WO2016017351A1 - Cycloidal speed reducer and in-wheel motor drive device provided with same - Google Patents

Cycloidal speed reducer and in-wheel motor drive device provided with same Download PDF

Info

Publication number
WO2016017351A1
WO2016017351A1 PCT/JP2015/068944 JP2015068944W WO2016017351A1 WO 2016017351 A1 WO2016017351 A1 WO 2016017351A1 JP 2015068944 W JP2015068944 W JP 2015068944W WO 2016017351 A1 WO2016017351 A1 WO 2016017351A1
Authority
WO
WIPO (PCT)
Prior art keywords
input shaft
lubricating oil
rolling bearing
oil passage
supply hole
Prior art date
Application number
PCT/JP2015/068944
Other languages
French (fr)
Japanese (ja)
Inventor
牧野 智昭
功 平井
Original Assignee
Ntn株式会社
牧野 智昭
功 平井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 牧野 智昭, 功 平井 filed Critical Ntn株式会社
Publication of WO2016017351A1 publication Critical patent/WO2016017351A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to a cycloid reducer and an in-wheel motor drive device including the same.
  • an in-wheel motor drive device is housed inside the wheel or disposed near the wheel, so that the weight and size of the in-wheel motor drive device are the unsprung weight (running performance) of the vehicle and the cabin space. Affects the size of For this reason, the in-wheel motor drive device needs to be as light and compact as possible. On the other hand, the in-wheel motor drive device requires a large torque to drive the wheels. In order to satisfy these requirements at the same time, for example, in Patent Document 1 below, a high-rotation motor of about 15000 rpm, for example, is adopted as a motor unit for generating a driving force, and the motor unit and wheels are connected and fixed. 2. Description of the Related Art An in-wheel motor drive device has been proposed that employs a cycloid speed reducer that is compact and can provide a high reduction ratio in a speed reduction portion that is to be provided with a bearing portion.
  • the cycloid reducer is mainly an input shaft having an eccentric portion and a curve that is rotatably fitted to the outer periphery of the eccentric portion and performs a revolving motion around the rotational axis as the input shaft rotates.
  • the input shaft is connected to the rotation shaft of the motor unit so as to be able to transmit torque, and is supported rotatably with respect to the output shaft via a rolling bearing (input shaft support bearing).
  • the input shaft includes an axial oil passage extending in the axial direction inside the input shaft, and an oil supply hole extending in the radial direction and discharging and supplying lubricating oil flowing through the axial oil passage into the reduction gear.
  • the oil supply hole is provided so as to open, for example, on the outer diameter surface of the eccentric portion of the input shaft (see FIG. 1 of Patent Document 1). 13 and FIG. 15).
  • the problem to be solved by the present invention is a cycloid capable of effectively suppressing wear at the fitting portion between the input shaft and its support bearing, and further, wear on the inner ring inner surface of the input shaft support bearing.
  • An object of the present invention is to provide a speed reducer and to provide a cycloid speed reducer excellent in acoustic performance, durability life, and the like, and, in turn, an in-wheel motor drive device equipped with the speed reducer.
  • the present invention which has been devised to solve the above-mentioned problems, is fitted with an input shaft having an eccentric portion, and is rotatably fitted to the outer periphery of the eccentric portion via a first rolling bearing.
  • a curved plate that performs a revolving motion around the rotation axis, a plurality of outer pins that engage with the outer periphery of the curved plate to cause the curved plate to rotate, and the rotational motion of the curved plate to turn the output shaft.
  • a motion converting mechanism for converting, and a second rolling bearing that rotatably supports the input shaft with respect to the output shaft.
  • the input shaft has an axial oil passage extending in the axial direction and a radial direction extending in the axial direction.
  • a cycloid reduction gear provided with a first oil supply hole for supplying lubricating oil flowing in the axial oil passage to the first rolling bearing, and fitting the second rolling bearing to the input shaft by clearance fitting And the input shaft extends in the radial direction and the inner diameter end opens into the axial oil passage.
  • the diameter end portion is provided with a second oil supply holes opened in the fitting portion between the second rolling bearing.
  • the lubricating oil flowing in the axial oil passage of the input shaft is fitted to the fitting portion between the input shaft and the second rolling bearing (the second rolling bearing is fitted to the input shaft by a clearance fit.
  • the outer diameter end portion of the second oil supply hole is opened at the axially central portion of the fitting portion. In this way, the lubricating oil can be easily spread over the entire area of the fitting portion, so that wear of the fitting portion can be more effectively prevented.
  • the eccentric portion is provided at two positions in the axial direction of the input shaft with a phase difference of 180 °. Is preferred.
  • the second oil supply hole can be provided at a position (two places) in which the phase is different by 90 ° on one side and the other side in the circumferential direction with respect to the eccentric direction of the eccentric portion. In this way, regardless of the rotation direction of the input shaft, the outer diameter end of one of the second oil supply holes can be positioned on the inlet side of the load-loading area of the second rolling bearing (details will be described later). To do). Therefore, the lubricating oil supplied to the bearing fitting portion via the second oil supply hole is efficiently supplied to a region where the load is substantially loaded in the fitting portion as the input shaft rotates. Can do.
  • a ball bearing having an inner ring and an outer ring that rotate relative to each other via balls can be used.
  • case-hardened steel which is a kind of low-carbon steel, is relatively soft and excellent in workability before heat treatment, so that a predetermined shape can be obtained easily and with high accuracy.
  • carburizing quenching and tempering is applied to the workpiece made of case-hardened steel as a heat treatment, a hardened surface layer that can improve the wear resistance and strength of the surface layer while securing the toughness required for the core is formed. can do.
  • carburizing, quenching, and tempering have flexibility for small changes in shape as compared with other heat treatment methods (specifically, high frequency heat treatment) that can form a surface hardened layer similar to the above, so the cost required for heat treatment. Is less.
  • the cycloidal speed reducer according to the present invention described above can be preferably applied to a speed reduction part that constitutes an in-wheel motor drive device having a motor part, a speed reduction part, and a wheel bearing part.
  • a speed reduction part that constitutes an in-wheel motor drive device having a motor part, a speed reduction part, and a wheel bearing part.
  • a cycloid reduction gear capable of effectively suppressing wear at the fitting portion between the input shaft and its support bearing, and further wear of the inner ring inner surface of the input shaft support bearing. Can do.
  • the cycloid reduction gear excellent in acoustic performance, durable life, etc. and by extension, the in-wheel motor drive device carrying this can be provided.
  • FIG. 2B is a sectional view taken along the line Z 1 -Z 1 shown in FIG. 2A.
  • FIG. 2B is a cross-sectional view taken along the line Z 2 -Z 2 shown in FIG. 2A.
  • FIG. 2 is a cross-sectional view taken along line ZZ in FIG. 1. It is explanatory drawing which shows the load which acts on the curve board which comprises the cycloid reduction gear shown in FIG.
  • FIG. 6B is a cross-sectional view of the rotary pump incorporated in the in-wheel motor drive device shown in FIG. It is an enlarged view of the input shaft shown in FIG.
  • FIG. 6B is a cross-sectional view taken along line Z 11 -Z 11 shown in FIG. 6A.
  • FIG. 6B is a cross-sectional view taken along line Z 12 -Z 12 shown in FIG. 6A.
  • FIG. 6B is a sectional view taken along line Z 13 -Z 13 shown in FIG. 6A.
  • FIG. 6B is a sectional view taken along the line Z 14 -Z 14 shown in FIG. 6A.
  • It is a schematic plan view of the electric vehicle carrying an in-wheel motor drive device. It is the schematic sectional drawing which looked at the electric vehicle of Drawing 7 from back.
  • the electric vehicle 11 includes an chassis that drives each of a chassis 12, a pair of front wheels 13 that function as steering wheels, a pair of rear wheels 14 that function as drive wheels, and left and right rear wheels 14.
  • a wheel motor drive device 21 As shown in FIG. 8, the rear wheel 14 is accommodated in the wheel house 12a of the chassis 12, and is fixed to the lower part of the chassis 12 via the suspension device 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the road surface by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms.
  • the suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface. desirable.
  • an in-wheel motor drive device 21 that rotates each of the left and right rear wheels 14 is incorporated in the left and right wheel houses 12 a, so that a motor, a drive shaft, a differential gear mechanism, and the like are mounted on the chassis 12. There is no need to provide it. Therefore, the electric vehicle 11 has an advantage that a large cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
  • an in-wheel motor drive device 21 as shown in FIG. 1 is employed.
  • the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and outputs the deceleration unit B to the rear wheel 14. (Refer to FIGS. 7 and 8) and a wheel bearing portion C for transmission to the casing 22, which are held by the casing 22.
  • the in-wheel motor drive device 21 has a lubrication mechanism that supplies lubricating oil to the motor part A and the speed reduction part B.
  • the motor part A and the speed reduction part B are mounted in the wheel house 12a (see FIG. 8) of the electric vehicle 11 while being housed in the casing 22.
  • the motor portion A includes a stator 23a fixed to the casing 22, a rotor 23b disposed opposite to the inside of the stator 23a via a radial gap, and a hollow motor rotating shaft 24 having a rotor 23b mounted on the outer periphery.
  • the motor rotating shaft 24 is rotatable at a rotation speed of about 15000 rpm.
  • the motor rotating shaft 24 has ends on one side in the axial direction (right side in FIG. 1, hereinafter also referred to as “inboard side”) and the other side (left side in FIG. 1 and hereinafter also referred to as “outboard side”). It is rotatably supported with respect to the casing 22 by rolling bearings 36, 36 respectively disposed in the section.
  • the rolling bearing 36 is a so-called ball bearing, and is disposed between the outer ring fitted and fixed to the inner diameter surface of the casing 22, the inner ring fitted and fixed to the outer diameter surface of the motor rotating shaft 24, and the outer ring and the inner ring. And a cage for holding the plurality of balls in a state of being separated in the circumferential direction.
  • the wheel bearing portion C includes a hub ring 32 having a hollow structure and a wheel bearing 33 that rotatably supports the hub ring 32 with respect to the casing 22.
  • the hub wheel 32 includes a cylindrical hollow portion 32a connected to the shaft portion 28b of the output shaft 28 constituting the speed reduction portion B, and a flange portion extending radially outward from the end portion on the outboard side of the hollow portion 32a. 32b integrally. Since the rear wheel 14 (see FIGS. 7 and 8) is connected and fixed to the flange portion 32b by the bolt 32c, the rear wheel 14 rotates integrally with the hub wheel 32 when the hub wheel 32 rotates.
  • the wheel bearing 33 has an inner member having an inner raceway surface 33 f formed directly on the outer diameter surface of the hub wheel 32 and an inner ring 33 a fitted to a small diameter step portion of the outer diameter surface, and an inner diameter surface of the casing 22.
  • the outer ring 33b fitted and fixed, a plurality of balls 33c disposed between the inner member and the outer ring 33b, a retainer 33d that holds the balls 33c in a circumferentially separated state, and a shaft of the wheel bearing 33 It is a double row angular contact ball bearing provided with the sealing member 33e which seals a direction both ends.
  • the main part of the speed reduction part B is composed of a cycloid speed reducer, the input shaft 25 that is rotationally driven by the motor part A, the output shaft 28 arranged coaxially with the input shaft 25, and the speed of the input shaft 25 is reduced. And a speed reduction mechanism that transmits the output to the output shaft 28.
  • the output shaft 28 transmits the rotation of the input shaft 25 decelerated by the deceleration mechanism to the wheel bearing portion C.
  • eccentric portions 25 a and 25 b whose shaft centers are eccentric with respect to the rotation shaft center of the input shaft 25 are provided at two positions in the axial direction of the input shaft 25.
  • Two eccentric portions 25 a and 25 b are provided integrally with the input shaft 25.
  • the two eccentric portions 25a and 25b are provided with phases different from each other by 180 ° in order to cancel the centrifugal force due to the eccentric motion to each other (to prevent the input shaft 25 from swinging).
  • the input shaft 25 is rotatably supported with respect to the output shaft 28 by rolling bearings (input shaft support bearings) 37 and 37 that are disposed apart from each other in two axial directions. Accordingly, the rolling bearings 37 and 37 correspond to the second rolling bearing referred to in the present invention.
  • One rolling bearing 37 is disposed on the inboard side with respect to the eccentric portion 25a to support the substantially central portion in the axial direction of the input shaft 25, and the other rolling bearing 37 is disposed on the outboard side with respect to the eccentric portion 25b. The end of the shaft 25 on the outboard side is supported.
  • Each rolling bearing 37 is a so-called ball bearing (deep groove ball bearing), and is fitted to an inner ring 37 a fitted to the outer diameter surface of the input shaft 25 and an inner diameter surface of the output shaft 28 as shown in FIG. 2A.
  • each rolling bearing 37 (the outer ring 37b) and the output shaft 28 and the fitting between each rolling bearing 37 (the inner ring 37a) and the input shaft 25 may all be a tight fitting.
  • the input shaft 25 fits a spline 25g (including serrations; the same applies hereinafter) formed on the outer periphery of the end portion on the inboard side to a spline formed on the inner periphery of the end portion on the outboard side of the motor rotation shaft 24.
  • the motor rotating shaft 24 is connected by so-called spline fitting. Thereby, the driving force of the motor part A is transmitted to the deceleration part B.
  • the input shaft 25 having the above configuration is formed of, for example, case-hardened steel such as SCM415, SCM420, and SCr420, and a hardened layer (surface hardened layer) H formed by carburizing, quenching, and tempering as heat treatment.
  • a hardened layer (surface hardened layer) H formed by carburizing, quenching, and tempering as heat treatment.
  • the hardness of the hardened layer H is about 660 to 780 in terms of Vickers hardness (Hv), and the hardness of the core (the portion where the hardened layer H is not formed) is about 25 to 38 in terms of Rockwell hardness C scale (HRC). It is.
  • the output shaft 28 has a shaft portion 28b and a flange portion 28a as shown in FIG.
  • the flange portion 28a is formed with a hole portion (through hole in the illustrated example) into which an end portion on the outboard side of the inner pin 31 described later is fitted and fixed.
  • the hole portion is a rotation of the speed reducer output shaft 28.
  • a plurality are formed at equal intervals on the circumference centered on the axis.
  • the shaft portion 28b is connected to the hub wheel 32 constituting the wheel bearing portion C by spline fitting.
  • the output shaft 28 is rotatably supported with respect to the outer pin housing 60 via rolling bearings 46 and 46.
  • the speed reduction mechanism is held at a fixed position of the outer pin housing 60 and the curved plates 26a and 26b that are rotatably fitted to the outer periphery of the eccentric portions 25a and 25b via the rolling bearings 41 and 41 (see FIG. 3).
  • a plurality of outer pins 27 engaged with the outer peripheral portions of the curved plates 26a, 26b, and a motion conversion mechanism for converting the rotational motion of the curved plates 26a, 26b into the rotational motion of the output shaft 28 are provided. Therefore, the rolling bearing 41 constitutes the first rolling bearing referred to in the present invention.
  • the curved plate 26a has a plurality of waveforms composed of trochoidal curves such as epitrochoid on the outer periphery thereof.
  • the curved plate 26a has axial through-holes 30a and 30b that open at both end faces thereof.
  • a plurality of through-holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive one inner pin 31 to be described later.
  • the through hole 30b is provided at the center of the curved plate 26a and is fitted to the eccentric portion 25a (rolling bearing 41) of the speed reducer input shaft 25.
  • the rolling bearing 41 has an inner raceway surface 42a on the outer diameter surface, and an inner ring 42 fitted to the outer diameter surface of the eccentric portion 25a, and an inner diameter surface of the through hole 30b of the curved plate 26a.
  • a cylindrical roller including a directly formed outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42a and the outer raceway surface 43, and a cage (not shown) that holds the cylindrical rollers 44. It is a bearing.
  • the inner ring 42 has flanges 42b that protrude radially outward from both axial ends of the inner raceway surface 42a.
  • the inner raceway surface 42a is formed on the inner ring 42 provided separately from the eccentric portion 25a.
  • the inner raceway surface is formed directly on the outer diameter surface of the eccentric portion 25a.
  • the inner ring 42 may be omitted.
  • the curved plate 26b has the structure similar to the curved plate 26a, and with respect to the eccentric part 25b by the rolling bearing 41 similar to the rolling bearing 41 which supports the curved plate 26a. It is supported rotatably.
  • each outer pin 27 includes a pair of rolling bearings (needle roller bearings) 61 and 61 and a pair of needle roller bearings arranged at the end portions on the inboard side and the outboard side, respectively. 61 and 61 are rotatably supported by the casing 22 via an outer pin housing 60 holding the inner periphery thereof. With this configuration, the contact resistance between the outer pin 27 and the curved plates 26a and 26b is reduced.
  • the outer pin housing 60 is supported in a floating state with respect to the casing 22 by a detent means (not shown) having an elastic support function.
  • This is a component of a motion conversion mechanism that absorbs a large radial load or moment load caused by turning or sudden acceleration / deceleration of the vehicle and converts the rotational motion of the curved plates 26a, 26b into the rotational motion of the reducer output shaft 28. This is to prevent damage.
  • Counterweights 29 are adjacently arranged on the outer sides in the axial direction of the eccentric portions 25a and 25b, respectively.
  • the counterweight 29 has a substantially fan shape and is fitted and fixed to the outer periphery of the input shaft 25.
  • Each counterweight 29 is arranged with a 180 ° phase shift from the eccentric portion 25a (or 25b) adjacent in the axial direction in order to cancel out the unbalanced inertia couple generated by the rotation of the curved plates 26a, 26b.
  • the motion conversion mechanism is composed of a plurality of inner pins 31 and a plurality of through holes 30a provided in the curved plates 26a and 26b.
  • the through hole 30 a is provided at a position corresponding to each of the plurality of inner pins 31.
  • the inner pins 31 are arranged at equal intervals on the circumference centering on the rotation axis of the output shaft 28, and the end portion on the outboard side is fixed to the hole provided in the flange portion 28 a of the output shaft 28. Has been.
  • a needle roller bearing 31a is provided on the outer periphery of the inner pin 31 inserted into the through hole 30a of the curved plates 26a, 26b. .
  • the inner diameter dimension of the through hole 30a is set larger than the outer diameter dimension of the inner pin 31 (referred to as “maximum outer diameter including the needle roller bearing 31a”; the same applies hereinafter).
  • the reduction part B (cycloid reduction gear) further has a stabilizer 31b.
  • the stabilizer 31b integrally includes a ring-shaped annular portion 31c and a cylindrical portion 31d extending from the inner diameter surface of the annular portion 31c toward the inboard side. It is fixed to the annular portion 31c.
  • the axis O 2 of the eccentric portion 25 a provided on the input shaft 25 is eccentric from the axis (rotation axis) O of the input shaft 25 by the amount of eccentricity e.
  • Eccentric portion 25a so that rotatably supports the curve plate 26a via a rolling bearing 41, the axis O 2 is also the axis of the curved plate 26a.
  • the outer peripheral portion of the curved plate 26a is formed by a waveform curve, and has concave portions 34 that are recessed inward in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that are engaged with the recesses 34 in the circumferential direction are arranged in the circumferential direction around the axis O of the input shaft 25.
  • the curve plates 26a and a plurality of circumferentially disposed around the through hole 30a is the axis O 2, the through holes 30a, is fixed to an output shaft 28 disposed on the input shaft 25 coaxially
  • the inner pin 31 is inserted. Since the inner diameter of the through hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolution movement of the curved plate 26a, and the output shaft 28 is extracted by taking out the rotational movement of the curved plate 26a. Rotate. At this time, the output shaft 28 has a higher torque and a lower rotational speed than the input shaft 25, and the curved plate 26a receives a load Fj as indicated by arrows in the figure from the plurality of inner pins 31.
  • the resultant force Fs of the plurality of loads Fi and Fj acts on the fitting portion of the input shaft 25 with the rolling bearings 41 and 37 via the rolling bearings 41 and 37.
  • the direction of the resultant force Fs changes due to the influence of the centrifugal force in addition to geometrical conditions such as the waveform shape of the curved plate 26a and the number of recesses 34.
  • the angle ⁇ formed by the force Fs substantially Fluctuates between 30 ° and 60 °.
  • the directions and magnitudes of the loads Fi and Fj change during one rotation of the input shaft 25.
  • the resultant force Fs acting on the input shaft 25 also varies in the direction and magnitude of the load. .
  • the concave portion 34 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state shown in FIG.
  • the lubricating mechanism supplies lubricating oil to various parts of the motor part A and the speed reducing part B.
  • a lubricating oil passage (not shown), a lubricating oil passage (not shown) provided inside the inner pin 31, a lubricating oil discharge port 22b provided in the casing 22, a lubricating oil reservoir 22d, and a lubricating oil passage 22e.
  • the main components are the lubricating oil passage 45 and the rotary pump 51 that is disposed in the casing 22 and pumps the lubricating oil to the circulating oil passage 45.
  • the white arrow shown in FIG. 1 indicates the direction in which the lubricating oil flows.
  • Lubricating oil passages 24 a and 24 b provided on the motor rotating shaft 24 extend in the axial direction and the radial direction inside the motor rotating shaft 24, respectively.
  • the lubricating oil passage 24 a is provided inside the input shaft 25.
  • a lubricating oil passage 25c extending in the axial direction is connected.
  • each of the lubricating oil passages 25a1 and 25b1 provided on the input shaft 25 and extending in the radial direction has an inner diameter end portion that opens into the lubricating oil passage 25c, and an outer diameter end portion that is an eccentric portion 25a. , 25b.
  • the lubricating oil passages 25 d 1 and 25 d 2 each have an inner diameter end portion that opens into the lubricating oil passage 25 c, and an outer diameter end portion of the rolling bearing (second rolling bearing) 37 of the outer diameter surface of the input shaft 25. It opens to fitting parts M1 and M2 into which the inner ring 37a is fitted.
  • the lubricating oil passage 25e extends in the axial direction from the end portion on the outboard side of the lubricating oil passage 25c, and opens to the outer end surface of the input shaft 25 on the outboard side.
  • Radially outer end portion of the lubricating oil passage 25d1 functioning as the second oil supply hole P 2 is opened in the axial center portion of the fitting portion M1 of the inboard side.
  • the lubricating oil passage 25d1 is provided at a position (two places) where the phase is different by 90 ° in the circumferential direction on one side and the other side with respect to the eccentric direction of the eccentric portion 25a (and 25b).
  • the outer diameter end portion of the lubricating oil passage 25d2 functioning as the second oil supply hole P 2 is opened in the axial center portion of the fitting portion M2 of the outboard side.
  • the lubricating oil passage 25d2 is provided at a position where the phase is different by 90 ° in the circumferential direction on one side and the other side with respect to the eccentric direction of the eccentric portion 25b (and 25a).
  • the lubricating oil discharge port 22 b provided in the casing 22 discharges the lubricating oil inside the speed reduction part B, and is provided in at least one location of the casing 22 at the position of the speed reduction part B. ing.
  • the lubricating oil discharge port 22b and the lubricating oil path 24a of the motor rotating shaft 24 are connected via a lubricating oil reservoir 22d, a lubricating oil path 22e, and a lubricating oil path 45. Therefore, the lubricating oil discharged from the lubricating oil discharge port 22b returns to the lubricating oil path 24a of the motor rotating shaft 24 through the lubricating oil path 22e, the circulating oil path 45, and the like.
  • the lubricating oil reservoir 22d has a function of temporarily storing the lubricating oil.
  • the circulating oil passage 45 provided in the casing 22 includes an axial oil passage 45a extending in the axial direction inside the casing 22, and end portions on the outboard side and the inboard side of the axial oil passage 45a. Are connected to each other, and are constituted by radial oil passages 45b and 45c extending in the radial direction.
  • the radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and the lubricating oil supplied to the axial oil passage 45a passes through the radial oil passage 45c to the motor rotating shaft 24. Is supplied to the lubricating oil passage 24a of the speed reducer and the lubricating oil passage 25c of the reduction gear input shaft 25.
  • the rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from being enlarged as a whole.
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, and between the rotors 52 and 53.
  • the cycloid pump includes a plurality of pump chambers 54 provided in the space, a suction port 55 communicating with the lubricating oil passage 22e, and a discharge port 56 communicating with the radial oil passage 45b of the circulation oil passage 45.
  • the inner rotor 52 rotates around the rotation center c 1
  • the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52.
  • the volume of the pump chamber 54 changes continuously.
  • the lubricating oil flowing into the pump chamber 54 from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45 b of the circulating oil passage 45.
  • the lubrication mechanism having the above configuration lubricates and cools each part of the motor part A and the speed reduction part B as follows.
  • the lubrication of the rotor 23b and the stator 23a is mainly supplied to the lubricating oil path 24a of the motor rotating shaft 24 via the circulating oil path 45 of the casing 22, as shown in FIG.
  • a part of the lubricating oil is discharged from the outer diameter end portion of the lubricating oil passage 24 b under the influence of the centrifugal force generated with the rotation of the motor rotating shaft 24 and the pressure of the rotary pump 51. That is, the lubricating oil discharged from the outer diameter end of the lubricating oil passage 24b is supplied to the rotor 23b and then supplied to the stator 23a.
  • the rolling bearing 36 that supports the end of the motor rotating shaft 24 on the inboard side is mainly lubricated by a part of the lubricating oil flowing through the circulating oil passage 45 oozing out between the casing 22 and the motor rotating shaft 24. Is done.
  • the rolling bearing 36 that supports the end portion of the motor rotating shaft 24 on the outboard side is mainly discharged from the lubricating oil passage 24b and travels along the inner wall surface of the casing 22 where the motor portion A is accommodated. It is lubricated by the falling lubricant.
  • the lubricating oil flowing into the lubricating oil passage 25c (axial oil passage) of the input shaft 25 via the lubricating oil passage 24a of the motor rotating shaft 24 and flowing through the lubricating oil passage 25c is supplied to the input shaft 25.
  • centrifugal and radially outer end of the lubricating oil passage 25d1,25d2 as the lubricating oil passage 25a1,25b1 and second oil supply hole P 2 as a first oil supply hole P 1 under the influence of the pressure of the rotary pump 51 caused by the rotation of the Is discharged into the deceleration portion B (deceleration mechanism).
  • the discharged lubricating oil is supplied to various locations in the speed reduction portion B mainly by centrifugal force, and lubricates and cools the various locations in the speed reduction portion B.
  • lubricating oil discharged from the radially outer end portion of the lubricating oil passage 25a1,25b1 as a first oil supply hole P 1 is a rolling bearing for supporting the curved plates 26a, a 26b 41, 41 (see FIG. 3) Is supplied to the raceway surfaces 42a and 43 and the cylindrical rollers 44 are lubricated. Further, due to the action of centrifugal force, the abutting portions between the curved plates 26a and 26b and the inner pin 31, the abutting portions between the curved plates 26a and 26b and the outer pin 27, etc. are moved radially outward while being lubricated.
  • the bearings 37 and 37 are supplied to the inside of the rolling bearings 37 and 37 by the action of centrifugal force while lubricating the fitting portions M1 and M2 with the rolling bearings 37 and 37 and the inner ring 37a inner diameter surface of each rolling bearing 37. Lubricate.
  • the lubricating oil discharged from the outer diameter end of the lubricating oil passage 25d1 passes through a lubricating oil passage (not shown) in the stabilizer 31b and a lubricating oil passage (not shown) in the inner pin 31. It is supplied to a rolling bearing 31a that supports the inner pin 31. Further, similarly to the lubricating oil discharged from the lubricating oil passages 25a1 and 25b1, due to centrifugal force, the abutting portion between the curved plates 26a and 26b and the inner pin 31 and the contacting between the curved plates 26a and 26b and the outer pin 27 are achieved. The part, the rolling bearing 61 that supports the outer pin 27, the rolling bearing 46 that supports the reduction gear output shaft 28, and the like are moved radially outward while being lubricated.
  • the lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil storage portion 22d.
  • the lubricating oil storage part 22d is provided between the lubricating oil discharge port 22b and the lubricating oil passage 22e connected to the rotary pump 51, the lubricating oil is agitated by stirring especially during high-speed rotation. Even if the amount of the lubricating oil staying inside and reaching the lubricating oil discharge port 22b temporarily decreases, the lubricating oil stored in the lubricating oil reservoir 22d can be returned to the lubricating oil passages 24a and 25c.
  • the lubricating oil can be stably supplied to the motor part A and the speed reducing part B. As a result, it is possible to prevent heat generation at various portions of the deceleration portion B.
  • the in-wheel motor drive device 21 is attached to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
  • the inner rings 37a of the rolling bearings (second rolling bearings) 37 and 37 that support the input shaft 25 are clearance-fitted to the input shaft 25.
  • the second oil supply hole P 2 lubricating oil passage 25d1, the input shaft 25 extends in the radial direction, and the outer diameter end portion opens to the fitting portions M1, M2 with the rolling bearings 37, 37. 25d2).
  • the lubricating oil flowing in the lubricating oil passage 25c (axial oil passage) of the input shaft 25 is used as the fitting portions M1 and M2 (the rolling bearing 37 for the rolling bearing 37) between the input shaft 25 and the rolling bearings 37, 37.
  • the second outer diameter end of the oil supply hole P 2 since is opened in the axial center portion of the fitting portion M1, M2, the fitting portion M1, M2 of the rolling bearings 37 and 37, and rolling each Lubricating oil is easily spread over the entire inner diameter surface of the inner ring 37a of the bearing 37. Thereby, the wear of the fitting portions M1 and M2 and the inner surface of the inner ring 37a of each rolling bearing 37 can be more effectively prevented.
  • the opening diameter of the radially outer end portion of the second oil supply hole P 2 is preferably 40% or less of the ball 37c diameter of the rolling bearing 37.
  • the opening diameter of the second outer diameter end of the oil supply hole P 2 is preferably at least 10% of the diameter of the ball 37c.
  • the load bearings 41 and 37, and further, the load on the fitting portions of the input shaft 25 with the rolling bearings 41 and 37 acts, but the direction and magnitude of the load vary depending on various conditions, and the load actually acts on a partial region in the circumferential direction.
  • the input shaft 25 rotates counterclockwise when viewed from the outboard side
  • the end portion on the outboard side of the input shaft 25 is supported as the input shaft 25 rotates.
  • 6B to 6E are hatched in each of the fitting portion) and the inner ring 37a (and its fitting portion M1) of the rolling bearing 37 that supports the substantially central portion of the input shaft 25 in the axial direction.
  • a load acts on the load area E.
  • the lubricating oil passage 25d2 (second oil supply hole P 2 ) opened in the fitting portion M2 has one side in the circumferential direction and the other side in the eccentric direction of the eccentric portions 25a and 25b.
  • the outer diameter end portion of one lubricating oil passage 25d2 is a rolling bearing 37 that supports the end portion of the input shaft 25 on the outboard side. Open to the entrance side of the load area E (see FIG. 6B).
  • the lubricating oil passage 25d1 (second oil supply hole P 2 ) opened to the fitting portion M1 has a phase that is 90 ° different in the circumferential direction on one side and the other side with respect to the eccentric direction of the eccentric portions 25a and 25b.
  • the outer diameter end portion of one lubricating oil passage 25d1 opens to the inlet side of the load load region E of the rolling bearing 37 that supports the substantially central portion in the axial direction of the input shaft 25 ( (See FIG. 6E).
  • the load area E is in relation to the symmetry plane including the eccentric direction of the eccentric portions 25a and 25b and the rotational axis of the input shaft.
  • the outer diameter ends of the other lubricating oil passages 25d2 and 25d1 open to the inlet side of the load load area E.
  • the second oil supply hole P 2, the eccentric portion 25a if provided phase at two locations having different 90 ° in the one circumferential direction and relative to the eccentric direction of 25b the other side, the rotational direction of the input shaft 25 Regardless, the outer diameter end portion of any one of the second oil supply holes P ⁇ b > 2 can be positioned on the inlet side of the load load area E of each rolling bearing 37. Therefore, when the rotation of the input shaft 25, the lubricating oil supplied to the fitting portion M1, M2 via the second oil supply hole P 2, the fitting portion M1 of the rolling bearing 37, M2, and each rolling bearing 37 It can supply efficiently to the area
  • the fitting portions M1, M2 with the second rolling bearing (rolling bearing 37) and the inner diameter surface of the inner ring 37a of each rolling bearing 37 are more effectively worn. Can be prevented.
  • the second oil supply hole P 2 by forming the above manner to prevent whirling of the input shaft 25 can be avoided the collapse of the weight balance of the input shaft 25 due to the provision of the (1) second oil supply hole P 2 (2) Since there is no need to create and use two types of input shafts 25 according to the rotation direction, it is possible to reduce the management man-hours and to prevent erroneous assembly of the input shafts 25. You can also enjoy the benefits of being able to.
  • the lubricating oil passage 25a1,25b1 functioning as the first oil supply hole P 1 it is provided at positions having different 180 ° phase relative to the eccentric direction of the eccentric portion 25a, 25b, in this case
  • the outer diameter end portions of the lubricating oil passages 25a1 and 25b1 open near the inlet side of the load load area E of the rolling bearings 41 and 41 that support the curved plates 26a and 26b on the outer diameter surface of the input shaft 25 ( (See FIGS. 6D and 6C). Therefore, the lubricating oil supplied to the raceway surfaces 42 a and 43 of the rolling bearing 41 through the first oil supply hole P 1 and the oil holes provided in the inner ring 42 of the rolling bearing 41 is caused by the rotation of the input shaft 25.
  • the load can be efficiently supplied to the load area E where the load is substantially applied.
  • the input shaft 25 has a hardened layer H formed by carburizing, quenching and tempering on the surface layer portion, the surface hardness of the outer diameter surface of the speed reducer input shaft 25 is sufficiently increased. It has been. Therefore, in accordance with the operation of the deceleration unit B, the rolling bearings (first rolling bearings) 41 and 41 that support the curved plates 26a and 26b and the rolling bearings (second rolling bearings) 37 and 37 that support the input shaft 25 are provided. Even when a load is applied to the input shaft 25 through the outer diameter surface, it is possible to prevent the outer diameter surface of the input shaft 25 from being worn or damaged.
  • size of a load are from the curved board 26a, 26b with respect to the input shaft 25 at the time of the drive of the motor part A. Fluctuating radial load and moment load are applied. For this reason, torque transmission in the spline fitting portion formed by fitting the spline formed on the motor rotation shaft 24 and the spline 25g formed on the input shaft 25 is the center of the motor rotation shaft 24 and the input shaft 25. Is often performed in a state of being tilted to some extent or being misaligned.
  • the input shaft 25 since the hardened layer H is not formed in the core part of the input shaft 25 formed of case-hardened steel, the input shaft 25 has toughness. Thereby, it is possible to withstand an instantaneous impact load that is input to the input shaft 25 via the wheel bearing portion C during driving of the vehicle.
  • the input shaft 25 of the present embodiment includes an eccentric portion 25a, and 25b together, and the lubricating oil passage 25c as axial oil passage constituting a lubrication mechanism, lubrication of the first oil supply hole P 1 oil passage 25A1,25b1, and the second oil supply hole on relationships with such lubricating oil passage 25d1,25d2 as P 2, the shape is increased complexity and manufacturing cost is concerned.
  • the forming material of the input shaft 25 case hardening steel that is relatively soft and rich in workability is selected at the stage before carburizing, quenching, and tempering, so that the production cost of the input shaft 25 is effectively suppressed. Can do.
  • the rotor 23b made of a permanent magnet or a magnetic material rotates by receiving an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a. Accordingly, when the speed reducer input shaft 25 connected to the motor rotating shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotational axis of the speed reducer input shaft 25. At this time, the outer pin 27 engages with the curved waveform provided on the outer periphery of the curved plates 26a and 26b in the circumferential direction, and the curved plates 26a and 26b are opposite to the rotation direction of the speed reducer input shaft 25. To rotate around.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. Thereby, the revolution movement of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the output shaft 28. At this time, the rotation of the input shaft 25 is transmitted to the output shaft 28 after being decelerated by the decelerating unit B. Therefore, even when the low-torque, high-rotation type motor unit A is employed, the drive wheels (rear wheels) 14 It is possible to transmit the torque required for.
  • the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing rolling bearings (needle roller bearings) 61 and 31a that rotatably support the outer pin 27 and the inner pin 31, friction between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31 is achieved. Since resistance is reduced, the power transmission efficiency in the deceleration part B improves.
  • the in-wheel motor drive device 21 of the present embodiment is lightweight and compact as a whole device. Therefore, if the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the unsprung weight can be suppressed, so that the electric vehicle 11 excellent in running stability and NVH characteristics can be realized.
  • the in-wheel motor driving device 21 As described above, the in-wheel motor driving device 21 according to the embodiment of the present invention has been described. However, the in-wheel motor driving device 21 can be variously modified without departing from the gist of the present invention. is there.
  • the material for forming the motor rotation shaft 24 is not particularly mentioned, but the motor rotation shaft 24 is made of case-hardened steel that has been carburized, quenched, and tempered, like the input shaft 25. Can be formed.
  • the thermal expansion amounts of the motor rotating shaft 24 and the input shaft 25 are substantially equal, it is possible to prevent the connection state of the two shafts 24 and 25 from changing as much as possible even when the motor unit A is driven. Can do. Thereby, power transmission between the two shafts 24 and 25 can be stably performed.
  • the motor rotating shaft 24 is formed with the said material, the motor rotating shaft 24 can be produced simply and surface hardness and abrasion resistance in the fitting part of other members (the rolling bearing 36 and the rotor 23b) are good. A motor rotating shaft 24 that is excellent and has the required toughness can be realized.
  • the cycloid pump is used as the rotary pump 51.
  • the rotary pump 51 is not limited to this, and any rotary pump driven using the rotation of the output shaft 28 can be used.
  • the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the eccentric portions 25a and 25b are provided at two positions in the axial direction of the input shaft 25.
  • the number of formed eccentric portions can be arbitrarily set.
  • the eccentric portions can be provided at three positions in the axial direction of the input shaft 25.
  • the eccentric portions change the phase by 120 ° so as to cancel the centrifugal force generated by the rotation of the input shaft 25. It is preferable to provide it.
  • the motion conversion mechanism is configured by the inner pin 31 having one end fixed to the flange portion 28a of the output shaft 28 and the through hole 30a provided in the curved plates 26a and 26b. It is possible to adopt an arbitrary configuration that can transmit the rotation of the part B to the hub wheel 32.
  • the vehicle decelerates or slopes are reversed. When it falls, the power from the rear wheel 14 side can be converted into high-rotation and low-torque rotation by the speed reduction part B and transmitted to the motor part A, and the motor part A can generate power. .
  • the electric power generated here can be stored in a battery and used as electric power for driving the motor unit A and electric power for operating other electric devices provided in the vehicle.
  • the present invention is applied to the in-wheel motor drive device 21 that employs a radial gap motor for the motor portion A.
  • the present invention is configured such that the stator and the rotor are connected to the motor portion A via an axial gap.
  • the present invention can also be preferably applied to an in-wheel motor drive device that employs an axial gap motor to be opposed.
  • the in-wheel motor drive device in which the cycloid reduction gear according to the present invention is applied to the speed reduction part B is not only the rear wheel drive type electric vehicle 11 having the rear wheel 14 as the drive wheel, but also the front wheel 13 as the drive wheel.
  • the present invention can also be applied to a front-wheel drive type electric vehicle and a four-wheel drive type electric vehicle using the front wheels 13 and the rear wheels 14 as drive wheels.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle.
  • cycloid reduction gear according to the present invention can be preferably applied to a drive device for an electric vehicle other than the in-wheel motor drive device, for example, a reduction portion of an on-board drive device (not shown).
  • Input shaft formed of case-hardened steel and carburized, quenched, and tempered to provide a hardened layer on the surface layer.
  • the surface hardness is about 660 to 780 HV in terms of Vickers hardness.
  • Support bearing Deep groove ball bearing using a ball having a diameter of 7.9375 mm, each member formed of SUJ2 material that has been subjected to continuous quenching (surface hardness is 58 on the Vickers hardness C scale) ⁇ About 63).
  • the wear amount in the support bearing fitting portion of the input shaft and the wear amount in the inner ring inner surface of the support bearing were The maximum radial dimension was about 30 ⁇ m and about 20 ⁇ m, respectively.
  • the wear amount at the support bearing fitting portion of the input shaft and the wear amount at the inner ring inner surface of the support bearing were both less than 1 ⁇ m in the radial dimension.
  • the support bearing raceway surface of the input shaft was worn by the wear powder, but in the specimen according to the example, the surface condition of the support bearing raceway surface of the input shaft was good. there were.
  • the ball diameter using a deep groove ball bearing is 5.55625Mm, and was also performed to confirm the wear amount for that the second opening diameter of the oil supply hole P 2 and 1 mm. Also in this case, as described above, the wear amount at the support bearing fitting portion of the input shaft and the wear amount at the inner ring inner surface of the support bearing were both less than 1 ⁇ m in the radial dimension. The surface condition of the support bearing raceway surface of the input shaft was also good as described above.
  • the present invention is extremely useful in realizing a cycloid reduction gear that can effectively suppress wear at the fitting portion between the input shaft and its support bearing, and further wear on the raceway surface of the support bearing. It was confirmed.

