurality of loads Fi and Fj is applied to the speed reducer input shaft 25.
 合力Fsの方向は、曲線板26aの波形形状、凹部26cの数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直角であって自転軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。複数の荷重Fi、Fjは、減速機入力軸25が1回転(360°)する間に荷重の方向や大きさが変り、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。減速機入力軸25が反時計周りに1回転すると、曲線板26aの波形の凹部26cが減速されて1ピッチ時計回りに回転して図4の状態になり、これを繰り返す。 The direction of the resultant force Fs changes depending on geometrical conditions such as the corrugated shape of the curved plate 26a, the number of concave portions 26c, and the influence of centrifugal force. Specifically, the angle α between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. It fluctuates with. The directions and magnitudes of the loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also different from the direction of the load. The size varies. When the speed reducer input shaft 25 rotates once counterclockwise, the corrugated concave portion 26c of the curved plate 26a is decelerated and rotated clockwise by one pitch to the state shown in FIG. 4, and this is repeated.
 図1に示すように、車輪用軸受部Cの車輪用軸受33は、外周面に内側軌道面33fが直接形成されたハブ輪32と、ハブ輪32の外周面の小径段部32aに嵌合され、外周面に内側軌道面33gが形成された内輪33aとで内方部材を構成し、ケーシング22の内周面に嵌合固定され、内周面に外側軌道面33h,33iが形成された外輪33bと、ハブ輪32および内輪33aの内側軌道面33f,33gおよび外輪33bの外側軌道面33h,33iの間に配置された転動体としての複数の玉33cと、隣接する玉33cの間隔を保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。この車輪用軸受33のハブ輪32にボルト34で後輪14(図8および図9参照)が連結固定される。 As shown in FIG. 1, the wheel bearing 33 of the wheel bearing portion C is fitted to a hub wheel 32 in which an inner raceway surface 33 f is directly formed on the outer peripheral surface and a small diameter step portion 32 a on the outer peripheral surface of the hub wheel 32. The inner ring 33a having the inner raceway surface 33g formed on the outer peripheral surface constitutes an inner member, fitted and fixed to the inner peripheral surface of the casing 22, and outer raceway surfaces 33h and 33i are formed on the inner peripheral surface. The distance between the adjacent balls 33c and the plurality of balls 33c as rolling elements arranged between the outer ring 33b, the inner raceway surfaces 33f and 33g of the hub ring 32 and the inner ring 33a and the outer raceway surfaces 33h and 33i of the outer ring 33b. This is a double-row angular contact ball bearing provided with a retainer 33d to be held and seal members 33e for sealing both axial ends of the wheel bearing 33. The rear wheel 14 (see FIGS. 8 and 9) is connected and fixed to the hub wheel 32 of the wheel bearing 33 by bolts 34.
 次に、全体的な潤滑機構を説明する。この潤滑機構は、モータ部Aを冷却するためにモータ部Aに潤滑油を供給すると共に減速機部Bに潤滑油を供給するものである。潤滑機構は、図1に示すように、回転ポンプ51と、モータ部Aに配設された油路22a,24a,24bおよび油孔24cと、減速機部Bに配設された油路25cおよび油孔25d,25eと、ケーシング22の下方に配置された油タンク22dとを主な構成としている。 Next, the overall lubrication mechanism will be described. This lubricating mechanism supplies lubricating oil to the motor part A and cools the reducing part B to cool the motor part A. As shown in FIG. 1, the lubrication mechanism includes a rotary pump 51, oil passages 22a, 24a, 24b and an oil hole 24c provided in the motor part A, an oil passage 25c provided in the reduction gear part B, and The oil holes 25d and 25e and the oil tank 22d disposed below the casing 22 are mainly configured.
