WO2016043011A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2016043011A1
WO2016043011A1 PCT/JP2015/074241 JP2015074241W WO2016043011A1 WO 2016043011 A1 WO2016043011 A1 WO 2016043011A1 JP 2015074241 W JP2015074241 W JP 2015074241W WO 2016043011 A1 WO2016043011 A1 WO 2016043011A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
bearing
drive device
input shaft
motor drive
Prior art date
Application number
PCT/JP2015/074241
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 稔
朋久 魚住
Original Assignee
Ntn株式会社
鈴木 稔
朋久 魚住
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 鈴木 稔, 朋久 魚住 filed Critical Ntn株式会社
Publication of WO2016043011A1 publication Critical patent/WO2016043011A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device.
  • the size of the in-wheel motor drive device affects the size of the cabin space because the entire device is housed inside the wheel or disposed near the wheel. Moreover, since the in-wheel motor drive device becomes the unsprung weight of the vehicle, the weight affects the riding comfort of the vehicle. For this reason, the in-wheel motor drive device needs to be as light and compact as possible. On the other hand, the in-wheel motor drive device requires a large torque to drive the wheels. In order to satisfy these requirements at the same time, for example, in Patent Document 1 below, a high-rotation type motor that rotates at a rotational speed of, for example, about 15000 min ⁇ 1 is adopted as a motor unit that generates a driving force. There has been proposed an in-wheel motor drive device that employs a cycloid reducer that is compact and can provide a high reduction ratio in a reduction part that reduces rotation and transmits it to a wheel bearing part.
  • the speed reduction part to which the cycloid reduction gear is applied mainly has an eccentric part, and is held rotatably on the outer periphery of the eccentric part via a reduction gear input shaft that rotates by receiving the driving force of the motor part and a rolling bearing.
  • the output of the reducer connected to the wheel bearing section is the curved plate that performs the revolving motion centered on the rotation axis as the reducer input shaft rotates, and the rotational motion that occurred on the curved plate during the revolving motion.
  • a motion conversion mechanism that converts the rotational motion of the shaft.
  • the reduction gear input shaft rotates at a high speed as described above, and accordingly, between the reduction gear input shaft and the curved plate.
  • the provided rolling bearing also rotates at high speed.
  • a large load mainly radial load
  • the reduction gear input shaft of the speed reduction portion is driven to rotate by receiving the output of the motor portion, and if a curved plate or the like rotates accordingly, even if a lubrication mechanism for supplying lubricating oil to the speed reduction portion is provided, the speed reducer In the rolling bearing provided between the input shaft and the curved plate, the temperature rise of the entire bearing and the temperature difference between the inner raceway surface and the outer raceway surface become larger than expected. Under such conditions, not only the radial internal clearance (initial clearance) of the rolling bearing itself decreases due to the engagement with the reducer input shaft (clearance after assembly), but the clearance further increases due to the temperature factors described above. Decrease (driving clearance).
  • the present invention has been proposed in view of the above points, and it is an object of the present invention to improve the durability of an in-wheel motor drive device and prevent the occurrence of vibration and abnormal noise.
  • the present invention proposed to achieve the above-described object includes a motor unit, a reduction unit, and a wheel bearing unit, and the rotational driving force of the motor unit is decelerated by the reduction unit and the wheel bearing unit is provided.
  • An in-wheel motor drive device for transmitting to the motor wherein the speed reduction part has an eccentric part, a speed reducer input shaft connected to the rotating shaft of the motor part, and a speed reducer connected to the wheel bearing part
  • a structure characterized in that the initial
  • the initial radial internal clearance is set to 15 ⁇ m or more, so that the temperature rise of the entire bearing and the inner raceway surface of the bearing Even considering the temperature difference on the outer raceway surface, the radial internal clearance (operational clearance) during operation does not become negative, and early peeling and seizure can be prevented. Further, in the above-described rolling bearing, the initial radial internal clearance is set to 60 ⁇ m or less, so that the generation of sound and vibration due to an excessive positive clearance can be suppressed.
  • the initial radial internal clearance of the rolling bearing means the radial internal clearance (diameter clearance) of the rolling bearing alone before assembling other members at room temperature.
  • the bearing ring (member having a raceway surface) constituting the rolling bearing is made of bearing steel or carburized steel, is subjected to carbonitriding, has a surface austenite of 25 to 50%, and has a core.
  • the residual austenite in the part is preferably 15 to 20%. In this way, it is possible to improve the rolling fatigue life and to suppress the generation and development of cracks due to retained austenite, thereby improving the durability (longer life) of the in-wheel motor drive device. be able to. Further, in order to ensure the same life, it is possible to reduce the thickness of the bearing ring as compared to the case where the bearing ring not having the above configuration is employed.
  • the in-wheel motor drive device can be reduced in size and weight through, for example, downsizing the rolling bearing in the radial direction.
  • the surface layer is a region obtained by nitriding to the depth affected by the surface pressure of the rolling element on the surface of the race (the raceway surface), and the core portion is formed with a nitride layer deeper than the surface layer. Say no area.
  • the bearing ring constituting the rolling bearing is made of bearing steel containing Si of 0.35 wt% or more and Mn of 0.50 wt% or more.
  • Si contributes to the improvement of the amount of retained austenite in the surface layer part by increasing the stability of austenite and Mn ensuring the hardenability.
  • the rolling elements constituting the rolling bearing are preferably made of bearing steel, subjected to carbonitriding, and the amount of retained austenite in the surface layer portion is preferably 20 to 35%.
  • FIG. 2 is a cross-sectional view taken along line ZZ in FIG. 1. It is explanatory drawing which shows the load which acts on a curve board. It is sectional drawing of a rotary pump. It is a schematic plan view of an electric vehicle. It is the schematic sectional drawing which looked at the electric vehicle of Drawing 6 from back.
  • the electric vehicle 11 is configured to drive an chassis 12, a pair of front wheels 13 that function as steering wheels, a pair of rear wheels 14 that function as drive wheels, and a left and right rear wheel 14.
  • a wheel motor drive device 21 As shown in FIG. 7, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the road surface by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms.
  • the suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface. desirable.
  • an in-wheel motor drive device 21 that rotates each of the left and right rear wheels 14 is incorporated in the left and right wheel housings 12 a, so that a motor, a drive shaft, a differential gear mechanism, and the like are mounted on the chassis 12. There is no need to provide it. Therefore, the electric vehicle 11 has an advantage that a large cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
  • an in-wheel motor drive device 21 according to an embodiment of the present invention is employed.
  • the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and outputs from the deceleration unit B to the rear wheels. 14 (see FIGS. 6 and 7), and a wheel bearing portion C that is transmitted to 14 (see FIGS. 6 and 7).
  • the in-wheel motor drive device 21 has a lubrication mechanism that supplies lubricating oil to the motor part A and the speed reduction part B.
  • the motor part A and the speed reduction part B are mounted in the wheel housing 12a (see FIG.
  • the casing 22 of this embodiment is comprised by fastening the part which accommodated the motor part A, and the part which accommodated the deceleration part B with the volt
  • the motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed opposite to the inside of the stator 23a via a radial gap, and a hollow rotating shaft (motor) mounted with a rotor 23b on the outer periphery.
  • the rotary shaft 24 is capable of rotating at a rotational speed of about 15000 min ⁇ 1 .
  • the motor rotating shaft 24 has ends on one side in the axial direction (right side in FIG. 1, hereinafter also referred to as “inboard side”) and the other side (left side in FIG. 1 and hereinafter also referred to as “outboard side”).
  • the bearings are rotatably supported with respect to the casing 22 by rolling bearings (deep groove ball bearings in the illustrated example) 36, 36 disposed in the respective portions.
  • the wheel bearing portion C includes a hub ring 32 having a hollow structure and a wheel bearing 33 that rotatably supports the hub ring 32 with respect to the casing 22.
  • the hub wheel 32 extends radially outward from the cylindrical hollow portion 32a connected to the shaft portion 28b of the reduction gear output shaft 28 constituting the speed reduction portion B, and the end portion on the outboard side of the hollow portion 32a.
  • the flange portion 32b is integrally provided.
  • the rear wheel 14 (see FIGS. 6 and 7) is connected and fixed to the flange portion 32b by a bolt 32c. Accordingly, when the hub wheel 32 rotates, the rear wheel 14 rotates integrally with the hub wheel 32.
