WO2015046087A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2015046087A1
WO2015046087A1 PCT/JP2014/074932 JP2014074932W WO2015046087A1 WO 2015046087 A1 WO2015046087 A1 WO 2015046087A1 JP 2014074932 W JP2014074932 W JP 2014074932W WO 2015046087 A1 WO2015046087 A1 WO 2015046087A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed reducer
lubricating oil
input shaft
rotation
wheel
Prior art date
Application number
PCT/JP2014/074932
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 稔
朋久 魚住
Original Assignee
Ntn株式会社
鈴木 稔
朋久 魚住
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 鈴木 稔, 朋久 魚住 filed Critical Ntn株式会社
Publication of WO2015046087A1 publication Critical patent/WO2015046087A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • F16C19/466Needle bearings with one row or needles comprising needle rollers and an outer ring, i.e. subunit without inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6677Details of supply of the liquid to the bearing, e.g. passages or nozzles from radial inside, e.g. via a passage through the shaft and/or inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
  • a conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example.
  • the in-wheel motor driving device 101 disclosed in Patent Document 1 includes a motor unit 103 that generates a driving force inside a casing 102 that is attached to a vehicle body via a suspension device (suspension);
  • the main part is composed of a wheel bearing portion 104 connected to the wheel and a speed reduction portion 105 that decelerates the rotation of the motor portion 103 and transmits it to the wheel bearing portion 104.
  • a low-torque, high-rotation type motor is employed for the motor unit 103 from the viewpoint of making the device compact.
  • the wheel bearing portion 104 requires a large torque to drive the wheel. Therefore, a cycloid reducer that is compact and can obtain a high reduction ratio is employed for the reduction unit 105.
  • the speed reducer 105 employing this cycloid speed reducer includes a speed reducer input shaft 106 having eccentric portions 106a and 106b, curved plates 107a and 107b disposed on the eccentric portions 106a and 106b of the speed reducer input shaft 106, and A plurality of outer pins 109 that engage with the outer peripheral surfaces of the curved plates 107a and 107b to cause the curved plates 107a and 107b to rotate, and needle roller bearings on the inner diameter surfaces of the through holes 115a and 115b of the curved plates 107a and 107b.
  • the main part is constituted by a plurality of inner pins 111 that are engaged through the transmission plate 114 and transmit the rotation of the curved plates 107 a and 107 b to the reduction gear output shaft 110.
  • the reduction gear input shaft 106 is rotatably supported by ball bearings 112a and 112b on the casing 102 and the reduction gear output shaft 110.
  • the curved plates 107a and 107b are rotatably supported by the eccentric portions 106a and 106b of the reduction gear input shaft 106 by ball bearings 108a and 108b.
  • Both ends of the plurality of outer pins 109 engaged with the outer peripheral surfaces of the curved plates 107a and 107b are rotatably supported by the casing 102 by needle roller bearings 113a and 113b.
  • the inner pin 111 held by the reduction gear output shaft 110 incorporates a needle roller bearing 114 of an outer ring and a needle roller and having no inner ring, and a curved plate is interposed via the needle roller bearing 114. 107a and 107b are in rolling contact.
  • the above-described conventional in-wheel motor drive device 101 needs to house the unit inside the wheel, needs to suppress the unsprung weight, and is further downsized to ensure a large cabin space. Is an essential requirement. Therefore, it is necessary to use a small motor unit 103, and high speed rotation of 15,000 min ⁇ 1 or more is required in order to obtain a necessary output from the small and low torque motor unit 103.
  • the harsh usage environment, the mechanical special characteristics of the cycloid reduction gear, and the characteristics of the in-wheel motor drive device 101 that becomes the unsprung weight are entangled, and the inner pin 111 incorporated in the reduction gear 105 is improved. I have left a point.
  • the present invention has been proposed in view of the above-mentioned improvements, and the object of the present invention is to drive an in-wheel motor that is durable, small and lightweight, and has good NVH (Noise Vibration Harshness) characteristics.
  • NVH Noise Vibration Harshness
  • the present invention has the following knowledge found about the inner pin incorporated in the speed reduction portion. Is based.
  • misalignment may occur in the inner pin held on the output shaft of the speed reducer and the needle roller bearing incorporated in the inner pin and in rolling contact with the curved plate.
  • a lubricating oil passage is formed inside the inner pin as a part of the lubricating mechanism provided in the speed reduction portion. Since the inner pin of such a speed reducing part receives a large load from the curved plate through the needle roller bearing, it is placed under a situation where a radial load or moment load is easily applied and an excessive stress is likely to occur. Turned out to be. Further, it has been found that in the speed reducing portion, vibration due to the swing of the curved plate, and sound and vibration due to the contact of the curved plate with the outer pin and the inner pin are generated.
  • the present invention comprises a casing for holding a motor part, a reduction part and a wheel bearing part, and the motor part rotationally drives a reduction gear input shaft having an eccentric part,
  • the speed reducer decelerates the rotation of the speed reducer input shaft and transmits it to the speed reducer output shaft, and the wheel bearing portion is connected to the speed reducer output shaft.
  • a shaft a revolving member that is rotatably held by an eccentric portion of the speed reducer input shaft, and performs a revolving motion around the rotation axis as the speed reducer input shaft rotates, and an outer peripheral portion of the revolving member
  • the outer pin that engages with the shaft and causes the rotation of the revolving member, and the motion conversion that converts the rotation of the revolving member into rotation about the rotation axis of the reducer input shaft and transmits it to the reducer output shaft Mechanism and reducer lubrication that supplies lubricant to the reducer
  • the motion conversion mechanism includes a structure in which an inner pin held by the output shaft of the speed reducer is inserted into a through hole formed in the revolution member and engaged with the revolution member via a roller bearing, The inner pin is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is 20 to 35%.
  • the inner pin is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is set to 20 to 35%, so that a radial load or a moment load is applied and an excessive stress is easily generated. Even if it exists, while being able to improve a rolling fatigue life, generation
  • the inner pin in the present invention has a lubricating oil passage for allowing the lubricating oil to flow therethrough and a hole for directly supplying oil to the rolling surface. If it does in this way, with the lubricating oil which distribute
  • the inner pin is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is set to 20 to 35%, so that a radial load or a moment load is easily applied and an excessive stress is easily generated. Even underneath, the rolling fatigue life can be improved and the occurrence and development of cracks can be suppressed by retained austenite. As a result, it is possible to realize an in-wheel motor drive device that is small and lightweight and has good NVH characteristics while ensuring durability.
  • FIG. 2 is a cross-sectional view taken along the line OO in FIG. It is a principal part expanded sectional view which shows the deceleration part of FIG. It is sectional drawing which shows the needle roller bearing integrated in the inner pin of the deceleration part of FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG.
  • FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along line QQ in FIG. 1.
  • FIG. 2 is a cross-sectional view taken along the line RR in FIG. 1.
  • Embodiments of the in-wheel motor drive device 21 according to the present invention will be described in detail below with reference to FIGS.
  • FIG. 10 is a plan view showing a schematic configuration of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted
  • FIG. 11 is a view of the electric vehicle 11 from the rear.
  • the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14.
  • the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower part of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms.
  • the suspension device 12b is an independent suspension type in which left and right wheels can be moved up and down independently in order to improve followability to road surface unevenness and efficiently transmit the driving force of the driving wheels to the road surface.
  • the electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
  • the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
  • FIGS. 1 to 9 the in-wheel motor drive device 21 having the structure shown in FIGS. 1 to 9 is employed.
  • 1 is a cross-sectional view showing a schematic configuration of the in-wheel motor drive device 21
  • FIG. 2 is a cross-sectional view taken along the line OO in FIG. 1
  • FIG. 3 is an enlarged cross-sectional view showing a speed reduction portion in FIG. 1 is a cross-sectional view showing a needle roller bearing incorporated in the inner pin of the speed reduction portion of FIG. 1
  • FIG. 5 is an explanatory view showing a load acting on a curved plate
  • FIG. 8 is a sectional view taken along line RR in FIG. 1
  • FIG. 9 is a sectional view showing the rotary pump in FIG.
  • the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and an output from the deceleration unit B as driving wheels. 14 (see FIG. 10 and FIG. 11), and the motor part A and the speed reduction part B are housed in the casing 22, and as shown in FIG. 10, the wheel housing 12a of the electric vehicle 11 is provided. Installed inside.
  • the motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed at a position facing the inner side of the stator 23a with a radial gap, and an inner side of the rotor 23b that is connected and fixed to be integrated with the rotor 23b. It is a radial gap motor provided with a rotating motor rotating shaft 24a.
  • the motor rotation shaft 24a having a hollow structure is fitted and fixed to the inner diameter surface of the rotor 23b and integrally rotates, and one end in the axial direction (right side in FIG. 1) in the motor portion A is axially moved to the rolling bearing 36a.
  • the other end (left side in FIG. 1) is rotatably supported by a rolling bearing 36b.
  • the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) at the rolling bearing 37a and an end on the other side in the axial direction (left side in FIG. 1) as the rolling bearing 37b. Therefore, it is rotatably supported with respect to the reduction gear output shaft 28.
  • One rolling bearing 37a is fitted to the inner diameter surface of the cylindrical portion 31d of the stabilizer 31b connected and fixed to the shaft end portion of the inner pin 31 fixed to the reduction gear output shaft 28.
  • the other rolling bearing 37 b is fitted to the inner diameter surface of the flange portion 28 a of the reduction gear output shaft 28.
  • the reduction gear input shaft 25 has eccentric portions 25a and 25b in the reduction portion B.
  • the two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion.
  • the reduction gear input shaft 25 is rotatably supported with respect to the reduction gear output shaft 28 by rolling bearings 37a and 37b.
  • the motor rotating shaft 24 a and the speed reducer input shaft 25 are connected by serration fitting, and the driving force of the motor part A is transmitted to the speed reducing part B.
  • the serration fitting portion is configured to suppress the influence on the motor rotation shaft 24a even if the speed reducer input shaft 25 is inclined to some extent.
  • the deceleration portion B is held at a fixed position on the casing 22 and curved plates 26a and 26b as revolving members that are rotatably held by the eccentric portions 25a and 25b, and engages with the outer peripheral portions of the curved plates 26a and 26b.
  • a plurality of outer pins 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the reduction gear output shaft 28, and a counterweight 29 at a position adjacent to the eccentric portions 25a, 25b are provided.
  • the speed reduction part B is provided with a speed reduction part lubrication mechanism for supplying lubricating oil.
  • the reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b.
  • a plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28. Further, the shaft portion 28 b is fitted and connected to the hub wheel 32 and transmits the output of the speed reduction portion B to the wheel 14.
  • the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centering on the rotation axis of the curved plates 26a, 26b, and receive the inner pins 31.
  • the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b.
  • the curved plates 26a and 26b are supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric portions 25a and 25b.
  • the rolling bearing 41 is directly formed on the inner ring 42 having an inner raceway surface 42a on the outer diameter surface thereof and the inner diameter surface of the through holes 30b of the curved plates 26a and 26b.
  • the cylindrical roller bearing includes an outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42 a and the outer raceway surface 43, and a cage 45 that holds the cylindrical rollers 44.
  • the inner ring 42 has flange portions 42b that protrude radially outward from both axial end portions of the inner raceway surface 42a.
  • the rolling bearing 41 is exemplified by the inner ring 42 formed separately.
  • the present invention is not limited to this, and the inner raceway surface is directly formed on the outer diameter surface of the eccentric portion 25a, similarly to the outer raceway surface 43. May be.
  • the outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25.
  • the outer pin 27 is rotatably held by an outer pin housing 60 via a needle roller bearing 27a, and the outer pin housing 60 is attached to the casing 22 (see FIG. 1) in a non-rotating state (not shown). .
  • the outer pin 27 may be directly held on the casing 22 via the needle roller bearing 27a.
  • the counterweight 29 is substantially fan-shaped and has a through hole that engages with the speed reducer input shaft 25.
  • the counterweights 29a and 25b The eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at adjacent positions. As shown in FIG. 3, when the center point in the direction of the rotational axis between the two curved plates 26a and 26b is G, the distance between the central point G and the center of the curved plate 26a is the right side of the central point G.
  • L 1 , the sum of the masses of the curved plate 26 a, the rolling bearing 41, and the eccentric portion 25 a is m 1
  • the eccentric amount of the center of gravity of the curved plate 26 a from the rotational axis is ⁇ 1
  • the mass of the counterweight 29 is m 2
  • the eccentric amount of the center of gravity of the counterweight 29 from the rotational axis is ⁇ 2
  • L 1 ⁇ m 1 ⁇ ⁇ 1 L 2 ⁇ m 2 ⁇ ⁇ 2 It is a satisfying relationship.
  • a similar relationship is established between the curved plate 26 b on the left side of the center point G and the counterweight 29.
  • the inner pin 31 held by the speed reducer output shaft 28 is inserted into a through hole 30a provided in the curved plates 26a and 26b, and the curved plate 26a is inserted through a needle roller bearing 31a as a roller bearing. , 26b.
  • the needle roller bearing 31a is illustrated, but other roller bearings such as a cylindrical roller bearing may be used.
  • the through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a) by a predetermined dimension. Is set.
  • the inner pins 31 are provided at equal intervals on a circumference centered on the rotational axis of the speed reducer output shaft 28, and one axial end thereof is fixed to the speed reducer output shaft 28. Since the speed reducer output shaft 28 is arranged coaxially with the speed reducer input shaft 25, the rotational motion of the curved plates 26a and 26b is converted into rotational motion about the rotational axis of the speed reducer input shaft 25. This is transmitted to the reduction gear output shaft 28.
  • the needle roller bearing 31a incorporated in the inner pin 31 abuts against the inner wall surface of the through hole 30a of the curved plates 26a, 26b, thereby reducing the frictional resistance with the curved plates 26a, 26b.