Abstract

This cycloidal speed reducer is provided with an input shaft (25), which has an eccentric section (25a, 25b), and roller bearings (37, 37) that rotatably support the input shaft (25) with respect to an output shaft (28). The input shaft (25) is provided with a lubricating oil path (25c) extending in the axial direction therewithin, and a first oil supply hole (P1) that extends in the radial direction and supplies the lubricating oil flowing through the lubricating oil path (25c) to roller bearings (41, 41) that support a curved plate (26a, 26b). The roller bearings (37, 37) are loosely fitted to the input shaft (25), and the input shaft (25) further has a second oil supply hole (P2) that extends in the radial direction and of which the inner end opens at the lubricating oil path (25c) and the outer end opens at the fitting section (M1, M2) of the roller bearings (37, 37).

Description

サイクロイド減速機およびこれを備えたインホイールモータ駆動装置Cycloid speed reducer and in-wheel motor drive apparatus equipped with the same
 本発明は、サイクロイド減速機およびこれを備えたインホイールモータ駆動装置に関する。 The present invention relates to a cycloid reducer and an in-wheel motor drive device including the same.
 周知のように、インホイールモータ駆動装置は、装置全体がホイールの内部に収容され、あるいはホイール近傍に配置される関係上、その重量や大きさが車両のばね下重量(走行性能)や客室スペースの広さに影響を及ぼす。このため、インホイールモータ駆動装置は、できるだけ軽量・コンパクト化する必要がある。その一方、インホイールモータ駆動装置は、車輪を駆動するために大きなトルクを必要とする。これらの要請を同時に満足すべく、例えば下記の特許文献1には、駆動力を発生させるモータ部に、例えば15000rpm程度の高回転型のモータを採用すると共に、モータ部と車輪を連結固定する車輪用軸受部との間に設けるべき減速部に、コンパクトで高い減速比が得られるサイクロイド減速機を採用したインホイールモータ駆動装置が提案されている。 As is well known, an in-wheel motor drive device is housed inside the wheel or disposed near the wheel, so that the weight and size of the in-wheel motor drive device are the unsprung weight (running performance) of the vehicle and the cabin space. Affects the size of For this reason, the in-wheel motor drive device needs to be as light and compact as possible. On the other hand, the in-wheel motor drive device requires a large torque to drive the wheels. In order to satisfy these requirements at the same time, for example, in Patent Document 1 below, a high-rotation motor of about 15000 rpm, for example, is adopted as a motor unit for generating a driving force, and the motor unit and wheels are connected and fixed. 2. Description of the Related Art An in-wheel motor drive device has been proposed that employs a cycloid speed reducer that is compact and can provide a high reduction ratio in a speed reduction portion that is to be provided with a bearing portion.
 上記のサイクロイド減速機は、主に、偏心部を有する入力軸と、偏心部の外周に回転自在に嵌合され、入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、曲線板の外周部に係合して曲線板に自転運動を生じさせる複数の外ピンと、曲線板の自転運動を出力軸の回転運動に変換する運動変換機構とを備える。入力軸は、モータ部の回転軸とトルク伝達可能に連結され、転がり軸受(入力軸支持軸受)を介して出力軸に対して回転自在に支持されている。 The cycloid reducer is mainly an input shaft having an eccentric portion and a curve that is rotatably fitted to the outer periphery of the eccentric portion and performs a revolving motion around the rotational axis as the input shaft rotates. A plate, a plurality of outer pins that engage with the outer peripheral portion of the curved plate to cause the curved plate to rotate, and a motion conversion mechanism that converts the rotational motion of the curved plate into the rotational motion of the output shaft. The input shaft is connected to the rotation shaft of the motor unit so as to be able to transmit torque, and is supported rotatably with respect to the output shaft via a rolling bearing (input shaft support bearing).
 入力軸には、入力軸の内部を軸方向に延びた軸方向油路と、径方向に延び、軸方向油路内を流通する潤滑油を減速機の内部に吐出・供給する給油孔とが設けられる。給油孔は、曲線板を支持する転がり軸受に対して効率的に潤滑油を供給するために、入力軸のうち、例えば偏心部の外径面に開口するように設けられる(特許文献1の図13および図15を参照)。 The input shaft includes an axial oil passage extending in the axial direction inside the input shaft, and an oil supply hole extending in the radial direction and discharging and supplying lubricating oil flowing through the axial oil passage into the reduction gear. Provided. In order to efficiently supply the lubricating oil to the rolling bearing that supports the curved plate, the oil supply hole is provided so as to open, for example, on the outer diameter surface of the eccentric portion of the input shaft (see FIG. 1 of Patent Document 1). 13 and FIG. 15).
特開2012-141028号公報JP 2012-141028 A
 ところで、出力軸および入力軸に対する入力軸支持軸受の嵌め合いを何れもしまり嵌めとした場合、減速機の組立性が悪化する他、入力軸支持軸受の組込み過程で軸受軌道面に圧痕等が生じて入力軸支持軸受の軸受性能や耐久寿命に悪影響が及ぶおそれがある。そのため、出力軸および入力軸に対する入力軸支持軸受の嵌め合いを、それぞれ、しまり嵌めおよびすきま嵌めとすることが検討されている。 By the way, if the fitting of the input shaft support bearing to the output shaft and the input shaft is both a tight fit, the assemblage of the reducer will deteriorate and indentation will occur on the bearing raceway surface during the process of assembling the input shaft support bearing. This may adversely affect the bearing performance and durability of the input shaft support bearing. For this reason, it has been studied that the fitting of the input shaft support bearing to the output shaft and the input shaft is an interference fit and a clearance fit, respectively.
 しかしながら、入力軸に対する入力軸支持軸受の嵌め合いをすきま嵌めとした場合、入力軸に上記のような給油孔を設けていても、高トルク出力での運転や長時間の高速運転、あるいは旋回走行の繰り返しにより、入力軸のうち、その支持軸受が嵌合される部位(支持軸受嵌合部)や、入力軸支持軸受の内輪内径面等が摩耗し易く、この原因が支持軸受嵌合部近傍に供給される潤滑油量が少ない為であると判明した。支持軸受嵌合部や入力軸支持軸受の内輪内径面が摩耗すると、入力軸支持軸受による入力軸の支持位置が初期位置からずれ易くなるため、ミスアライメントにより減速機から生じる異音・振動が増加するおそれが高まる。また、各部の摩耗に伴って生じた摩耗粉が潤滑油と共に減速機内部に拡散し、更なる摩耗や圧痕の発生原因、ひいては異音・振動等の発生原因となるおそれがある。 However, when the fitting of the input shaft support bearing to the input shaft is a clearance fit, even if the input shaft is provided with the oil supply hole as described above, operation with high torque output, long-time high speed operation, or turning travel The part of the input shaft where the support bearing is fitted (support bearing fitting portion), the inner ring inner surface of the input shaft support bearing, and the like are likely to wear due to repetition of the above, and this is caused by the vicinity of the support bearing fitting portion. It was found that this was because the amount of lubricating oil supplied to was small. If the inner diameter surface of the inner ring of the support bearing fitting part or input shaft support bearing is worn, the input shaft support position of the input shaft support bearing is likely to deviate from the initial position, increasing the noise and vibration generated from the reducer due to misalignment. The risk of doing so increases. In addition, wear powder generated as a result of wear of each part diffuses into the reducer together with the lubricating oil, which may cause further wear and indentation, and thus cause abnormal noise and vibration.
 上記の実情に鑑み、本発明が解決すべき課題は、入力軸とその支持軸受との嵌合部における摩耗、さらには入力軸支持軸受の内輪内径面の摩耗等を効果的に抑制し得るサイクロイド減速機を実現し、これを通じて、音響性能や耐久寿命等に優れたサイクロイド減速機、ひいてはこれを搭載したインホイールモータ駆動装置を提供することにある。 In view of the above circumstances, the problem to be solved by the present invention is a cycloid capable of effectively suppressing wear at the fitting portion between the input shaft and its support bearing, and further, wear on the inner ring inner surface of the input shaft support bearing. An object of the present invention is to provide a speed reducer and to provide a cycloid speed reducer excellent in acoustic performance, durability life, and the like, and, in turn, an in-wheel motor drive device equipped with the speed reducer.
 上記の課題を解決するために創案された本発明は、偏心部を有する入力軸と、偏心部の外周に第1転がり軸受を介して回転自在に嵌合され、入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、曲線板の外周部に係合して曲線板に自転運動を生じさせる複数の外ピンと、曲線板の自転運動を出力軸の回転運動に変換する運動変換機構と、入力軸を出力軸に対して回転自在に支持する第2転がり軸受とを備え、入力軸に、その内部を軸方向に延びた軸方向油路と、径方向に延び、軸方向油路内を流通する潤滑油を第1転がり軸受に供給する第1給油孔とが設けられたサイクロイド減速機であって、第2転がり軸受を入力軸に対してすきま嵌めで嵌合し、入力軸に、径方向に延び、内径端部が軸方向油路に開口すると共に外径端部が第2転がり軸受との嵌合部に開口した第2給油孔を設けたことを特徴とする。なお、本発明でいう「第1転がり軸受」および「第2転がり軸受」は、それぞれ、上述した「曲線板を支持する転がり軸受」および「入力軸支持軸受」に対応する。 The present invention, which has been devised to solve the above-mentioned problems, is fitted with an input shaft having an eccentric portion, and is rotatably fitted to the outer periphery of the eccentric portion via a first rolling bearing. A curved plate that performs a revolving motion around the rotation axis, a plurality of outer pins that engage with the outer periphery of the curved plate to cause the curved plate to rotate, and the rotational motion of the curved plate to turn the output shaft. A motion converting mechanism for converting, and a second rolling bearing that rotatably supports the input shaft with respect to the output shaft. The input shaft has an axial oil passage extending in the axial direction and a radial direction extending in the axial direction. A cycloid reduction gear provided with a first oil supply hole for supplying lubricating oil flowing in the axial oil passage to the first rolling bearing, and fitting the second rolling bearing to the input shaft by clearance fitting And the input shaft extends in the radial direction and the inner diameter end opens into the axial oil passage. Wherein the diameter end portion is provided with a second oil supply holes opened in the fitting portion between the second rolling bearing. The “first rolling bearing” and the “second rolling bearing” in the present invention correspond to the “rolling bearing that supports the curved plate” and the “input shaft support bearing”, respectively.
 上記構成によれば、入力軸の軸方向油路内を流通する潤滑油を、入力軸と第2転がり軸受との嵌合部(第2転がり軸受を入力軸に対してすきま嵌めで嵌合することにより形成される半径方向すきま)、ひいては、第2転がり軸受の内部に効率良く供給することができる。これにより、入力軸のうち第2転がり軸受との嵌合部の摩耗や、第2転がり軸受の内輪内径面の摩耗を効果的に防止して、ミスアライメントによる異音・振動の発生を防止することができる他、第2転がり軸受の内部摩耗を効果的に防止して、第2転がり軸受の内部摩耗に起因した異音・振動の発生を防止することができる。そのため、音響性能や耐久寿命等に優れたサイクロイド減速機を実現することができる。 According to the above configuration, the lubricating oil flowing in the axial oil passage of the input shaft is fitted to the fitting portion between the input shaft and the second rolling bearing (the second rolling bearing is fitted to the input shaft by a clearance fit. Can be efficiently supplied to the inside of the second rolling bearing. This effectively prevents wear of the fitting portion of the input shaft with the second rolling bearing and wear of the inner ring inner surface of the second rolling bearing, and prevents abnormal noise and vibration due to misalignment. In addition, it is possible to effectively prevent the internal wear of the second rolling bearing and to prevent the generation of abnormal noise and vibration due to the internal wear of the second rolling bearing. Therefore, it is possible to realize a cycloid reducer that is excellent in acoustic performance, durability life, and the like.
 第2給油孔の外径端部は、上記嵌合部の軸方向中央部に開口させるのが好ましい。このようにすれば、上記嵌合部の全域に潤滑油を行き渡らせ易くなるので、上記嵌合部の摩耗を一層効果的に防止できる。 It is preferable that the outer diameter end portion of the second oil supply hole is opened at the axially central portion of the fitting portion. In this way, the lubricating oil can be easily spread over the entire area of the fitting portion, so that wear of the fitting portion can be more effectively prevented.
 上記構成において、入力軸の振れ回り、およびこれに起因した入力軸の偏摩耗を可及的に防止するため、偏心部は、入力軸の軸方向二箇所に位相を180°異ならせて設けるのが好ましい。 In the above configuration, in order to prevent as much as possible the swinging of the input shaft and the uneven wear of the input shaft due to this, the eccentric portion is provided at two positions in the axial direction of the input shaft with a phase difference of 180 °. Is preferred.
 第2給油孔は、偏心部の偏心方向に対して周方向一方側および他方側に位相を90°異ならせた位置(二箇所)に設けることができる。このようにすれば、入力軸の回転方向に関わらず、何れか一方の第2給油孔の外径端部を第2転がり軸受の荷重負荷域の入口側に位置させることができる(詳細は後述する)。そのため、第2給油孔を介して軸受嵌合部に供給された潤滑油を、入力軸の回転に伴って、上記嵌合部のうち実質的に荷重が負荷される領域に効率良く供給することができる。 The second oil supply hole can be provided at a position (two places) in which the phase is different by 90 ° on one side and the other side in the circumferential direction with respect to the eccentric direction of the eccentric portion. In this way, regardless of the rotation direction of the input shaft, the outer diameter end of one of the second oil supply holes can be positioned on the inlet side of the load-loading area of the second rolling bearing (details will be described later). To do). Therefore, the lubricating oil supplied to the bearing fitting portion via the second oil supply hole is efficiently supplied to a region where the load is substantially loaded in the fitting portion as the input shaft rotates. Can do.
 第2転がり軸受としては、ボールを介して相対回転する内輪および外輪を有する玉軸受を使用することができる。この場合、第2給油孔の加工性等を確保しつつ、上記嵌合部の摩耗や、第2転がり軸受の内輪(特に内側軌道面)の変形に起因した異音・振動等の発生を可及的に防止するため、第2給油孔の外径端部の開口径は、ボール直径の10%以上40%以下に設定するのが好ましい。 As the second rolling bearing, a ball bearing having an inner ring and an outer ring that rotate relative to each other via balls can be used. In this case, it is possible to generate noise and vibration due to wear of the fitting portion and deformation of the inner ring (especially the inner raceway surface) of the second rolling bearing while ensuring the workability of the second oil supply hole. In order to prevent as much as possible, it is preferable to set the opening diameter of the outer diameter end portion of the second oil supply hole to 10% or more and 40% or less of the ball diameter.
 上記構成において、入力軸としては、肌焼き鋼で形成され、熱処理として浸炭焼入れ焼戻しが施されたものを使用するのが好ましい。その理由は以下のとおりである。 In the above configuration, it is preferable to use an input shaft made of case-hardened steel and subjected to carburizing, quenching and tempering as a heat treatment. The reason is as follows.
 まず、低炭素鋼の一種である肌焼き鋼は、熱処理前の段階では比較的軟質で加工性に優れるため、所定の形状を簡便かつ高精度に得ることができる。その一方、肌焼き鋼からなるワークに、熱処理として浸炭焼入れ焼戻しを施せば、芯部に必要とされる靱性を確保しつつ、表層部の耐摩耗性および強度向上を実現できる表面硬化層を形成することができる。しかも、浸炭焼入れ焼戻しは、上記同様の表面硬化層を形成することができる他の熱処理方法(具体的には高周波熱処理)と比較して形状の小変更に対する柔軟性を有するので、熱処理に要するコストは少なくて済む。以上より、低コストに作製可能でありながら、軸受嵌合部等の耐摩耗性が高められると共に芯部に必要とされる靱性が確保された入力軸を得ることができる。 First, case-hardened steel, which is a kind of low-carbon steel, is relatively soft and excellent in workability before heat treatment, so that a predetermined shape can be obtained easily and with high accuracy. On the other hand, if carburizing quenching and tempering is applied to the workpiece made of case-hardened steel as a heat treatment, a hardened surface layer that can improve the wear resistance and strength of the surface layer while securing the toughness required for the core is formed. can do. In addition, carburizing, quenching, and tempering have flexibility for small changes in shape as compared with other heat treatment methods (specifically, high frequency heat treatment) that can form a surface hardened layer similar to the above, so the cost required for heat treatment. Is less. As described above, it is possible to obtain an input shaft that can be manufactured at a low cost, and has improved wear resistance of the bearing fitting portion and the like and has ensured toughness required for the core portion.
 以上で説明した本発明に係るサイクロイド減速機は、モータ部、減速部および車輪用軸受部を有するインホイールモータ駆動装置を構成する減速部に好ましく適用することができる。この場合、サイクロイド減速機の入力軸を、モータ部の回転軸にトルク伝達可能に連結すれば、音響性能や耐久寿命に優れたインホイールモータ駆動装置を実現することができる。 The cycloidal speed reducer according to the present invention described above can be preferably applied to a speed reduction part that constitutes an in-wheel motor drive device having a motor part, a speed reduction part, and a wheel bearing part. In this case, if the input shaft of the cycloid reducer is connected to the rotating shaft of the motor unit so as to be able to transmit torque, an in-wheel motor drive device having excellent acoustic performance and durability can be realized.
 以上より、本発明によれば、入力軸とその支持軸受との嵌合部における摩耗、さらには入力軸支持軸受の内輪内径面の摩耗等を効果的に抑制し得るサイクロイド減速機を実現することができる。これにより、音響性能や耐久寿命等に優れたサイクロイド減速機、ひいてはこれを搭載したインホイールモータ駆動装置を提供することができる。 As described above, according to the present invention, it is possible to realize a cycloid reduction gear capable of effectively suppressing wear at the fitting portion between the input shaft and its support bearing, and further wear of the inner ring inner surface of the input shaft support bearing. Can do. Thereby, the cycloid reduction gear excellent in acoustic performance, durable life, etc. and by extension, the in-wheel motor drive device carrying this can be provided.
本発明の一実施形態に係るサイクロイド減速機を減速部に適用したインホイールモータ駆動装置の一例を示す図である。It is a figure which shows an example of the in-wheel motor drive device which applied the cycloid reduction gear which concerns on one Embodiment of this invention to the deceleration part. 図1に示す入力軸の縦断面図である。It is a longitudinal cross-sectional view of the input shaft shown in FIG. 図2A中に示すZ-Z線矢視断面図である。FIG. 2B is a sectional view taken along the line Z 1 -Z 1 shown in FIG. 2A. 図2A中に示すZ-Z線矢視断面図である。FIG. 2B is a cross-sectional view taken along the line Z 2 -Z 2 shown in FIG. 2A. 図1のZ-Z線矢視断面図であるFIG. 2 is a cross-sectional view taken along line ZZ in FIG. 1. 図1に示すサイクロイド減速機を構成する曲線板に作用する荷重を示す説明図である。It is explanatory drawing which shows the load which acts on the curve board which comprises the cycloid reduction gear shown in FIG. 図1に示すインホイールモータ駆動装置に組み込まれた回転ポンプの横断面図である。It is a cross-sectional view of the rotary pump incorporated in the in-wheel motor drive device shown in FIG. 図1に示す入力軸の拡大図である。It is an enlarged view of the input shaft shown in FIG. 図6A中に示すZ11-Z11線矢視断面図である。FIG. 6B is a cross-sectional view taken along line Z 11 -Z 11 shown in FIG. 6A. 図6A中に示すZ12-Z12線矢視断面図である。FIG. 6B is a cross-sectional view taken along line Z 12 -Z 12 shown in FIG. 6A. 図6A中に示すZ13-Z13線矢視断面図である。FIG. 6B is a sectional view taken along line Z 13 -Z 13 shown in FIG. 6A. 図6A中に示すZ14-Z14線矢視断面図である。FIG. 6B is a sectional view taken along the line Z 14 -Z 14 shown in FIG. 6A. インホイールモータ駆動装置が搭載される電気自動車の概略平面図である。It is a schematic plan view of the electric vehicle carrying an in-wheel motor drive device. 図7の電気自動車を後方から見た概略断面図である。It is the schematic sectional drawing which looked at the electric vehicle of Drawing 7 from back.