  • the wheel bearing 33 is a double row angular contact ball bearing. Specifically, one inner raceway surface 33 f is directly formed on the outer peripheral surface of the hub wheel 32, and the other inner side is formed on the outer peripheral surface of the inner ring 33 a fitted to the small diameter step portion of the outer peripheral surface of the hub wheel 32. A raceway surface is formed. A double-row outer raceway surface is formed on the inner peripheral surface of the outer ring 33 b fitted and fixed to the inner peripheral surface of the casing 22. A plurality of balls 33c are arranged between the double row inner raceway surface and the double row outer raceway surface. The balls 33c in each row are held in a state of being separated in the circumferential direction by a holder 33d. Both end portions in the axial direction of the wheel bearing 33 are sealed with seal members 33e.
  • the speed reduction unit B is decelerated by the speed reducer input shaft 25 that is rotationally driven by the motor unit A, a speed reduction mechanism that decelerates the rotation of the speed reducer input shaft 25, and a speed reduction mechanism.
  • a reduction gear output shaft 28 for transmitting the rotation of the reduction gear input shaft 25 to the hub wheel 32 of the wheel bearing portion C.
  • the reduction gear input shaft 25 and the reduction gear output shaft 28 are arranged coaxially.
  • the reduction gear input shaft 25 has a spline 25g (including serrations; the same applies hereinafter) formed on the outer periphery of the end portion on the inboard side.
  • a spline 25g (including serrations; the same applies hereinafter) formed on the outer periphery of the end portion on the inboard side.
  • the speed reducer input shaft 25 is rotatably supported with respect to the speed reducer output shaft 28 by rolling bearings 37a and 37b that are spaced apart from each other in two axial directions.
  • One rolling bearing 37a supports a substantially central portion of the reduction gear input shaft 25 in the axial direction
  • the other rolling bearing 37b supports an end portion of the reduction gear input shaft 25 on the outboard side.
  • Eccentric portions 25 a and 25 b whose shaft centers are eccentric with respect to the rotational axis of the speed reducer input shaft 25 are provided at two locations in the axial direction of the speed reducer input shaft 25.
  • the eccentric portions 25a and 25b are formed in a disc shape whose center is offset from the rotation center of the speed reducer input shaft 25 (see FIG. 3).
  • the eccentric portions 25 a and 25 b are provided integrally with the speed reducer input shaft 25.
  • the eccentric portions 25a and 25b are provided with a phase difference of 180 ° in order to cancel the centrifugal force due to the eccentric motion.
  • the counterweight 29 is fixed to the speed reducer input shaft 25 (see FIG. 2).
  • the counterweight 29 has a substantially fan shape and is fixed to the outer peripheral surface of the speed reducer input shaft 25.
  • the counterweight 29 changes the phase of the eccentric portions 25a, 25b and 180 ° to positions adjacent to the eccentric portions 25a, 25b in order to cancel out the unbalanced inertial couple (unbalance) caused by the rotation of the curved plates 26a, 26b. Arranged.
  • the reduction gear output shaft 28 has a shaft portion 28b and a flange portion 28a.
  • the flange portion 28a has a hole portion (through hole in the illustrated example) in which an end portion on the outboard side of the inner pin 31 described later is fitted and fixed.
  • the hole portion serves as a rotational axis of the speed reducer output shaft 28.
  • a plurality are formed at equal intervals on the circumference of the center.
  • the shaft portion 28b is connected to the hub wheel 32 constituting the wheel bearing portion C by spline fitting.
  • the reduction gear output shaft 28 is rotatably supported by the outer pin housing 60 via rolling bearings 48 and 48 that are spaced apart from each other in two axial directions.
  • the speed reduction mechanism rotates on the outer periphery of the eccentric portions 25a and 25b via the rolling bearings 40 and 40 disposed on the outer periphery of the eccentric portions 25a and 25b of the speed reducer input shaft 25.
  • Curved plates 26a and 26b that are freely held, a plurality of outer pins 27 fixed to the outer pin housing 60, and a motion conversion mechanism that converts the rotational motion of the curved plates 26a and 26b to the rotational motion of the reducer output shaft 28.
  • the outer peripheral surface of the curved plate 26a has a corrugated shape composed of a trochoidal curve such as an epitrochoid.
  • a plurality of axial through holes 30a are formed in the curved plate 26a.
  • the plurality of through holes 30a are provided at equal intervals on a circumference centered on the rotation axis of the curved plate 26a (centers of the eccentric portions 25a and 25b).
  • One inner pin 31 is inserted into each through-hole 30a.
  • An axial through hole 30b is formed in the axial center of the curved plate 26a.
  • a rolling bearing 40 and an eccentric portion 25a are disposed on the inner periphery of the through hole 30b.
  • the rolling bearing 40 includes an inner raceway surface 42, an outer raceway surface 43, and a plurality of cylindrical rollers as rolling elements disposed between the raceway surfaces 42 and 43. 44 and a cylindrical roller bearing provided with a retainer 45 for holding a plurality of cylindrical rollers 44.
  • the inner raceway surface 42 is formed on the outer circumference surface of the inner ring 41 fitted and fixed to the outer circumference surface of the eccentric portion 25a, and the outer raceway surface 43 is directly on the inner circumference surface of the through hole 30b of the curved plate 26a. It is formed.
  • the inner ring 41 has flange portions 46 and 46 that protrude from the both end portions in the axial direction of the inner raceway surface 42 toward the outer diameter side.
  • the curved plate 26b has a structure similar to that of the curved plate 26a, and an eccentric portion via a rolling bearing 40 similar to the rolling bearing 40 that supports the curved plate 26a. 25b is rotatably held.
  • each outer pin 27 is rotatably held by an outer pin housing 60 fixed to the casing 22 via a pair of needle roller bearings 61, 61 disposed at both ends in the axial direction. Has been.
  • the motion conversion mechanism includes a plurality of inner pins 31 fixed to the flange portion 28a of the reduction gear output shaft 28, and a plurality of through holes 30a provided in the curved plates 26a and 26b. Consists of.
  • the inner pins 31 are arranged at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and the end portion on the outboard side is provided on the flange portion 28 a of the reduction gear output shaft 28. It is fixed to the hole.
  • a needle roller bearing 31a is provided on the outer periphery of the inner pin 31.
  • the inner diameter dimension of the through hole 30a refers to the outer diameter dimension of the inner pin 31 ("maximum outer diameter including the needle roller bearing 31a") so that the revolving motion of the curved plates 26a and 26b is not hindered by the inner pin 31. It is set larger than the same).
  • the deceleration unit B further includes a stabilizer 31 b.
  • the stabilizer 31b integrally includes an annular ring portion 31c and a cylindrical portion 31d extending from the inner peripheral end of the annular portion 31c to the inboard side.
  • the end portion on the inboard side of each inner pin 31 is fixed to the annular portion 31c.
  • the axis O 2 of the eccentric portion 25 a provided on the speed reducer input shaft 25 is eccentric from the axis O of the speed reducer input shaft 25 by the amount of eccentricity e.
  • Eccentric portion 25a so that rotatably holds the curved plate 26a via a rolling bearing 40, the axis O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed in a corrugated curve, and has corrugated recesses 34 that are recessed toward the inner diameter side at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 34 are arranged in the circumferential direction with the axis O as the center.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives a load Fj as indicated by arrows in the figure from the plurality of inner pins 31.
  • a resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
  • the direction of the resultant force Fs varies depending on geometrical conditions such as the waveform shape of the outer peripheral portion of the curved plate 26a, the number of the concave portions 34, and the influence of centrifugal force. Specifically, the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the axis O 2 and the resultant force Fs varies in a range of approximately 30 ° to 60 °. .
  • the directions and magnitudes of the loads Fi and Fj fluctuate while the reduction gear input shaft 25 makes one rotation (360 °), and as a result, the direction and magnitude of the resultant force Fs acting on the reduction gear input shaft 25 also fluctuates. To do.
  • the rolling bearing (cylindrical roller bearing) 40 that supports the curved plates 26a and 26b receives a radial load and a moment load that vary in the direction and size of the load in addition to the high-speed rotation. Will be loaded.