  • the stabilizer 31b is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG.
  • the stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner diameter surface of the annular portion 31c.
  • the ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c of the stabilizer 31b. Since the load applied to some of the inner pins 31 from the curved plates 26a, 26b is supported by all the inner pins 31 via the stabilizer 31b, the stress acting on the inner pins 31 is reduced and the durability is improved. be able to. In addition, since the one end portion in the axial direction of the inner pin 31 is held by the reduction gear output shaft 28 and the other end portion in the axial direction is held by the stabilizer 31b, the rigidity is improved. The moment load can be reduced.
  • the needle roller bearing 31a incorporated in the inner pin 31 engages with the inner wall surface of the through hole 30a (see FIG. 3) of the curved plates 26a and 26b, and the outer raceway surface on the inner diameter surface. 38a, an inner raceway surface 38c formed directly on the outer diameter surface of the inner pin 31, and a plurality of needle rollers 39 disposed between the inner raceway surface 38c and the outer raceway surface 38a. ing.
  • the plurality of needle rollers 39 are arranged in a so-called single row full roller state without a cage.
  • the two needle roller bearings 31a arranged side by side along the axial direction of the inner pin 31 have spacers 40a and 40b between the flange portion 28a of the reduction gear output shaft 28 and the annular portion 31c of the stabilizer 31b. By interposing, the axial position with respect to the inner pin 31 is regulated.
  • the roller bearing 31a as the roller bearing, the roller bearing itself incorporated in the inner pin 31 can be reduced in size, which contributes to the reduction in size and weight of the in-wheel motor drive device 21. Further, by adopting a type in which the needle roller bearing 31a does not have an inner ring, the needle roller bearing 31a itself can be further reduced in size, which is more suitable for downsizing and weight reduction of the in-wheel motor drive device 21.
  • Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25.
  • the outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated recesses 33 that are depressed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 33 are arranged in the circumferential direction with the axis O as the center.
  • the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2.
  • An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a.
  • the reduction gear output shaft 28 is rotated.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. .
  • a resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
  • the direction of the resultant force Fs changes depending on geometrical conditions such as the waveform shape of the curved plate 26a, the number of the concave portions 33, and the centrifugal force. Specifically, the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. Fluctuates.
  • the load directions and magnitudes of the plurality of loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also reduced. Direction and size vary. Then, when the speed reducer input shaft 25 rotates once, the corrugated concave portion 33 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state of FIG. 5, and this is repeated.
  • the inner pin 31 is loaded with a radial load and a moment load whose load direction and magnitude vary. As a result, it was verified that the bearing temperature increased and the temperature difference between the inner raceway surface and the outer raceway surface was larger than expected. Therefore, in terms of the material and heat treatment of the inner pin 31, the inner pin 31 is made of bearing steel or carburized steel, and the inner pin 31 is subjected to carbonitriding, and nitrogen is diffused into the surface layer portion to stabilize the austenite. By improving (property of martensite transformation), 20 to 35% of retained austenite is retained after quenching.
  • the inner pin 31 has a lubricating oil passage 31f for allowing the lubricating oil to flow therethrough and has a hole 31g for directly supplying oil to the rolling surface (see FIG. 3).
  • the carbonitriding process and setting the amount of retained austenite in the surface layer portion to 20 to 35% it is possible to suppress the generation and propagation of cracks starting from the periphery of the lubricating oil passage 31f and the hole 31g. Note that if the amount of retained austenite in the surface layer portion of the inner pin 31 is less than 20%, the effect of suppressing the occurrence and development of cracks becomes insufficient, and if the amount of retained austenite is more than 35%, the hardness decreases. The rolling fatigue life becomes unsatisfactory.
  • the needle roller bearing 31a incorporated in the inner pin 31 also receives a large load from the curved plates 26a and 26b. For this reason, not only the inner pin 31 but also the needle roller bearing 31a is subjected to a situation where a radial load or a moment load is applied and an excessive stress is easily generated. Therefore, in terms of the material and heat treatment of the constituent members of the needle roller bearing 31a, the outer ring 38 is made of bearing steel or carburized steel, the needle roller 39 is used as bearing steel, and the outer ring 38 and the needle roller 39 are further formed. Carbonitriding is performed, and nitrogen is diffused in the surface layer portion to improve the stability of austenite, thereby retaining 20 to 35% of retained austenite after quenching.
  • the needle roller bearing 31a is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is set to 20 to 35%, thereby improving the rolling fatigue life.
  • the retained austenite can suppress the generation and progress of cracks, improve the modified rated life (ISO281), and increase the life.
  • the needle roller bearing 31a having the same life can be reduced in size, and the durable small and light in-wheel motor drive device 21 can be realized.
  • the amount of retained austenite in the surface layer portion of the needle roller bearing 31a is less than 20%, the effect of suppressing the occurrence and development of cracks is insufficient, and if the amount of retained austenite is more than 35%, the hardness decreases. As a result, the rolling fatigue life cannot be satisfied.
  • the wheel bearing portion C includes a hub wheel 32 connected to the speed reducer output shaft 28 and a wheel bearing 33 that rotatably supports the hub wheel 32 with respect to the casing 22.
  • the hub wheel 32 has a cylindrical hollow portion 32a and a flange portion 32b.
  • the driving wheel 14 (see FIGS. 10 and 11) is connected and fixed to the flange portion 32b by a bolt 32c.
  • a spline is formed on the outer diameter surface of the shaft portion 28b of the reduction gear output shaft 28. The spline is fitted into a spline hole formed on the inner diameter surface of the hollow portion 32a of the hub wheel 32 so that torque can be transmitted. It is connected.
  • the wheel bearing 33 includes an inner bearing member 33 formed of a hub wheel 32 and an inner ring 33a fitted to a small-diameter step portion of the hub wheel 32, an outer bearing member 33b fitted and fixed to the inner diameter surface of the casing 22, and a hub.
  • a plurality of rolling elements disposed between the inner raceway surfaces 33f and 33g formed on the outer diameter surfaces of the ring 32 and the inner ring 33a and the outer raceway surfaces 33h and 33i formed on the inner diameter surface of the outer bearing member 33b.
  • This is a double-row angular contact ball bearing including a ball 33c, a retainer 33d that holds a gap between adjacent balls 33c, and a seal member 33e that seals both axial ends of the wheel bearing 33.
  • the speed reduction part lubrication mechanism supplies lubricating oil to the speed reduction part B, and includes a lubricating oil path 25c, lubricating oil supply ports 25d, 25e, and 25f, and a lubricating oil path 31e in the stabilizer 31b shown in FIGS.
  • the lubricating oil passage 31f in the inner pin 31, the lubricating oil discharge port 22b, the lubricating oil storage portion 22d, the lubricating oil passage 22e, the rotary pump 51, and the circulating oil passage 45 constitute the main part.
  • subjected in the deceleration part lubrication mechanism shows the direction through which lubricating oil flows.
  • the lubricating oil passage 25c extends along the axial direction inside the reduction gear input shaft 25.
  • the lubricating oil supply ports 25d and 25e extend from the lubricating oil passage 25c toward the outer diameter surface of the speed reducer input shaft 25, and the lubricating oil supply port 25f extends from the shaft end of the speed reducer input shaft 25 in the direction of the rotational axis. It extends toward the shaft end face.
  • At least one location of the casing 22 at the position of the speed reduction portion B is provided with a lubricating oil discharge port 22b for discharging the lubricating oil inside the speed reduction portion B.
  • a circulating oil passage 45 that connects the lubricating oil discharge port 22 b and the lubricating oil passage 25 c is provided inside the casing 22.
  • the lubricating oil discharged from the lubricating oil discharge port 22 b returns to the lubricating oil path 25 c via the circulating oil path 45.
  • the circulating oil passage 45 includes an axial oil passage 45a extending in the axial direction inside the casing 22, and one axial end portion of the axial oil passage 45a (on the right side in FIG. 1). ) And a radial oil passage 45c extending in the radial direction, and a radial oil passage 45b extending in the radial direction connected to the other axial end of the axial oil passage 45a (left side in FIG. 1).
  • the radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and supplies the lubricating oil from the axial oil passage 45a to the lubricating oil passage 25c via the radial oil passage 45c.
  • a rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45, and the lubricating oil is forcibly circulated.
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the speed reducer output shaft 28 (see FIG. 1), and an outer rotor 53 that rotates following the rotation of the inner rotor 52.
  • the cycloid pump includes a pump chamber 54, a suction port 55 that communicates with the lubricating oil passage 22e, and a discharge port 56 that communicates with the radial oil passage 45b of the circulation oil passage 45.
  • the inner rotor 52 has a tooth profile formed of a cycloid curve on the outer diameter surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve.
  • the inner rotor 52 is fitted to the outer diameter surface of the cylindrical portion 31d (see FIGS. 1 and 3) of the stabilizer 31b and rotates integrally with the inner pin 31 (reduction gear output shaft 28).
  • the outer rotor 53 has a tooth profile constituted by a cycloid curve on the inner diameter surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve.
  • the outer rotor 53 is rotatably supported by the casing 22.
  • the inner rotor 52 is rotated about the rotation center c 1.
  • the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52.
  • the number of teeth of the inner rotor 52 is n
  • a plurality of pump chambers 54 are provided in the space between the inner rotor 52 and the outer rotor 53.
  • the outer rotor 53 rotates in a driven manner.
  • the volume of the pump chamber 54 changes continuously.
  • the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45b.
  • the inner rotor 52 is provided with a stepped portion 52 c.
  • the stepped portion 52 c has an outer diameter surface (guide surface) that abuts against the inner diameter surface of the casing 22, and prevents the inner rotor 52 from being inclined by a radial load from the wheel 14.
  • a lubricating oil storage part 22d for temporarily storing the lubricating oil is provided.
  • the lubricating oil that cannot be pumped by the rotary pump 51 can be temporarily stored in the lubricating oil storage portion 22d.
  • an increase in torque loss of the deceleration unit B can be prevented.
  • the lubricating oil stored in the lubricating oil reservoir 22d can be returned to the lubricating oil passage 25c even if the amount of lubricating oil reaching the lubricating oil discharge port 22b decreases.
  • the lubricating oil can be stably supplied to the deceleration unit B.
  • the lubricating oil inside the deceleration part B moves outside by gravity in addition to the centrifugal force. Therefore, it is desirable to attach to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
  • the flow of the lubricating oil in the deceleration portion B having the above-described configuration will be described.
  • the lubricating oil flowing through the lubricating oil passage 25c flows out from the lubricating oil supply ports 25d, 25e, and 25f to the speed reducing unit B due to the centrifugal force and pressure accompanying the rotation of the speed reducer input shaft 25.
  • the lubricating oil flows to the rolling bearings in the deceleration portion B as follows.
  • Lubricating oil flowing out from the lubricating oil supply ports 25e and 25f is supplied to rolling bearings (deep groove ball bearings) 37a and 37b that support the reduction gear input shaft 25 by the action of centrifugal force. Further, the lubricating oil flowing out from the lubricating oil supply port 25e is led to the lubricating oil passage 31e in the stabilizer 31b and reaches the lubricating oil passage 31f in the inner pin 31, and from this lubricating oil passage 31f to the needle roller bearing 31a. Supplied.
  • the lubricating oil is a needle roller bearing that supports the outer pin 27 and the contact portion between the curved plates 26a and 26b and the inner pin 31, the contact portion between the curved plates 26a and 26b and the outer pin 27, and the outer pin 27 by centrifugal force. 27a, and moves to the outside in the radial direction while lubricating the rolling bearing 46 and the like that support the reduction gear output shaft 28 (stabilizer 31b).
  • the lubricating oil flowing out from the lubricating oil supply port 25d is supplied into the bearing from a supply hole 42c (see FIG. 3) provided in the inner ring 42 of the rolling bearing (cylindrical roller bearing) 41 that supports the curved plates 26a and 26b.
  • the cylindrical roller 44, the inner raceway surface 42a, and the outer raceway surface 43 are lubricated.
  • the lubricating oil is brought into contact with the curved plates 26a and 26b and the inner pin 31 and the curved plates 26a and 26b and the outer pin 27 by centrifugal force. It moves radially outward while lubricating the abutting part and the like.
  • Each rolling bearing in the speed reduction part B is lubricated by the flow of the lubricating oil as described above.
  • the lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil storage portion 22d.
  • the lubricating oil stored in the lubricating oil reservoir 22d is supplied from the suction port 55 to the rotary pump 51 through the lubricating oil passage 22e, and is pumped from the discharge port 56 to the circulating oil passage 45.
  • the lubricating oil returns from the radial oil passage 45b of the circulating oil passage 45 to the lubricating oil passage 25c via the axial oil passage 45a and the radial oil passage 45c.
  • Part of the lubricating oil flowing through the circulating oil passage 45 lubricates the rolling bearing 36a from between the casing 22 and the motor rotating shaft 24a.
  • the rolling bearing 36 b is lubricated by lubricating oil from between the stepped portion 52 c of the rotary pump 51 and the casing 22.
  • the amount of lubricating oil discharged from the lubricating oil discharge port 22b increases in proportion to the rotational speed of the speed reducer input shaft 25.
  • the discharge amount of the rotary pump 51 increases in proportion to the rotational speed of the speed reducer output shaft 28.
  • the amount of lubricating oil supplied from the lubricating oil discharge port 22 b to the speed reduction unit B increases in proportion to the discharge amount of the rotary pump 51. That is, since both the supply amount and the discharge amount of the lubricating oil to the speed reduction unit B change depending on the rotational speed of the in-wheel motor drive device 21, the lubricating oil can be circulated smoothly and constantly.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates.
  • the reduction gear input shaft 25 connected to the motor rotation shaft 24a rotates
  • the curved plates 26a and 26b revolve around the rotation axis of the reduction gear input shaft 25.