 ケーシング22に設けられた油路22aは、回転ポンプ51から径方向外側へ延びて屈曲した上で軸方向に延び、さらに屈曲した上で径方向内側へ延びて油路24aに接続される。油路24aは、モータ回転軸24の内部を軸線方向に沿って延びて油路25cに接続される。モータ回転軸24の油路24bは、軸線方向に沿って延びる油路24aと連通し、径方向外側に位置するホルダ部24dに向かって延びて油孔24cと連通する。油孔24cは、ホルダ部24dのインボード側およびアウトボード側の端面に形成され、モータ部Aの内部に開口する。 The oil passage 22a provided in the casing 22 extends radially outward from the rotary pump 51, bends in the axial direction, further bends, extends radially inward, and is connected to the oil passage 24a. The oil passage 24a extends along the axial direction inside the motor rotating shaft 24 and is connected to the oil passage 25c. The oil passage 24b of the motor rotating shaft 24 communicates with the oil passage 24a extending along the axial direction, and extends toward the holder portion 24d located on the radially outer side to communicate with the oil hole 24c. The oil hole 24c is formed in the end face of the holder part 24d on the inboard side and the outboard side, and opens into the motor part A.
 油路25cは、減速機入力軸25の内部を軸線方向に沿って延びている。油孔25dは、軸線方向に沿って延びる油路25cと連通し、減速機入力軸25の外周面に半径方向に向かって延びて減速機部Bの内部に開口する。油孔25eは、軸線方向に沿って延びる油路25cと連通し、減速機入力軸25の軸端から減速機部Bの内部に開口する。 The oil passage 25c extends along the axial direction inside the reduction gear input shaft 25. The oil hole 25d communicates with an oil passage 25c extending along the axial direction, extends in the radial direction on the outer peripheral surface of the speed reducer input shaft 25, and opens inside the speed reducer portion B. The oil hole 25e communicates with an oil passage 25c extending along the axial direction, and opens from the shaft end of the speed reducer input shaft 25 to the inside of the speed reducer part B.
 ケーシング22のモータ部Aと減速機部Bとの間には、モータ部Aの内部と減速機部Bの内部とに連通する油路22bが設けられ、モータ部Aの位置におけるケーシング22の底部には、モータ部Aの内部の潤滑油を油タンク22dに排出するための油路22fが設けられている。また、油タンク22dから回転ポンプ51へ潤滑油を還流させるための油路22eがケーシング22に設けられている。潤滑油を強制的に循環させるための回転ポンプ51は、ケーシング22の油路22eと油路22aとの間に設けられている。 Between the motor part A and the speed reducer part B of the casing 22, an oil passage 22b communicating with the inside of the motor part A and the inside of the speed reducer part B is provided, and the bottom part of the casing 22 at the position of the motor part A Is provided with an oil passage 22f for discharging the lubricating oil inside the motor part A to the oil tank 22d. Further, an oil passage 22 e for returning the lubricating oil from the oil tank 22 d to the rotary pump 51 is provided in the casing 22. The rotary pump 51 for forcibly circulating the lubricating oil is provided between the oil passage 22e and the oil passage 22a of the casing 22.
 図5に示すように、回転ポンプ51は、減速機出力軸28(図1参照)の回転を利用して回転するインナロータ52と、インナロータ52の回転に伴って従動回転するアウタロータ53と、ポンプ室54と、油路22eに連通する吸入口55と、油路22aに連通する吐出口56とを備えるサイクロイドポンプである。この回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21の大型化を防止することができる。 As shown in FIG. 5, the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the speed reducer output shaft 28 (see FIG. 1), an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber. 54, a cycloid pump including a suction port 55 communicating with the oil passage 22e and a discharge port 56 communicating with the oil passage 22a. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from becoming large.
 インナロータ52は、外周面にサイクロイド曲線で構成された歯形を有する。具体的には、歯先部分52aの形状がエピサイクロイド曲線、歯溝部分52bの形状がハイポサイクロイド曲線となっている。インナロータ52は、スタビライザ31bに設けられた円筒部31d(図1および図3参照)の外周面に嵌合して減速機出力軸28と一体回転する。アウタロータ53は、内周面にサイクロイド曲線で構成された歯形を有する。具体的には、歯先部分53aの形状がハイポサイクロイド曲線、歯溝部分53bの形状がエピサイクロイド曲線となっている。アウタロータ53は、ケーシング22に回転自在に支持されている。 The inner rotor 52 has a tooth profile composed of a cycloid curve on the outer peripheral surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve. The inner rotor 52 is fitted to the outer peripheral surface of a cylindrical portion 31d (see FIGS. 1 and 3) provided in the stabilizer 31b and rotates integrally with the speed reducer output shaft 28. The outer rotor 53 has a tooth profile formed of a cycloid curve on the inner peripheral surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve. The outer rotor 53 is rotatably supported by the casing 22.