  • the temperature difference between the inner and outer rings of the rolling bearing 40 in this embodiment, the inner ring 41 and the curved plates 26a and 26b
  • the initial clearance ⁇ 0 of the rolling bearing 40 is set, if the amount of the initial clearance ⁇ 0 is as small as possible, the operating clearance becomes negative and heat is generated, resulting in early separation and seizure. There was found.
  • the value of the initial clearance ⁇ 0 of the rolling bearing 40 may be increased.
  • various values arranged in the speed reduction portion B are used. Vibration due to the rotation of the rotating body may occur, or abnormal noise or vibration may occur due to the contact between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31. It has been found that the in-wheel motor drive device 21 equipped with the cycloid reduction gear is sensitive to these abnormal sounds and vibrations.
  • the rolling bearing 40 of the in-wheel motor drive device 21 of the present embodiment is used in a special environment involving various factors. Therefore, in the present embodiment, the initial radial internal clearance (initial clearance ⁇ 0) of the rolling bearing 40 is set to 15 to 60 ⁇ m, preferably 15 to 45 ⁇ m, in the speed reduction portion B of the in-wheel motor drive device 21.
  • the initial radial internal clearance (initial clearance ⁇ 0) of the rolling bearing 40 is set to 15 to 60 ⁇ m, preferably 15 to 45 ⁇ m, in the speed reduction portion B of the in-wheel motor drive device 21.
  • heat generation and seizure of the rolling bearing 40 can be prevented even under conditions such as fitting (press fitting) with the speed reducer input shaft 25, temperature rise, and temperature difference between the inner and outer rings, and noise and vibration can be prevented. It is possible to minimize the degradation of the NVH characteristics due to the influence of the effect within the processable range.
  • the rolling bearing 40 includes an outer ring (curved plates 26 a and 26 b), an inner ring 41, a cylindrical roller 44, and a cage 45, and the speed reducer input shaft 25 is inserted into the inner periphery of the inner ring 41.
  • the radial internal clearance of the previous rolling bearing 40 alone at room temperature is the initial clearance ⁇ 0.
  • the bearing rings (inner ring 41 and curved plates 26a and 26b) of the rolling bearing 40 are made of bearing steel or carburized steel.
  • the bearing steel for example, a high carbon chromium bearing steel specified in JIS G 4805 can be used, and in particular, SUJ3 and SUJ5 containing 0.35 wt% or more of Si and 0.50 wt% or more of Mn are preferable. Can be used.
  • carburized steel SCM415, SCM420, SCr420 etc. can be used, for example.
  • the inner ring 41 and the curved plates 26a and 26b are made of SUJ3.
  • the cylindrical roller 44 of the rolling bearing 40 is made of bearing steel and subjected to carbonitriding treatment, and nitrogen is diffused in these surface layers to stably retain the retained austenite.
  • Specific examples of the bearing steel that can be used as the material of the cylindrical roller 44 are the same as those described above, and thus a duplicate description is omitted.
  • the cylindrical roller 44 is made of SUJ3. Further, by making the heat treatment condition after the carbonitriding treatment of the cylindrical roller 44 different from the heat treatment condition after the carbonitriding treatment of the raceway ring, the ratio of retained austenite in the surface layer portion of the cylindrical roller 44 is slightly lowered (20 to 35%). ).
  • the bearing ring (inner ring 41) is made thinner and the rolling bearing 40 has a diameter compared to the case where a rolling bearing (race ring or rolling element) not having the above-described configuration is employed. It can be downsized in the direction. In this way, through the improvement and miniaturization of the rolling bearing 40, the in-wheel motor drive device 21 that is rich in durability and that is small and light can be realized.
  • the bearing ring by forming the bearing ring with a high carbon chromium bearing steel containing 0.35 wt% or more of Si and 0.50 wt% or more of Mn, the hardenability is improved, so that retained austenite is easily obtained.
  • the material and heat treatment method of the inner ring 41, the curved plates 26a and 26b, and the cylindrical roller 44 constituting the rolling bearing 40 are not limited to the above.
  • the cylindrical roller 44 may be heat-treated under the same conditions as the race.
  • some members of the inner ring 41, the curved plates 26a and 26b, and the cylindrical roller 44 constituting the rolling bearing 40 are made of bearing steel, and the amount of retained austenite in the surface layer portion is set in the above range by carbonitriding. It is good also as a structure.
  • the lubricating mechanism supplies lubricating oil to various parts of the motor part A and the speed reducing part B. As shown in FIGS. 1 and 2, the lubricating oil paths 24a and 24b provided on the motor rotating shaft 24, and the speed reducing part are provided.
  • the white arrow shown in FIG. 1 indicates the direction in which the lubricating oil flows.
  • the lubricating oil passage 24a extends along the axial direction inside the motor rotating shaft 24.
  • a lubricating oil passage 25c extending in the axial direction inside the reduction gear input shaft 25 is connected to the lubricating oil passage 24a.
  • the lubricating oil passage 25d extends radially from the lubricating oil passage 25c toward the outer peripheral surface of the speed reducer input shaft 25, and the outer diameter end of the lubricating oil passage 25d in the illustrated example is the outer peripheral surface of the eccentric portions 25a and 25b. Is open.
  • the lubricating oil passage 25e extends in the axial direction from the end portion on the outboard side of the lubricating oil passage 25c, and opens to the end face on the outboard side of the reduction gear input shaft 25.
  • the formation position of the lubricating oil passage 25d extending in the radial direction is not limited to this, and can be provided at any position in the axial direction of the reduction gear input shaft 25.
  • the lubricating oil discharge port 22b provided in the casing 22 discharges the lubricating oil in the speed reduction part B, and is provided in at least one location of the casing 22 at the position of the speed reduction part B.
  • the lubricating oil discharge port 22b and the lubricating oil path 24a of the motor rotating shaft 24 are connected via a lubricating oil reservoir 22d, a lubricating oil path 22e, and a lubricating oil path 49. Therefore, the lubricating oil discharged from the lubricating oil discharge port 22b returns to the lubricating oil path 24a of the motor rotating shaft 24 through the lubricating oil path 22e, the lubricating oil path 49, and the like.
  • the lubricating oil reservoir 22d has a function of temporarily storing the lubricating oil.
  • the lubricating oil passage 49 is connected to the axial oil passage 49a extending in the axial direction inside the casing 22 and the end portions on the outboard side and the inboard side of the axial oil passage 49a and extends in the radial direction. It is composed of paths 49b and 49c.
  • the rotary pump 51 is provided between the lubricating oil passage 22e and the lubricating oil passage 49 connected to the lubricating oil reservoir 22d. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from being enlarged as a whole.
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the reducer output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, both rotors 52, 53 is a cycloid pump including a plurality of pump chambers 54 provided in a space between 53, a suction port 55 communicating with the lubricating oil passage 22e, and a discharge port 56 communicating with the radial oil passage 49b of the lubricating oil passage 49. .
  • the inner rotor 52 rotates around the rotation center c 1
  • the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52. Therefore, the volume of the pump chamber 54 changes continuously.
  • the lubricating oil flowing into the pump chamber 54 from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 49 b of the lubricating oil passage 49.
  • the lubrication mechanism mainly has the above configuration, and lubricates and cools each part of the motor part A and the reduction part B as follows.
  • a part of the lubricating oil flowing through the lubricating oil passage 24 a of the motor rotating shaft 24 is affected by the centrifugal force generated by the rotation of the motor rotating shaft 24 and the pressure of the rotary pump 51. It is discharged from the outer diameter side opening of the lubricating oil passage 24b.
  • This lubricating oil is supplied to the rotor 23b and the stator 23a in the motor part A. Further, a part of the lubricating oil flowing through the lubricating oil passage 49 oozes out from between the casing 22 and the motor rotating shaft 24, and this lubricating oil supports the inboard side end of the motor rotating shaft 24. 36.
  • a part of the lubricating oil discharged from the lubricating oil passage 24 b travels down the inner wall surface on the outboard side of the portion of the casing 22 in which the motor part A is accommodated, and this lubricating oil passes through the motor rotating shaft 24. It is supplied to a rolling bearing 36 that supports the end on the outboard side.
  • the lubricating oil that has flowed into the lubricating oil passage 25c of the reduction gear input shaft 25 via the lubricating oil passage 24a of the motor rotation shaft 24 is subjected to centrifugal force and pressure of the rotary pump 51 accompanying the rotation of the reduction gear input shaft 25.