  • the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer B and is transmitted to the speed reducer output shaft 28, it is necessary for the drive wheel 14 even when the low torque, high speed motor part A is adopted. It is possible to transmit an appropriate torque.
  • the reduction ratio of the reduction part B is calculated as (Z A ⁇ Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b.
  • a very large reduction ratio of 1/11 can be obtained.
  • the in-wheel motor drive device 21 having a compact and high speed reduction ratio can be obtained.
  • the outer roller 27 and the inner pin 31 are provided with the needle roller bearings 27a and 31a (see FIG. 3), the frictional resistance between the curved plates 26a and 26b is reduced. Efficiency is improved.
  • the lubricating oil supply port 25d is provided in the eccentric portions 25a and 25b and the lubricating oil supply ports 25e and 25f are provided in the middle position and the shaft end of the speed reducer input shaft 25 is shown. Without limitation, it can be provided at any position of the speed reducer input shaft 25. However, from the viewpoint of stably supplying lubricating oil to the rolling bearings 41, 37a, and 37b, the lubricating oil supply port 25d is connected to the eccentric portions 25a and 25b, and the lubricating oil supply ports 25e and 25f are connected to the speed reducer input shaft 25. It is desirable to provide in the middle position and shaft end.
  • the rotary pump 51 can also be driven using the rotation of the speed reducer input shaft 25.
  • the rotational speed of the speed reducer input shaft 25 is larger than the speed reducer output shaft 28 (11 times in this embodiment)
  • the durability of the rotary pump 51 may be reduced.
  • a sufficient discharge amount can be ensured even when connected to the decelerator output shaft 28 that has been decelerated.
  • the rotary pump 51 is preferably driven by utilizing the rotation of the speed reducer output shaft 28.
  • the rotary pump 51 Although the example of the cycloid pump was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the example in which two curved plates 26a and 26b of the deceleration unit B are provided with a 180 ° phase shift is shown, but the number of curved plates can be arbitrarily set. For example, when three curved plates are provided, , And 120 ° out of phase.
  • the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve board 26a, 26b, it is not restricted to this,
  • the reduction part It is possible to adopt an arbitrary configuration that can transmit the rotation of B to the hub wheel 32.
  • it may be a motion conversion mechanism constituted by an inner pin fixed to the curved plates 26a and 26b and a hole formed in the reduction gear output shaft 28.
  • a brake can be added to the configuration of this embodiment.
  • the casing 22 is extended in the axial direction to form a space on the right side of the rotor 23 b in the drawing, a rotating member that rotates integrally with the rotor 23 b, and the casing 22 is not rotatable and axially
  • a parking brake which arrange
  • interposes the flange formed in a part of rotary member which rotates integrally with the rotor 23b, and the friction plate installed in the casing 22 side with the cylinder installed in the casing 22 side may be sufficient.
  • a drum brake can be used in which a drum is formed on a part of the rotating member, a brake shoe is fixed to the casing 22 side, and the rotating member is locked by friction engagement and self-engagement.
  • a radial gap motor is adopted as the motor part A, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied.
  • it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
  • the electric vehicle 11 shown in FIG. 10 and FIG. 11 shows an example in which the rear wheel 14 is a drive wheel
  • the present invention is not limited to this, and the front wheel 13 may be a drive wheel and is a four-wheel drive vehicle. May be.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

An in-wheel motor drive device (21) that rotationally drives a decelerator input shaft (25) having eccentric sections (25a, 25b), by using a motor unit (A), decelerates the rotation of the decelerator input shaft (25) by using a deceleration unit (B), and transmits said rotation to a decelerator output shaft (28). The deceleration unit (B) comprises: the decelerator input shaft (25); curved plates (26a, 26b) that revolve around the rotation shaft center in conjunction with the rotation of the decelerator input shaft (25); an outer pin (27) that causes autorotational motion of the curved plates (26a, 26b); and a motion conversion mechanism that converts the autorotational motion of the curved plates (26a, 26b) to rotational motion around the rotation shaft center of the decelerator input shaft (25) and transmits said motion to the decelerator output shaft (28), by inserting an inner pin (31) held by the decelerator output shaft (28) into a through hole (30a) in the curved plates (26a, 26b), and by causing same to join the curved plates (26a, 26b) via a pin-shaped roller bearing (31a). The inner pin (31a) has undergone carbon nitriding and the residual austentite in a surface layer section is 20%-35%.

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、例えば、電動モータの出力軸と車輪用軸受とを減速機を介して連結したインホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device in which, for example, an output shaft of an electric motor and a wheel bearing are connected via a speed reducer.
 従来のインホイールモータ駆動装置は、例えば、特許文献1に開示された構造のものがある。この特許文献1に開示されたインホイールモータ駆動装置101は、図12に示すように、懸架装置(サスペンション)を介して車体に取り付けられるケーシング102の内部で駆動力を発生させるモータ部103と、車輪に接続される車輪用軸受部104と、モータ部103の回転を減速して車輪用軸受部104に伝達する減速部105とで主要部が構成されている。 A conventional in-wheel motor drive device has a structure disclosed in Patent Document 1, for example. As shown in FIG. 12, the in-wheel motor driving device 101 disclosed in Patent Document 1 includes a motor unit 103 that generates a driving force inside a casing 102 that is attached to a vehicle body via a suspension device (suspension); The main part is composed of a wheel bearing portion 104 connected to the wheel and a speed reduction portion 105 that decelerates the rotation of the motor portion 103 and transmits it to the wheel bearing portion 104.
 前述の構成からなるインホイールモータ駆動装置101において、装置のコンパクト化の観点から、モータ部103には、低トルクで高回転型のモータが採用されている。一方、車輪用軸受部104には、車輪を駆動するために大きなトルクが必要となる。そのため、減速部105には、コンパクトで高い減速比が得られるサイクロイド減速機が採用されている。 In the in-wheel motor drive device 101 having the above-described configuration, a low-torque, high-rotation type motor is employed for the motor unit 103 from the viewpoint of making the device compact. On the other hand, the wheel bearing portion 104 requires a large torque to drive the wheel. Therefore, a cycloid reducer that is compact and can obtain a high reduction ratio is employed for the reduction unit 105.
 このサイクロイド減速機を採用した減速部105は、偏心部106a,106bを有する減速機入力軸106と、その減速機入力軸106の偏心部106a,106bに配置される曲線板107a,107bと、その曲線板107a,107bの外周面に係合して曲線板107a,107bに自転運動を生じさせる複数の外ピン109と、曲線板107a,107bの貫通孔115a,115bの内径面に針状ころ軸受114を介して係合して曲線板107a,107bの自転運動を減速機出力軸110に伝達する複数の内ピン111とで主要部が構成されている。 The speed reducer 105 employing this cycloid speed reducer includes a speed reducer input shaft 106 having eccentric portions 106a and 106b, curved plates 107a and 107b disposed on the eccentric portions 106a and 106b of the speed reducer input shaft 106, and A plurality of outer pins 109 that engage with the outer peripheral surfaces of the curved plates 107a and 107b to cause the curved plates 107a and 107b to rotate, and needle roller bearings on the inner diameter surfaces of the through holes 115a and 115b of the curved plates 107a and 107b. The main part is constituted by a plurality of inner pins 111 that are engaged through the transmission plate 114 and transmit the rotation of the curved plates 107 a and 107 b to the reduction gear output shaft 110.
 減速機入力軸106は、ケーシング102および減速機出力軸110に玉軸受112a,112bによって回転自在に支持されている。曲線板107a,107bは、減速機入力軸106の偏心部106a,106bに玉軸受108a,108bによって回転自在に支持されている。曲線板107a,107bの外周面に係合する複数の外ピン109は、その両端部が針状ころ軸受113a,113bによってケーシング102に回転自在に支持されている。減速機出力軸110に保持された内ピン111は、外輪および針状ころで構成されて内輪がないタイプの針状ころ軸受114が組み込まれており、この針状ころ軸受114を介して曲線板107a,107bと転がり接触している。 The reduction gear input shaft 106 is rotatably supported by ball bearings 112a and 112b on the casing 102 and the reduction gear output shaft 110. The curved plates 107a and 107b are rotatably supported by the eccentric portions 106a and 106b of the reduction gear input shaft 106 by ball bearings 108a and 108b. Both ends of the plurality of outer pins 109 engaged with the outer peripheral surfaces of the curved plates 107a and 107b are rotatably supported by the casing 102 by needle roller bearings 113a and 113b. The inner pin 111 held by the reduction gear output shaft 110 incorporates a needle roller bearing 114 of an outer ring and a needle roller and having no inner ring, and a curved plate is interposed via the needle roller bearing 114. 107a and 107b are in rolling contact.
特開2008-44537号公報JP 2008-44537 A
 ところで、前述した従来のインホイールモータ駆動装置101は、ホイールの内部にユニットを収めなければならず、また、ばね下重量を押さえる必要があり、さらに、広い客室スペースを確保するために、小型化が必須の要件となる。そのため、モータ部103は小型のものを使用する必要があり、小型低トルクのモータ部103から必要な出力を得るために15,000min-1以上の高速回転が要求される。このような過酷な使用環境やサイクロイド減速機の機構的な特殊性およびばね下重量となるインホイールモータ駆動装置101の特性が絡んで、減速部105の内部に組み込まれる内ピン111には改善すべき点を残している。 By the way, the above-described conventional in-wheel motor drive device 101 needs to house the unit inside the wheel, needs to suppress the unsprung weight, and is further downsized to ensure a large cabin space. Is an essential requirement. Therefore, it is necessary to use a small motor unit 103, and high speed rotation of 15,000 min −1 or more is required in order to obtain a necessary output from the small and low torque motor unit 103. The harsh usage environment, the mechanical special characteristics of the cycloid reduction gear, and the characteristics of the in-wheel motor drive device 101 that becomes the unsprung weight are entangled, and the inner pin 111 incorporated in the reduction gear 105 is improved. I have left a point.
 そこで、本発明は前述の改善点に鑑みて提案されたもので、その目的とするところは、耐久性を確保し、小型かつ軽量で、NVH(Noise Vibration Harshness)特性の良好なインホイールモータ駆動装置を提供することにある。 Accordingly, the present invention has been proposed in view of the above-mentioned improvements, and the object of the present invention is to drive an in-wheel motor that is durable, small and lightweight, and has good NVH (Noise Vibration Harshness) characteristics. To provide an apparatus.
 本発明は、前述の目的を達成するために、インホイールモータ駆動装置の内部の潤滑機構や冷却機構を含めて種々検討した結果、減速部内に組み込まれる内ピンについて見出された以下の知見に基づいている。 As a result of various investigations including the lubrication mechanism and the cooling mechanism inside the in-wheel motor drive device in order to achieve the above-mentioned object, the present invention has the following knowledge found about the inner pin incorporated in the speed reduction portion. Is based.
 減速部では、減速機出力軸に保持された内ピンと、その内ピンに組み込まれて曲線板と転がり接触する針状ころ軸受には、ミスアライメントが発生することがある。また、減速部に設けられた潤滑機構の一部として、内ピンの内部に潤滑油路が形成されている。このような減速部の内ピンは、針状ころ軸受を介して曲線板から大きな荷重を受けることになるため、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下におかれていることが判明した。また、減速部では、曲線板の振れ回りによる振動や、その曲線板と外ピンおよび内ピンの当たりによる音および振動が発生することが判明した。 In the speed reduction part, misalignment may occur in the inner pin held on the output shaft of the speed reducer and the needle roller bearing incorporated in the inner pin and in rolling contact with the curved plate. Further, a lubricating oil passage is formed inside the inner pin as a part of the lubricating mechanism provided in the speed reduction portion. Since the inner pin of such a speed reducing part receives a large load from the curved plate through the needle roller bearing, it is placed under a situation where a radial load or moment load is easily applied and an excessive stress is likely to occur. Turned out to be. Further, it has been found that in the speed reducing portion, vibration due to the swing of the curved plate, and sound and vibration due to the contact of the curved plate with the outer pin and the inner pin are generated.
 前述したラジアル荷重やモーメント荷重の負荷状態に加えて、ばね下重量となるインホイールモータ駆動装置という特殊条件が重畳することにより、NVH特性に悪影響を及ぼし、運転者および搭乗者に不快感を与えることが判明した。さらに、減速部では内ピンが高速回転で駆動されるため、その内ピンも小型化しなければ、減速部の径方向寸法をモータ部の径方向寸法内に収めることができず、インホールモータ駆動装置として成立しないことが判明した。 In addition to the radial load and moment load conditions described above, the special condition of the in-wheel motor drive device that becomes the unsprung weight is superimposed, which adversely affects the NVH characteristics and makes the driver and passenger uncomfortable. It has been found. Furthermore, since the inner pin is driven at a high speed in the speed reduction part, the radial dimension of the speed reduction part cannot be accommodated within the radial dimension of the motor part unless the inner pin is also reduced in size. It was found that the device was not established.