 インナロータ52は、回転中心cを中心として回転し、一方、アウタロータ53は、回転中心cを中心として回転する。インナロータ52およびアウタロータ53はそれぞれ異なる回転中心c,cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55から流入した潤滑油が吐出口56から油路22aに圧送される。 Inner rotor 52 rotates around a rotation center c 1, whereas, the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the oil passage 22a.
 前述した構成の潤滑機構による潤滑油の流れを説明する。図1において、潤滑機構内に付した白抜き矢印は潤滑油の流れを示す。モータ部Aの冷却として、回転ポンプ51から圧送された潤滑油は油路22a,24aを経由し、その一部がモータ回転軸24の回転に伴う遠心力およびポンプ圧力によって油路24bを経てロータ23bを冷却する。さらに、ホルダ部24dの油孔24cから潤滑油が吐出されてステータ23aを冷却する。このようにして、モータ部Aの冷却が行われる。 The flow of lubricating oil by the lubricating mechanism having the above-described configuration will be described. In FIG. 1, the white arrow given in the lubrication mechanism indicates the flow of the lubricating oil. As the cooling of the motor part A, the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a and 24a, and a part of the lubricating oil passes through the oil passage 24b by the centrifugal force and the pump pressure accompanying the rotation of the motor rotating shaft 24. 23b is cooled. Furthermore, lubricating oil is discharged from the oil holes 24c of the holder portion 24d to cool the stator 23a. In this way, the motor part A is cooled.
 一方、減速機部Bの潤滑として、回転ポンプ51から圧送された潤滑油は油路22a,24a,25cを経由し、その一部が減速機入力軸25の回転に伴う遠心力およびポンプ圧力によって油孔25d,25eから減速機部Bに吐出する。油孔25dから吐出した潤滑油は、曲線板26a,26bを支持する円筒ころ軸受41の内輪42に設けた油孔42c(図3参照)から軸受内部へ供給される。さらに、曲線板26a,26bと内ピン31および外ピン27との当接部分などを潤滑しながら、外ピンハウジング60に設けられた油路60aを経由して径方向外側へ移動する。油孔25eから吐出した潤滑油は、減速機入力軸25を支持する転がり軸受37bなどに供給される。このようにして、減速機部Bの潤滑が行われる。 On the other hand, as lubrication of the speed reducer part B, the lubricating oil pumped from the rotary pump 51 passes through the oil passages 22a, 24a, 25c, and a part thereof is caused by the centrifugal force and the pump pressure accompanying the rotation of the speed reducer input shaft 25. The oil is discharged from the oil holes 25d and 25e to the speed reducer part B. The lubricating oil discharged from the oil hole 25d is supplied into the bearing from an oil hole 42c (see FIG. 3) provided in the inner ring 42 of the cylindrical roller bearing 41 that supports the curved plates 26a and 26b. Furthermore, it moves radially outward via an oil passage 60a provided in the outer pin housing 60 while lubricating the contact portions of the curved plates 26a, 26b with the inner pins 31 and the outer pins 27, and the like. The lubricating oil discharged from the oil hole 25e is supplied to a rolling bearing 37b that supports the speed reducer input shaft 25 and the like. In this way, the reduction gear part B is lubricated.
 モータ部Aの冷却および減速機部Bの潤滑および冷却を行った潤滑油は、ケーシング22の内壁面を伝って重力により下部へ移動する。減速機部Bの下部へ移動した潤滑油は、油路22bからモータ部Aへ移動する。また、モータ部Aの下部へ移動した潤滑油は、減速機部Bからの潤滑油と共に、油路22fから排出されて油タンク22dに一時的に貯溜される。このように、油タンク22dが設けられているので、回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、油タンク22dに貯溜しておくことができる。その結果、減速機部Bのトルク損失の増加を防止することができる。 Lubricating oil that has cooled the motor part A and lubricated and cooled the speed reducer part B travels along the inner wall surface of the casing 22 and moves downward by gravity. The lubricating oil that has moved to the lower part of the speed reducer part B moves from the oil passage 22b to the motor part A. The lubricating oil that has moved to the lower part of the motor part A is discharged from the oil passage 22f together with the lubricating oil from the speed reducer part B, and is temporarily stored in the oil tank 22d. Thus, since the oil tank 22d is provided, even if lubricating oil that cannot be completely discharged by the rotary pump 51 is temporarily generated, it can be stored in the oil tank 22d. As a result, an increase in torque loss of the reduction gear unit B can be prevented.