  • the oil is discharged from the openings of the lubricating oil passages 25d and 25e (see FIG. 2) and is supplied to various places in the speed reduction portion B mainly by centrifugal force.
  • attained the inner wall surface of the casing 22 is discharged
  • the lubricating oil reservoir 22d is provided between the lubricating oil discharge port 22b and the lubricating oil passage 22e connected to the rotary pump 51, it can be completely discharged by the rotary pump 51 especially during high-speed rotation. Even if no lubricating oil is temporarily generated, the lubricating oil can be stored in the lubricating oil storage unit 22d. As a result, it is possible to prevent an increase in heat generation and torque loss at various portions of the deceleration portion B. On the other hand, the amount of lubricating oil reaching the lubricating oil discharge port 22b decreases particularly during low-speed rotation.
  • the lubricating oil stored in the lubricating oil reservoir 22d is used as the lubricating oil. Since it can recirculate
  • the in-wheel motor drive device 21 is attached to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
  • the rotor 23b made of a permanent magnet or a magnetic material rotates by receiving an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a. Accordingly, when the speed reducer input shaft 25 connected to the motor rotating shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotational axis of the speed reducer input shaft 25. At this time, the outer pin 27 engages with the curved waveform provided on the outer periphery of the curved plates 26a and 26b in the circumferential direction, and the curved plates 26a and 26b are opposite to the rotation direction of the speed reducer input shaft 25. Rotate to
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the speed reducer input shaft 25 is decelerated by the speed reducing portion B and then transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the drive wheels ( The required torque can be transmitted to the (rear wheel) 14.
  • the speed reduction ratio of the speed reduction portion B having the above-described configuration is (Z A ⁇ Z B ), where Z A is the number of outer pins 27 and Z B is the number of waveforms (concave portions 34) provided on the outer periphery of the curved plates 26a and 26b. ) / is calculated by Z B.
  • the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing rolling bearings (needle roller bearings) 61 and 31a that rotatably support the outer pin 27 and the inner pin 31, friction between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31 is achieved. Since the resistance is reduced, the power transmission efficiency in the speed reduction portion B is also improved from this point.
  • the in-wheel motor drive device 21 of the present embodiment is lightweight and compact as a whole device. Therefore, if the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the unsprung weight can be suppressed, so that the electric vehicle 11 excellent in running stability and NVH characteristics can be realized.
  • the in-wheel motor driving device 21 As described above, the in-wheel motor driving device 21 according to the embodiment of the present invention has been described. However, the in-wheel motor driving device 21 can be variously modified without departing from the gist of the present invention. is there.
  • the inner race surface 42 of the rolling bearing (cylindrical roller bearing) 40 that rotatably holds the curved plates 26 a and 26 b is fixed to the eccentric portions 25 a and 25 b of the speed reducer input shaft 25.
  • the case where it provided in the outer peripheral surface of 41 was shown, it does not restrict to this, For example, you may abbreviate
  • the outer raceway surface 43 of the rolling bearing 40 is directly provided on the inner peripheral surface of the through hole 30b of the curved plates 26a and 26b. May be provided separately, and the outer peripheral surface of the outer ring may be fixed to the inner peripheral surface of the through hole 30b of the curved plates 26a, 26b.
  • the rotary pump 51 was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. . Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the motion conversion mechanism is configured by the inner pin 31 fixed to the reduction gear output shaft 28 and the through hole 30a provided in the curved plates 26a and 26b.
  • any configuration capable of transmitting the rotation of the speed reduction portion B to the hub wheel 32 can be employed.
  • it may be a motion conversion mechanism composed of an inner pin fixed to a curved plate and a hole formed in a reduction gear output shaft.
  • a radial gap motor is adopted as the motor unit A
  • the present invention is not limited to this, and a motor having an arbitrary configuration can be applied.
  • an axial gap motor in which a stator and a rotor are opposed to each other via an axial gap may be employed.
  • the electric vehicle 11 shown in FIG. 6 showed the example which used the rear wheel 14 as the driving wheel, it is not restricted to this,
  • the front wheel 13 may be used as a driving wheel and may be a four-wheel driving vehicle.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Retarders (AREA)
  • Rolling Contact Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

An in-wheel motor drive device equipped with a motor unit (A), a decelerator unit (B), and a wheel bearing unit (C). The decelerator unit (B) is equipped with: a decelerator input shaft (25) having eccentric parts (25a, 25b) and connected to a rotary shaft (24) of the motor unit (A); a decelerator output shaft (28) connected to the wheel bearing unit (C); rolling bearings (40) provided on the outer periphery of the eccentric parts (25a, 25b) of the decelerator input shaft (25); and curve plates (26a, 26b), which are rotatably held on the outer peripheries of the eccentric parts (25a, 25b) with the rolling bearings (40) therebetween, and which undergo orbital motion centered around the axis of rotation of decelerator input shaft (25) in conjunction with the rotation thereof. The initial radial internal gap in the rolling bearing (40) is 15-60 μm.

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、インホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device.
 インホイールモータ駆動装置は、装置全体がホイールの内部に収容され、あるいはホイール近傍に配置されるため、その大きさは客室スペースの広さに影響を及ぼす。また、インホイールモータ駆動装置は車両のばね下重量となるため、その重量は車両の乗り心地に影響を与える。このため、インホイールモータ駆動装置は、できるだけ軽量・コンパクト化する必要がある。その一方、インホイールモータ駆動装置は、車輪を駆動するために大きなトルクを必要とする。これらの要請を同時に満足すべく、例えば下記の特許文献1には、駆動力を発生させるモータ部に、例えば15000min-1程度の回転速度で回転する高回転型のモータを採用すると共に、モータの回転を減速して車輪用軸受部に伝達する減速部に、コンパクトで高い減速比が得られるサイクロイド減速機を採用したインホイールモータ駆動装置が提案されている。 The size of the in-wheel motor drive device affects the size of the cabin space because the entire device is housed inside the wheel or disposed near the wheel. Moreover, since the in-wheel motor drive device becomes the unsprung weight of the vehicle, the weight affects the riding comfort of the vehicle. For this reason, the in-wheel motor drive device needs to be as light and compact as possible. On the other hand, the in-wheel motor drive device requires a large torque to drive the wheels. In order to satisfy these requirements at the same time, for example, in Patent Document 1 below, a high-rotation type motor that rotates at a rotational speed of, for example, about 15000 min −1 is adopted as a motor unit that generates a driving force. There has been proposed an in-wheel motor drive device that employs a cycloid reducer that is compact and can provide a high reduction ratio in a reduction part that reduces rotation and transmits it to a wheel bearing part.
 サイクロイド減速機を適用した減速部は、主に、偏心部を有し、モータ部の駆動力を受けて回転する減速機入力軸と、転がり軸受を介して偏心部の外周に回転自在に保持され、減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う曲線板と、公転運動中の曲線板に生じた自転運動を、車輪用軸受部に連結された減速機出力軸の回転運動に変換する運動変換機構とを備える。 The speed reduction part to which the cycloid reduction gear is applied mainly has an eccentric part, and is held rotatably on the outer periphery of the eccentric part via a reduction gear input shaft that rotates by receiving the driving force of the motor part and a rolling bearing. The output of the reducer connected to the wheel bearing section is the curved plate that performs the revolving motion centered on the rotation axis as the reducer input shaft rotates, and the rotational motion that occurred on the curved plate during the revolving motion. A motion conversion mechanism that converts the rotational motion of the shaft.
特開2012-148725号公報JP 2012-148725 A
 上記のような構成を有する減速部では、モータ部が駆動されると、減速機入力軸が上記のような回転速度で高速回転し、これに伴って減速機入力軸と曲線板との間に設けられた転がり軸受も高速で回転する。また、モータ部が駆動されると、曲線板等を介して大きな荷重(主にラジアル荷重)が上記の転がり軸受に繰り返し負荷される。このような過酷な使用環境や、サイクロイド減速機の機構的な特殊性に伴う負荷条件等が絡んで、減速部の内部に組み込まれる軸受には改善すべき点が残されている。 In the reduction part having the above-described configuration, when the motor part is driven, the reduction gear input shaft rotates at a high speed as described above, and accordingly, between the reduction gear input shaft and the curved plate. The provided rolling bearing also rotates at high speed. Further, when the motor unit is driven, a large load (mainly radial load) is repeatedly applied to the above-mentioned rolling bearing through a curved plate or the like. Due to such a harsh usage environment and the load conditions associated with the mechanical special characteristics of the cycloid reducer, there are still points to be improved in the bearing incorporated in the reduction portion.