 前述の目的を達成するための技術的手段として、本発明は、モータ部、減速部および車輪用軸受部を保持するケーシングを備え、モータ部が偏心部を有する減速機入力軸を回転駆動し、減速部が減速機入力軸の回転を減速して減速機出力軸に伝達し、車輪用軸受部が減速機出力軸に連結されたインホイールモータ駆動装置であって、減速部は、減速機入力軸と、この減速機入力軸の偏心部に回転自在に保持されて、減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う公転部材と、この公転部材の外周部に係合して公転部材の自転運動を生じさせる外ピンと、公転部材の自転運動を、減速機入力軸の回転軸心を中心とする回転運動に変換して減速機出力軸に伝達する運動変換機構と、減速部に潤滑油を供給する減速部潤滑機構とを備え、運動変換機構は、減速機出力軸に保持された内ピンを、公転部材に形成された貫通孔に挿入してころ軸受を介して公転部材に係合させた構造を備え、内ピンは、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量が20~35%であることを特徴とする。 As technical means for achieving the above-mentioned object, the present invention comprises a casing for holding a motor part, a reduction part and a wheel bearing part, and the motor part rotationally drives a reduction gear input shaft having an eccentric part, The speed reducer decelerates the rotation of the speed reducer input shaft and transmits it to the speed reducer output shaft, and the wheel bearing portion is connected to the speed reducer output shaft. A shaft, a revolving member that is rotatably held by an eccentric portion of the speed reducer input shaft, and performs a revolving motion around the rotation axis as the speed reducer input shaft rotates, and an outer peripheral portion of the revolving member The outer pin that engages with the shaft and causes the rotation of the revolving member, and the motion conversion that converts the rotation of the revolving member into rotation about the rotation axis of the reducer input shaft and transmits it to the reducer output shaft Mechanism and reducer lubrication that supplies lubricant to the reducer The motion conversion mechanism includes a structure in which an inner pin held by the output shaft of the speed reducer is inserted into a through hole formed in the revolution member and engaged with the revolution member via a roller bearing, The inner pin is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is 20 to 35%.
 本発明において、内ピンは、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量を20~35%としたことにより、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下にあっても、転動疲労寿命を向上させることができると共に、残留オーステナイトによってクラックの発生および進展を抑制することができる。その結果、耐久性を確保しつつ、小型かつ軽量で、NVH特性の良好なインホイールモータ駆動装置を実現することができる。 In the present invention, the inner pin is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is set to 20 to 35%, so that a radial load or a moment load is applied and an excessive stress is easily generated. Even if it exists, while being able to improve a rolling fatigue life, generation | occurrence | production and progress of a crack can be suppressed with a retained austenite. As a result, it is possible to realize an in-wheel motor drive device that is small and lightweight and has good NVH characteristics while ensuring durability.
 本発明における内ピンは、その内部に潤滑油を流通させるための潤滑油路を形成し、かつ、転走面に直接給油するための穴を設けていることが望ましい。このようにすれば、潤滑油路を流通する潤滑油により、高速回転で駆動される内ピンの温度上昇を抑制することができる。ところが、内ピンに潤滑油路および穴が形成されていると、潤滑油路および穴周辺を起点とするクラックが発生することがある。そこで、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量を20~35%とすることにより、潤滑油路および穴周辺を起点とするクラックの発生および進展を抑制することができる。 It is desirable that the inner pin in the present invention has a lubricating oil passage for allowing the lubricating oil to flow therethrough and a hole for directly supplying oil to the rolling surface. If it does in this way, with the lubricating oil which distribute | circulates a lubricating oil path, the temperature rise of the inner pin driven by high speed rotation can be suppressed. However, if the lubricating oil passage and the hole are formed in the inner pin, a crack starting from the lubricating oil passage and the periphery of the hole may occur. Therefore, by performing carbonitriding and setting the amount of retained austenite in the surface layer portion to 20 to 35%, it is possible to suppress the generation and propagation of cracks starting from the lubricating oil passage and the periphery of the hole.
 本発明によれば、内ピンにおいて、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量を20~35%としたことにより、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下にあっても、転動疲労寿命を向上させることができると共に、残留オーステナイトによってクラックの発生および進展を抑制することができる。その結果、耐久性を確保しつつ、小型かつ軽量で、NVH特性の良好なインホイールモータ駆動装置を実現することができる。 According to the present invention, the inner pin is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is set to 20 to 35%, so that a radial load or a moment load is easily applied and an excessive stress is easily generated. Even underneath, the rolling fatigue life can be improved and the occurrence and development of cracks can be suppressed by retained austenite. As a result, it is possible to realize an in-wheel motor drive device that is small and lightweight and has good NVH characteristics while ensuring durability.
本発明の実施形態で、インホイールモータ駆動装置の全体構成を示す断面図である。In embodiment of this invention, it is sectional drawing which shows the whole structure of an in-wheel motor drive device. 図1のO-O線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line OO in FIG. 図1の減速部を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the deceleration part of FIG. 図1の減速部の内ピンに組み込まれた針状ころ軸受を示す断面図である。It is sectional drawing which shows the needle roller bearing integrated in the inner pin of the deceleration part of FIG. 図1の曲線板に作用する荷重を示す説明図である。It is explanatory drawing which shows the load which acts on the curve board of FIG. 図1のP-P線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line PP in FIG. 1. 図1のQ-Q線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line QQ in FIG. 1. 図1のR-R線に沿う断面図である。FIG. 2 is a cross-sectional view taken along the line RR in FIG. 1. 図1の回転ポンプを示す断面図である。It is sectional drawing which shows the rotary pump of FIG. インホイールモータ駆動装置を搭載した電気自動車の概略構成を示す平面図である。It is a top view which shows schematic structure of the electric vehicle carrying an in-wheel motor drive device. 図10の電気自動車を示す後方断面図である。It is back sectional drawing which shows the electric vehicle of FIG. 従来のインホイールモータ駆動装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the conventional in-wheel motor drive device.
 本発明に係るインホイールモータ駆動装置21の実施形態を、図1~図11を参照しながら以下に詳述する。 Embodiments of the in-wheel motor drive device 21 according to the present invention will be described in detail below with reference to FIGS.
 図10は、インホイールモータ駆動装置21を搭載した電気自動車11の概略構成を示す平面図で、図11は、電気自動車11を後方から見たものである。図10に示すように、電気自動車11は、シャーシ12と、操舵輪としての前輪13と、駆動輪としての後輪14と、その後輪14に駆動力を伝達するインホイールモータ駆動装置21とを装備する。図11に示すように、後輪14は、シャーシ12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャーシ12の下部に固定されている。 FIG. 10 is a plan view showing a schematic configuration of the electric vehicle 11 on which the in-wheel motor drive device 21 is mounted, and FIG. 11 is a view of the electric vehicle 11 from the rear. As shown in FIG. 10, the electric vehicle 11 includes a chassis 12, a front wheel 13 as a steering wheel, a rear wheel 14 as a drive wheel, and an in-wheel motor drive device 21 that transmits driving force to the rear wheel 14. Equip. As shown in FIG. 11, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower part of the chassis 12 via a suspension device (suspension) 12b.
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が地面から受ける振動を吸収してシャーシ12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時などの車体の傾きを抑制するスタビライザが設けられている。懸架装置12bは、路面の凹凸に対する追従性を向上させ、駆動輪の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式としている。 The suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body when turning, etc., is provided at the connecting portion of the left and right suspension arms. The suspension device 12b is an independent suspension type in which left and right wheels can be moved up and down independently in order to improve followability to road surface unevenness and efficiently transmit the driving force of the driving wheels to the road surface.
 電気自動車11は、ホイールハウジング12aの内部に、左右それぞれの後輪14を駆動するインホイールモータ駆動装置21を設けることによって、シャーシ12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構などを設ける必要がなくなるので、客室スペースを広く確保でき、かつ、左右の後輪14の回転をそれぞれ制御することができるという利点を有する。電気自動車11の走行安定性およびNVH特性を向上させるためにばね下重量を抑える必要があり、さらに、広い客室スペースを確保するためにインホイールモータ駆動装置21の小型化が求められる。 The electric vehicle 11 is provided with the in-wheel motor drive device 21 that drives the left and right rear wheels 14 inside the wheel housing 12a, thereby eliminating the need to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, there is an advantage that a wide cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled. In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight, and further, the in-wheel motor drive device 21 is required to be downsized in order to secure a large cabin space.
 そこで、図1~図9に示す構造のインホイールモータ駆動装置21を採用している。なお、図1はインホイールモータ駆動装置21の概略構成を示す断面図、図2は図1のO-O線に沿う断面図、図3は図1の減速部を示す拡大断面図、図4は図1の減速部の内ピンに組み込まれた針状ころ軸受を示す断面図、図5は曲線板に作用する荷重を示す説明図、図6は図1のP-P線に沿う断面図、図7は図1のQ-Q線に沿う断面図、図8は図1のR-R線に沿う断面図、図9は図1の回転ポンプを示す断面図である。 Therefore, the in-wheel motor drive device 21 having the structure shown in FIGS. 1 to 9 is employed. 1 is a cross-sectional view showing a schematic configuration of the in-wheel motor drive device 21, FIG. 2 is a cross-sectional view taken along the line OO in FIG. 1, FIG. 3 is an enlarged cross-sectional view showing a speed reduction portion in FIG. 1 is a cross-sectional view showing a needle roller bearing incorporated in the inner pin of the speed reduction portion of FIG. 1, FIG. 5 is an explanatory view showing a load acting on a curved plate, and FIG. 6 is a cross-sectional view taken along the line PP in FIG. 7 is a sectional view taken along line QQ in FIG. 1, FIG. 8 is a sectional view taken along line RR in FIG. 1, and FIG. 9 is a sectional view showing the rotary pump in FIG.
 図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を駆動輪14(図10および図11参照)に伝達する車輪用軸受部Cとを備え、モータ部Aと減速部Bはケーシング22に収納されて、図10に示すように、電気自動車11のホイールハウジング12a内に取り付けられる。 As shown in FIG. 1, the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and an output from the deceleration unit B as driving wheels. 14 (see FIG. 10 and FIG. 11), and the motor part A and the speed reduction part B are housed in the casing 22, and as shown in FIG. 10, the wheel housing 12a of the electric vehicle 11 is provided. Installed inside.
 モータ部Aは、ケーシング22に固定されているステータ23aと、ステータ23aの内側に径方向の隙間をもって対向する位置に配置されたロータ23bと、ロータ23bの内側に連結固定されてロータ23bと一体回転するモータ回転軸24aとを備えたラジアルギャップモータである。中空構造のモータ回転軸24aは、ロータ23bの内径面に嵌合固定されて一体回転すると共に、モータ部A内で軸方向一方側端部(図1の右側)を転がり軸受36aに、軸方向他方側端部(図1の左側)を転がり軸受36bによって回転自在に支持されている。 The motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed at a position facing the inner side of the stator 23a with a radial gap, and an inner side of the rotor 23b that is connected and fixed to be integrated with the rotor 23b. It is a radial gap motor provided with a rotating motor rotating shaft 24a. The motor rotation shaft 24a having a hollow structure is fitted and fixed to the inner diameter surface of the rotor 23b and integrally rotates, and one end in the axial direction (right side in FIG. 1) in the motor portion A is axially moved to the rolling bearing 36a. The other end (left side in FIG. 1) is rotatably supported by a rolling bearing 36b.
 減速機入力軸25は、図3に示すように、その軸方向一方側略中央部(図1の右側)が転がり軸受37aに、軸方向他方側端部(図1の左側)を転がり軸受37bによって、減速機出力軸28に対して回転自在に支持されている。一方の転がり軸受37aは、減速機出力軸28に固定された内ピン31の軸端部に連結固定されたスタビライザ31bの円筒部31dの内径面に嵌合されている。他方の転がり軸受37bは、減速機出力軸28のフランジ部28aの内径面に嵌合されている。 As shown in FIG. 3, the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) at the rolling bearing 37a and an end on the other side in the axial direction (left side in FIG. 1) as the rolling bearing 37b. Therefore, it is rotatably supported with respect to the reduction gear output shaft 28. One rolling bearing 37a is fitted to the inner diameter surface of the cylindrical portion 31d of the stabilizer 31b connected and fixed to the shaft end portion of the inner pin 31 fixed to the reduction gear output shaft 28. The other rolling bearing 37 b is fitted to the inner diameter surface of the flange portion 28 a of the reduction gear output shaft 28.
 減速機入力軸25は、減速部B内に偏心部25a,25bを有する。2つの偏心部25a,25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相をずらして設けられている。この減速機入力軸25は、転がり軸受37a,37bによって減速機出力軸28に対して回転自在に支持されている。モータ回転軸24aと減速機入力軸25とは、図1に示すように、セレーション嵌合によって連結され、モータ部Aの駆動力が減速部Bに伝達される。このセレーション嵌合部は、減速機入力軸25がある程度傾いても、モータ回転軸24aへの影響を抑制するように構成されている。 The reduction gear input shaft 25 has eccentric portions 25a and 25b in the reduction portion B. The two eccentric portions 25a and 25b are provided with a 180 ° phase shift in order to cancel the centrifugal force due to the eccentric motion. The reduction gear input shaft 25 is rotatably supported with respect to the reduction gear output shaft 28 by rolling bearings 37a and 37b. As shown in FIG. 1, the motor rotating shaft 24 a and the speed reducer input shaft 25 are connected by serration fitting, and the driving force of the motor part A is transmitted to the speed reducing part B. The serration fitting portion is configured to suppress the influence on the motor rotation shaft 24a even if the speed reducer input shaft 25 is inclined to some extent.
 減速部Bは、偏心部25a、25bに回転自在に保持される公転部材としての曲線板26a,26bと、ケーシング22上の固定位置に保持され、曲線板26a,26bの外周部に係合する複数の外ピン27と、曲線板26a,26bの自転運動を減速機出力軸28に伝達する運動変換機構と、偏心部25a,25bに隣接する位置にカウンタウェイト29とを備える。また、減速部Bには、潤滑油を供給するための減速部潤滑機構が設けられている。減速機出力軸28は、フランジ部28aと軸部28bとを有する。フランジ部28aには、減速機出力軸28の回転軸心を中心とする円周上に複数の内ピン31が等間隔に固定されている。また、軸部28bはハブ輪32に嵌合連結され、減速部Bの出力を車輪14に伝達する。 The deceleration portion B is held at a fixed position on the casing 22 and curved plates 26a and 26b as revolving members that are rotatably held by the eccentric portions 25a and 25b, and engages with the outer peripheral portions of the curved plates 26a and 26b. A plurality of outer pins 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the reduction gear output shaft 28, and a counterweight 29 at a position adjacent to the eccentric portions 25a, 25b are provided. Further, the speed reduction part B is provided with a speed reduction part lubrication mechanism for supplying lubricating oil. The reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b. A plurality of inner pins 31 are fixed to the flange portion 28a at equal intervals on a circumference centered on the rotational axis of the reduction gear output shaft 28. Further, the shaft portion 28 b is fitted and connected to the hub wheel 32 and transmits the output of the speed reduction portion B to the wheel 14.