 この実施形態におけるインホイールモータ駆動装置21の全体構成は、前述のとおりであるが、その特徴的な構成を以下に詳述する。 The overall configuration of the in-wheel motor drive device 21 in this embodiment is as described above, and the characteristic configuration will be described in detail below.
 曲線板26a,26bを回転自在に支持する円筒ころ軸受41は、図6に示すように、偏心部25a,25bの外周面に嵌合し、外周面に内側軌道面42aが形成された内輪42と、曲線板26a,26bの貫通孔30bの内周面に直接形成された外側軌道面43(図2および図3参照)と、内側軌道面42aと外側軌道面43の間に配置される複数の円筒ころ44と、円筒ころ44を保持する保持器45とを備えている。内輪42は、内側軌道面42aの軸方向両端部から径方向外側に突出する鍔部42bを有する。 As shown in FIG. 6, the cylindrical roller bearing 41 that rotatably supports the curved plates 26a, 26b is fitted to the outer peripheral surfaces of the eccentric portions 25a, 25b, and the inner ring 42 in which the inner raceway surface 42a is formed on the outer peripheral surface. And an outer raceway surface 43 (see FIGS. 2 and 3) directly formed on the inner circumferential surface of the through hole 30b of the curved plates 26a and 26b, and a plurality disposed between the inner raceway surface 42a and the outer raceway surface 43. The cylindrical roller 44 and a retainer 45 for holding the cylindrical roller 44 are provided. The inner ring 42 has flanges 42b that protrude radially outward from both axial ends of the inner raceway surface 42a.
 この円筒ころ軸受41は、図7に示すように、円筒ころ44の外周面44aに、ころ端面44bから軸方向内側へ1.5mm(=M)の位置にある測定点GPで2~15μmの径方向変位量Nを持つクラウニング(クラウニング長さCL、クラウニング半径CR)が施されている。なお、この円筒ころ44の外周面44aの軸方向中央部(両端部のクラウニング長さCLを除く部位)は、軸方向に平行な平坦面としている。なお、円筒ころ44の軸方向寸法(例えば11mm)は、曲線板26a,26bの軸方向寸法(例えば8mm)よりも大きく設定されている。 As shown in FIG. 7, the cylindrical roller bearing 41 has a measuring point GP of 2 to 15 μm at an outer peripheral surface 44a of the cylindrical roller 44 at a position 1.5 mm (= M) axially inward from the roller end surface 44b. Crowning (crowning length CL, crowning radius CR) having a radial displacement amount N is applied. In addition, the axial direction center part (part | part except crowning length CL of both ends) of the outer peripheral surface 44a of this cylindrical roller 44 is made into the flat surface parallel to an axial direction. The axial dimension (for example, 11 mm) of the cylindrical roller 44 is set to be larger than the axial dimension (for example, 8 mm) of the curved plates 26a and 26b.
 減速機部Bにおいて、曲線板26a,26bをスムーズに公転運動および自転運動させるため、その曲線板26a,26bには1.5mm程度の軸方向ガタが設けられている。この軸方向ガタにより曲線板26a,26bに傾き等のミスアライメントが発生することがある。円筒ころ軸受41では、曲線板26a,26bの傾き等のミスアライメントにより、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下にあっても、円筒ころ44の外周面44aにクラウニングを施していることにより、ころ端部における局所的な過大荷重が発生し難くなる。また、曲線板26a,26bと円筒ころ44との当たりによる音および振動を抑制することができ、円筒ころ44の破損を未然に防止して軸受寿命を確保することができる。その結果、減速機部Bで発生する振動や騒音を低減でき、静粛性および耐久性に優れたインホイールモータ駆動装置21を実現できる。 In the speed reducer part B, in order to smoothly rotate and rotate the curved plates 26a and 26b, the curved plates 26a and 26b are provided with an axial backlash of about 1.5 mm. This axial backlash may cause misalignment such as tilt in the curved plates 26a and 26b. In the cylindrical roller bearing 41, crowning is performed on the outer peripheral surface 44 a of the cylindrical roller 44 even under a situation where radial stress or moment load is easily applied due to misalignment such as inclination of the curved plates 26 a and 26 b. By giving, it becomes difficult to generate the local excessive load in a roller edge part. Further, the sound and vibration caused by the contact between the curved plates 26a and 26b and the cylindrical roller 44 can be suppressed, and the cylindrical roller 44 can be prevented from being damaged and the bearing life can be ensured. As a result, it is possible to reduce the vibration and noise generated in the speed reducer B, and to realize the in-wheel motor drive device 21 that is excellent in silence and durability.