 まず、図7および図8に基づいてインホイールモータ駆動装置を搭載した電気自動車11の概要を説明する。図7に示すように、電気自動車11は、シャシー12と、操舵輪として機能する一対の前輪13と、駆動輪として機能する一対の後輪14と、左右の後輪14のそれぞれを駆動するインホイールモータ駆動装置21とを備える。図8に示すように、後輪14は、シャシー12のホイールハウス12aの内部に収容され、懸架装置12bを介してシャシー12の下部に固定されている。 First, an outline of the electric vehicle 11 equipped with the in-wheel motor drive device will be described with reference to FIGS. As shown in FIG. 7, the electric vehicle 11 includes an chassis that drives each of a chassis 12, a pair of front wheels 13 that function as steering wheels, a pair of rear wheels 14 that function as drive wheels, and left and right rear wheels 14. A wheel motor drive device 21. As shown in FIG. 8, the rear wheel 14 is accommodated in the wheel house 12a of the chassis 12, and is fixed to the lower part of the chassis 12 via the suspension device 12b.
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が路面から受ける振動を吸収してシャシー12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時等の車体の傾きを抑制するスタビライザが設けられる。懸架装置12bは、路面の凹凸に対する追従性を向上し、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式とするのが望ましい。 The suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the road surface by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms. The suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface. desirable.
 この電気自動車11では、左右のホイールハウス12aの内部に、左右の後輪14それぞれを回転駆動させるインホイールモータ駆動装置21が組み込まれるので、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構等を設ける必要がなくなる。そのため、この電気自動車11は、客室スペースを広く確保でき、しかも、左右の後輪14の回転をそれぞれ制御することができるという利点を備えている。 In this electric vehicle 11, an in-wheel motor drive device 21 that rotates each of the left and right rear wheels 14 is incorporated in the left and right wheel houses 12 a, so that a motor, a drive shaft, a differential gear mechanism, and the like are mounted on the chassis 12. There is no need to provide it. Therefore, the electric vehicle 11 has an advantage that a large cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
 電気自動車11の走行安定性および騒音・振動・ハーシュネス特性(NVH特性)を向上するためには、ばね下重量を抑える必要がある。また、電気自動車11の客室スペースを拡大するためには、インホイールモータ駆動装置21を小型化する必要がある。そこで、図1に示すようなインホイールモータ駆動装置21を採用する。 In order to improve the running stability and noise / vibration / harshness characteristics (NVH characteristics) of the electric vehicle 11, it is necessary to suppress the unsprung weight. Moreover, in order to expand the cabin space of the electric vehicle 11, it is necessary to reduce the size of the in-wheel motor drive device 21. Therefore, an in-wheel motor drive device 21 as shown in FIG. 1 is employed.
 本発明の実施形態に係るサイクロイド減速機を減速部に適用したインホイールモータ駆動装置21の一例を図1~図6に基づいて説明する。図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bの出力を後輪14(図7、8参照)に伝達する車輪用軸受部Cとを備え、これらはケーシング22に保持されている。詳細は後述するが、このインホイールモータ駆動装置21は、モータ部Aおよび減速部Bの各所に潤滑油を供給する潤滑機構を有する。モータ部Aと減速部Bはケーシング22に収納された状態で電気自動車11のホイールハウス12a(図8参照)内に取り付けられる。 An example of an in-wheel motor drive device 21 in which a cycloid reduction gear according to an embodiment of the present invention is applied to a reduction unit will be described with reference to FIGS. As shown in FIG. 1, the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and outputs the deceleration unit B to the rear wheel 14. (Refer to FIGS. 7 and 8) and a wheel bearing portion C for transmission to the casing 22, which are held by the casing 22. Although the details will be described later, the in-wheel motor drive device 21 has a lubrication mechanism that supplies lubricating oil to the motor part A and the speed reduction part B. The motor part A and the speed reduction part B are mounted in the wheel house 12a (see FIG. 8) of the electric vehicle 11 while being housed in the casing 22.
 モータ部Aは、ケーシング22に固定されているステータ23aと、ステータ23aの内側に径方向の隙間を介して対向配置されたロータ23bと、外周にロータ23bを装着した中空構造のモータ回転軸24とを備えるラジアルギャップモータであり、モータ回転軸24は15000rpm程度の回転数で回転可能とされている。 The motor portion A includes a stator 23a fixed to the casing 22, a rotor 23b disposed opposite to the inside of the stator 23a via a radial gap, and a hollow motor rotating shaft 24 having a rotor 23b mounted on the outer periphery. The motor rotating shaft 24 is rotatable at a rotation speed of about 15000 rpm.
 モータ回転軸24は、その軸方向一方側(図1の右側であり、以下「インボード側」ともいう)および他方側(図1の左側であり、以下「アウトボード側」ともいう)の端部にそれぞれ配置された転がり軸受36,36によってケーシング22に対して回転自在に支持されている。転がり軸受36は、いわゆる玉軸受であり、ケーシング22の内径面に嵌合固定された外輪と、モータ回転軸24の外径面に嵌合固定された内輪と、外輪と内輪との間に配置された複数のボールと、複数のボールを周方向に離間した状態で保持する保持器とを備える。 The motor rotating shaft 24 has ends on one side in the axial direction (right side in FIG. 1, hereinafter also referred to as “inboard side”) and the other side (left side in FIG. 1 and hereinafter also referred to as “outboard side”). It is rotatably supported with respect to the casing 22 by rolling bearings 36, 36 respectively disposed in the section. The rolling bearing 36 is a so-called ball bearing, and is disposed between the outer ring fitted and fixed to the inner diameter surface of the casing 22, the inner ring fitted and fixed to the outer diameter surface of the motor rotating shaft 24, and the outer ring and the inner ring. And a cage for holding the plurality of balls in a state of being separated in the circumferential direction.
 車輪用軸受部Cは、中空構造のハブ輪32と、ハブ輪32をケーシング22に対して回転自在に支持する車輪用軸受33とを備える。ハブ輪32は、減速部Bを構成する出力軸28の軸部28bに連結された円筒状の中空部32aと、中空部32aのアウトボード側の端部から径方向外向きに延びたフランジ部32bとを一体に有する。フランジ部32bにはボルト32cによって後輪14(図7,8参照)が連結固定されるので、ハブ輪32の回転時には後輪14がハブ輪32と一体回転する。 The wheel bearing portion C includes a hub ring 32 having a hollow structure and a wheel bearing 33 that rotatably supports the hub ring 32 with respect to the casing 22. The hub wheel 32 includes a cylindrical hollow portion 32a connected to the shaft portion 28b of the output shaft 28 constituting the speed reduction portion B, and a flange portion extending radially outward from the end portion on the outboard side of the hollow portion 32a. 32b integrally. Since the rear wheel 14 (see FIGS. 7 and 8) is connected and fixed to the flange portion 32b by the bolt 32c, the rear wheel 14 rotates integrally with the hub wheel 32 when the hub wheel 32 rotates.
 車輪用軸受33は、ハブ輪32の外径面に直接形成された内側軌道面33fおよび外径面の小径段部に嵌合された内輪33aを有する内方部材と、ケーシング22の内径面に嵌合固定された外輪33bと、内方部材と外輪33bの間に配置された複数のボール33cと、ボール33cを周方向に離間した状態で保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。 The wheel bearing 33 has an inner member having an inner raceway surface 33 f formed directly on the outer diameter surface of the hub wheel 32 and an inner ring 33 a fitted to a small diameter step portion of the outer diameter surface, and an inner diameter surface of the casing 22. The outer ring 33b fitted and fixed, a plurality of balls 33c disposed between the inner member and the outer ring 33b, a retainer 33d that holds the balls 33c in a circumferentially separated state, and a shaft of the wheel bearing 33 It is a double row angular contact ball bearing provided with the sealing member 33e which seals a direction both ends.
 減速部Bは、その主要部がサイクロイド減速機で構成され、モータ部Aにより回転駆動される入力軸25と、入力軸25と同軸に配置された出力軸28と、入力軸25の回転を減速した上で出力軸28に伝達する減速機構とを備える。出力軸28は、減速機構により減速された入力軸25の回転を車輪用軸受部Cに伝達する。 The main part of the speed reduction part B is composed of a cycloid speed reducer, the input shaft 25 that is rotationally driven by the motor part A, the output shaft 28 arranged coaxially with the input shaft 25, and the speed of the input shaft 25 is reduced. And a speed reduction mechanism that transmits the output to the output shaft 28. The output shaft 28 transmits the rotation of the input shaft 25 decelerated by the deceleration mechanism to the wheel bearing portion C.
 図2Aにも示すように、入力軸25の軸方向二箇所には、軸心が入力軸25の回転軸心に対して偏心した偏心部25a,25bが設けられており、本実施形態ではこれら2つの偏心部25a,25bが入力軸25と一体に設けられている。2つの偏心部25a,25bは、偏心運動による遠心力を互いに打ち消し合うため(入力軸25の振れ回りを防止するため)に、位相を180°異ならせて設けられている。 As shown in FIG. 2A, eccentric portions 25 a and 25 b whose shaft centers are eccentric with respect to the rotation shaft center of the input shaft 25 are provided at two positions in the axial direction of the input shaft 25. Two eccentric portions 25 a and 25 b are provided integrally with the input shaft 25. The two eccentric portions 25a and 25b are provided with phases different from each other by 180 ° in order to cancel the centrifugal force due to the eccentric motion to each other (to prevent the input shaft 25 from swinging).
 入力軸25は、軸方向二箇所に離間して配置された転がり軸受(入力軸支持軸受)37,37によって出力軸28に対して回転自在に支持されている。従って、転がり軸受37,37が本発明でいう第2転がり軸受に相当する。一方の転がり軸受37は偏心部25aよりもインボード側に配置されて入力軸25の軸方向略中央部を支持し、他方の転がり軸受37は偏心部25bよりもアウトボード側に配置されて入力軸25のアウトボード側の端部を支持している。各転がり軸受37は、いわゆる玉軸受(深溝玉軸受)であり、図2Aに示すように、入力軸25の外径面に嵌合された内輪37aと、出力軸28の内径面に嵌合された外輪37bと、内輪37aの内側軌道面と外輪37bの外側軌道面の間に配置された複数のボール37cと、複数のボール37cを周方向に離間した状態で保持する保持器(図示せず)とを備える。 The input shaft 25 is rotatably supported with respect to the output shaft 28 by rolling bearings (input shaft support bearings) 37 and 37 that are disposed apart from each other in two axial directions. Accordingly, the rolling bearings 37 and 37 correspond to the second rolling bearing referred to in the present invention. One rolling bearing 37 is disposed on the inboard side with respect to the eccentric portion 25a to support the substantially central portion in the axial direction of the input shaft 25, and the other rolling bearing 37 is disposed on the outboard side with respect to the eccentric portion 25b. The end of the shaft 25 on the outboard side is supported. Each rolling bearing 37 is a so-called ball bearing (deep groove ball bearing), and is fitted to an inner ring 37 a fitted to the outer diameter surface of the input shaft 25 and an inner diameter surface of the output shaft 28 as shown in FIG. 2A. The outer ring 37b, a plurality of balls 37c disposed between the inner raceway surface of the inner ring 37a and the outer raceway surface of the outer ring 37b, and a cage (not shown) for holding the plurality of balls 37c spaced apart in the circumferential direction. ).
 各転がり軸受37(の外輪37b)と出力軸28との間の嵌め合い、および各転がり軸受37(の内輪37a)と入力軸25との間の嵌め合いは、何れもしまり嵌めとしても良いが、この場合、サイクロイド減速機の組立が困難となる他、転がり軸受37の組込み過程で転がり軸受37の軌道面に圧痕等が形成され、転がり軸受37の軸受性能や耐久寿命に悪影響が及ぶおそれがある。そのため、転がり軸受37の外輪37bと出力軸28との間の嵌め合いはしまり嵌めとし、転がり軸受37の内輪37aと入力軸25との間の嵌め合いはすきま嵌めとしている。 The fitting between each rolling bearing 37 (the outer ring 37b) and the output shaft 28 and the fitting between each rolling bearing 37 (the inner ring 37a) and the input shaft 25 may all be a tight fitting. In this case, it becomes difficult to assemble the cycloid reducer, and indentation or the like is formed on the raceway surface of the rolling bearing 37 in the process of assembling the rolling bearing 37, which may adversely affect the bearing performance and durability life of the rolling bearing 37. is there. Therefore, the fit between the outer ring 37b of the rolling bearing 37 and the output shaft 28 is an interference fit, and the fit between the inner ring 37a of the rolling bearing 37 and the input shaft 25 is a clearance fit.
 入力軸25は、そのインボード側の端部外周に形成したスプライン25g(セレーションを含む。以下同じ。)を、モータ回転軸24のアウトボード側の端部内周に形成したスプラインに嵌合する、いわゆるスプライン嵌合によってモータ回転軸24と連結されている。これにより、モータ部Aの駆動力が減速部Bに伝達される。 The input shaft 25 fits a spline 25g (including serrations; the same applies hereinafter) formed on the outer periphery of the end portion on the inboard side to a spline formed on the inner periphery of the end portion on the outboard side of the motor rotation shaft 24. The motor rotating shaft 24 is connected by so-called spline fitting. Thereby, the driving force of the motor part A is transmitted to the deceleration part B.
 以上の構成を有する入力軸25は、例えば、SCM415、SCM420、SCr420等の肌焼き鋼で形成され、熱処理としての浸炭焼入れ焼戻しが施されることにより形成された硬化層(表面硬化層)Hを有する。本実施形態では入力軸25全体に浸炭焼入れ焼戻しを施している。硬化層Hの硬度はビッカース硬さ(Hv)で660~780程度であり、芯部(硬化層Hが形成されていない部分)の硬度はロックウェル硬さCスケール(HRC)で25~38程度である。 The input shaft 25 having the above configuration is formed of, for example, case-hardened steel such as SCM415, SCM420, and SCr420, and a hardened layer (surface hardened layer) H formed by carburizing, quenching, and tempering as heat treatment. Have. In the present embodiment, the entire input shaft 25 is carburized, quenched, and tempered. The hardness of the hardened layer H is about 660 to 780 in terms of Vickers hardness (Hv), and the hardness of the core (the portion where the hardened layer H is not formed) is about 25 to 38 in terms of Rockwell hardness C scale (HRC). It is.
 出力軸28は、図1に示すように、軸部28bとフランジ部28aとを有する。フランジ部28aには、後述する内ピン31のアウトボード側の端部が嵌合固定される孔部(図示例は貫通孔)が形成されており、孔部は、減速機出力軸28の回転軸心を中心とする円周上に等間隔で複数形成されている。軸部28bは、車輪用軸受部Cを構成するハブ輪32にスプライン嵌合によって連結されている。出力軸28は、転がり軸受46,46を介して外ピンハウジング60に対して回転自在に支持されている。 The output shaft 28 has a shaft portion 28b and a flange portion 28a as shown in FIG. The flange portion 28a is formed with a hole portion (through hole in the illustrated example) into which an end portion on the outboard side of the inner pin 31 described later is fitted and fixed. The hole portion is a rotation of the speed reducer output shaft 28. A plurality are formed at equal intervals on the circumference centered on the axis. The shaft portion 28b is connected to the hub wheel 32 constituting the wheel bearing portion C by spline fitting. The output shaft 28 is rotatably supported with respect to the outer pin housing 60 via rolling bearings 46 and 46.
 減速機構は、転がり軸受41,41(図3参照)を介して偏心部25a,25bの外周に回転自在に嵌合された曲線板26a,26bと、外ピンハウジング60の固定位置に保持され、曲線板26a,26bの外周部と係合する複数の外ピン27と、曲線板26a,26bの自転運動を出力軸28の回転運動に変換する運動変換機構とを備える。従って、転がり軸受41が本発明でいう第1転がり軸受を構成する。 The speed reduction mechanism is held at a fixed position of the outer pin housing 60 and the curved plates 26a and 26b that are rotatably fitted to the outer periphery of the eccentric portions 25a and 25b via the rolling bearings 41 and 41 (see FIG. 3). A plurality of outer pins 27 engaged with the outer peripheral portions of the curved plates 26a, 26b, and a motion conversion mechanism for converting the rotational motion of the curved plates 26a, 26b into the rotational motion of the output shaft 28 are provided. Therefore, the rolling bearing 41 constitutes the first rolling bearing referred to in the present invention.
 図3に示すように、曲線板26aは、その外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有する。また、曲線板26aは、その両端面に開口する軸方向の貫通孔30a,30bを有する。貫通孔30aは、曲線板26aの自転軸心を中心とする円周上に等間隔で複数設けられており、後述する内ピン31を1本ずつ受け入れる。貫通孔30bは、曲線板26aの中心に設けられており、減速機入力軸25の偏心部25a(転がり軸受41)に嵌合される。 As shown in FIG. 3, the curved plate 26a has a plurality of waveforms composed of trochoidal curves such as epitrochoid on the outer periphery thereof. The curved plate 26a has axial through- holes 30a and 30b that open at both end faces thereof. A plurality of through-holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive one inner pin 31 to be described later. The through hole 30b is provided at the center of the curved plate 26a and is fitted to the eccentric portion 25a (rolling bearing 41) of the speed reducer input shaft 25.
 転がり軸受41は、図3に示すように、外径面に内側軌道面42aを有し、偏心部25aの外径面に嵌合した内輪42と、曲線板26aの貫通孔30bの内径面に直接形成された外側軌道面43と、内側軌道面42aと外側軌道面43の間に配置される複数の円筒ころ44と、円筒ころ44を保持する保持器(図示せず)とを備える円筒ころ軸受である。内輪42は、内側軌道面42aの軸方向両端部から径方向外側に突出する鍔部42bを有する。本実施形態の転がり軸受41では、偏心部25aとは別体に設けた内輪42に内側軌道面42aを形成しているが、偏心部25aの外径面に内側軌道面を直接形成することで内輪42を省略してもよい。なお、詳細な説明は省略するが、曲線板26bは、曲線板26aと同様の構造を有しており、曲線板26aを支持する転がり軸受41と同様の転がり軸受41によって偏心部25bに対して回転自在に支持されている。 As shown in FIG. 3, the rolling bearing 41 has an inner raceway surface 42a on the outer diameter surface, and an inner ring 42 fitted to the outer diameter surface of the eccentric portion 25a, and an inner diameter surface of the through hole 30b of the curved plate 26a. A cylindrical roller including a directly formed outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42a and the outer raceway surface 43, and a cage (not shown) that holds the cylindrical rollers 44. It is a bearing. The inner ring 42 has flanges 42b that protrude radially outward from both axial ends of the inner raceway surface 42a. In the rolling bearing 41 of the present embodiment, the inner raceway surface 42a is formed on the inner ring 42 provided separately from the eccentric portion 25a. However, the inner raceway surface is formed directly on the outer diameter surface of the eccentric portion 25a. The inner ring 42 may be omitted. In addition, although detailed description is abbreviate | omitted, the curved plate 26b has the structure similar to the curved plate 26a, and with respect to the eccentric part 25b by the rolling bearing 41 similar to the rolling bearing 41 which supports the curved plate 26a. It is supported rotatably.
 図3に示すように、外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔で複数設けられている。入力軸25が回転するのに伴って曲線板26a,26bが公転運動すると、曲線板26a,26bの外周部と外ピン27とが周方向で係合し、曲線板26a,26bに自転運動を生じさせる。各外ピン27は、図1に示すように、そのインボード側およびアウトボード側の端部にそれぞれ配された一対の転がり軸受(針状ころ軸受)61,61、および一対の針状ころ軸受61,61を内周に保持した外ピンハウジング60を介してケーシング22に回転自在に支持されている。かかる構成により、外ピン27と曲線板26a,26bとの間の接触抵抗が低減される。 As shown in FIG. 3, a plurality of outer pins 27 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer input shaft 25. When the curved plates 26a and 26b revolve with the rotation of the input shaft 25, the outer peripheral portions of the curved plates 26a and 26b and the outer pins 27 are engaged in the circumferential direction, and the curved plates 26a and 26b rotate. Cause it to occur. As shown in FIG. 1, each outer pin 27 includes a pair of rolling bearings (needle roller bearings) 61 and 61 and a pair of needle roller bearings arranged at the end portions on the inboard side and the outboard side, respectively. 61 and 61 are rotatably supported by the casing 22 via an outer pin housing 60 holding the inner periphery thereof. With this configuration, the contact resistance between the outer pin 27 and the curved plates 26a and 26b is reduced.
 詳細な図示は省略しているが、外ピンハウジング60は、弾性支持機能を有する回り止め手段(図示せず)によってケーシング22に対してフローティング状態に支持されている。これは、車両の旋回や急加減速等によって生じる大きなラジアル荷重やモーメント荷重を吸収して、曲線板26a,26bの自転運動を減速機出力軸28の回転運動に変換する運動変換機構の構成部品の損傷を防止するためである。 Although detailed illustration is omitted, the outer pin housing 60 is supported in a floating state with respect to the casing 22 by a detent means (not shown) having an elastic support function. This is a component of a motion conversion mechanism that absorbs a large radial load or moment load caused by turning or sudden acceleration / deceleration of the vehicle and converts the rotational motion of the curved plates 26a, 26b into the rotational motion of the reducer output shaft 28. This is to prevent damage.