 具体的に、本発明者らが、インホイールモータ駆動装置の内部の潤滑機構や冷却機構を含めて種々検討した結果、減速部内に組み込まれる転がり軸受について以下のような知見が得られた。 Specifically, as a result of various studies by the present inventors including a lubrication mechanism and a cooling mechanism inside the in-wheel motor drive device, the following knowledge about the rolling bearing incorporated in the speed reduction unit was obtained.
 すなわち、モータ部の出力を受けて減速部の減速機入力軸が回転駆動され、これに伴って曲線板等が回転すると、減速部に潤滑油を供給する潤滑機構を設けていても、減速機入力軸と曲線板との間に設けられた転がり軸受では、軸受全体の温度上昇や、内側軌道面と外側軌道面の温度差が予想以上に大きくなる。このような使用状態では、転がり軸受単体でのラジアル内部すきま(初期すきま)が、減速機入力軸との嵌め合いにより減少する(組付後すきま)だけでなく、前述の温度要因によってすきまがさらに減少する(運転すきま)。この運転すきまが過少となり、特に負すきまになると、異常な昇温が起こり、早期剥離や焼き付きに至る。逆に、運転すきまが過大であると、曲線板の振れ回りによる振動や、曲線板と外ピンや内ピンとの当たりによる音および振動の発生につながる。 That is, the reduction gear input shaft of the speed reduction portion is driven to rotate by receiving the output of the motor portion, and if a curved plate or the like rotates accordingly, even if a lubrication mechanism for supplying lubricating oil to the speed reduction portion is provided, the speed reducer In the rolling bearing provided between the input shaft and the curved plate, the temperature rise of the entire bearing and the temperature difference between the inner raceway surface and the outer raceway surface become larger than expected. Under such conditions, not only the radial internal clearance (initial clearance) of the rolling bearing itself decreases due to the engagement with the reducer input shaft (clearance after assembly), but the clearance further increases due to the temperature factors described above. Decrease (driving clearance). When this operating clearance becomes too small, especially when it becomes a negative clearance, an abnormal temperature rise occurs, leading to early peeling and seizure. On the other hand, if the operating clearance is excessive, vibration due to the swirling of the curved plate and sound and vibration due to the contact between the curved plate and the outer pin and the inner pin are generated.
 本発明は、以上の点に鑑みて提案されたもので、インホイールモータ駆動装置の耐久性を向上させると共に、振動や異音の発生を防止することを目的とする。 The present invention has been proposed in view of the above points, and it is an object of the present invention to improve the durability of an in-wheel motor drive device and prevent the occurrence of vibration and abnormal noise.
 前述の目的を達成するために提案された本発明は、モータ部、減速部、および車輪用軸受部を備え、前記モータ部の回転駆動力を、前記減速部で減速して前記車輪用軸受部に伝達するインホイールモータ駆動装置であって、前記減速部は、偏心部を有し、前記モータ部の回転軸に接続された減速機入力軸と、前記車輪用軸受部に接続された減速機出力軸と、前記減速機入力軸の偏心部の外周に設けられた転がり軸受と、前記転がり軸受を介して前記偏心部の外周に回転自在に保持され、前記減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う公転部材と、前記公転部材の外周部に係合して前記公転部材に自転運動を生じさせる外周係合部材と、前記公転部材の自転運動を前記減速機出力軸の回転運動に変換する運動変換機構とを備え、前記転がり軸受の初期のラジアル内部すきまを15~60μmとしたことを特徴とする。 The present invention proposed to achieve the above-described object includes a motor unit, a reduction unit, and a wheel bearing unit, and the rotational driving force of the motor unit is decelerated by the reduction unit and the wheel bearing unit is provided. An in-wheel motor drive device for transmitting to the motor, wherein the speed reduction part has an eccentric part, a speed reducer input shaft connected to the rotating shaft of the motor part, and a speed reducer connected to the wheel bearing part An output shaft, a rolling bearing provided on the outer periphery of the eccentric portion of the speed reducer input shaft, and rotatably held on the outer periphery of the eccentric portion via the rolling bearing, with the rotation of the speed reducer input shaft A revolving member that performs a revolving motion around the rotation axis; an outer peripheral engagement member that engages with an outer peripheral portion of the revolving member to cause the revolving member to rotate; and Motion conversion to convert to rotational motion of reducer output shaft And a structure, characterized in that the initial radial internal clearance of the rolling bearing and 15 ~ 60 [mu] m.
 このように、減速機出力軸の偏心部と公転部材との間に配された転がり軸受において、初期のラジアル内部すきまを15μm以上としたことにより、軸受全体の温度上昇や軸受の内側軌道面と外側軌道面の温度差を考慮しても、運転時におけるラジアル内部すきま(運転すきま)が負すきまになることがなく、早期剥離や焼き付きを防止できる。また、上記の転がり軸受において、初期のラジアル内部すきまを60μm以下としたことにより、過大な正すきまに起因する音および振動の発生を抑制することができる。尚、転がり軸受の初期のラジアル内部すきまとは、他部材を組み付ける前の転がり軸受単体の常温下でのラジアル方向の内部すきま(直径すきま)のことを言う。 Thus, in the rolling bearing arranged between the eccentric part of the reduction gear output shaft and the revolution member, the initial radial internal clearance is set to 15 μm or more, so that the temperature rise of the entire bearing and the inner raceway surface of the bearing Even considering the temperature difference on the outer raceway surface, the radial internal clearance (operational clearance) during operation does not become negative, and early peeling and seizure can be prevented. Further, in the above-described rolling bearing, the initial radial internal clearance is set to 60 μm or less, so that the generation of sound and vibration due to an excessive positive clearance can be suppressed. The initial radial internal clearance of the rolling bearing means the radial internal clearance (diameter clearance) of the rolling bearing alone before assembling other members at room temperature.
 上記の転がり軸受を構成する軌道輪(軌道面が形成された部材)は、軸受鋼又は浸炭鋼からなり、浸炭窒化処理が施され、表層の残留オーステナイトが25~50%であり、且つ、芯部の残留オーステナイトが15~20%であることが好ましい。このようにすれば、転動疲労寿命を向上させることができると共に残留オーステナイトによるクラックの発生およびその進展を抑制することができるので、インホイールモータ駆動装置の耐久性向上(長寿命化)を図ることができる。また、同程度の寿命を確保する上では、上記構成を具備しない軌道輪を採用する場合に比べ、軌道輪の薄肉化を実現することができる。従って、上記転がり軸受の径方向への小型化等を通じて、インホイールモータ駆動装置を小型・軽量化することができる。尚、表層とは、軌道輪の表面(軌道面)において転動体の面圧の影響の及ぶ深さに窒化を施した領域であり、芯部とは、表層よりも深く窒化層が形成されていない領域のことを言う。 The bearing ring (member having a raceway surface) constituting the rolling bearing is made of bearing steel or carburized steel, is subjected to carbonitriding, has a surface austenite of 25 to 50%, and has a core. The residual austenite in the part is preferably 15 to 20%. In this way, it is possible to improve the rolling fatigue life and to suppress the generation and development of cracks due to retained austenite, thereby improving the durability (longer life) of the in-wheel motor drive device. be able to. Further, in order to ensure the same life, it is possible to reduce the thickness of the bearing ring as compared to the case where the bearing ring not having the above configuration is employed. Therefore, the in-wheel motor drive device can be reduced in size and weight through, for example, downsizing the rolling bearing in the radial direction. The surface layer is a region obtained by nitriding to the depth affected by the surface pressure of the rolling element on the surface of the race (the raceway surface), and the core portion is formed with a nitride layer deeper than the surface layer. Say no area.
 また、上記の転がり軸受を構成する軌道輪は、Siを0.35wt%以上、Mnを0.50wt%以上含む軸受鋼で構成することが好ましい。Siはオーステナイトの安定性を高めることで、Mnは焼入れ性を確保することで表層部の残留オーステナイト量の向上に寄与する。 Moreover, it is preferable that the bearing ring constituting the rolling bearing is made of bearing steel containing Si of 0.35 wt% or more and Mn of 0.50 wt% or more. Si contributes to the improvement of the amount of retained austenite in the surface layer part by increasing the stability of austenite and Mn ensuring the hardenability.