 図2および図3に示すように、曲線板26a,26bは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する貫通孔30a,30bを有する。貫通孔30aは、曲線板26a,26bの自転軸心を中心とする円周上に等間隔に複数個設けられており、内ピン31を受け入れる。また、貫通孔30bは、曲線板26a,26bの中心に設けられており、偏心部25a,25bに嵌合する。曲線板26a,26bは、転がり軸受41によって偏心部25a,25bに対して回転自在に支持されている。 As shown in FIGS. 2 and 3, the curved plates 26 a and 26 b have a plurality of corrugations composed of trochoidal curves such as epitrochoids on the outer periphery, and through holes that penetrate from one end face to the other end face 30a and 30b. A plurality of through holes 30a are provided at equal intervals on the circumference centering on the rotation axis of the curved plates 26a, 26b, and receive the inner pins 31. Further, the through hole 30b is provided at the center of the curved plates 26a and 26b and is fitted to the eccentric portions 25a and 25b. The curved plates 26a and 26b are supported by the rolling bearing 41 so as to be rotatable with respect to the eccentric portions 25a and 25b.
 転がり軸受41は、偏心部25a,25bの外径面に嵌合し、その外径面に内側軌道面42aを有する内輪42と、曲線板26a,26bの貫通孔30bの内径面に直接形成された外側軌道面43と、内側軌道面42aと外側軌道面43の間に配置される複数の円筒ころ44と、円筒ころ44を保持する保持器45とを備える円筒ころ軸受である。また、内輪42は、内側軌道面42aの軸方向両端部から径方向外側に突出する鍔部42bを有する。ここで、転がり軸受41は、内輪42を別体で形成したものを例示したが、これに限ることなく、外側軌道面43と同様に、偏心部25aの外径面に内側軌道面を直接形成してもよい。 The rolling bearing 41 is directly formed on the inner ring 42 having an inner raceway surface 42a on the outer diameter surface thereof and the inner diameter surface of the through holes 30b of the curved plates 26a and 26b. The cylindrical roller bearing includes an outer raceway surface 43, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42 a and the outer raceway surface 43, and a cage 45 that holds the cylindrical rollers 44. Further, the inner ring 42 has flange portions 42b that protrude radially outward from both axial end portions of the inner raceway surface 42a. Here, the rolling bearing 41 is exemplified by the inner ring 42 formed separately. However, the present invention is not limited to this, and the inner raceway surface is directly formed on the outer diameter surface of the eccentric portion 25a, similarly to the outer raceway surface 43. May be.
 外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に設けられている。曲線板26a,26bが公転運動すると、曲線形状の波形と外ピン27とが係合して、曲線板26a,26bに自転運動を生じさせる。外ピン27は、針状ころ軸受27aを介して回転自在に外ピンハウジング60に保持され、この外ピンハウジング60がケーシング22(図1参照)に回り止め状態(図示省略)で取り付けられている。これにより、曲線板26a,26bとの間の接触抵抗を低減することができる。なお、外ピン27は針状ころ軸受27aを介してケーシング22に直接保持する構造にしてもよい。 The outer pins 27 are provided at equal intervals on the circumference around the rotation axis of the speed reducer input shaft 25. When the curved plates 26a and 26b revolve, the curved waveform and the outer pin 27 are engaged to cause the curved plates 26a and 26b to rotate. The outer pin 27 is rotatably held by an outer pin housing 60 via a needle roller bearing 27a, and the outer pin housing 60 is attached to the casing 22 (see FIG. 1) in a non-rotating state (not shown). . Thereby, the contact resistance between the curved plates 26a and 26b can be reduced. The outer pin 27 may be directly held on the casing 22 via the needle roller bearing 27a.
 カウンタウェイト29は、略扇形状で、減速機入力軸25と嵌合する貫通孔を有し、曲線板26a,26bの回転によって生じる不釣合い慣性偶力を打ち消すために、偏心部25a,25bと隣接する位置に偏心部25a,25bと180°位相をずらして配置される。図3に示すように、2枚の曲線板26a,26b間の回転軸心方向の中心点をGとすると、その中心点Gの右側について、中心点Gと曲線板26aの中心との距離をL、曲線板26a、転がり軸受41および偏心部25aの質量の和をm、曲線板26aの重心の回転軸心からの偏心量をεとし、中心点Gとカウンタウェイト29との距離をL、カウンタウェイト29の質量をm、カウンタウェイト29の重心の回転軸心からの偏心量をεとすると、L×m×ε=L×m×εを満たす関係となっている。L×m×ε=L×m×εの関係は、不可避的に生じる誤差を許容する。中心点Gの左側の曲線板26bとカウンタウェイト29との間にも同様の関係が成立する。 The counterweight 29 is substantially fan-shaped and has a through hole that engages with the speed reducer input shaft 25. In order to counteract the unbalanced inertia couple generated by the rotation of the curved plates 26a and 26b, the counterweights 29a and 25b The eccentric portions 25a and 25b are arranged 180 ° out of phase with each other at adjacent positions. As shown in FIG. 3, when the center point in the direction of the rotational axis between the two curved plates 26a and 26b is G, the distance between the central point G and the center of the curved plate 26a is the right side of the central point G. L 1 , the sum of the masses of the curved plate 26 a, the rolling bearing 41, and the eccentric portion 25 a is m 1 , the eccentric amount of the center of gravity of the curved plate 26 a from the rotational axis is ε 1 , and the distance between the center point G and the counterweight 29 Is L 2 , the mass of the counterweight 29 is m 2 , and the eccentric amount of the center of gravity of the counterweight 29 from the rotational axis is ε 2 , L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2 It is a satisfying relationship. The relationship of L 1 × m 1 × ε 1 = L 2 × m 2 × ε 2 allows errors that inevitably occur. A similar relationship is established between the curved plate 26 b on the left side of the center point G and the counterweight 29.
 運動変換機構は、減速機出力軸28に保持された内ピン31を、曲線板26a,26bに設けられた貫通孔30aに挿入してころ軸受としての針状ころ軸受31aを介して曲線板26a,26bに係合させた構造を備えている。なお、この実施形態では、針状ころ軸受31aを例示するが、円筒ころ軸受などの他のころ軸受であってもよい。貫通孔30aは、複数の内ピン31それぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(針状ころ軸受31aを含む最大外径)より所定寸法大きく設定されている。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に設けられており、その軸方向一方側端部が減速機出力軸28に固定されている。減速機出力軸28は減速機入力軸25と同軸上に配置されているので、曲線板26a,26bの自転運動を、減速機入力軸25の回転軸心を中心とする回転運動に変換して減速機出力軸28に伝達する。内ピン31に組み込まれた針状ころ軸受31aが、曲線板26a,26bの貫通孔30aの内壁面に当接することにより、曲線板26a,26bとの摩擦抵抗を低減する。 In the motion conversion mechanism, the inner pin 31 held by the speed reducer output shaft 28 is inserted into a through hole 30a provided in the curved plates 26a and 26b, and the curved plate 26a is inserted through a needle roller bearing 31a as a roller bearing. , 26b. In this embodiment, the needle roller bearing 31a is illustrated, but other roller bearings such as a cylindrical roller bearing may be used. The through hole 30a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30a is larger than the outer diameter dimension of the inner pin 31 (the maximum outer diameter including the needle roller bearing 31a) by a predetermined dimension. Is set. The inner pins 31 are provided at equal intervals on a circumference centered on the rotational axis of the speed reducer output shaft 28, and one axial end thereof is fixed to the speed reducer output shaft 28. Since the speed reducer output shaft 28 is arranged coaxially with the speed reducer input shaft 25, the rotational motion of the curved plates 26a and 26b is converted into rotational motion about the rotational axis of the speed reducer input shaft 25. This is transmitted to the reduction gear output shaft 28. The needle roller bearing 31a incorporated in the inner pin 31 abuts against the inner wall surface of the through hole 30a of the curved plates 26a, 26b, thereby reducing the frictional resistance with the curved plates 26a, 26b.
 内ピン31の軸方向他方側端部には、スタビライザ31bが設けられている。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内径面から軸方向に延びる円筒部31dとを含む。複数の内ピン31の軸方向他方側端部は、スタビライザ31bの円環部31cに固定されている。曲線板26a,26bから一部の内ピン31に負荷される荷重はスタビライザ31bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ、耐久性を向上させることができる。また、内ピン31の軸方向一方側端部が減速機出力軸28に保持され、その軸方向他方側端部がスタビライザ31bに保持された両端支持構造となっていることから、剛性の向上とモーメント荷重の低減が図れる。 The stabilizer 31b is provided in the axial direction other side edge part of the inner pin 31. As shown in FIG. The stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner diameter surface of the annular portion 31c. The ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c of the stabilizer 31b. Since the load applied to some of the inner pins 31 from the curved plates 26a, 26b is supported by all the inner pins 31 via the stabilizer 31b, the stress acting on the inner pins 31 is reduced and the durability is improved. be able to. In addition, since the one end portion in the axial direction of the inner pin 31 is held by the reduction gear output shaft 28 and the other end portion in the axial direction is held by the stabilizer 31b, the rigidity is improved. The moment load can be reduced.
 この内ピン31に組み込まれた針状ころ軸受31aは、図4に示すように、曲線板26a,26bの貫通孔30a(図3参照)の内壁面に係合し、内径面に外側軌道面38aを有する外輪38と、内ピン31の外径面に直接形成された内側軌道面38cと、内側軌道面38cと外側軌道面38aの間に配置される複数の針状ころ39とで構成されている。複数の針状ころ39は、保持器のない、いわゆる単列総ころ状態で配設されている。なお、内ピン31の軸方向に沿って並設された二つの針状ころ軸受31aは、減速機出力軸28のフランジ部28aとスタビライザ31bの円環部31cとの間でスペーサ40a,40bを介在させることにより、内ピン31に対する軸方向位置が規制されている。 As shown in FIG. 4, the needle roller bearing 31a incorporated in the inner pin 31 engages with the inner wall surface of the through hole 30a (see FIG. 3) of the curved plates 26a and 26b, and the outer raceway surface on the inner diameter surface. 38a, an inner raceway surface 38c formed directly on the outer diameter surface of the inner pin 31, and a plurality of needle rollers 39 disposed between the inner raceway surface 38c and the outer raceway surface 38a. ing. The plurality of needle rollers 39 are arranged in a so-called single row full roller state without a cage. The two needle roller bearings 31a arranged side by side along the axial direction of the inner pin 31 have spacers 40a and 40b between the flange portion 28a of the reduction gear output shaft 28 and the annular portion 31c of the stabilizer 31b. By interposing, the axial position with respect to the inner pin 31 is regulated.
 このように、ころ軸受に針状ころ軸受31aを採用することにより、内ピン31に組み込まれるころ軸受自体も小型化でき、インホイールモータ駆動装置21の小型化および軽量化に寄与する。また、針状ころ軸受31aに内輪がないタイプを採用することにより、針状ころ軸受31a自体もさらに小型化でき、インホイールモータ駆動装置21の小型化および軽量化により一層好適である。 Thus, by adopting the needle roller bearing 31a as the roller bearing, the roller bearing itself incorporated in the inner pin 31 can be reduced in size, which contributes to the reduction in size and weight of the in-wheel motor drive device 21. Further, by adopting a type in which the needle roller bearing 31a does not have an inner ring, the needle roller bearing 31a itself can be further reduced in size, which is more suitable for downsizing and weight reduction of the in-wheel motor drive device 21.
 曲線板26a,26bに作用する荷重の状態を図5に基づいて説明する。偏心部25aの軸心Oは減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aの外周には、曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、径方向に窪んだ波形の凹部33を周方向等間隔に有する。曲線板26aの周囲には、凹部33と係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。 The state of the load acting on the curved plates 26a and 26b will be described with reference to FIG. Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25. The outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a. The outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated recesses 33 that are depressed in the radial direction at equal intervals in the circumferential direction. Around the curved plate 26a, a plurality of outer pins 27 that engage with the recesses 33 are arranged in the circumferential direction with the axis O as the center.
 図5において、減速機入力軸25と共に偏心部25aが紙面上で反時計周りに回転すると、偏心部25aは軸心Oを中心とする公転運動を行うので、曲線板26aの凹部33が、外ピン27と周方向に順次当接する。この結果、矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。 In FIG. 5, when the eccentric portion 25a rotates counterclockwise on the paper surface together with the speed reducer input shaft 25, the eccentric portion 25a performs a revolving motion around the axis O, so that the concave portion 33 of the curved plate 26a The pin 27 is sequentially brought into contact with the circumferential direction. As a result, as indicated by the arrow, the curved plate 26a receives the load Fi from the plurality of outer pins 27 and rotates clockwise.
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されている。各貫通孔30aには、軸心Oと同軸に配置された減速機出力軸28と結合する内ピン31が挿通する。貫通孔30aの内径は、内ピン31の外径よりも所定寸法大きいため、内ピン31は曲線板26aの公転運動の障害とはならず、内ピン31は曲線板26aの自転運動を取り出して減速機出力軸28を回転させる。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、図5に矢印で示すように、曲線板26aは、複数の内ピン31から荷重Fjを受ける。これらの複数の荷重Fi,Fjの合力Fsが減速機入力軸25にかかる。 Further, the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2. An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a. The reduction gear output shaft 28 is rotated. At this time, the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. . A resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
 合力Fsの方向は、曲線板26aの波形形状、凹部33の数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直角であって自転軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。上記の複数の荷重Fi、Fjは、減速機入力軸25が1回転(360°)する間に荷重の方向や大きさが変り、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。そして、減速機入力軸25が1回転すると、曲線板26aの波形の凹部33が減速されて1ピッチ時計回りに回転し、図5の状態になり、これを繰り返す。 The direction of the resultant force Fs changes depending on geometrical conditions such as the waveform shape of the curved plate 26a, the number of the concave portions 33, and the centrifugal force. Specifically, the angle α between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the rotation axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. Fluctuates. The load directions and magnitudes of the plurality of loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also reduced. Direction and size vary. Then, when the speed reducer input shaft 25 rotates once, the corrugated concave portion 33 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state of FIG. 5, and this is repeated.