 なお、円筒ころ44の外周面44aのクラウニングにおいて、前述の径方向変位量が2μmよりも小さいと、曲線板26a,26bの傾き等のミスアライメント負荷時に円筒ころ44の端部における局所的な過大荷重が発生し易くなる。また逆に、径方向変位量が15μmよりも大きいと、円筒ころ44の姿勢が不安定となって、音および振動の発生につながる。なお、図7では、クラウニングを誇張して示している。 In the crowning of the outer peripheral surface 44a of the cylindrical roller 44, if the aforementioned amount of radial displacement is smaller than 2 μm, local overload at the end of the cylindrical roller 44 during misalignment load such as the inclination of the curved plates 26a and 26b. A load is easily generated. Conversely, if the radial displacement is larger than 15 μm, the posture of the cylindrical roller 44 becomes unstable, leading to the generation of sound and vibration. In FIG. 7, the crowning is exaggerated.
 最後に、この実施形態におけるインホイールモータ駆動装置21の全体的な作動原理を説明する。 Finally, the overall operation principle of the in-wheel motor drive device 21 in this embodiment will be described.
 図1~図3に示すように、モータ部Aは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これにより、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a,26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と係合して、曲線板26a,26bを減速機入力軸25の回転とは逆向きに自転回転させる。 As shown in FIGS. 1 to 3, the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates. . Thereby, when the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25. At this time, the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
 貫通孔30aに挿通する内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。このとき、減速機入力軸25の回転が減速機部Bによって減速されて減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、後輪14に必要なトルクを伝達することが可能となる。 The inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28. At this time, since the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer portion B and transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the rear wheel 14 The necessary torque can be transmitted.
 この減速機部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの波形の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。このように、多段構成とすることなく大きな減速比を得ることができる減速機部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31に針状ころ軸受27a,31a(図3参照)を設けたことにより、曲線板26a,26bとの間の摩擦抵抗が低減されるので、減速機部Bの伝達効率が向上する。 The reduction ratio of the reduction gear B is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b. In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, a very large reduction ratio of 1/11 can be obtained. Thus, by adopting the reduction gear unit B that can obtain a large reduction ratio without using a multistage configuration, a compact and high reduction ratio in-wheel motor drive device 21 can be obtained. Further, since the needle roller bearings 27a and 31a (see FIG. 3) are provided on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced. Transmission efficiency is improved.
 この実施形態においては、油路24bをモータ回転軸24に設け、油孔25dを偏心部25a,25bに設け、油孔25eを減速機入力軸25の軸端に設けた場合を例示したが、これに限ることなく、モータ回転軸24や減速機入力軸25の任意の位置に設けることができる。また、回転ポンプ51としてサイクロイドポンプの例を示したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらに、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。 In this embodiment, the oil passage 24b is provided in the motor rotating shaft 24, the oil hole 25d is provided in the eccentric portions 25a and 25b, and the oil hole 25e is provided in the shaft end of the speed reducer input shaft 25. However, the present invention is not limited to this, and the motor rotation shaft 24 and the reduction gear input shaft 25 can be provided at arbitrary positions. Moreover, although the example of the cycloid pump was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. Further, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
 減速機部Bの曲線板26a,26bを180°位相をずらして2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相をずらして設けるとよい。運動変換機構は、減速機出力軸28に固定された内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成された例を示したが、これに限ることなく、減速機部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。例えば、曲線板26a,26bに固定された内ピンと減速機出力軸28に形成された穴とで構成される運動変換機構であってもよい。 The example in which two curved plates 26a and 26b of the speed reducer part B are provided with a 180 ° phase shift has been shown. However, the number of curved plates can be arbitrarily set. For example, when three curved plates are provided. May be provided with a 120 ° phase shift. Although the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve boards 26a and 26b, it was not restricted to this but a reduction gear It is possible to adopt an arbitrary configuration that can transmit the rotation of the part B to the hub wheel 32. For example, it may be a motion conversion mechanism constituted by an inner pin fixed to the curved plates 26a and 26b and a hole formed in the reduction gear output shaft 28.