 また、上記の転がり軸受を構成する転動体は、上記と同様の理由から、軸受鋼からなり、浸炭窒化処理が施され、かつ表層部の残留オーステナイト量が20~35%であることが好ましい。 In addition, for the same reason as described above, the rolling elements constituting the rolling bearing are preferably made of bearing steel, subjected to carbonitriding, and the amount of retained austenite in the surface layer portion is preferably 20 to 35%.
 以上より、本発明によれば、インホイールモータ駆動装置の耐久性を向上させると共に、振動や異音の発生を防止することができる。 As described above, according to the present invention, it is possible to improve the durability of the in-wheel motor drive device and to prevent the occurrence of vibration and abnormal noise.
本発明の一実施形態に係るインホイールモータ駆動装置を示す断面図である。It is sectional drawing which shows the in-wheel motor drive device which concerns on one Embodiment of this invention. 図1に示すインホイールモータ駆動装置の減速部の拡大図である。It is an enlarged view of the deceleration part of the in-wheel motor drive device shown in FIG. 図1のZ-Z線矢視断面図であるFIG. 2 is a cross-sectional view taken along line ZZ in FIG. 1. 曲線板に作用する荷重を示す説明図である。It is explanatory drawing which shows the load which acts on a curve board. 回転ポンプの断面図である。It is sectional drawing of a rotary pump. 電気自動車の概略平面図である。It is a schematic plan view of an electric vehicle. 図6の電気自動車を後方から見た概略断面図である。It is the schematic sectional drawing which looked at the electric vehicle of Drawing 6 from back.
 図6および図7に基づいてインホイールモータ駆動装置を搭載した電気自動車11の概要を説明する。図6に示すように、電気自動車11は、シャシー12と、操舵輪として機能する一対の前輪13と、駆動輪として機能する一対の後輪14と、左右の後輪14のそれぞれを駆動するインホイールモータ駆動装置21とを備える。図7に示すように、後輪14は、シャシー12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャシー12の下部に固定されている。 An outline of the electric vehicle 11 equipped with the in-wheel motor drive device will be described with reference to FIGS. As shown in FIG. 6, the electric vehicle 11 is configured to drive an chassis 12, a pair of front wheels 13 that function as steering wheels, a pair of rear wheels 14 that function as drive wheels, and a left and right rear wheel 14. A wheel motor drive device 21. As shown in FIG. 7, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が路面から受ける振動を吸収してシャシー12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時等の車体の傾きを抑制するスタビライザが設けられる。懸架装置12bは、路面の凹凸に対する追従性を向上し、後輪14の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式とするのが望ましい。 The suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the road surface by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms. The suspension device 12b is an independent suspension type in which the left and right wheels can be moved up and down independently in order to improve the followability to the road surface unevenness and efficiently transmit the driving force of the rear wheel 14 to the road surface. desirable.
 この電気自動車11では、左右のホイールハウジング12aの内部に、左右の後輪14それぞれを回転駆動させるインホイールモータ駆動装置21が組み込まれるので、シャシー12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構等を設ける必要がなくなる。そのため、この電気自動車11は、客室スペースを広く確保でき、しかも、左右の後輪14の回転をそれぞれ制御することができるという利点を備えている。 In this electric vehicle 11, an in-wheel motor drive device 21 that rotates each of the left and right rear wheels 14 is incorporated in the left and right wheel housings 12 a, so that a motor, a drive shaft, a differential gear mechanism, and the like are mounted on the chassis 12. There is no need to provide it. Therefore, the electric vehicle 11 has an advantage that a large cabin space can be secured and the rotation of the left and right rear wheels 14 can be controlled.
 電気自動車11の走行安定性および乗り心地を向上するためには、ばね下重量を抑える必要がある。また、電気自動車11の客室スペースを拡大するためには、インホイールモータ駆動装置21を小型化する必要がある。そこで、図1に示すように、本発明の一実施形態に係るインホイールモータ駆動装置21を採用する。 In order to improve the running stability and riding comfort of the electric vehicle 11, it is necessary to suppress the unsprung weight. Moreover, in order to expand the cabin space of the electric vehicle 11, it is necessary to reduce the size of the in-wheel motor drive device 21. Therefore, as shown in FIG. 1, an in-wheel motor drive device 21 according to an embodiment of the present invention is employed.
 本発明の実施形態に係るインホイールモータ駆動装置21を、図1~図5に基づいて説明する。図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を後輪14(図6,7参照)に伝達する車輪用軸受部Cとを備え、これらはケーシング22に保持されている。詳細は後述するが、このインホイールモータ駆動装置21は、モータ部Aおよび減速部Bの各所に潤滑油を供給する潤滑機構を有する。モータ部Aと減速部Bはケーシング22に収納された状態で電気自動車11のホイールハウジング12a(図7参照)内に取り付けられる。なお、本実施形態のケーシング22は、モータ部Aを収容した部分と、減速部Bを収容した部分とをボルトで締結して構成されている。 An in-wheel motor drive device 21 according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and outputs from the deceleration unit B to the rear wheels. 14 (see FIGS. 6 and 7), and a wheel bearing portion C that is transmitted to 14 (see FIGS. 6 and 7). Although the details will be described later, the in-wheel motor drive device 21 has a lubrication mechanism that supplies lubricating oil to the motor part A and the speed reduction part B. The motor part A and the speed reduction part B are mounted in the wheel housing 12a (see FIG. 7) of the electric vehicle 11 while being housed in the casing 22. In addition, the casing 22 of this embodiment is comprised by fastening the part which accommodated the motor part A, and the part which accommodated the deceleration part B with the volt | bolt.
 モータ部Aは、ケーシング22に固定されているステータ23aと、ステータ23aの内側に径方向の隙間を介して対向配置されたロータ23bと、外周にロータ23bを装着した中空構造の回転軸(モータ回転軸)24とを備えるラジアルギャップモータであり、モータ回転軸24は15000min-1程度の回転速度で回転可能とされている。 The motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed opposite to the inside of the stator 23a via a radial gap, and a hollow rotating shaft (motor) mounted with a rotor 23b on the outer periphery. The rotary shaft 24 is capable of rotating at a rotational speed of about 15000 min −1 .
 モータ回転軸24は、その軸方向一方側(図1の右側であり、以下「インボード側」ともいう)および他方側(図1の左側であり、以下「アウトボード側」ともいう)の端部にそれぞれ配置された転がり軸受(図示例では深溝玉軸受)36,36によってケーシング22に対して回転自在に支持されている。 The motor rotating shaft 24 has ends on one side in the axial direction (right side in FIG. 1, hereinafter also referred to as “inboard side”) and the other side (left side in FIG. 1 and hereinafter also referred to as “outboard side”). The bearings are rotatably supported with respect to the casing 22 by rolling bearings (deep groove ball bearings in the illustrated example) 36, 36 disposed in the respective portions.
 車輪用軸受部Cは、中空構造のハブ輪32と、ハブ輪32をケーシング22に対して回転自在に支持する車輪用軸受33とを備える。ハブ輪32は、減速部Bを構成する減速機出力軸28の軸部28bに連結された円筒状の中空部32aと、中空部32aのアウトボード側の端部から径方向外向きに延びたフランジ部32bとを一体に有する。フランジ部32bにはボルト32cによって後輪14(図6,7参照)が連結固定される。従って、ハブ輪32の回転時には後輪14がハブ輪32と一体回転する。 The wheel bearing portion C includes a hub ring 32 having a hollow structure and a wheel bearing 33 that rotatably supports the hub ring 32 with respect to the casing 22. The hub wheel 32 extends radially outward from the cylindrical hollow portion 32a connected to the shaft portion 28b of the reduction gear output shaft 28 constituting the speed reduction portion B, and the end portion on the outboard side of the hollow portion 32a. The flange portion 32b is integrally provided. The rear wheel 14 (see FIGS. 6 and 7) is connected and fixed to the flange portion 32b by a bolt 32c. Accordingly, when the hub wheel 32 rotates, the rear wheel 14 rotates integrally with the hub wheel 32.