 このため、内ピン31は、荷重の方向と大きさが変動するラジアル荷重およびモーメント荷重が負荷されることになる。その結果、軸受温度の上昇や内側軌道面と外側軌道面の温度差が予想以上に大きくなることを検証した。そこで、内ピン31の材料および熱処理の面において、内ピン31を軸受鋼または浸炭鋼とし、さらに、内ピン31に浸炭窒化処理を施し、かつ、表層部に窒素を拡散してオーステナイトの安定性(マルテンサイト変態し難い性質)を向上させることにより、焼入れ後に20~35%の残留オーステナイトを保持させる。 For this reason, the inner pin 31 is loaded with a radial load and a moment load whose load direction and magnitude vary. As a result, it was verified that the bearing temperature increased and the temperature difference between the inner raceway surface and the outer raceway surface was larger than expected. Therefore, in terms of the material and heat treatment of the inner pin 31, the inner pin 31 is made of bearing steel or carburized steel, and the inner pin 31 is subjected to carbonitriding, and nitrogen is diffused into the surface layer portion to stabilize the austenite. By improving (property of martensite transformation), 20 to 35% of retained austenite is retained after quenching.
 このように、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量を20~35%とすることにより、転動疲労寿命を向上させることができると共に、残留オーステナイトによってクラックの発生および進展を抑制することができ、修正定格寿命(ISO281)を向上させることができ長寿命となる。その結果、曲線板26a,26bとの間にミスアライメントが発生した場合、針状ころ軸受31aを介して内ピン31に局所的な荷重が加わっても、クラックの発生および進展を抑制することができ、インホイールモータ駆動装置21の耐久性向上が図れる。また、この内ピン31は、その内部に潤滑油を流通させるための潤滑油路31fを形成し、かつ、転走面に直接給油するための穴31gを設けていることから(図3参照)、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量を20~35%とすることにより、潤滑油路31fおよび穴31g周辺を起点とするクラックの発生および進展を抑制することができる。なお、内ピン31の表層部の残留オーステナイト量が20%よりも少ないと、クラックの発生および進展を抑制する効果が不十分となり、残留オーステナイト量が35%よりも多いと、硬度が低下して転動疲労寿命が満足できなくなる。 Thus, by performing carbonitriding and making the amount of retained austenite in the surface layer portion 20 to 35%, it is possible to improve the rolling fatigue life and to suppress the generation and propagation of cracks by retained austenite. It is possible to improve the modified rated life (ISO 281), resulting in a long life. As a result, when misalignment occurs between the curved plates 26a and 26b, even if a local load is applied to the inner pin 31 via the needle roller bearing 31a, the generation and progress of cracks can be suppressed. The durability of the in-wheel motor drive device 21 can be improved. Further, the inner pin 31 has a lubricating oil passage 31f for allowing the lubricating oil to flow therethrough and has a hole 31g for directly supplying oil to the rolling surface (see FIG. 3). By performing the carbonitriding process and setting the amount of retained austenite in the surface layer portion to 20 to 35%, it is possible to suppress the generation and propagation of cracks starting from the periphery of the lubricating oil passage 31f and the hole 31g. Note that if the amount of retained austenite in the surface layer portion of the inner pin 31 is less than 20%, the effect of suppressing the occurrence and development of cracks becomes insufficient, and if the amount of retained austenite is more than 35%, the hardness decreases. The rolling fatigue life becomes unsatisfactory.
 以上のように、内ピン31と曲線板26a,26bにミスアライメントが発生した場合、内ピン31に組み込まれた針状ころ軸受31aも曲線板26a,26bから大きな荷重を受けることになる。そのため、内ピン31だけでなく針状ころ軸受31aも、ラジアル荷重やモーメント荷重が負荷されて過大応力が発生し易い状況下におかれている。そこで、針状ころ軸受31aの構成部材の材料および熱処理の面において、外輪38を軸受鋼または浸炭鋼で製作すると共に、針状ころ39を軸受鋼とし、さらに、外輪38および針状ころ39に浸炭窒化処理を施し、かつ、表層部に窒素を拡散してオーステナイトの安定性を向上させることにより、焼入れ後に20~35%の残留オーステナイトを保持させる。 As described above, when misalignment occurs between the inner pin 31 and the curved plates 26a and 26b, the needle roller bearing 31a incorporated in the inner pin 31 also receives a large load from the curved plates 26a and 26b. For this reason, not only the inner pin 31 but also the needle roller bearing 31a is subjected to a situation where a radial load or a moment load is applied and an excessive stress is easily generated. Therefore, in terms of the material and heat treatment of the constituent members of the needle roller bearing 31a, the outer ring 38 is made of bearing steel or carburized steel, the needle roller 39 is used as bearing steel, and the outer ring 38 and the needle roller 39 are further formed. Carbonitriding is performed, and nitrogen is diffused in the surface layer portion to improve the stability of austenite, thereby retaining 20 to 35% of retained austenite after quenching.
 このように、内ピン31だけでなく、針状ころ軸受31aについても、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量を20~35%とすることにより、転動疲労寿命を向上させることができると共に、残留オーステナイトによってクラックの発生および進展を抑制することができ、修正定格寿命(ISO281)を向上させることができ長寿命となる。その結果、同等の寿命をもつ針状ころ軸受31aを小型化することができ、耐久性のある小型で軽量なインホイールモータ駆動装置21を実現することができる。なお、針状ころ軸受31aの表層部の残留オーステナイト量が20%よりも少ないと、クラックの発生および進展を抑制する効果が不十分となり、残留オーステナイト量が35%よりも多いと、硬度が低下して転動疲労寿命が満足できなくなる。 In this manner, not only the inner pin 31 but also the needle roller bearing 31a is subjected to carbonitriding and the amount of retained austenite in the surface layer portion is set to 20 to 35%, thereby improving the rolling fatigue life. In addition, the retained austenite can suppress the generation and progress of cracks, improve the modified rated life (ISO281), and increase the life. As a result, the needle roller bearing 31a having the same life can be reduced in size, and the durable small and light in-wheel motor drive device 21 can be realized. Note that if the amount of retained austenite in the surface layer portion of the needle roller bearing 31a is less than 20%, the effect of suppressing the occurrence and development of cracks is insufficient, and if the amount of retained austenite is more than 35%, the hardness decreases. As a result, the rolling fatigue life cannot be satisfied.
 図1に示すように、車輪用軸受部Cは、減速機出力軸28に連結されたハブ輪32と、ハブ輪32をケーシング22に対して回転自在に支持する車輪用軸受33とを備える。ハブ輪32は、円筒形状の中空部32aとフランジ部32bとを有する。フランジ部32bにはボルト32cによって駆動輪14(図10および図11参照)が連結固定される。減速機出力軸28の軸部28bの外径面にはスプラインが形成されており、このスプラインをハブ輪32の中空部32aの内径面に形成されたスプライン穴に嵌合させてトルク伝達可能に連結されている。 As shown in FIG. 1, the wheel bearing portion C includes a hub wheel 32 connected to the speed reducer output shaft 28 and a wheel bearing 33 that rotatably supports the hub wheel 32 with respect to the casing 22. The hub wheel 32 has a cylindrical hollow portion 32a and a flange portion 32b. The driving wheel 14 (see FIGS. 10 and 11) is connected and fixed to the flange portion 32b by a bolt 32c. A spline is formed on the outer diameter surface of the shaft portion 28b of the reduction gear output shaft 28. The spline is fitted into a spline hole formed on the inner diameter surface of the hollow portion 32a of the hub wheel 32 so that torque can be transmitted. It is connected.
 車輪用軸受33は、ハブ輪32およびそのハブ輪32の小径段部に嵌合された内輪33aからなる内側軸受部材と、ケーシング22の内径面に嵌合固定された外側軸受部材33bと、ハブ輪32および内輪33aの外径面に形成された内側軌道面33f,33gと外側軸受部材33bの内径面に形成された外側軌道面33h,33iとの間に配置された転動体としての複数の玉33cと、隣接する玉33cの間隔を保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。 The wheel bearing 33 includes an inner bearing member 33 formed of a hub wheel 32 and an inner ring 33a fitted to a small-diameter step portion of the hub wheel 32, an outer bearing member 33b fitted and fixed to the inner diameter surface of the casing 22, and a hub. A plurality of rolling elements disposed between the inner raceway surfaces 33f and 33g formed on the outer diameter surfaces of the ring 32 and the inner ring 33a and the outer raceway surfaces 33h and 33i formed on the inner diameter surface of the outer bearing member 33b. This is a double-row angular contact ball bearing including a ball 33c, a retainer 33d that holds a gap between adjacent balls 33c, and a seal member 33e that seals both axial ends of the wheel bearing 33.
 次に減速部潤滑機構を説明する。減速部潤滑機構は、減速部Bに潤滑油を供給するものであって、図1および図3に示す潤滑油路25c、潤滑油供給口25d,25e,25f、スタビライザ31b内の潤滑油路31e、内ピン31内の潤滑油路31f、潤滑油排出口22b、潤滑油貯留部22d、潤滑油路22e、回転ポンプ51および循環油路45とで主要部が構成されている。なお、減速部潤滑機構内に付した白抜き矢印は潤滑油の流れる方向を示す。 Next, the speed reducer lubrication mechanism will be described. The speed reduction part lubrication mechanism supplies lubricating oil to the speed reduction part B, and includes a lubricating oil path 25c, lubricating oil supply ports 25d, 25e, and 25f, and a lubricating oil path 31e in the stabilizer 31b shown in FIGS. The lubricating oil passage 31f in the inner pin 31, the lubricating oil discharge port 22b, the lubricating oil storage portion 22d, the lubricating oil passage 22e, the rotary pump 51, and the circulating oil passage 45 constitute the main part. In addition, the white arrow attached | subjected in the deceleration part lubrication mechanism shows the direction through which lubricating oil flows.
 潤滑油路25cは、減速機入力軸25の内部を軸線方向に沿って延びている。潤滑油供給口25d,25eは、潤滑油路25cから減速機入力軸25の外径面に向って延び、潤滑油供給口25fは、減速機入力軸25の軸端部から回転軸心方向に軸端面に向って延びている。減速部Bの位置におけるケーシング22の少なくとも1箇所には、減速部B内部の潤滑油を排出する潤滑油排出口22bが設けられている。そして、潤滑油排出口22bと潤滑油路25cとを接続する循環油路45がケーシング22の内部に設けられている。潤滑油排出口22bから排出された潤滑油は、循環油路45を経由して潤滑油路25cに還流する。 The lubricating oil passage 25c extends along the axial direction inside the reduction gear input shaft 25. The lubricating oil supply ports 25d and 25e extend from the lubricating oil passage 25c toward the outer diameter surface of the speed reducer input shaft 25, and the lubricating oil supply port 25f extends from the shaft end of the speed reducer input shaft 25 in the direction of the rotational axis. It extends toward the shaft end face. At least one location of the casing 22 at the position of the speed reduction portion B is provided with a lubricating oil discharge port 22b for discharging the lubricating oil inside the speed reduction portion B. A circulating oil passage 45 that connects the lubricating oil discharge port 22 b and the lubricating oil passage 25 c is provided inside the casing 22. The lubricating oil discharged from the lubricating oil discharge port 22 b returns to the lubricating oil path 25 c via the circulating oil path 45.
 図1および図6~図8に示すように、循環油路45は、ケーシング22の内部を軸方向に延びる軸方向油路45aと、軸方向油路45aの軸方向一端部(図1の右側)に接続されて径方向に延びる径方向油路45cと、軸方向油路45aの軸方向他端部(図1の左側)に接続されて径方向に延びる径方向油路45bとで構成される。径方向油路45bは回転ポンプ51から圧送された潤滑油を軸方向油路45aに供給し、軸方向油路45aから径方向油路45cを経て潤滑油を潤滑油路25cに供給する。 As shown in FIGS. 1 and 6 to 8, the circulating oil passage 45 includes an axial oil passage 45a extending in the axial direction inside the casing 22, and one axial end portion of the axial oil passage 45a (on the right side in FIG. 1). ) And a radial oil passage 45c extending in the radial direction, and a radial oil passage 45b extending in the radial direction connected to the other axial end of the axial oil passage 45a (left side in FIG. 1). The The radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and supplies the lubricating oil from the axial oil passage 45a to the lubricating oil passage 25c via the radial oil passage 45c.
 潤滑油貯留部22dに接続する潤滑油路22eと循環油路45との間には、回転ポンプ51が設けられており、潤滑油を強制的に循環させている。図9に示すように、回転ポンプ51は、減速機出力軸28(図1参照)の回転を利用して回転するインナーロータ52と、インナーロータ52の回転に伴って従動回転するアウターロータ53と、ポンプ室54と、潤滑油路22eに連通する吸入口55と、循環油路45の径方向油路45bに連通する吐出口56とを備えるサイクロイドポンプである。 A rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45, and the lubricating oil is forcibly circulated. As shown in FIG. 9, the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the speed reducer output shaft 28 (see FIG. 1), and an outer rotor 53 that rotates following the rotation of the inner rotor 52. The cycloid pump includes a pump chamber 54, a suction port 55 that communicates with the lubricating oil passage 22e, and a discharge port 56 that communicates with the radial oil passage 45b of the circulation oil passage 45.