 この実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから後輪14に伝達される。したがって、前述のように減速された動力は高トルクに変換されたものとなっている。また、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を後輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、後輪14側からの動力を減速機部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器などの作動に用いてもよい。 The description of the operation in this embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor part A to the rear wheel 14. Therefore, the power decelerated as described above is converted to high torque. Also, the case where power is supplied to the motor unit A to drive the motor unit and the power from the motor unit A is transmitted to the rear wheels 14 is shown. On the contrary, the vehicle decelerates or goes down the hill. In such a case, the power from the rear wheel 14 side may be converted into high-rotation low-torque rotation by the reduction gear part B and transmitted to the motor part A, and the motor part A may generate power. Furthermore, the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
 この実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えば、ケーシングに固定されるステータと、ステータの内側の軸方向の隙間を開けて対向する位置に配置されるロータとを備えるアキシャルギャップモータであってもよい。さらに、図8および図9に示した電気自動車11は、後輪14を駆動輪とした例を示したが、これに限ることなく、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。 In this embodiment, an example is shown in which a radial gap motor is adopted as the motor part A, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied. For example, it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator. Further, although the electric vehicle 11 shown in FIGS. 8 and 9 shows an example in which the rear wheel 14 is a drive wheel, the present invention is not limited to this, and the front wheel 13 may be a drive wheel and is a four-wheel drive vehicle. May be. In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

Claims (3)

  1.  モータ部、減速機部および車輪用軸受部を構成されたインホイールモータ駆動装置であって、
     前記減速機部は、偏心部を有し、前記モータ部により回転駆動される減速機入力軸と、前記偏心部の外周に転がり軸受を介して回転自在に保持され、前記減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、公転運転中の曲線板に生じる自転運動を減速機出力軸の回転運動に変換する運動変換機構とを備え、
     前記転がり軸受を構成するころは、その外周面にクラウニングが施されていることを特徴とするインホイールモータ駆動装置。
    An in-wheel motor drive device comprising a motor part, a reduction gear part and a wheel bearing part,
    The speed reducer part has an eccentric part, and the speed reducer input shaft that is rotationally driven by the motor part is rotatably held on the outer periphery of the eccentric part via a rolling bearing, and the speed reducer input shaft rotates. With a curved plate that performs a revolving motion around its rotational axis, and a motion conversion mechanism that converts the rotational motion that occurs in the curved plate during revolving operation into the rotational motion of the reducer output shaft,
    An in-wheel motor drive device characterized in that the roller constituting the rolling bearing has a crowned outer peripheral surface.
  2.  前記ころは、その端面から軸方向内側へ1.5mmの位置にある測定点で2~15μmの径方向変位量を持つクラウニングが施されている請求項1に記載のインホイールモータ駆動装置。 2. The in-wheel motor drive device according to claim 1, wherein the roller is crowned with a radial displacement of 2 to 15 μm at a measurement point located 1.5 mm inward in the axial direction from the end face thereof.
  3.  前記転がり軸受は、前記減速機入力軸の外周に装着した内輪の外周に形成された内側軌道面と、前記曲線板の内周に形成された外側軌道面と、両軌道面間に介在する複数の円筒ころと、前記円筒ころを保持する保持器とで構成されている請求項1又は2に記載のインホイールモータ駆動装置。 The rolling bearing includes an inner raceway surface formed on an outer periphery of an inner ring mounted on an outer periphery of the speed reducer input shaft, an outer raceway surface formed on an inner periphery of the curved plate, and a plurality of intervening surfaces between both raceway surfaces. The in-wheel motor drive device of Claim 1 or 2 comprised by the cylindrical roller and the holder | retainer which hold | maintains the said cylindrical roller.