 偏心部25a,25bの軸方向外側には、それぞれ、カウンタウェイト29が隣接配置されている。カウンタウェイト29は略扇形状で、入力軸25の外周に嵌合固定されている。各カウンタウェイト29は、曲線板26a,26bの回転によって生じる不釣合い慣性偶力を打ち消すために、軸方向に隣接する偏心部25a(又は25b)と180°位相を変えて配置される。 Counterweights 29 are adjacently arranged on the outer sides in the axial direction of the eccentric portions 25a and 25b, respectively. The counterweight 29 has a substantially fan shape and is fitted and fixed to the outer periphery of the input shaft 25. Each counterweight 29 is arranged with a 180 ° phase shift from the eccentric portion 25a (or 25b) adjacent in the axial direction in order to cancel out the unbalanced inertia couple generated by the rotation of the curved plates 26a, 26b.
 図1および図3に示すように、運動変換機構は、複数の内ピン31と、曲線板26a,26bに設けられた複数の貫通孔30aとで構成される。貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられている。内ピン31は、出力軸28の回転軸心を中心とする円周上に等間隔に配置されており、そのアウトボード側の端部が出力軸28のフランジ部28aに設けた孔部に固定されている。出力軸28は入力軸25と同軸上に配置されているので、曲線板26a,26bの自転運動は、入力軸25の回転軸心を中心とする回転運動に変換された上で出力軸28に伝達される。また、内ピン31と曲線板26a,26bとの摩擦抵抗を低減するため、曲線板26a,26bの貫通孔30aに挿入された内ピン31の外周には針状ころ軸受31aが設けられている。貫通孔30aの内径寸法は、内ピン31の外径寸法(「針状ころ軸受31aを含む最大外径」を指す。以下同じ。)よりも所定寸法大きく設定されている。 As shown in FIGS. 1 and 3, the motion conversion mechanism is composed of a plurality of inner pins 31 and a plurality of through holes 30a provided in the curved plates 26a and 26b. The through hole 30 a is provided at a position corresponding to each of the plurality of inner pins 31. The inner pins 31 are arranged at equal intervals on the circumference centering on the rotation axis of the output shaft 28, and the end portion on the outboard side is fixed to the hole provided in the flange portion 28 a of the output shaft 28. Has been. Since the output shaft 28 is arranged coaxially with the input shaft 25, the rotational motion of the curved plates 26 a and 26 b is converted into rotational motion around the rotational axis of the input shaft 25 and then applied to the output shaft 28. Communicated. Further, in order to reduce the frictional resistance between the inner pin 31 and the curved plates 26a, 26b, a needle roller bearing 31a is provided on the outer periphery of the inner pin 31 inserted into the through hole 30a of the curved plates 26a, 26b. . The inner diameter dimension of the through hole 30a is set larger than the outer diameter dimension of the inner pin 31 (referred to as “maximum outer diameter including the needle roller bearing 31a”; the same applies hereinafter).
 減速部B(サイクロイド減速機)は、スタビライザ31bをさらに有する。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内径面からインボード側に延びる円筒部31dとを一体に有し、各内ピン31のインボード側の端部は、円環部31cに固定されている。 The reduction part B (cycloid reduction gear) further has a stabilizer 31b. The stabilizer 31b integrally includes a ring-shaped annular portion 31c and a cylindrical portion 31d extending from the inner diameter surface of the annular portion 31c toward the inboard side. It is fixed to the annular portion 31c.
 ここで、モータ部Aの駆動時に曲線板26aに作用する荷重の状態を図4に基づいて説明する。なお、モータ部Aの駆動時には、曲線板26bにも以下に説明するのと同様にして荷重が作用する。 Here, the state of the load acting on the curved plate 26a when the motor part A is driven will be described with reference to FIG. When the motor unit A is driven, a load acts on the curved plate 26b in the same manner as described below.
 入力軸25に設けられた偏心部25aの軸心Oは、入力軸25の軸心(回転軸心)Oから偏心量eだけ偏心している。偏心部25aは、転がり軸受41を介して曲線板26aを回転自在に支持するので、その軸心Oは曲線板26aの軸心でもある。曲線板26aの外周部は波形曲線で形成され、径方向内向きに窪んだ凹部34を周方向等間隔に有する。曲線板26aの周囲には、凹部34と周方向で係合する外ピン27が、入力軸25の軸心Oを中心として周方向に複数配設されている。 The axis O 2 of the eccentric portion 25 a provided on the input shaft 25 is eccentric from the axis (rotation axis) O of the input shaft 25 by the amount of eccentricity e. Eccentric portion 25a, so that rotatably supports the curve plate 26a via a rolling bearing 41, the axis O 2 is also the axis of the curved plate 26a. The outer peripheral portion of the curved plate 26a is formed by a waveform curve, and has concave portions 34 that are recessed inward in the radial direction at equal intervals in the circumferential direction. Around the curved plate 26 a, a plurality of outer pins 27 that are engaged with the recesses 34 in the circumferential direction are arranged in the circumferential direction around the axis O of the input shaft 25.
 図4において、入力軸25が紙面上で反時計周りに回転すると、偏心部25aは入力軸25の軸心Oを中心とする公転運動を行うので、曲線板26aの凹部34が外ピン27と周方向に順次当接・係合する。この結果、曲線板26aは、複数の外ピン27から図中矢印で示すような荷重Fiを受けて、時計回りに自転する。 In FIG. 4, when the input shaft 25 rotates counterclockwise on the paper surface, the eccentric portion 25 a revolves around the axis O of the input shaft 25, so that the concave portion 34 of the curved plate 26 a is connected to the outer pin 27. Sequentially contact and engage in the circumferential direction. As a result, the curved plate 26a receives a load Fi as indicated by an arrow in the drawing from the plurality of outer pins 27, and rotates clockwise.
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されており、各貫通孔30aには、入力軸25と同軸に配置された出力軸28に固定される内ピン31が挿通されている。貫通孔30aの内径は内ピン31の外径よりも所定寸法大きいため、内ピン31は、曲線板26aの公転運動の障害とはならず、曲線板26aの自転運動を取り出して出力軸28を回転させる。このとき、出力軸28は、入力軸25よりも高トルクかつ低回転数になり、曲線板26aは、複数の内ピン31から図中矢印で示すような荷重Fjを受ける。これらの複数の荷重Fi、Fjの合力Fsが転がり軸受41,37を介して入力軸25の各転がり軸受41,37との嵌合部に作用する。 Further, the curve plates 26a and a plurality of circumferentially disposed around the through hole 30a is the axis O 2, the through holes 30a, is fixed to an output shaft 28 disposed on the input shaft 25 coaxially The inner pin 31 is inserted. Since the inner diameter of the through hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolution movement of the curved plate 26a, and the output shaft 28 is extracted by taking out the rotational movement of the curved plate 26a. Rotate. At this time, the output shaft 28 has a higher torque and a lower rotational speed than the input shaft 25, and the curved plate 26a receives a load Fj as indicated by arrows in the figure from the plurality of inner pins 31. The resultant force Fs of the plurality of loads Fi and Fj acts on the fitting portion of the input shaft 25 with the rolling bearings 41 and 37 via the rolling bearings 41 and 37.
 合力Fsの方向は、曲線板26aの波形形状や凹部34の数などの幾何学的条件の他、遠心力の影響により変化する。具体的には、自転軸心Oを通り、自転軸心Oと軸心Oとを結ぶ直線Yに対して90°の方向に延びる基準線Xと、合力Fsとがなす角度αは概ね30°~60°で変動する。上記の複数の荷重Fi、Fjは、入力軸25が1回転する間に荷重の方向や大きさが変化し、その結果、入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。そして、入力軸25が1回転すると、曲線板26aの凹部34が減速されて1ピッチ時計回りに回転し、図4の状態になり、これを繰り返す。 The direction of the resultant force Fs changes due to the influence of the centrifugal force in addition to geometrical conditions such as the waveform shape of the curved plate 26a and the number of recesses 34. Specifically, through the rotation axis O 2, and the reference line X extending in the direction of 90 ° to the straight line Y connecting the the axis O rotation axis O 2, the angle α formed by the force Fs substantially Fluctuates between 30 ° and 60 °. The directions and magnitudes of the loads Fi and Fj change during one rotation of the input shaft 25. As a result, the resultant force Fs acting on the input shaft 25 also varies in the direction and magnitude of the load. . When the input shaft 25 rotates once, the concave portion 34 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state shown in FIG.
 次に潤滑機構を説明する。潤滑機構は、モータ部Aおよび減速部Bの各所に潤滑油を供給するものであって、図1および図2Aに示すように、モータ回転軸24に設けた潤滑油路24a,24bと、入力軸25に設けた軸方向に延びる潤滑油路25c,25eと、入力軸25の軸方向各所に設けられて径方向に延びる潤滑油路25a1,25b1,25d1,25d2と、スタビライザ31bの内部に設けた潤滑油路(図示せず)と、内ピン31の内部に設けた潤滑油路(図示せず)と、ケーシング22に設けた潤滑油排出口22b、潤滑油貯留部22d、潤滑油路22eおよび潤滑油路45と、ケーシング22内に配置され、潤滑油を循環油路45に圧送する回転ポンプ51とを主な構成とする。図1中に示した白抜き矢印は潤滑油の流れる方向を示している。 Next, the lubrication mechanism will be explained. The lubricating mechanism supplies lubricating oil to various parts of the motor part A and the speed reducing part B. As shown in FIGS. 1 and 2A, the lubricating oil paths 24a and 24b provided on the motor rotating shaft 24 and the input Lubricating oil passages 25c, 25e provided in the shaft 25 extending in the axial direction, lubricating oil passages 25a1, 25b1, 25d1, 25d2 provided in various axial directions of the input shaft 25 and provided in the stabilizer 31b. A lubricating oil passage (not shown), a lubricating oil passage (not shown) provided inside the inner pin 31, a lubricating oil discharge port 22b provided in the casing 22, a lubricating oil reservoir 22d, and a lubricating oil passage 22e. The main components are the lubricating oil passage 45 and the rotary pump 51 that is disposed in the casing 22 and pumps the lubricating oil to the circulating oil passage 45. The white arrow shown in FIG. 1 indicates the direction in which the lubricating oil flows.
 モータ回転軸24に設けた潤滑油路24a,24bは、それぞれ、モータ回転軸24の内部を軸方向および径方向に延びており、潤滑油路24aには、入力軸25の内部に設けられて軸方向に延びた潤滑油路25cが接続されている。図2Aに示すように、入力軸25に設けられて径方向に延びた潤滑油路25a1,25b1は、それぞれ、内径端部が潤滑油路25cに開口すると共に、外径端部が偏心部25a,25bの外径面に開口している。また、潤滑油路25d1,25d2は、それぞれ、内径端部が潤滑油路25cに開口すると共に、外径端部が、入力軸25の外径面のうち転がり軸受(第2転がり軸受)37の内輪37aが嵌合された嵌合部M1,M2に開口している。潤滑油路25eは、潤滑油路25cのアウトボード側の端部から軸方向に延び、入力軸25のアウトボード側の外端面に開口している。以上の構成から、潤滑油路25c、潤滑油路25a1,25b1および潤滑油路25d1,25d2が、それぞれ、本発明でいう軸方向油路、第1給油孔Pおよび第2給油孔Pとして機能する。 Lubricating oil passages 24 a and 24 b provided on the motor rotating shaft 24 extend in the axial direction and the radial direction inside the motor rotating shaft 24, respectively. The lubricating oil passage 24 a is provided inside the input shaft 25. A lubricating oil passage 25c extending in the axial direction is connected. As shown in FIG. 2A, each of the lubricating oil passages 25a1 and 25b1 provided on the input shaft 25 and extending in the radial direction has an inner diameter end portion that opens into the lubricating oil passage 25c, and an outer diameter end portion that is an eccentric portion 25a. , 25b. The lubricating oil passages 25 d 1 and 25 d 2 each have an inner diameter end portion that opens into the lubricating oil passage 25 c, and an outer diameter end portion of the rolling bearing (second rolling bearing) 37 of the outer diameter surface of the input shaft 25. It opens to fitting parts M1 and M2 into which the inner ring 37a is fitted. The lubricating oil passage 25e extends in the axial direction from the end portion on the outboard side of the lubricating oil passage 25c, and opens to the outer end surface of the input shaft 25 on the outboard side. From the above configuration, the lubricating oil passage 25c, the lubricating oil passage 25a1,25b1 and the lubricating oil passage 25d1,25d2, respectively, axial oil passage in the present invention, a first oil supply hole P 1 and the second oil supply hole P 2 Function.
 第2給油孔Pとして機能する潤滑油路25d1の外径端部は、インボード側の嵌合部M1の軸方向中央部に開口している。この潤滑油路25d1は、図2Cに示すように、偏心部25a(および25b)の偏心方向に対して周方向一方側および他方側に位相を90°異ならせた位置(二箇所)に設けられる。また、第2給油孔Pとして機能する潤滑油路25d2の外径端部は、アウトボード側の嵌合部M2の軸方向中央部に開口している。この潤滑油路25d2は、図2Bに示すように、偏心部25b(および25a)の偏心方向に対して周方向一方側および他方側に位相を90°異ならせた位置に設けられる。 Radially outer end portion of the lubricating oil passage 25d1 functioning as the second oil supply hole P 2 is opened in the axial center portion of the fitting portion M1 of the inboard side. As shown in FIG. 2C, the lubricating oil passage 25d1 is provided at a position (two places) where the phase is different by 90 ° in the circumferential direction on one side and the other side with respect to the eccentric direction of the eccentric portion 25a (and 25b). . The outer diameter end portion of the lubricating oil passage 25d2 functioning as the second oil supply hole P 2 is opened in the axial center portion of the fitting portion M2 of the outboard side. As shown in FIG. 2B, the lubricating oil passage 25d2 is provided at a position where the phase is different by 90 ° in the circumferential direction on one side and the other side with respect to the eccentric direction of the eccentric portion 25b (and 25a).
 図1に示すように、ケーシング22に設けられた潤滑油排出口22bは、減速部B内部の潤滑油を排出するものであって、減速部Bの位置におけるケーシング22の少なくとも1箇所に設けられている。潤滑油排出口22bとモータ回転軸24の潤滑油路24aとは、潤滑油貯留部22d、潤滑油路22eおよび潤滑油路45を介して接続されている。そのため、潤滑油排出口22bから排出された潤滑油は、潤滑油路22eや循環油路45等を経由してモータ回転軸24の潤滑油路24aに還流する。なお、潤滑油貯留部22dは、潤滑油を一時的に貯留する機能を有する。 As shown in FIG. 1, the lubricating oil discharge port 22 b provided in the casing 22 discharges the lubricating oil inside the speed reduction part B, and is provided in at least one location of the casing 22 at the position of the speed reduction part B. ing. The lubricating oil discharge port 22b and the lubricating oil path 24a of the motor rotating shaft 24 are connected via a lubricating oil reservoir 22d, a lubricating oil path 22e, and a lubricating oil path 45. Therefore, the lubricating oil discharged from the lubricating oil discharge port 22b returns to the lubricating oil path 24a of the motor rotating shaft 24 through the lubricating oil path 22e, the circulating oil path 45, and the like. The lubricating oil reservoir 22d has a function of temporarily storing the lubricating oil.
 図1に示すように、ケーシング22に設けた循環油路45は、ケーシング22の内部を軸方向に延びる軸方向油路45aと、軸方向油路45aのアウトボード側およびインボード側の端部にそれぞれ接続されて径方向に延びる径方向油路45b,45cとで構成される。径方向油路45bは回転ポンプ51から圧送された潤滑油を軸方向油路45aに供給し、軸方向油路45aに供給された潤滑油は、径方向油路45cを介してモータ回転軸24の潤滑油路24a、さらには減速機入力軸25の潤滑油路25cに供給される。 As shown in FIG. 1, the circulating oil passage 45 provided in the casing 22 includes an axial oil passage 45a extending in the axial direction inside the casing 22, and end portions on the outboard side and the inboard side of the axial oil passage 45a. Are connected to each other, and are constituted by radial oil passages 45b and 45c extending in the radial direction. The radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and the lubricating oil supplied to the axial oil passage 45a passes through the radial oil passage 45c to the motor rotating shaft 24. Is supplied to the lubricating oil passage 24a of the speed reducer and the lubricating oil passage 25c of the reduction gear input shaft 25.
 回転ポンプ51は、潤滑油貯留部22dに接続された潤滑油路22eと循環油路45との間に設けられている。回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21が全体として大型化するのを防止することができる。 The rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from being enlarged as a whole.
 図5に示すように、回転ポンプ51は、出力軸28の回転を利用して回転するインナーロータ52と、インナーロータ52の回転に伴って従動回転するアウターロータ53と、両ロータ52,53間の空間に設けられた複数のポンプ室54と、潤滑油路22eに連通する吸入口55と、循環油路45の径方向油路45bに連通する吐出口56とを備えるサイクロイドポンプである。インナーロータ52は、回転中心cを中心として回転し、アウターロータ53は、インナーロータ52の回転中心cと異なる回転中心cを中心として回転する。このように、インナーロータ52およびアウターロータ53はそれぞれ異なる回転中心c、cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55からポンプ室54に流入した潤滑油は吐出口56から循環油路45の径方向油路45bに圧送される。 As shown in FIG. 5, the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, and between the rotors 52 and 53. The cycloid pump includes a plurality of pump chambers 54 provided in the space, a suction port 55 communicating with the lubricating oil passage 22e, and a discharge port 56 communicating with the radial oil passage 45b of the circulation oil passage 45. The inner rotor 52 rotates around the rotation center c 1 , and the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52. Thus, since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. Thereby, the lubricating oil flowing into the pump chamber 54 from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45 b of the circulating oil passage 45.
 以上の構成を有する潤滑機構は、以下のようにしてモータ部Aおよび減速部Bの各所を潤滑・冷却する。 The lubrication mechanism having the above configuration lubricates and cools each part of the motor part A and the speed reduction part B as follows.
 まず、モータ部Aのうち、ロータ23bおよびステータ23aの潤滑は、図1に示すように、主に、ケーシング22の循環油路45を介してモータ回転軸24の潤滑油路24aに供給された潤滑油の一部が、モータ回転軸24の回転に伴って生じる遠心力および回転ポンプ51の圧力の影響を受けて潤滑油路24bの外径端部から吐出されることにより行われる。すなわち、潤滑油路24bの外径端部から吐出された潤滑油はロータ23bに供給され、その後、ステータ23aに供給される。モータ回転軸24のインボード側の端部を支持する転がり軸受36は、主に、循環油路45を流れる潤滑油の一部がケーシング22とモータ回転軸24との間から滲み出ることにより潤滑される。モータ回転軸24のアウトボード側の端部を支持する転がり軸受36は、主に、潤滑油路24bから吐出され、ケーシング22のうち、モータ部Aを収容した部分のアウトボード側内壁面を伝い落ちてきた潤滑油により潤滑される。 First, in the motor part A, the lubrication of the rotor 23b and the stator 23a is mainly supplied to the lubricating oil path 24a of the motor rotating shaft 24 via the circulating oil path 45 of the casing 22, as shown in FIG. A part of the lubricating oil is discharged from the outer diameter end portion of the lubricating oil passage 24 b under the influence of the centrifugal force generated with the rotation of the motor rotating shaft 24 and the pressure of the rotary pump 51. That is, the lubricating oil discharged from the outer diameter end of the lubricating oil passage 24b is supplied to the rotor 23b and then supplied to the stator 23a. The rolling bearing 36 that supports the end of the motor rotating shaft 24 on the inboard side is mainly lubricated by a part of the lubricating oil flowing through the circulating oil passage 45 oozing out between the casing 22 and the motor rotating shaft 24. Is done. The rolling bearing 36 that supports the end portion of the motor rotating shaft 24 on the outboard side is mainly discharged from the lubricating oil passage 24b and travels along the inner wall surface of the casing 22 where the motor portion A is accommodated. It is lubricated by the falling lubricant.
 次に、モータ回転軸24の潤滑油路24aを経由して入力軸25の潤滑油路25c(軸方向油路)に流入し、該潤滑油路25c内を流通する潤滑油は、入力軸25の回転に伴う遠心力および回転ポンプ51の圧力の影響を受けて第1給油孔Pとしての潤滑油路25a1,25b1および第2給油孔Pとしての潤滑油路25d1,25d2の外径端部から減速部B内部(減速機構)に吐出される。吐出された潤滑油は、主に遠心力により減速部B内の各所に供給されて減速部B内の各所を潤滑・冷却する。 Next, the lubricating oil flowing into the lubricating oil passage 25c (axial oil passage) of the input shaft 25 via the lubricating oil passage 24a of the motor rotating shaft 24 and flowing through the lubricating oil passage 25c is supplied to the input shaft 25. centrifugal and radially outer end of the lubricating oil passage 25d1,25d2 as the lubricating oil passage 25a1,25b1 and second oil supply hole P 2 as a first oil supply hole P 1 under the influence of the pressure of the rotary pump 51 caused by the rotation of the Is discharged into the deceleration portion B (deceleration mechanism). The discharged lubricating oil is supplied to various locations in the speed reduction portion B mainly by centrifugal force, and lubricates and cools the various locations in the speed reduction portion B.