 インナーロータ52は、外径面にサイクロイド曲線で構成される歯形を有する。具体的には、歯先部分52aの形状がエピサイクロイド曲線、歯溝部分52bの形状がハイポサイクロイド曲線となっている。インナーロータ52は、スタビライザ31bの円筒部31d(図1および図3参照)の外径面に嵌合して内ピン31(減速機出力軸28)と一体回転する。 The inner rotor 52 has a tooth profile formed of a cycloid curve on the outer diameter surface. Specifically, the shape of the tooth tip portion 52a is an epicycloid curve, and the shape of the tooth gap portion 52b is a hypocycloid curve. The inner rotor 52 is fitted to the outer diameter surface of the cylindrical portion 31d (see FIGS. 1 and 3) of the stabilizer 31b and rotates integrally with the inner pin 31 (reduction gear output shaft 28).
 アウターロータ53は、内径面にサイクロイド曲線で構成される歯形を有する。具体的には、歯先部分53aの形状がハイポサイクロイド曲線、歯溝部分53bの形状がエピサイクロイド曲線となっている。アウターロータ53は、ケーシング22に回転自在に支持されている。インナーロータ52は、回転中心cを中心として回転する。一方、アウターロータ53は、インナーロータ52の回転中心cと異なる回転中心cを中心として回転する。インナーロータ52の歯数をnとすると、アウターロータ53の歯数は(n+1)となる。なお、この実施形態においては、n=5としている。 The outer rotor 53 has a tooth profile constituted by a cycloid curve on the inner diameter surface. Specifically, the shape of the tooth tip portion 53a is a hypocycloid curve, and the shape of the tooth gap portion 53b is an epicycloid curve. The outer rotor 53 is rotatably supported by the casing 22. The inner rotor 52 is rotated about the rotation center c 1. On the other hand, the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52. When the number of teeth of the inner rotor 52 is n, the number of teeth of the outer rotor 53 is (n + 1). In this embodiment, n = 5.
 インナーロータ52とアウターロータ53との間の空間には、複数のポンプ室54が設けられている。そして、インナーロータ52が減速機出力軸28の回転を利用して回転すると、アウターロータ53は従動回転する。このとき、インナーロータ52およびアウターロータ53はそれぞれ異なる回転中心c,cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55から流入した潤滑油が吐出口56から径方向油路45bに圧送される。 A plurality of pump chambers 54 are provided in the space between the inner rotor 52 and the outer rotor 53. When the inner rotor 52 rotates using the rotation of the reduction gear output shaft 28, the outer rotor 53 rotates in a driven manner. At this time, since the inner rotor 52 and the outer rotor 53 rotate around different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45b.
 なお、前述の構成からなる回転ポンプ51の回転中にインナーロータ52が傾くと、ポンプ室54の容積が変化して潤滑油を適切に圧送することができなかったり、インナーロータ52とアウターロータ53とが接触してスムーズな回転を阻害するおそれがある。そこで、図1に示すように、インナーロータ52には、段付部52cが設けられている。この段付部52cは、その外径面(案内面)がケーシング22の内径面に当接して、車輪14からのラジアル荷重によってインナーロータ52が傾くのを防止している。 If the inner rotor 52 is tilted during the rotation of the rotary pump 51 having the above-described configuration, the volume of the pump chamber 54 changes and the lubricating oil cannot be pumped properly, or the inner rotor 52 and the outer rotor 53 May interfere with smooth rotation. Therefore, as shown in FIG. 1, the inner rotor 52 is provided with a stepped portion 52 c. The stepped portion 52 c has an outer diameter surface (guide surface) that abuts against the inner diameter surface of the casing 22, and prevents the inner rotor 52 from being inclined by a radial load from the wheel 14.
 潤滑油排出口22bと回転ポンプ51との間には、潤滑油を一時的に貯留する潤滑油貯留部22dが設けられている。これにより、高速回転時においては、回転ポンプ51によって圧送しきれない潤滑油を一時的に潤滑油貯留部22dに貯留しておくことができる。その結果、減速部Bのトルク損失の増加を防止することができる。一方、低速回転時においては、潤滑油排出口22bに到達する潤滑油量が少なくなっても、潤滑油貯留部22dに貯留されている潤滑油を潤滑油路25cに還流することができる。その結果、減速部Bに安定して潤滑油を供給することができる。なお、減速部B内部の潤滑油は、遠心力に加えて重力によって外側に移動する。従って、潤滑油貯留部22dがインホイールモータ駆動装置21の下部に位置するように、電気自動車11に取り付けるのが望ましい。 Between the lubricating oil discharge port 22b and the rotary pump 51, a lubricating oil storage part 22d for temporarily storing the lubricating oil is provided. Thereby, at the time of high speed rotation, the lubricating oil that cannot be pumped by the rotary pump 51 can be temporarily stored in the lubricating oil storage portion 22d. As a result, an increase in torque loss of the deceleration unit B can be prevented. On the other hand, at the time of low speed rotation, the lubricating oil stored in the lubricating oil reservoir 22d can be returned to the lubricating oil passage 25c even if the amount of lubricating oil reaching the lubricating oil discharge port 22b decreases. As a result, the lubricating oil can be stably supplied to the deceleration unit B. In addition, the lubricating oil inside the deceleration part B moves outside by gravity in addition to the centrifugal force. Therefore, it is desirable to attach to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
 前述の構成からなる減速部Bにおける潤滑油の流れを説明する。まず、潤滑油路25cを流れる潤滑油は、減速機入力軸25の回転に伴う遠心力および圧力によって潤滑油供給口25d、25e,25fから減速部Bに流出する。その後、減速部B内の各転がり軸受へ潤滑油が次のように流れてゆく。 The flow of the lubricating oil in the deceleration portion B having the above-described configuration will be described. First, the lubricating oil flowing through the lubricating oil passage 25c flows out from the lubricating oil supply ports 25d, 25e, and 25f to the speed reducing unit B due to the centrifugal force and pressure accompanying the rotation of the speed reducer input shaft 25. Thereafter, the lubricating oil flows to the rolling bearings in the deceleration portion B as follows.
 潤滑油供給口25e,25fから流出した潤滑油は、遠心力の作用により、減速機入力軸25を支持する転がり軸受(深溝玉軸受)37a,37bに供給される。さらに、潤滑油供給口25eから流出した潤滑油は、スタビライザ31b内の潤滑油路31eへ導かれて内ピン31内の潤滑油路31fへ至り、この潤滑油路31fから針状ころ軸受31aに供給される。さらに、潤滑油は、遠心力により、曲線板26a,26bと内ピン31との当接部分や曲線板26a,26bと外ピン27との当接部分、外ピン27を支持する針状ころ軸受27a、減速機出力軸28(スタビライザ31b)を支持する転がり軸受46などを潤滑しながら径方向外側に移動する。 Lubricating oil flowing out from the lubricating oil supply ports 25e and 25f is supplied to rolling bearings (deep groove ball bearings) 37a and 37b that support the reduction gear input shaft 25 by the action of centrifugal force. Further, the lubricating oil flowing out from the lubricating oil supply port 25e is led to the lubricating oil passage 31e in the stabilizer 31b and reaches the lubricating oil passage 31f in the inner pin 31, and from this lubricating oil passage 31f to the needle roller bearing 31a. Supplied. Further, the lubricating oil is a needle roller bearing that supports the outer pin 27 and the contact portion between the curved plates 26a and 26b and the inner pin 31, the contact portion between the curved plates 26a and 26b and the outer pin 27, and the outer pin 27 by centrifugal force. 27a, and moves to the outside in the radial direction while lubricating the rolling bearing 46 and the like that support the reduction gear output shaft 28 (stabilizer 31b).
 一方、潤滑油供給口25dから流出した潤滑油は、曲線板26a,26bを支持する転がり軸受(円筒ころ軸受)41の内輪42に設けた供給孔42c(図3参照)から軸受内部へ供給される。これにより、円筒ころ44、内側軌道面42aおよび外側軌道面43が潤滑される。さらに、潤滑油は、潤滑油供給口25e,25fから流出した潤滑油と同様に、遠心力により、曲線板26a,26bと内ピン31との当接部分および曲線板26a,26bと外ピン27との当接部分等を潤滑しながら径方向外側に移動する。 On the other hand, the lubricating oil flowing out from the lubricating oil supply port 25d is supplied into the bearing from a supply hole 42c (see FIG. 3) provided in the inner ring 42 of the rolling bearing (cylindrical roller bearing) 41 that supports the curved plates 26a and 26b. The Thereby, the cylindrical roller 44, the inner raceway surface 42a, and the outer raceway surface 43 are lubricated. Further, like the lubricating oil flowing out from the lubricating oil supply ports 25e and 25f, the lubricating oil is brought into contact with the curved plates 26a and 26b and the inner pin 31 and the curved plates 26a and 26b and the outer pin 27 by centrifugal force. It moves radially outward while lubricating the abutting part and the like.
 前述のような潤滑油の流れによって、減速部B内の各転がり軸受が潤滑される。ケーシング22の内壁面に到達した潤滑油は、潤滑油排出口22bから排出されて潤滑油貯留部22dに貯留される。潤滑油貯留部22dに貯留された潤滑油は、潤滑油路22eを通って吸入口55から回転ポンプ51に供給され、吐出口56から循環油路45に圧送される。これにより、潤滑油は、循環油路45の径方向油路45bから軸方向油路45a、径方向油路45cを経由して潤滑油路25cに還流する。循環油路45を流れる潤滑油の一部は、ケーシング22とモータ回転軸24aとの間から転がり軸受36aを潤滑する。転がり軸受36bは、回転ポンプ51の段付部52cとケーシング22の間からの潤滑油により潤滑される。 各 Each rolling bearing in the speed reduction part B is lubricated by the flow of the lubricating oil as described above. The lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil storage portion 22d. The lubricating oil stored in the lubricating oil reservoir 22d is supplied from the suction port 55 to the rotary pump 51 through the lubricating oil passage 22e, and is pumped from the discharge port 56 to the circulating oil passage 45. As a result, the lubricating oil returns from the radial oil passage 45b of the circulating oil passage 45 to the lubricating oil passage 25c via the axial oil passage 45a and the radial oil passage 45c. Part of the lubricating oil flowing through the circulating oil passage 45 lubricates the rolling bearing 36a from between the casing 22 and the motor rotating shaft 24a. The rolling bearing 36 b is lubricated by lubricating oil from between the stepped portion 52 c of the rotary pump 51 and the casing 22.
 潤滑油排出口22bからの潤滑油の排出量は、減速機入力軸25の回転数に比例して多くなる。一方、インナーロータ52は減速機出力軸28と一体回転するので、回転ポンプ51の吐出量は、減速機出力軸28の回転数に比例して多くなる。そして、潤滑油排出口22bから減速部Bに供給される潤滑油量は、回転ポンプ51の吐出量に比例して多くなる。すなわち、減速部Bへの潤滑油の供給量および排出量は、いずれもインホイールモータ駆動装置21の回転数によって変化するので、常にスムーズに潤滑油を循環させることができる。 The amount of lubricating oil discharged from the lubricating oil discharge port 22b increases in proportion to the rotational speed of the speed reducer input shaft 25. On the other hand, since the inner rotor 52 rotates integrally with the speed reducer output shaft 28, the discharge amount of the rotary pump 51 increases in proportion to the rotational speed of the speed reducer output shaft 28. Then, the amount of lubricating oil supplied from the lubricating oil discharge port 22 b to the speed reduction unit B increases in proportion to the discharge amount of the rotary pump 51. That is, since both the supply amount and the discharge amount of the lubricating oil to the speed reduction unit B change depending on the rotational speed of the in-wheel motor drive device 21, the lubricating oil can be circulated smoothly and constantly.
 このように、減速機入力軸25から減速部Bに潤滑油を供給することにより、減速機入力軸25周辺の潤滑油不足を解消することができる。また、回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21全体としての大型化を防止することができる。 Thus, by supplying the lubricating oil from the speed reducer input shaft 25 to the speed reducing portion B, the shortage of lubricating oil around the speed reducer input shaft 25 can be solved. Further, by disposing the rotary pump 51 in the casing 22, it is possible to prevent an increase in the size of the in-wheel motor drive device 21 as a whole.
 前述の構成からなるインホイールモータ駆動装置21の全体的な作動原理を説明する。 The overall operating principle of the in-wheel motor drive device 21 having the above-described configuration will be described.
 モータ部Aは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これにより、モータ回転軸24aに連結された減速機入力軸25が回転すると、曲線板26a,26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27が、曲線板26a,26bの曲線形状の波形と係合して、曲線板26a,26bを減速機入力軸25の回転とは逆向きに自転回転させる。 The motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a, and the rotor 23b made of a permanent magnet or a magnetic material rotates. Thereby, when the reduction gear input shaft 25 connected to the motor rotation shaft 24a rotates, the curved plates 26a and 26b revolve around the rotation axis of the reduction gear input shaft 25. At this time, the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
 貫通孔30aに挿通する内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。このとき、減速機入力軸25の回転が減速部Bによって減速されて減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪14に必要なトルクを伝達することが可能となる。 The inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28. At this time, since the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer B and is transmitted to the speed reducer output shaft 28, it is necessary for the drive wheel 14 even when the low torque, high speed motor part A is adopted. It is possible to transmit an appropriate torque.
 この減速部Bの減速比は、外ピン27の数をZ、曲線板26a、26bの波形の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31に針状ころ軸受27a,31a(図3参照)を設けたことにより、曲線板26a,26bとの間の摩擦抵抗が低減されるので、減速部Bの伝達効率が向上する。 The reduction ratio of the reduction part B is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b. In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, a very large reduction ratio of 1/11 can be obtained. In this way, by adopting the speed reduction unit B that can obtain a large speed reduction ratio without using a multi-stage configuration, the in-wheel motor drive device 21 having a compact and high speed reduction ratio can be obtained. Further, since the outer roller 27 and the inner pin 31 are provided with the needle roller bearings 27a and 31a (see FIG. 3), the frictional resistance between the curved plates 26a and 26b is reduced. Efficiency is improved.