 車輪用軸受33は、複列アンギュラ玉軸受である。具体的に、ハブ輪32の外周面に、一方の内側軌道面33fが直接形成されると共に、ハブ輪32の外周面の小径段部に嵌合された内輪33aの外周面に、他方の内側軌道面が形成される。ケーシング22の内周面に嵌合固定された外輪33bの内周面に、複列の外側軌道面が形成される。複列の内側軌道面と複列の外側軌道面との間には、複数のボール33cが配される。各列のボール33cは、それぞれ保持器33dで周方向に離間した状態で保持される。車輪用軸受33の軸方向両端部は、シール部材33eで密封される。 The wheel bearing 33 is a double row angular contact ball bearing. Specifically, one inner raceway surface 33 f is directly formed on the outer peripheral surface of the hub wheel 32, and the other inner side is formed on the outer peripheral surface of the inner ring 33 a fitted to the small diameter step portion of the outer peripheral surface of the hub wheel 32. A raceway surface is formed. A double-row outer raceway surface is formed on the inner peripheral surface of the outer ring 33 b fitted and fixed to the inner peripheral surface of the casing 22. A plurality of balls 33c are arranged between the double row inner raceway surface and the double row outer raceway surface. The balls 33c in each row are held in a state of being separated in the circumferential direction by a holder 33d. Both end portions in the axial direction of the wheel bearing 33 are sealed with seal members 33e.
 減速部Bは、図2にも拡大して示すように、モータ部Aにより回転駆動される減速機入力軸25と、減速機入力軸25の回転を減速する減速機構と、減速機構により減速された減速機入力軸25の回転を車輪用軸受部Cのハブ輪32に伝達する減速機出力軸28とを備える。減速機入力軸25と減速機出力軸28とは、同軸に配置される。 As shown in an enlarged view in FIG. 2, the speed reduction unit B is decelerated by the speed reducer input shaft 25 that is rotationally driven by the motor unit A, a speed reduction mechanism that decelerates the rotation of the speed reducer input shaft 25, and a speed reduction mechanism. A reduction gear output shaft 28 for transmitting the rotation of the reduction gear input shaft 25 to the hub wheel 32 of the wheel bearing portion C. The reduction gear input shaft 25 and the reduction gear output shaft 28 are arranged coaxially.
 減速機入力軸25は、そのインボード側の端部外周に形成したスプライン25g(セレーションを含む。以下同じ。)を有する。減速機入力軸25のスプライン25gを、モータ回転軸24のアウトボード側の端部内周に形成したスプラインに嵌合することで、減速機入力軸25とモータ回転軸24とが連結されている。 The reduction gear input shaft 25 has a spline 25g (including serrations; the same applies hereinafter) formed on the outer periphery of the end portion on the inboard side. By fitting the spline 25g of the speed reducer input shaft 25 to a spline formed on the inner periphery of the end portion on the outboard side of the motor rotational shaft 24, the speed reducer input shaft 25 and the motor rotational shaft 24 are connected.
 減速機入力軸25は、軸方向の二箇所に離間して配置された転がり軸受37a,37bによって減速機出力軸28に対して回転自在に支持されている。一方の転がり軸受37aは、減速機入力軸25の軸方向略中央部を支持し、他方の転がり軸受37bは、減速機入力軸25のアウトボード側の端部を支持している。 The speed reducer input shaft 25 is rotatably supported with respect to the speed reducer output shaft 28 by rolling bearings 37a and 37b that are spaced apart from each other in two axial directions. One rolling bearing 37a supports a substantially central portion of the reduction gear input shaft 25 in the axial direction, and the other rolling bearing 37b supports an end portion of the reduction gear input shaft 25 on the outboard side.
 減速機入力軸25の軸方向二箇所には、軸心が減速機入力軸25の回転軸心に対して偏心した偏心部25a,25bが設けられている。本実施形態では、偏心部25a,25bが、減速機入力軸25の回転中心から中心をオフセットさせた円盤状とされる(図3参照)。本実施形態では、偏心部25a,25bが減速機入力軸25と一体に設けられる。偏心部25a、25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相を変えて設けられている。 Eccentric portions 25 a and 25 b whose shaft centers are eccentric with respect to the rotational axis of the speed reducer input shaft 25 are provided at two locations in the axial direction of the speed reducer input shaft 25. In the present embodiment, the eccentric portions 25a and 25b are formed in a disc shape whose center is offset from the rotation center of the speed reducer input shaft 25 (see FIG. 3). In the present embodiment, the eccentric portions 25 a and 25 b are provided integrally with the speed reducer input shaft 25. The eccentric portions 25a and 25b are provided with a phase difference of 180 ° in order to cancel the centrifugal force due to the eccentric motion.
 減速機入力軸25には、カウンタウェイト29が固定される(図2参照)。カウンタウェイト29は、略扇形状をなし、減速機入力軸25の外周面に固定される。カウンタウェイト29は、曲線板26a、26bの回転によって生じる不釣合い慣性偶力(アンバランス)を打ち消すために、各偏心部25a、25bに隣接する位置に偏心部25a、25bと180°位相を変えて配置される。 The counterweight 29 is fixed to the speed reducer input shaft 25 (see FIG. 2). The counterweight 29 has a substantially fan shape and is fixed to the outer peripheral surface of the speed reducer input shaft 25. The counterweight 29 changes the phase of the eccentric portions 25a, 25b and 180 ° to positions adjacent to the eccentric portions 25a, 25b in order to cancel out the unbalanced inertial couple (unbalance) caused by the rotation of the curved plates 26a, 26b. Arranged.
 減速機出力軸28は、軸部28bとフランジ部28aとを有する。フランジ部28aは、後述する内ピン31のアウトボード側の端部が嵌合固定された孔部(図示例は貫通孔)を有し、孔部は、減速機出力軸28の回転軸心を中心とする円周上に等間隔で複数形成されている。軸部28bは、車輪用軸受部Cを構成するハブ輪32にスプライン嵌合によって連結されている。減速機出力軸28は、軸方向の二箇所に離間して配置された転がり軸受48,48を介して外ピンハウジング60に回転自在に支持されている。 The reduction gear output shaft 28 has a shaft portion 28b and a flange portion 28a. The flange portion 28a has a hole portion (through hole in the illustrated example) in which an end portion on the outboard side of the inner pin 31 described later is fitted and fixed. The hole portion serves as a rotational axis of the speed reducer output shaft 28. A plurality are formed at equal intervals on the circumference of the center. The shaft portion 28b is connected to the hub wheel 32 constituting the wheel bearing portion C by spline fitting. The reduction gear output shaft 28 is rotatably supported by the outer pin housing 60 via rolling bearings 48 and 48 that are spaced apart from each other in two axial directions.
 減速機構(サイクロイド減速機)は、減速機入力軸25の偏心部25a,25bの外周に配された転がり軸受40,40と、転がり軸受40,40を介して偏心部25a,25bの外周に回転自在に保持された曲線板26a,26bと、外ピンハウジング60に固定された複数の外ピン27と、曲線板26a,26bの自転運動を減速機出力軸28の回転運動に変換する運動変換機構とを備える。 The speed reduction mechanism (cycloid speed reducer) rotates on the outer periphery of the eccentric portions 25a and 25b via the rolling bearings 40 and 40 disposed on the outer periphery of the eccentric portions 25a and 25b of the speed reducer input shaft 25. Curved plates 26a and 26b that are freely held, a plurality of outer pins 27 fixed to the outer pin housing 60, and a motion conversion mechanism that converts the rotational motion of the curved plates 26a and 26b to the rotational motion of the reducer output shaft 28. With.
 図3に示すように、曲線板26aの外周面は、エピトロコイド等のトロコイド系曲線で構成される波形形状を有する。曲線板26aには、複数の軸方向の貫通孔30aが形成される。複数の貫通孔30aは、曲線板26aの自転軸心(偏心部25a,25bの中心)を中心とする円周上に等間隔に設けられる。各貫通孔30aには、内ピン31が1本ずつ挿入される。曲線板26aの軸心には、軸方向の貫通孔30bが形成される。貫通孔30bの内周には、転がり軸受40および偏心部25aが配される。 As shown in FIG. 3, the outer peripheral surface of the curved plate 26a has a corrugated shape composed of a trochoidal curve such as an epitrochoid. A plurality of axial through holes 30a are formed in the curved plate 26a. The plurality of through holes 30a are provided at equal intervals on a circumference centered on the rotation axis of the curved plate 26a (centers of the eccentric portions 25a and 25b). One inner pin 31 is inserted into each through-hole 30a. An axial through hole 30b is formed in the axial center of the curved plate 26a. A rolling bearing 40 and an eccentric portion 25a are disposed on the inner periphery of the through hole 30b.