 より詳細には、第1給油孔Pとしての潤滑油路25a1,25b1の外径端部から吐出された潤滑油は、曲線板26a,26bを支持する転がり軸受41,41(図3参照)に供給され軌道面42a,43と円筒ころ44を潤滑する。さらに、遠心力の作用により、曲線板26a,26bと内ピン31との当接部分や、曲線板26a,26bと外ピン27との当接部分等を潤滑しながら径方向外側に移動する。 More particularly, lubricating oil discharged from the radially outer end portion of the lubricating oil passage 25a1,25b1 as a first oil supply hole P 1 is a rolling bearing for supporting the curved plates 26a, a 26b 41, 41 (see FIG. 3) Is supplied to the raceway surfaces 42a and 43 and the cylindrical rollers 44 are lubricated. Further, due to the action of centrifugal force, the abutting portions between the curved plates 26a and 26b and the inner pin 31, the abutting portions between the curved plates 26a and 26b and the outer pin 27, etc. are moved radially outward while being lubricated.
 一方、第2給油孔Pとしての潤滑油路25d1,25d2の外径端部から吐出された潤滑油は、入力軸25の外径面のうち、入力軸25を支持する転がり軸受(第2転がり軸受)37,37との嵌合部M1,M2、および各転がり軸受37の内輪37a内径面を潤滑しつつ、遠心力の作用により、転がり軸受37,37の内部に供給されて軌道面を潤滑する。また、特に、潤滑油路25d1の外径端部から吐出された潤滑油は、スタビライザ31b内の潤滑油路(図示せず)および内ピン31内の潤滑油路(図示せず)を介して内ピン31を支持する転がり軸受31aに供給される。さらに、潤滑油路25a1,25b1から吐出された潤滑油と同様に、遠心力により、曲線板26a,26bと内ピン31との当接部分、曲線板26a,26bと外ピン27との当接部分、外ピン27を支持する転がり軸受61、減速機出力軸28を支持する転がり軸受46などを潤滑しながら径方向外側に移動する。 On the other hand, the lubricating oil discharged from the radially outer end portion of the lubricating oil passage 25d1,25d2 as a second oil supply holes P 2, of the outer diameter surface of the input shaft 25, a rolling bearing for supporting the input shaft 25 (second The bearings 37 and 37 are supplied to the inside of the rolling bearings 37 and 37 by the action of centrifugal force while lubricating the fitting portions M1 and M2 with the rolling bearings 37 and 37 and the inner ring 37a inner diameter surface of each rolling bearing 37. Lubricate. In particular, the lubricating oil discharged from the outer diameter end of the lubricating oil passage 25d1 passes through a lubricating oil passage (not shown) in the stabilizer 31b and a lubricating oil passage (not shown) in the inner pin 31. It is supplied to a rolling bearing 31a that supports the inner pin 31. Further, similarly to the lubricating oil discharged from the lubricating oil passages 25a1 and 25b1, due to centrifugal force, the abutting portion between the curved plates 26a and 26b and the inner pin 31 and the contacting between the curved plates 26a and 26b and the outer pin 27 are achieved. The part, the rolling bearing 61 that supports the outer pin 27, the rolling bearing 46 that supports the reduction gear output shaft 28, and the like are moved radially outward while being lubricated.
 そして、ケーシング22の内壁面に到達した潤滑油は、潤滑油排出口22bから排出されて潤滑油貯留部22dに貯留される。このように、潤滑油排出口22bと回転ポンプ51に接続された潤滑油路22eとの間に潤滑油貯留部22dが設けられているので、特に高速回転時などに潤滑油が撹拌により減速機内部に滞留し潤滑油排出口22bに到達する潤滑油量が一時的に少なくなっても、潤滑油貯留部22dに貯留されている潤滑油を潤滑油路24a,25cに還流することができるので、モータ部Aおよび減速部Bに安定して潤滑油を供給することができる。その結果、減速部Bの各所における発熱を防止することができる。 The lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil storage portion 22d. Thus, since the lubricating oil storage part 22d is provided between the lubricating oil discharge port 22b and the lubricating oil passage 22e connected to the rotary pump 51, the lubricating oil is agitated by stirring especially during high-speed rotation. Even if the amount of the lubricating oil staying inside and reaching the lubricating oil discharge port 22b temporarily decreases, the lubricating oil stored in the lubricating oil reservoir 22d can be returned to the lubricating oil passages 24a and 25c. The lubricating oil can be stably supplied to the motor part A and the speed reducing part B. As a result, it is possible to prevent heat generation at various portions of the deceleration portion B.
 なお、減速部B内部の潤滑油は、遠心力に加え、重力によっても外側に移動する。したがって、このインホイールモータ駆動装置21は、潤滑油貯留部22dがインホイールモータ駆動装置21の下部に位置するように、電気自動車11に取り付けるのが望ましい。 In addition, the lubricating oil inside the deceleration part B moves to the outside by gravity in addition to the centrifugal force. Therefore, it is desirable that the in-wheel motor drive device 21 is attached to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
 以上で説明したように、本実施形態のサイクロイド減速機(減速部B)では、入力軸25を支持する転がり軸受(第2転がり軸受)37,37の内輪37aが入力軸25に対してすきま嵌めで嵌合され、かつ、入力軸25が、径方向に延び、外径端部が転がり軸受37,37との嵌合部M1,M2に開口した第2給油孔P(潤滑油路25d1,25d2)を有する。このようにすれば、入力軸25の潤滑油路25c(軸方向油路)内を流通する潤滑油を、入力軸25と転がり軸受37,37との嵌合部M1,M2(転がり軸受37を入力軸25に対してすきま嵌めで嵌合することにより形成される半径方向すきま)、ひいては、転がり軸受37の内部に効率良く供給することができる。これにより、入力軸25の外径面のうち、転がり軸受37,37との嵌合部M1,M2、および各転がり軸受37の内輪37a内径面の摩耗を効果的に防止して、ミスアライメントによる異音・振動の発生を防止することができる他、転がり軸受37,37の内部摩耗を効果的に防止して、転がり軸受37,37の内部摩耗に起因した異音・振動の発生を防止することができる。 As described above, in the cycloid reduction gear (deceleration unit B) of the present embodiment, the inner rings 37a of the rolling bearings (second rolling bearings) 37 and 37 that support the input shaft 25 are clearance-fitted to the input shaft 25. The second oil supply hole P 2 (lubricating oil passage 25d1, the input shaft 25 extends in the radial direction, and the outer diameter end portion opens to the fitting portions M1, M2 with the rolling bearings 37, 37. 25d2). In this way, the lubricating oil flowing in the lubricating oil passage 25c (axial oil passage) of the input shaft 25 is used as the fitting portions M1 and M2 (the rolling bearing 37 for the rolling bearing 37) between the input shaft 25 and the rolling bearings 37, 37. (Radial clearance formed by fitting with the input shaft 25 by clearance fitting), and by extension, can be efficiently supplied to the inside of the rolling bearing 37. This effectively prevents wear of the fitting portions M1 and M2 with the rolling bearings 37 and 37 and the inner diameter surface of the inner ring 37a of each rolling bearing 37 out of the outer diameter surface of the input shaft 25, resulting in misalignment. In addition to preventing the generation of abnormal noise and vibration, the internal wear of the rolling bearings 37 and 37 is effectively prevented, and the generation of abnormal noise and vibration due to the internal wear of the rolling bearings 37 and 37 is prevented. be able to.
 特に、第2給油孔Pの外径端部を、嵌合部M1,M2の軸方向中央部に開口させているので、転がり軸受37,37との嵌合部M1,M2、および各転がり軸受37の内輪37a内径面の全域に潤滑油を行き渡らせ易くなる。これにより、嵌合部M1,M2、および各転がり軸受37の内輪37a内径面の摩耗を一層効果的に防止することができる。なお、特に、第2給油孔Pの外径端部を嵌合部M1,M2の軸方向中央部に開口させた場合には、転がり軸受37の内側軌道面の直下位置に第2給油孔Pの外径端部が位置することになるため、サイクロイド減速機の作動に伴って転がり軸受37に径方向内向きの荷重が作用すると、転がり軸受37の軌道面(特に内側軌道面)が変形する可能性がある。転がり軸受37の軌道面が変形すると、異音・振動の発生原因となる他、転がり軸受37の短寿命化を招来する一因ともなる。 In particular, the second outer diameter end of the oil supply hole P 2, since is opened in the axial center portion of the fitting portion M1, M2, the fitting portion M1, M2 of the rolling bearings 37 and 37, and rolling each Lubricating oil is easily spread over the entire inner diameter surface of the inner ring 37a of the bearing 37. Thereby, the wear of the fitting portions M1 and M2 and the inner surface of the inner ring 37a of each rolling bearing 37 can be more effectively prevented. Incidentally, in particular, when is opened a second outer diameter end of the oil supply hole P 2 in the axial center portion of the fitting portion M1, M2, the second oil supply hole to the position directly below the inner raceway surface of the rolling bearing 37 since the outer diameter end portion of the P 2 will be located, when the load radially inward into the rolling bearing 37 by the actuation of the cycloid reducer acts raceways of the rolling bearing 37 (particularly the inner raceway surface) There is a possibility of deformation. If the raceway surface of the rolling bearing 37 is deformed, it may cause abnormal noise and vibration, and may cause a shortened life of the rolling bearing 37.
 このような不具合発生を可及的に防止するため、第2給油孔Pの外径端部の開口径は、転がり軸受37のボール37c直径の40%以下とするのが好ましい。但し、第2給油孔Pの外径端部の開口径が小さ過ぎると、加工性が低下する他、嵌合部M1,M2、および各転がり軸受37の内輪37a内径面を十分に潤滑できるだけの潤滑油を吐出することが難しくなる。そのため、第2給油孔Pの外径端部の開口径は、ボール37cの直径の10%以上とするのが好ましい。 To prevent such a problem occurs as much as possible, the opening diameter of the radially outer end portion of the second oil supply hole P 2 is preferably 40% or less of the ball 37c diameter of the rolling bearing 37. However, when the opening diameter of the second outer diameter end of the oil supply hole P 2 is too small, other workability is lowered, fitting portions M1, M2, and sufficiently lubricated as possible the inner ring 37a radially inner surface of the rolling bearings 37 It becomes difficult to discharge the lubricating oil. Therefore, the opening diameter of the second outer diameter end of the oil supply hole P 2 is preferably at least 10% of the diameter of the ball 37c.
 ここで、図4を参照して説明したように、入力軸25が回転するのに伴って、転がり軸受41,37、さらには入力軸25の転がり軸受41,37との嵌合部に荷重(合力Fs)が作用するが、荷重の方向や大きさは種々の条件により変化し、実際には周方向一部領域に荷重が作用する。具体的に述べると、入力軸25がアウトボード側から見て反時計回りに回転する本実施形態では、入力軸25が回転するのに伴って、入力軸25のアウトボード側の端部を支持する転がり軸受37の内輪37a(およびその嵌合部M2)、曲線板26bを支持する転がり軸受41の内輪42(およびその嵌合部)、曲線板26aを支持する転がり軸受41の内輪42(およびその嵌合部)、並びに入力軸25の軸方向略中央部を支持する転がり軸受37の内輪37a(およびその嵌合部M1)のそれぞれには、図6B~図6Eのそれぞれに斜線ハッチングで示す荷重負荷域Eに荷重が作用する。 Here, as described with reference to FIG. 4, as the input shaft 25 rotates, the load bearings 41 and 37, and further, the load on the fitting portions of the input shaft 25 with the rolling bearings 41 and 37 ( The resultant force Fs) acts, but the direction and magnitude of the load vary depending on various conditions, and the load actually acts on a partial region in the circumferential direction. Specifically, in the present embodiment in which the input shaft 25 rotates counterclockwise when viewed from the outboard side, the end portion on the outboard side of the input shaft 25 is supported as the input shaft 25 rotates. The inner ring 37a (and its fitting portion M2) of the rolling bearing 37, the inner ring 42 (and its fitting portion) of the rolling bearing 41 that supports the curved plate 26b, and the inner ring 42 (and the rolling bearing 41 that supports the curved plate 26a). 6B to 6E are hatched in each of the fitting portion) and the inner ring 37a (and its fitting portion M1) of the rolling bearing 37 that supports the substantially central portion of the input shaft 25 in the axial direction. A load acts on the load area E.
 そして、本実施形態では、上述したように、嵌合部M2に開口した潤滑油路25d2(第2給油孔P)は、偏心部25a,25bの偏心方向に対して周方向一方側および他方側に位相を90°異ならせた二箇所に設けられており、この場合、一方の潤滑油路25d2の外径端部は、入力軸25のアウトボード側の端部を支持する転がり軸受37の荷重負荷域Eの入口側に開口する(図6Bを参照)。また、嵌合部M1に開口した潤滑油路25d1(第2給油孔P)は、偏心部25a,25bの偏心方向に対して周方向一方側および他方側に位相を90°異ならせた二箇所に設けられており、この場合、一方の潤滑油路25d1の外径端部は、入力軸25の軸方向略中央部を支持する転がり軸受37の荷重負荷域Eの入口側に開口する(図6Eを参照)。図示は省略するが、入力軸25がアウトボード側から見て時計回りに回転する場合、荷重負荷域Eは偏心部25a,25bの偏心方向と入力軸の回転軸心を含む対称面に対して鏡面対象の位置に設けられることになり、この場合、他方の潤滑油路25d2,25d1の外径端部が荷重負荷域Eの入口側に開口することになる。 In the present embodiment, as described above, the lubricating oil passage 25d2 (second oil supply hole P 2 ) opened in the fitting portion M2 has one side in the circumferential direction and the other side in the eccentric direction of the eccentric portions 25a and 25b. In this case, the outer diameter end portion of one lubricating oil passage 25d2 is a rolling bearing 37 that supports the end portion of the input shaft 25 on the outboard side. Open to the entrance side of the load area E (see FIG. 6B). Further, the lubricating oil passage 25d1 (second oil supply hole P 2 ) opened to the fitting portion M1 has a phase that is 90 ° different in the circumferential direction on one side and the other side with respect to the eccentric direction of the eccentric portions 25a and 25b. In this case, the outer diameter end portion of one lubricating oil passage 25d1 opens to the inlet side of the load load region E of the rolling bearing 37 that supports the substantially central portion in the axial direction of the input shaft 25 ( (See FIG. 6E). Although illustration is omitted, when the input shaft 25 rotates clockwise as viewed from the outboard side, the load area E is in relation to the symmetry plane including the eccentric direction of the eccentric portions 25a and 25b and the rotational axis of the input shaft. In this case, the outer diameter ends of the other lubricating oil passages 25d2 and 25d1 open to the inlet side of the load load area E.
 要するに、第2給油孔Pを、偏心部25a,25bの偏心方向に対して周方向一方側および他方側に位相を90°異ならせた二箇所に設けておけば、入力軸25の回転方向に関わらず、何れか一方の第2給油孔Pの外径端部を各転がり軸受37の荷重負荷域Eの入口側に位置させることができる。そのため、入力軸25の回転時には、第2給油孔Pを介して嵌合部M1,M2に供給された潤滑油を、転がり軸受37との嵌合部M1,M2、および各転がり軸受37の内輪37a内径面のうち実質的に荷重が負荷される領域に効率良く供給することができる。これにより、入力軸25の外径面のうち、第2転がり軸受(転がり軸受37)との嵌合部M1,M2、および各転がり軸受37の内輪37a内径面が摩耗するのを一層効果的に防止することができる。また、第2給油孔Pを上記態様で形成すれば、(1)第2給油孔Pを設けることによる入力軸25の重量バランスの崩れを回避できるので入力軸25の振れ回りを防止する上でも有利となる、(2)回転方向に応じた二種類の入力軸25を作り分け・使い分けする必要がなくなるので、管理工数の低減、さらには入力軸25の誤組込み防止を達成することができる、などというメリットも享受できる。 In short, the second oil supply hole P 2, the eccentric portion 25a, if provided phase at two locations having different 90 ° in the one circumferential direction and relative to the eccentric direction of 25b the other side, the rotational direction of the input shaft 25 Regardless, the outer diameter end portion of any one of the second oil supply holes P < b > 2 can be positioned on the inlet side of the load load area E of each rolling bearing 37. Therefore, when the rotation of the input shaft 25, the lubricating oil supplied to the fitting portion M1, M2 via the second oil supply hole P 2, the fitting portion M1 of the rolling bearing 37, M2, and each rolling bearing 37 It can supply efficiently to the area | region where a load is substantially loaded among the inner ring | wheels 37a inner diameter surface. As a result, of the outer diameter surface of the input shaft 25, the fitting portions M1, M2 with the second rolling bearing (rolling bearing 37) and the inner diameter surface of the inner ring 37a of each rolling bearing 37 are more effectively worn. Can be prevented. Further, the second oil supply hole P 2 by forming the above manner to prevent whirling of the input shaft 25 can be avoided the collapse of the weight balance of the input shaft 25 due to the provision of the (1) second oil supply hole P 2 (2) Since there is no need to create and use two types of input shafts 25 according to the rotation direction, it is possible to reduce the management man-hours and to prevent erroneous assembly of the input shafts 25. You can also enjoy the benefits of being able to.
 また、本実施形態では、第1給油孔Pとして機能する潤滑油路25a1,25b1を、偏心部25a,25bの偏心方向に対して位相を180°異ならせた位置に設けており、この場合、潤滑油路25a1,25b1の外径端部は、入力軸25の外径面のうち、曲線板26a,26bを支持する転がり軸受41,41の荷重負荷域Eの入口側付近に開口する(図6Dおよび図6Cを参照)。そのため、第1給油孔Pと、転がり軸受41の内輪42に設けられた油孔を介して転がり軸受41の軌道面42a,43に供給された潤滑油を、入力軸25の回転に伴って、実質的に荷重が負荷される荷重負荷域Eに効率良く供給することができる。 Further, in the present embodiment, the lubricating oil passage 25a1,25b1 functioning as the first oil supply hole P 1, it is provided at positions having different 180 ° phase relative to the eccentric direction of the eccentric portion 25a, 25b, in this case The outer diameter end portions of the lubricating oil passages 25a1 and 25b1 open near the inlet side of the load load area E of the rolling bearings 41 and 41 that support the curved plates 26a and 26b on the outer diameter surface of the input shaft 25 ( (See FIGS. 6D and 6C). Therefore, the lubricating oil supplied to the raceway surfaces 42 a and 43 of the rolling bearing 41 through the first oil supply hole P 1 and the oil holes provided in the inner ring 42 of the rolling bearing 41 is caused by the rotation of the input shaft 25. The load can be efficiently supplied to the load area E where the load is substantially applied.
 さらに、本実施形態では、入力軸25が、浸炭焼入れ焼戻しが施されることにより形成された硬化層Hを表層部に有するので、減速機入力軸25の外径面の表面硬度が十分に高められている。そのため、減速部Bの作動に伴って、曲線板26a,26bを支持する転がり軸受(第1転がり軸受)41,41や、入力軸25を支持する転がり軸受(第2転がり軸受)37,37を介して入力軸25に荷重が負荷されても、入力軸25の外径面の摩耗・損傷を防止することができる。 Furthermore, in this embodiment, since the input shaft 25 has a hardened layer H formed by carburizing, quenching and tempering on the surface layer portion, the surface hardness of the outer diameter surface of the speed reducer input shaft 25 is sufficiently increased. It has been. Therefore, in accordance with the operation of the deceleration unit B, the rolling bearings (first rolling bearings) 41 and 41 that support the curved plates 26a and 26b and the rolling bearings (second rolling bearings) 37 and 37 that support the input shaft 25 are provided. Even when a load is applied to the input shaft 25 through the outer diameter surface, it is possible to prevent the outer diameter surface of the input shaft 25 from being worn or damaged.
 また、減速部Bにサイクロイド減速機を採用した本実施形態のインホイールモータ駆動装置21では、モータ部Aの駆動時に、入力軸25に対して曲線板26a,26bから荷重の方向や大きさが変動するラジアル荷重やモーメント荷重が作用する。このため、モータ回転軸24に形成したスプラインと入力軸25に形成したスプライン25gとを嵌合することで形成されるスプライン嵌合部におけるトルク伝達は、モータ回転軸24と入力軸25の軸心がある程度傾いた状態、あるいは芯ずれした状態の中で行われる場合が多い。そのため、入力軸25とモータ回転軸24のスプライン嵌合部には比較的大きな摩擦力や荷重が作用するが、入力軸25の表層部にはスプライン25gの形成部位を含めて硬化層Hが形成されているので、スプライン25gの耐摩耗性等を高めてスプライン25gの摩耗や損傷を可及的に防止することができる。 Moreover, in the in-wheel motor drive device 21 of this embodiment which employ | adopted the cycloid reduction gear for the deceleration part B, the direction and magnitude | size of a load are from the curved board 26a, 26b with respect to the input shaft 25 at the time of the drive of the motor part A. Fluctuating radial load and moment load are applied. For this reason, torque transmission in the spline fitting portion formed by fitting the spline formed on the motor rotation shaft 24 and the spline 25g formed on the input shaft 25 is the center of the motor rotation shaft 24 and the input shaft 25. Is often performed in a state of being tilted to some extent or being misaligned. Therefore, a relatively large frictional force or load is applied to the spline fitting portion of the input shaft 25 and the motor rotating shaft 24, but the hardened layer H is formed on the surface layer portion of the input shaft 25 including the portion where the spline 25g is formed. Therefore, the wear resistance and the like of the spline 25g can be enhanced to prevent the spline 25g from being worn or damaged as much as possible.