PCT/JP2015/075587 2014-09-26 2015-09-09 In-wheel motor drive apparatus WO2016047442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-196912 2014-09-26
JP2014196912A JP2016070294A (en) 2014-09-26 2014-09-26 In-wheel motor drive

Publications (1)

Publication Number Publication Date
WO2016047442A1 true WO2016047442A1 (en) 2016-03-31

Family

ID=55580969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075587 WO2016047442A1 (en) 2014-09-26 2015-09-09 In-wheel motor drive apparatus

Country Status (2)

Country Link
JP (1) JP2016070294A (en)
WO (1) WO2016047442A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113565867A (en) * 2021-07-28 2021-10-29 上海交通大学 Bearing roller self-powered monitoring device for gravitational potential energy power generation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106838266B (en) * 2017-04-06 2023-02-03 重庆科谷机械有限公司 Bearing speed reducer retainer
JP7433769B2 (en) * 2019-02-13 2024-02-20 住友重機械工業株式会社 Eccentric swing type reduction gear
JP2022028440A (en) * 2020-08-03 2022-02-16 住友重機械工業株式会社 Speed reduction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0177127U (en) * 1987-11-11 1989-05-24
JPH05223142A (en) * 1991-01-31 1993-08-31 Sumitomo Heavy Ind Ltd Double row type inscribing engagement epicyclic gear structure
JP2000205362A (en) * 1999-01-20 2000-07-25 Nsk Ltd Troidal type continuously variable transmission
JP2010038357A (en) * 2008-07-10 2010-02-18 Ntn Corp In-wheel motor driving device
JP2010255713A (en) * 2009-04-23 2010-11-11 Ntn Corp In-wheel motor driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0177127U (en) * 1987-11-11 1989-05-24
JPH05223142A (en) * 1991-01-31 1993-08-31 Sumitomo Heavy Ind Ltd Double row type inscribing engagement epicyclic gear structure
JP2000205362A (en) * 1999-01-20 2000-07-25 Nsk Ltd Troidal type continuously variable transmission
JP2010038357A (en) * 2008-07-10 2010-02-18 Ntn Corp In-wheel motor driving device
JP2010255713A (en) * 2009-04-23 2010-11-11 Ntn Corp In-wheel motor driving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113565867A (en) * 2021-07-28 2021-10-29 上海交通大学 Bearing roller self-powered monitoring device for gravitational potential energy power generation
CN113565867B (en) * 2021-07-28 2022-03-25 上海交通大学 Bearing roller self-powered monitoring device for gravitational potential energy power generation

Also Published As

Publication number Publication date
JP2016070294A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
WO2015186466A1 (en) In-wheel motor drive device
JP5374215B2 (en) Cycloid reducer, in-wheel motor drive device, and vehicle motor drive device
WO2015186467A1 (en) In-wheel motor drive device
JP2016114184A (en) Cycloid speed reducer and in-wheel motor drive with cycloid speed reducer
WO2015141387A1 (en) In-wheel motor drive device
US20160167505A1 (en) In-wheel motor drive device
JP2015137733A (en) In-wheel motor drive unit
WO2016047442A1 (en) In-wheel motor drive apparatus
JP2016166639A (en) Cycloid reduction gear and motor drive unit having the same
JP2016161117A (en) Cycloid speed reducer and motor drive device with cycloid speed reducer
JP2016014445A (en) In-wheel motor driving gear
JP2016179799A (en) Motor drive unit for vehicle
WO2015046087A1 (en) In-wheel motor drive device
WO2015060135A1 (en) In-wheel motor driving device
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
JP6324761B2 (en) In-wheel motor drive device
WO2015046086A1 (en) In-wheel motor drive device
JP2016160980A (en) Vehicular motor drive device
WO2015137088A1 (en) In-wheel motor drive device
JP6333579B2 (en) In-wheel motor drive device
JP2016151321A (en) In-wheel motor drive device
JP6396150B2 (en) In-wheel motor drive device
JP2016097771A (en) In-wheel motor drive unit
WO2015141389A1 (en) In-wheel motor drive device
JP2016035297A (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844929

Country of ref document: EP

Kind code of ref document: A1