 この実施形態においては、潤滑油供給口25dを偏心部25a,25bに設け、潤滑油供給口25e,25fを減速機入力軸25の途中位置および軸端に設けた例を示したが、これに限ることなく、減速機入力軸25の任意の位置に設けることができる。ただし、転がり軸受41,37a,37bに安定して潤滑油を供給する観点からは、潤滑油供給口25dは偏心部25a,25bに、潤滑油供給口25e,25fは、減速機入力軸25の途中位置および軸端に設けるのが望ましい。 In this embodiment, the example in which the lubricating oil supply port 25d is provided in the eccentric portions 25a and 25b and the lubricating oil supply ports 25e and 25f are provided in the middle position and the shaft end of the speed reducer input shaft 25 is shown. Without limitation, it can be provided at any position of the speed reducer input shaft 25. However, from the viewpoint of stably supplying lubricating oil to the rolling bearings 41, 37a, and 37b, the lubricating oil supply port 25d is connected to the eccentric portions 25a and 25b, and the lubricating oil supply ports 25e and 25f are connected to the speed reducer input shaft 25. It is desirable to provide in the middle position and shaft end.
 また、回転ポンプ51を減速機出力軸28の回転を利用して駆動した例を示したが、回転ポンプ51は減速機入力軸25の回転を利用して駆動することもできる。しかし、減速機入力軸25の回転数は減速機出力軸28と比較して大きい(この実施形態では11倍)ので、回転ポンプ51の耐久性が低下するおそれがある。また、減速された減速機出力軸28に接続しても十分な排出量を確保することができる。これらの観点から、回転ポンプ51は減速機出力軸28の回転を利用して駆動することが望ましい。回転ポンプ51としてサイクロイドポンプの例を示したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらには、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。 Further, although the example in which the rotary pump 51 is driven using the rotation of the speed reducer output shaft 28 has been shown, the rotary pump 51 can also be driven using the rotation of the speed reducer input shaft 25. However, since the rotational speed of the speed reducer input shaft 25 is larger than the speed reducer output shaft 28 (11 times in this embodiment), the durability of the rotary pump 51 may be reduced. Further, a sufficient discharge amount can be ensured even when connected to the decelerator output shaft 28 that has been decelerated. From these viewpoints, the rotary pump 51 is preferably driven by utilizing the rotation of the speed reducer output shaft 28. Although the example of the cycloid pump was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
 減速部Bの曲線板26a,26bを180°位相をずらして2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相をずらして設けるとよい。運動変換機構は、減速機出力軸28に固定された内ピン31と、曲線板26a,26bに設けられた貫通孔30aとで構成された例を示したが、これに限ることなく、減速部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。例えば、曲線板26a,26bに固定された内ピンと減速機出力軸28に形成された穴とで構成される運動変換機構であってもよい。 The example in which two curved plates 26a and 26b of the deceleration unit B are provided with a 180 ° phase shift is shown, but the number of curved plates can be arbitrarily set. For example, when three curved plates are provided, , And 120 ° out of phase. Although the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve board 26a, 26b, it is not restricted to this, The reduction part It is possible to adopt an arbitrary configuration that can transmit the rotation of B to the hub wheel 32. For example, it may be a motion conversion mechanism constituted by an inner pin fixed to the curved plates 26a and 26b and a hole formed in the reduction gear output shaft 28.
 この実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから駆動輪14に伝達される。したがって、前述のように減速された動力は高トルクに変換されたものとなっている。また、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を駆動輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪14側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器などの作動に用いてもよい。 The description of the operation in this embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor unit A to the drive wheels 14. Therefore, the power decelerated as described above is converted to high torque. Also, the case where power is supplied to the motor unit A to drive the motor unit and the power from the motor unit A is transmitted to the drive wheels 14 is shown, but conversely, the vehicle decelerates or goes down the hill. In such a case, the power from the drive wheel 14 side may be converted into high-rotation low-torque rotation by the speed reduction unit B and transmitted to the motor unit A, and the motor unit A may generate power. Furthermore, the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
 この実施形態の構成にブレーキを加えることもできる。例えば、図1の構成において、ケーシング22を軸方向に延長してロータ23bの図中右側に空間を形成し、ロータ23bと一体的に回転する回転部材と、ケーシング22に回転不能にかつ軸方向に移動可能なピストンとこのピストンを作動させるシリンダとを配置して、車両停止時にピストンと回転部材とによってロータ23bをロックするパーキングブレーキとしてもよい。また、ロータ23bと一体的に回転する回転部材の一部に形成されたフランジおよびケーシング22側に設置された摩擦板をケーシング22側に設置されたシリンダで挟むディスクブレーキであってもよい。さらに、この回転部材の一部にドラムを形成すると共に、ケーシング22側にブレーキシューを固定し、摩擦係合およびセルフエンゲージ作用で回転部材をロックするドラムブレーキを用いることができる。 A brake can be added to the configuration of this embodiment. For example, in the configuration of FIG. 1, the casing 22 is extended in the axial direction to form a space on the right side of the rotor 23 b in the drawing, a rotating member that rotates integrally with the rotor 23 b, and the casing 22 is not rotatable and axially It is good also as a parking brake which arrange | positions the piston which can move to this, and the cylinder which act | operates this piston, and locks the rotor 23b with a piston and a rotation member when a vehicle stops. Moreover, the disc brake which pinches | interposes the flange formed in a part of rotary member which rotates integrally with the rotor 23b, and the friction plate installed in the casing 22 side with the cylinder installed in the casing 22 side may be sufficient. Furthermore, a drum brake can be used in which a drum is formed on a part of the rotating member, a brake shoe is fixed to the casing 22 side, and the rotating member is locked by friction engagement and self-engagement.
 この実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えば、ケーシングに固定されるステータと、ステータの内側の軸方向の隙間を開けて対向する位置に配置されるロータとを備えるアキシャルギャップモータであってもよい。さらに、図10および図11に示した電気自動車11は、後輪14を駆動輪とした例を示したが、これに限ることなく、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。 In this embodiment, an example is shown in which a radial gap motor is adopted as the motor part A, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied. For example, it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator. Furthermore, although the electric vehicle 11 shown in FIG. 10 and FIG. 11 shows an example in which the rear wheel 14 is a drive wheel, the present invention is not limited to this, and the front wheel 13 may be a drive wheel and is a four-wheel drive vehicle. May be. In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the spirit of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

Claims (2)

  1.  モータ部、減速部および車輪用軸受部を保持するケーシングを備え、前記モータ部が偏心部を有する減速機入力軸を回転駆動し、前記減速部が前記減速機入力軸の回転を減速して減速機出力軸に伝達し、前記車輪用軸受部が前記減速機出力軸に連結されたインホイールモータ駆動装置であって、
     前記減速部は、前記減速機入力軸と、この減速機入力軸の偏心部に回転自在に保持されて、前記減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う公転部材と、この公転部材の外周部に係合して公転部材の自転運動を生じさせる外ピンと、前記公転部材の自転運動を、前記減速機入力軸の回転軸心を中心とする回転運動に変換して前記減速機出力軸に伝達する運動変換機構と、減速部に潤滑油を供給する減速部潤滑機構とを備え、
     前記運動変換機構は、減速機出力軸に保持された内ピンを、前記公転部材に形成された貫通孔に挿入してころ軸受を介して前記公転部材に係合させた構造を備え、前記内ピンは、浸炭窒化処理を施し、かつ、表層部の残留オーステナイト量が20~35%であることを特徴とするインホイールモータ駆動装置。
    A casing that holds a motor part, a speed reduction part, and a wheel bearing part is provided, the motor part rotationally drives a speed reducer input shaft having an eccentric part, and the speed reduction part decelerates the rotation of the speed reducer input shaft to reduce the speed. An in-wheel motor drive device in which the wheel bearing portion is coupled to the speed reducer output shaft,
    The speed reducer is rotatably held by the speed reducer input shaft and an eccentric portion of the speed reducer input shaft, and performs a revolving motion centering on the rotation axis as the speed reducer input shaft rotates. A revolving member, an outer pin that engages with the outer periphery of the revolving member and causes the revolving member to rotate, and the revolving member revolves into a revolving motion about the rotation shaft center of the speed reducer input shaft. A motion conversion mechanism for converting and transmitting to the output shaft of the speed reducer, and a speed reducer lubrication mechanism for supplying lubricating oil to the speed reducer,
    The motion conversion mechanism includes a structure in which an inner pin held by a reduction gear output shaft is inserted into a through-hole formed in the revolution member and engaged with the revolution member via a roller bearing. An in-wheel motor drive device characterized in that the pin is carbonitrided and the amount of retained austenite in the surface layer portion is 20 to 35%.
  2.  前記内ピンは、その内部に潤滑油を流通させるための潤滑油路を形成し、かつ、転走面に直接給油するための穴を設けている請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein the inner pin forms a lubricating oil passage for allowing the lubricating oil to flow therethrough and is provided with a hole for directly supplying oil to the rolling surface.
PCT/JP2014/074932 2013-09-30 2014-09-19 In-wheel motor drive device WO2015046087A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013204317 2013-09-30
JP2013-204317 2013-09-30
JP2014037902A JP2015092099A (en) 2013-09-30 2014-02-28 In-wheel motor drive device
JP2014-037902 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015046087A1 true WO2015046087A1 (en) 2015-04-02

Family

ID=52743224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074932 WO2015046087A1 (en) 2013-09-30 2014-09-19 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP2015092099A (en)
WO (1) WO2015046087A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211793A1 (en) * 2016-06-08 2017-12-14 Punch Powertrain N.V. Electric powertrain, transmission, and vehicle
CN107791823A (en) * 2016-08-29 2018-03-13 丰田自动车株式会社 Wheel hub electric motor unit
US10620549B2 (en) 2015-10-08 2020-04-14 Asml Netherlands B.V. Method of controlling a lithographic apparatus and device manufacturing method, control system for a lithographic apparatus and lithographic apparatus
WO2021058105A1 (en) * 2019-09-26 2021-04-01 Volvo Truck Corporation Vehicle wheel end arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101247A (en) * 1997-09-29 1999-04-13 Ntn Corp Rolling bearing part
JP2004060015A (en) * 2002-07-30 2004-02-26 Koyo Seiko Co Ltd Sliding component and method for manufacturing the same
JP2006144889A (en) * 2004-11-18 2006-06-08 Ntn Corp Rotation support mechanism of planetary gear mechanism
JP2008201353A (en) * 2007-02-22 2008-09-04 Ntn Corp In-wheel motor drive unit
JP2010038357A (en) * 2008-07-10 2010-02-18 Ntn Corp In-wheel motor driving device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101247A (en) * 1997-09-29 1999-04-13 Ntn Corp Rolling bearing part
JP2004060015A (en) * 2002-07-30 2004-02-26 Koyo Seiko Co Ltd Sliding component and method for manufacturing the same
JP2006144889A (en) * 2004-11-18 2006-06-08 Ntn Corp Rotation support mechanism of planetary gear mechanism
JP2008201353A (en) * 2007-02-22 2008-09-04 Ntn Corp In-wheel motor drive unit
JP2010038357A (en) * 2008-07-10 2010-02-18 Ntn Corp In-wheel motor driving device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10620549B2 (en) 2015-10-08 2020-04-14 Asml Netherlands B.V. Method of controlling a lithographic apparatus and device manufacturing method, control system for a lithographic apparatus and lithographic apparatus
US10901326B2 (en) 2015-10-08 2021-01-26 Asml Netherlands B.V. Method of controlling a lithographic apparatus and device manufacturing method, control system for a lithographic apparatus and lithographic apparatus
WO2017211793A1 (en) * 2016-06-08 2017-12-14 Punch Powertrain N.V. Electric powertrain, transmission, and vehicle
CN107791823A (en) * 2016-08-29 2018-03-13 丰田自动车株式会社 Wheel hub electric motor unit
WO2021058105A1 (en) * 2019-09-26 2021-04-01 Volvo Truck Corporation Vehicle wheel end arrangement
US11932105B2 (en) 2019-09-26 2024-03-19 Volvo Truck Corporation Vehicle wheel end arrangement

Also Published As

Publication number Publication date
JP2015092099A (en) 2015-05-14

Similar Documents

Publication Publication Date Title
JP5079431B2 (en) In-wheel motor drive device
WO2015008606A1 (en) Device for driving in-wheel motor
WO2015141387A1 (en) In-wheel motor drive device
WO2015046087A1 (en) In-wheel motor drive device
JP2016014445A (en) In-wheel motor driving gear
WO2016047442A1 (en) In-wheel motor drive apparatus
WO2015046086A1 (en) In-wheel motor drive device
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
WO2015060135A1 (en) In-wheel motor driving device
JP6324761B2 (en) In-wheel motor drive device
JP6328429B2 (en) In-wheel motor drive device
WO2015133278A1 (en) In-wheel motor drive device
WO2015137088A1 (en) In-wheel motor drive device
JP6333579B2 (en) In-wheel motor drive device
WO2015098490A1 (en) In-wheel motor drive device
WO2015141389A1 (en) In-wheel motor drive device
JP2008207585A (en) In-wheel motor drive unit
WO2016043011A1 (en) In-wheel motor drive device
WO2015098489A1 (en) In-wheel motor drive device
WO2016043012A1 (en) In-wheel motor drive device
WO2015137073A1 (en) In-wheel motor drive device
WO2015098487A1 (en) In-wheel motor drive device
JP2016164429A (en) In-wheel motor drive device
WO2015137085A1 (en) In-wheel motor drive device
WO2016132792A1 (en) Motor driving device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14849816

Country of ref document: EP

Kind code of ref document: A1