 また、肌焼き鋼で形成された入力軸25の芯部には硬化層Hが形成されていないので、入力軸25は靱性を有する。これにより、車両の運転走行時に車輪用軸受部Cを介して入力軸25に入力される瞬間的な衝撃荷重にも耐えることができる。 Moreover, since the hardened layer H is not formed in the core part of the input shaft 25 formed of case-hardened steel, the input shaft 25 has toughness. Thereby, it is possible to withstand an instantaneous impact load that is input to the input shaft 25 via the wheel bearing portion C during driving of the vehicle.
 また、特に本実施形態の入力軸25は、偏心部25a,25bを一体に有し、かつ、潤滑機構を構成する軸方向油路としての潤滑油路25c、第1給油孔Pとしての潤滑油路25a1,25b1、および第2給油孔Pとしての潤滑油路25d1,25d2などを有する関係上、形状が複雑で加工コストの増大が懸念される。これに対し、入力軸25の形成材料として、浸炭焼入れ焼戻し前の段階では比較的軟質で加工性に富む肌焼き鋼を選択しているので、入力軸25の作製コストを効果的に抑制することができる。 In particular the input shaft 25 of the present embodiment includes an eccentric portion 25a, and 25b together, and the lubricating oil passage 25c as axial oil passage constituting a lubrication mechanism, lubrication of the first oil supply hole P 1 oil passage 25A1,25b1, and the second oil supply hole on relationships with such lubricating oil passage 25d1,25d2 as P 2, the shape is increased complexity and manufacturing cost is concerned. On the other hand, as the forming material of the input shaft 25, case hardening steel that is relatively soft and rich in workability is selected at the stage before carburizing, quenching, and tempering, so that the production cost of the input shaft 25 is effectively suppressed. Can do.
 以上より、本発明によれば、入力軸25とその支持軸受37,37との嵌合部M1,M2における摩耗、さらには支持軸受37,37の軌道面の摩耗等を効果的に抑制し得るサイクロイド減速機を実現することができる。これにより、音響性能や耐久寿命等に優れたサイクロイド減速機、ひいてはこれを搭載したインホイールモータ駆動装置21を提供することができる。 As described above, according to the present invention, wear at the fitting portions M1, M2 between the input shaft 25 and the support bearings 37, 37, wear of the raceway surfaces of the support bearings 37, 37, and the like can be effectively suppressed. A cycloid reducer can be realized. Thereby, the cycloid reduction gear excellent in acoustic performance, durable life, etc., and the in-wheel motor drive device 21 which mounts this by extension can be provided.
 以上の構成を有するインホイールモータ駆動装置21の全体的な作動原理を、図1および図3を参照しながら説明する。 The overall operating principle of the in-wheel motor drive device 21 having the above configuration will be described with reference to FIGS.
 モータ部Aでは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これに伴って、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a、26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27は、曲線板26a,26bの外周部に設けられた曲線形状の波形と周方向で係合し、曲線板26a、26bを減速機入力軸25の回転方向とは逆向きに自転回転させる。 In the motor part A, for example, the rotor 23b made of a permanent magnet or a magnetic material rotates by receiving an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a. Accordingly, when the speed reducer input shaft 25 connected to the motor rotating shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotational axis of the speed reducer input shaft 25. At this time, the outer pin 27 engages with the curved waveform provided on the outer periphery of the curved plates 26a and 26b in the circumferential direction, and the curved plates 26a and 26b are opposite to the rotation direction of the speed reducer input shaft 25. To rotate around.
 貫通孔30aに挿通された内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが出力軸28を介して車輪用軸受部Cに伝達される。このとき、入力軸25の回転が減速部Bによって減速された上で出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪(後輪)14に必要なトルクを伝達することが可能となる。 The inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. Thereby, the revolution movement of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the output shaft 28. At this time, the rotation of the input shaft 25 is transmitted to the output shaft 28 after being decelerated by the decelerating unit B. Therefore, even when the low-torque, high-rotation type motor unit A is employed, the drive wheels (rear wheels) 14 It is possible to transmit the torque required for.
 上記構成の減速部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの外周部に設けた波形の数をZとすると、(Z-Z)/Zで算出される。図3に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。 The speed reduction ratio of the speed reduction portion B having the above-described configuration is (Z A −Z B ) / Z B , where Z A is the number of outer pins 27 and Z B is the number of waveforms provided on the outer peripheral portions of the curved plates 26a and 26b. Is calculated by In the embodiment shown in FIG. 3, since Z A = 12 and Z B = 11, a very large reduction ratio of 1/11 can be obtained.
 このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31を回転自在に支持する転がり軸受(針状ころ軸受)61,31aを設けたことにより、曲線板26a,26bと外ピン27および内ピン31との間の摩擦抵抗が低減されるので、減速部Bにおける動力伝達効率が向上する。 In this way, by adopting the reduction part B that can obtain a large reduction ratio without using a multistage configuration, the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing rolling bearings (needle roller bearings) 61 and 31a that rotatably support the outer pin 27 and the inner pin 31, friction between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31 is achieved. Since resistance is reduced, the power transmission efficiency in the deceleration part B improves.
 上述したように、本実施形態のインホイールモータ駆動装置21は、装置全体として軽量・コンパクト化が図られている。そのため、このインホイールモータ駆動装置21を電気自動車11に搭載すれば、ばね下重量を抑えることができるので、走行安定性およびNVH特性に優れた電気自動車11を実現することができる。 As described above, the in-wheel motor drive device 21 of the present embodiment is lightweight and compact as a whole device. Therefore, if the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the unsprung weight can be suppressed, so that the electric vehicle 11 excellent in running stability and NVH characteristics can be realized.
 以上、本発明の一実施形態に係るインホイールモータ駆動装置21について説明を行ったが、インホイールモータ駆動装置21には、本発明の要旨を逸脱しない範囲で種々の変更を施すことが可能である。 As described above, the in-wheel motor driving device 21 according to the embodiment of the present invention has been described. However, the in-wheel motor driving device 21 can be variously modified without departing from the gist of the present invention. is there.
 例えば、以上で説明した実施形態においては、モータ回転軸24の形成材料について特に言及していないが、モータ回転軸24は、入力軸25と同様に、浸炭焼入れ焼戻しが施された肌焼き鋼で形成することができる。この場合、モータ回転軸24と入力軸25の熱膨張量が概ね等しくなるので、モータ部Aの駆動時においても上記二軸24,25の連結状態が変化するのを可及的に防止することができる。これにより、上記二軸24,25間における動力伝達を安定的に行うことができる。なお、モータ回転軸24が上記材料で形成されていれば、モータ回転軸24を簡便に作製可能でき、しかも他部材(転がり軸受36やロータ23b)の嵌合部における表面硬度や耐摩耗性に優れると共に、必要とされる靱性を具備するモータ回転軸24を実現することができる。 For example, in the embodiment described above, the material for forming the motor rotation shaft 24 is not particularly mentioned, but the motor rotation shaft 24 is made of case-hardened steel that has been carburized, quenched, and tempered, like the input shaft 25. Can be formed. In this case, since the thermal expansion amounts of the motor rotating shaft 24 and the input shaft 25 are substantially equal, it is possible to prevent the connection state of the two shafts 24 and 25 from changing as much as possible even when the motor unit A is driven. Can do. Thereby, power transmission between the two shafts 24 and 25 can be stably performed. In addition, if the motor rotating shaft 24 is formed with the said material, the motor rotating shaft 24 can be produced simply and surface hardness and abrasion resistance in the fitting part of other members (the rolling bearing 36 and the rotor 23b) are good. A motor rotating shaft 24 that is excellent and has the required toughness can be realized.
 また、以上では、回転ポンプ51としてサイクロイドポンプを採用したが、これに限ることなく、出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらには、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。 In the above description, the cycloid pump is used as the rotary pump 51. However, the rotary pump 51 is not limited to this, and any rotary pump driven using the rotation of the output shaft 28 can be used. Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
 また、以上では、入力軸25の軸方向二箇所に偏心部25a,25bを設けたが、偏心部の形成個数は任意に設定することができる。例えば、偏心部は、入力軸25の軸方向三箇所に設けることができ、この場合、各偏心部は、入力軸25の回転に伴って生じる遠心力を打ち消し合うように120°位相を変えて設けるのが好ましい。 In the above description, the eccentric portions 25a and 25b are provided at two positions in the axial direction of the input shaft 25. However, the number of formed eccentric portions can be arbitrarily set. For example, the eccentric portions can be provided at three positions in the axial direction of the input shaft 25. In this case, the eccentric portions change the phase by 120 ° so as to cancel the centrifugal force generated by the rotation of the input shaft 25. It is preferable to provide it.
 また、以上では、一端が出力軸28のフランジ部28aに固定された内ピン31と、曲線板26a,26bに設けた貫通孔30aとで運動変換機構を構成したが、運動変換機構は、減速部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。 In the above description, the motion conversion mechanism is configured by the inner pin 31 having one end fixed to the flange portion 28a of the output shaft 28 and the through hole 30a provided in the curved plates 26a and 26b. It is possible to adopt an arbitrary configuration that can transmit the rotation of the part B to the hub wheel 32.
 本実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから後輪14に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。 The description of the operation in the present embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor part A to the rear wheel 14. Therefore, the power decelerated as described above is converted into high torque.
 また、モータ部Aに電力を供給してモータ部Aを駆動させ、モータ部Aからの動力を後輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、後輪14側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電するように構成することもできる。さらに、ここで発電した電力は、バッテリーに蓄電しておき、モータ部Aの駆動用電力や、車両に備えられた他の電動機器の作動用電力として活用することもできる。 Moreover, although the case where the electric power is supplied to the motor unit A to drive the motor unit A and the power from the motor unit A is transmitted to the rear wheel 14 is shown, the vehicle decelerates or slopes are reversed. When it falls, the power from the rear wheel 14 side can be converted into high-rotation and low-torque rotation by the speed reduction part B and transmitted to the motor part A, and the motor part A can generate power. . Furthermore, the electric power generated here can be stored in a battery and used as electric power for driving the motor unit A and electric power for operating other electric devices provided in the vehicle.
 また、以上では、モータ部Aにラジアルギャップモータを採用したインホイールモータ駆動装置21に本発明を適用したが、本発明は、モータ部Aに、ステータとロータとを軸方向の隙間を介して対向させるアキシャルギャップモータを採用したインホイールモータ駆動装置にも好ましく適用できる。 In the above description, the present invention is applied to the in-wheel motor drive device 21 that employs a radial gap motor for the motor portion A. However, the present invention is configured such that the stator and the rotor are connected to the motor portion A via an axial gap. The present invention can also be preferably applied to an in-wheel motor drive device that employs an axial gap motor to be opposed.
 さらに、本発明に係るサイクロイド減速機を減速部Bに適用したインホイールモータ駆動装置は、後輪14を駆動輪とした後輪駆動タイプの電気自動車11のみならず、前輪13を駆動輪とした前輪駆動タイプの電気自動車や、前輪13および後輪14を駆動輪とした4輪駆動タイプの電気自動車に適用することもできる。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含む。 Furthermore, the in-wheel motor drive device in which the cycloid reduction gear according to the present invention is applied to the speed reduction part B is not only the rear wheel drive type electric vehicle 11 having the rear wheel 14 as the drive wheel, but also the front wheel 13 as the drive wheel. The present invention can also be applied to a front-wheel drive type electric vehicle and a four-wheel drive type electric vehicle using the front wheels 13 and the rear wheels 14 as drive wheels. In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and includes, for example, a hybrid vehicle.
 また、本発明に係るサイクロイド減速機は、インホイールモータ駆動装置以外の電気自動車用の駆動装置、例えばオンボード駆動装置の減速部にも好ましく適用することができる(図示省略)。 Further, the cycloid reduction gear according to the present invention can be preferably applied to a drive device for an electric vehicle other than the in-wheel motor drive device, for example, a reduction portion of an on-board drive device (not shown).
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.
 本発明の有用性を実証するため、本発明の構成を有する減速機供試体(実施例)と、本発明の構成を有しない減速機供試体(比較例)とで、入力軸のうち、その支持軸受との嵌合部における摩耗量、および支持軸受の内輪内径面の摩耗量にどの程度差が生じるのかを確認した。実施例と比較例の相違点は、入力軸に、その支持軸受との嵌合部に開口した径方向に延びる給油孔(第2給油孔P)を設けたか否かのみであり、その他の構成は実施例および比較例で共通である。具体的には、以下に示すような入力軸および支持軸受を使用して実施例および比較例に係る供試体を作製した。なお、実施例に係る入力軸における第2給油孔Pの形成態様は図2に示したものと同様で、かつ、第2給油孔Pの開口径は2mmとした。また、入力軸とその支持軸受との間の嵌め合いは、0~0.015mm程度の嵌め合いすきまが形成されるすきま嵌めとした。
(1)入力軸:肌焼き鋼で形成され、かつ浸炭焼入れ焼戻しを施すことにより表層部に硬化層を設けたもの。表面硬度はビッカース硬さで660~780HV程度である。
(2)支持軸受:直径が7.9375mmのボールを使用した深溝玉軸受であって、各部材を、ずぶ焼入れが施されたSUJ2材で形成したもの(表面硬度はビッカース硬さCスケールで58~63程度)。
In order to demonstrate the usefulness of the present invention, a reduction gear specimen (example) having the configuration of the present invention and a reduction gear specimen (comparative example) not having the configuration of the present invention, It was confirmed how much difference occurred in the amount of wear at the fitting portion with the support bearing and the amount of wear on the inner ring inner surface of the support bearing. The only difference between the example and the comparative example is whether or not the input shaft is provided with a radially extending oil supply hole (second oil supply hole P 2 ) opened in the fitting portion with the support bearing. The configuration is common to the examples and comparative examples. Specifically, specimens according to Examples and Comparative Examples were manufactured using an input shaft and a support bearing as described below. Incidentally, formation of the second oil supply hole P 2 in the input shaft according to the embodiment similar to that shown in FIG. 2, and the opening diameter of the second oil supply hole P 2 was 2 mm. The fit between the input shaft and its support bearing was a clearance fit in which a fit clearance of about 0 to 0.015 mm was formed.
(1) Input shaft: formed of case-hardened steel and carburized, quenched, and tempered to provide a hardened layer on the surface layer. The surface hardness is about 660 to 780 HV in terms of Vickers hardness.
(2) Support bearing: Deep groove ball bearing using a ball having a diameter of 7.9375 mm, each member formed of SUJ2 material that has been subjected to continuous quenching (surface hardness is 58 on the Vickers hardness C scale) ~ About 63).
 そして、車両の旋回走行時に相当する荷重を各供試体に負荷したところ、比較例に係る供試体では、入力軸の支持軸受嵌合部における摩耗量および支持軸受の内輪内径面における摩耗量が、それぞれ、半径方向寸法で最大約30μmおよび約20μm程度であった。これに対し、実施例に係る供試体では、入力軸の支持軸受嵌合部における摩耗量および支持軸受の内輪内径面における摩耗量が、何れも、半径方向寸法で1μm未満であった。また、比較例に係る供試体では、入力軸の支持軸受軌道面は摩耗粉を噛み込み摩耗していたが、実施例に係る供試体では、入力軸の支持軸受軌道面の表面状態は良好であった。 Then, when a load corresponding to the turning of the vehicle was applied to each specimen, in the specimen according to the comparative example, the wear amount in the support bearing fitting portion of the input shaft and the wear amount in the inner ring inner surface of the support bearing were The maximum radial dimension was about 30 μm and about 20 μm, respectively. On the other hand, in the specimen according to the example, the wear amount at the support bearing fitting portion of the input shaft and the wear amount at the inner ring inner surface of the support bearing were both less than 1 μm in the radial dimension. Further, in the specimen according to the comparative example, the support bearing raceway surface of the input shaft was worn by the wear powder, but in the specimen according to the example, the surface condition of the support bearing raceway surface of the input shaft was good. there were.
 また、実施例に係る供試体として、ボール直径が5.55625mmである深溝玉軸受を使用し、かつ第2給油孔Pの開口径を1mmとしたものについても摩耗量の確認を行った。この場合も上記同様に、入力軸の支持軸受嵌合部における摩耗量および支持軸受の内輪内径面における摩耗量は、何れも、半径方向寸法で1μm未満であった。また、入力軸の支持軸受軌道面の表面状態も、上記同様に、良好であった。 Further, as a specimen according to the example, the ball diameter using a deep groove ball bearing is 5.55625Mm, and was also performed to confirm the wear amount for that the second opening diameter of the oil supply hole P 2 and 1 mm. Also in this case, as described above, the wear amount at the support bearing fitting portion of the input shaft and the wear amount at the inner ring inner surface of the support bearing were both less than 1 μm in the radial dimension. The surface condition of the support bearing raceway surface of the input shaft was also good as described above.
 以上より、本発明は、入力軸とその支持軸受との嵌合部における摩耗、さらには支持軸受の軌道面の摩耗等を効果的に抑制し得るサイクロイド減速機を実現する上で極めて有益であることが確認された。 As described above, the present invention is extremely useful in realizing a cycloid reduction gear that can effectively suppress wear at the fitting portion between the input shaft and its support bearing, and further wear on the raceway surface of the support bearing. It was confirmed.
11    電気自動車
21    インホイールモータ駆動装置
25    入力軸
25a,25b 偏心部
25a1,25b1 潤滑油路(第1給油孔)
25c   潤滑油路(軸方向油路)
25d1,25d2 潤滑油路(第2給油孔)
26a,26b 曲線板
27    外ピン
28    出力軸
31    内ピン
37    第2転がり軸受
41    第1転がり軸受
A     モータ部
B     減速部(サイクロイド減速機)
C     車輪用軸受部
E     荷重負荷域
H     硬化層
M1,M2 嵌合部
    第1給油孔
    第2給油孔
DESCRIPTION OF SYMBOLS 11 Electric vehicle 21 In-wheel motor drive device 25 Input shaft 25a, 25b Eccentric part 25a1, 25b1 Lubricating oil path (1st oil supply hole)
25c Lubricating oil passage (axial oil passage)
25d1, 25d2 Lubricating oil passage (second oiling hole)
26a, 26b Curved plate 27 Outer pin 28 Output shaft 31 Inner pin 37 Second rolling bearing 41 First rolling bearing A Motor part B Reduction part (cycloid reduction gear)
C Wheel bearing part E Load area H Hardened layer M1, M2 Fitting part P 1 1st oil hole P 2 2nd oil hole

Claims (7)

  1.  偏心部を有する入力軸と、第1転がり軸受を介して前記偏心部の外周に回転自在に嵌合され、前記入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、該曲線板の外周部に係合して前記曲線板に自転運動を生じさせる複数の外ピンと、前記曲線板の自転運動を出力軸の回転運動に変換する運動変換機構と、前記入力軸を前記出力軸に対して回転自在に支持する第2転がり軸受とを備え、前記入力軸に、その内部を軸方向に延びる軸方向油路と、径方向に延び、前記軸方向油路内を流通する潤滑油を前記第1転がり軸受に供給する第1給油孔とが設けられたサイクロイド減速機であって、
     前記第2転がり軸受を前記入力軸に対してすきま嵌めで嵌合し、
     前記入力軸に、径方向に延び、内径端部が前記軸方向油路に開口すると共に外径端部が前記第2転がり軸受との嵌合部に開口した第2給油孔をさらに設けたことを特徴とするサイクロイド減速機。
    An input shaft having an eccentric portion, and a curved plate that is rotatably fitted to the outer periphery of the eccentric portion via a first rolling bearing and performs a revolving motion around the rotational axis as the input shaft rotates. A plurality of outer pins that engage with the outer periphery of the curved plate to cause the curved plate to rotate, a motion conversion mechanism that converts the rotational motion of the curved plate into a rotational motion of an output shaft, and the input shaft And a second rolling bearing that rotatably supports the output shaft, an axial oil passage extending in the axial direction inside the input shaft, a radial oil passage extending in the axial direction, and the inside of the axial oil passage. A cycloid reducer provided with a first oil supply hole for supplying the flowing lubricating oil to the first rolling bearing,
    Fitting the second rolling bearing to the input shaft with a clearance fit,
    The input shaft further includes a second oil supply hole extending in a radial direction, having an inner diameter end opened in the axial oil passage and an outer diameter end opened in a fitting portion with the second rolling bearing. A cycloid reducer characterized by.
  2.  前記第2給油孔の外径端部を、前記嵌合部の軸方向中央部に開口させたことを特徴とする請求項1に記載のサイクロイド減速機。 The cycloid reducer according to claim 1, wherein an outer diameter end portion of the second oil supply hole is opened at an axially central portion of the fitting portion.
  3.  前記偏心部は、前記入力軸の軸方向二箇所に位相を180°異ならせて設けられていることを特徴とする請求項1又は2に記載のサイクロイド減速機。 The cycloid reducer according to claim 1 or 2, wherein the eccentric portion is provided at two positions in the axial direction of the input shaft with a phase difference of 180 °.
  4.  前記第2給油孔を、前記偏心部の偏心方向に対して周方向一方側および他方側に位相を90°異ならせた位置に設けたことを特徴とする請求項1~3の何れか一項に記載のサイクロイド減速機。 The first oil supply hole is provided at a position where the phase is different by 90 ° on one side and the other side in the circumferential direction with respect to the eccentric direction of the eccentric portion. The cycloid reducer described in 1.
  5.  前記第2転がり軸受は、ボールを介して相対回転する内輪および外輪を有する玉軸受であり、前記第2給油孔の外径端部の開口径を、前記ボールの直径の10%以上40%以下に設定したことを特徴とする請求項1~4の何れか一項に記載のサイクロイド減速機。 The second rolling bearing is a ball bearing having an inner ring and an outer ring that rotate relative to each other via a ball, and an opening diameter of an outer diameter end portion of the second oil supply hole is 10% to 40% of the diameter of the ball. The cycloid reducer according to any one of claims 1 to 4, wherein
  6.  前記入力軸が肌焼き鋼で形成され、熱処理として浸炭焼入れ焼戻しが施されていることを特徴とする請求項1~5の何れか一項に記載のサイクロイド減速機。 The cycloid reducer according to any one of claims 1 to 5, wherein the input shaft is formed of case-hardened steel and is subjected to carburizing, quenching and tempering as a heat treatment.
  7.  モータ部、減速部および車輪用軸受部を有するインホイールモータ駆動装置であって、
     前記減速部に請求項1~6の何れか一項に記載のサイクロイド減速機が適用され、該サイクロイド減速機を構成する前記入力軸を、前記モータ部の回転軸にトルク伝達可能に連結してなるインホイールモータ駆動装置。
    An in-wheel motor drive device having a motor part, a speed reduction part and a wheel bearing part,
    The cycloid reducer according to any one of claims 1 to 6 is applied to the speed reduction unit, and the input shaft constituting the cycloid speed reducer is connected to a rotation shaft of the motor unit so as to transmit torque. An in-wheel motor drive device.
PCT/JP2015/068944 2014-08-01 2015-07-01 Cycloidal speed reducer and in-wheel motor drive device provided with same WO2016017351A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014157732A JP2016035278A (en) 2014-08-01 2014-08-01 Cycloidal speed reducer and in-wheel motor drive device with cycloidal speed reducer
JP2014-157732 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016017351A1 true WO2016017351A1 (en) 2016-02-04

Family

ID=55217255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068944 WO2016017351A1 (en) 2014-08-01 2015-07-01 Cycloidal speed reducer and in-wheel motor drive device provided with same

Country Status (2)

Country Link
JP (1) JP2016035278A (en)
WO (1) WO2016017351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109774463A (en) * 2019-03-15 2019-05-21 重庆青山工业有限责任公司 A kind of integrated electric drive assembly
DE102017130902B4 (en) 2017-01-16 2023-05-17 Sumitomo Heavy Industries, Ltd. Reduction gear and heat treatment method of a rotary body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7068102B2 (en) * 2018-08-23 2022-05-16 三菱電機Fa産業機器株式会社 Hypocycloid reducer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718815A (en) * 1980-07-04 1982-01-30 Mitsubishi Heavy Ind Ltd Bearing device
JPS6263653A (en) * 1985-09-17 1987-03-20 Aichi Steel Works Ltd High strength case hardening steel
JP2010169247A (en) * 2008-12-26 2010-08-05 Ntn Corp Railroad vehicle drive unit
JP2012148725A (en) * 2011-01-21 2012-08-09 Ntn Corp In-wheel motor drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718815A (en) * 1980-07-04 1982-01-30 Mitsubishi Heavy Ind Ltd Bearing device
JPS6263653A (en) * 1985-09-17 1987-03-20 Aichi Steel Works Ltd High strength case hardening steel
JP2010169247A (en) * 2008-12-26 2010-08-05 Ntn Corp Railroad vehicle drive unit
JP2012148725A (en) * 2011-01-21 2012-08-09 Ntn Corp In-wheel motor drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017130902B4 (en) 2017-01-16 2023-05-17 Sumitomo Heavy Industries, Ltd. Reduction gear and heat treatment method of a rotary body
CN109774463A (en) * 2019-03-15 2019-05-21 重庆青山工业有限责任公司 A kind of integrated electric drive assembly

Also Published As

Publication number Publication date
JP2016035278A (en) 2016-03-17

Similar Documents

Publication Publication Date Title
WO2015008606A1 (en) Device for driving in-wheel motor
JP2016166639A (en) Cycloid reduction gear and motor drive unit having the same
JP2016114184A (en) Cycloid speed reducer and in-wheel motor drive with cycloid speed reducer
JP2015175512A (en) In-wheel motor driving device
JP2016161117A (en) Cycloid speed reducer and motor drive device with cycloid speed reducer
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
WO2015046087A1 (en) In-wheel motor drive device
JP6324761B2 (en) In-wheel motor drive device
JP2016070294A (en) In-wheel motor drive
WO2015133278A1 (en) In-wheel motor drive device
WO2015046086A1 (en) In-wheel motor drive device
JP6400297B2 (en) In-wheel motor drive device
WO2015060135A1 (en) In-wheel motor driving device
JP6333579B2 (en) In-wheel motor drive device
JP6328429B2 (en) In-wheel motor drive device
WO2015137088A1 (en) In-wheel motor drive device
WO2016043012A1 (en) In-wheel motor drive device
WO2016043011A1 (en) In-wheel motor drive device
WO2015098490A1 (en) In-wheel motor drive device
WO2015137073A1 (en) In-wheel motor drive device
WO2015098489A1 (en) In-wheel motor drive device
JP2016191447A (en) Cycloid reducer and motor drive device including the same
WO2015141389A1 (en) In-wheel motor drive device
WO2015137085A1 (en) In-wheel motor drive device
WO2015098487A1 (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827614

Country of ref document: EP

Kind code of ref document: A1