 転がり軸受40は、図2の拡大図および図3に示すように、内側軌道面42と、外側軌道面43と、両軌道面42,43の間に配された転動体としての複数の円筒ころ44と、複数の円筒ころ44を保持する保持器45とを備えた円筒ころ軸受である。図示例では、内側軌道面42は、偏心部25aの外周面に嵌合固定された内輪41の外周面に形成され、外側軌道面43は、曲線板26aの貫通孔30bの内周面に直接形成される。内輪41は、内側軌道面42の軸方向両端部から外径側に突出する鍔部46,46を有する。 As shown in the enlarged view of FIG. 2 and FIG. 3, the rolling bearing 40 includes an inner raceway surface 42, an outer raceway surface 43, and a plurality of cylindrical rollers as rolling elements disposed between the raceway surfaces 42 and 43. 44 and a cylindrical roller bearing provided with a retainer 45 for holding a plurality of cylindrical rollers 44. In the illustrated example, the inner raceway surface 42 is formed on the outer circumference surface of the inner ring 41 fitted and fixed to the outer circumference surface of the eccentric portion 25a, and the outer raceway surface 43 is directly on the inner circumference surface of the through hole 30b of the curved plate 26a. It is formed. The inner ring 41 has flange portions 46 and 46 that protrude from the both end portions in the axial direction of the inner raceway surface 42 toward the outer diameter side.
 なお、詳細な説明は省略するが、曲線板26bは、曲線板26aと同様の構造を有しており、かつ曲線板26aを支持する転がり軸受40と同様の転がり軸受40を介して、偏心部25bに回転自在に保持されている。 Although the detailed description is omitted, the curved plate 26b has a structure similar to that of the curved plate 26a, and an eccentric portion via a rolling bearing 40 similar to the rolling bearing 40 that supports the curved plate 26a. 25b is rotatably held.
 図3に示すように、外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に複数設けられている。減速機入力軸25が回転するのに伴って曲線板26a,26bが公転運動すると、曲線板26a,26bの外周部と外ピン27とが係合し、曲線板26a,26bに自転運動を生じさせる。各外ピン27は、図2に示すように、その軸方向両端部に配された一対の針状ころ軸受61,61を介して、ケーシング22に固定された外ピンハウジング60に回転自在に保持されている。 As shown in FIG. 3, a plurality of outer pins 27 are provided at equal intervals on the circumference centered on the rotational axis of the speed reducer input shaft 25. When the curved plates 26a and 26b revolve as the speed reducer input shaft 25 rotates, the outer peripheral portions of the curved plates 26a and 26b engage with the outer pins 27, and the curved plates 26a and 26b are caused to rotate. Let As shown in FIG. 2, each outer pin 27 is rotatably held by an outer pin housing 60 fixed to the casing 22 via a pair of needle roller bearings 61, 61 disposed at both ends in the axial direction. Has been.
 図2および図3に示すように、運動変換機構は、減速機出力軸28のフランジ部28aに固定された複数の内ピン31と、曲線板26a、26bに設けられた複数の貫通孔30aとで構成される。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に配置されており、そのアウトボード側の端部が減速機出力軸28のフランジ部28aに設けた孔部に固定されている。曲線板26a,26bの貫通孔30aと内ピン31とが周方向で係合することで、曲線板26a,26bの自転運動が、減速機出力軸28の回転運動に変換される。このときの内ピン31と曲線板26a,26bとの摩擦抵抗を低減するため、内ピン31の外周には針状ころ軸受31aが設けられている。貫通孔30aの内径寸法は、曲線板26a,26bの公転運動が内ピン31により阻害されないように、内ピン31の外径寸法(「針状ころ軸受31aを含む最大外径」を指す。以下同じ。)よりも所定寸法大きく設定されている。 2 and 3, the motion conversion mechanism includes a plurality of inner pins 31 fixed to the flange portion 28a of the reduction gear output shaft 28, and a plurality of through holes 30a provided in the curved plates 26a and 26b. Consists of. The inner pins 31 are arranged at equal intervals on the circumference centering on the rotational axis of the reduction gear output shaft 28, and the end portion on the outboard side is provided on the flange portion 28 a of the reduction gear output shaft 28. It is fixed to the hole. When the through holes 30a of the curved plates 26a and 26b and the inner pin 31 are engaged in the circumferential direction, the rotational motion of the curved plates 26a and 26b is converted into the rotational motion of the speed reducer output shaft 28. In order to reduce the frictional resistance between the inner pin 31 and the curved plates 26a, 26b at this time, a needle roller bearing 31a is provided on the outer periphery of the inner pin 31. The inner diameter dimension of the through hole 30a refers to the outer diameter dimension of the inner pin 31 ("maximum outer diameter including the needle roller bearing 31a") so that the revolving motion of the curved plates 26a and 26b is not hindered by the inner pin 31. It is set larger than the same).
 図2に示すように、減速部Bは、スタビライザ31bをさらに有する。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内周端からインボード側に延びる円筒部31dとを一体に有する。各内ピン31のインボード側の端部は、円環部31cに固定されている。これにより、モータ部Aの駆動時(減速機入力軸25の回転時)に、曲線板26a,26bから一部の内ピン31に負荷される荷重が、スタビライザ31bおよびフランジ部28aを介して全ての内ピン31によって支持される。 As shown in FIG. 2, the deceleration unit B further includes a stabilizer 31 b. The stabilizer 31b integrally includes an annular ring portion 31c and a cylindrical portion 31d extending from the inner peripheral end of the annular portion 31c to the inboard side. The end portion on the inboard side of each inner pin 31 is fixed to the annular portion 31c. As a result, when the motor part A is driven (when the speed reducer input shaft 25 is rotated), all the loads applied to some of the inner pins 31 from the curved plates 26a, 26b are transmitted via the stabilizer 31b and the flange part 28a. The inner pin 31 is supported.
 ここで、モータ部Aの駆動時に、曲線板26a、転がり軸受40、および減速機入力軸25に作用する荷重の状態を、図4に基づいて説明する。なお、モータ部Aの駆動時には、曲線板26bにも以下の説明と同様の荷重が作用する。 Here, the state of the load acting on the curved plate 26a, the rolling bearing 40, and the speed reducer input shaft 25 when the motor part A is driven will be described with reference to FIG. When the motor unit A is driven, a load similar to that described below also acts on the curved plate 26b.
 減速機入力軸25に設けられた偏心部25aの軸心Oは、減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aは、転がり軸受40を介して曲線板26aを回転自在に保持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、内径側に窪んだ波形の凹部34を周方向等間隔に有する。曲線板26aの周囲には、凹部34と係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。 The axis O 2 of the eccentric portion 25 a provided on the speed reducer input shaft 25 is eccentric from the axis O of the speed reducer input shaft 25 by the amount of eccentricity e. Eccentric portion 25a, so that rotatably holds the curved plate 26a via a rolling bearing 40, the axis O 2 is also the axis of the curved plate 26a. The outer periphery of the curved plate 26a is formed in a corrugated curve, and has corrugated recesses 34 that are recessed toward the inner diameter side at equal intervals in the circumferential direction. Around the curved plate 26a, a plurality of outer pins 27 that engage with the recesses 34 are arranged in the circumferential direction with the axis O as the center.
 図4において、モータ部Aが駆動されて減速機入力軸25が紙面上で反時計周りに回転すると、偏心部25aおよびその外周に保持された曲線板26aは軸心Oを中心とする反時計周りの公転運動を行う。これにより、曲線板26aの外周の凹部34が、外ピン27と周方向に順次係合する。この結果、曲線板26aは、複数の外ピン27から図中矢印で示すような荷重Fiを受けて、時計回りに自転する。このとき、減速機入力軸25が1回転するのに伴い、曲線板26aが一周公転すると共に、凹部34の1ピッチ分だけ時計回りに自転する。 In FIG. 4, when the motor part A is driven and the speed reducer input shaft 25 rotates counterclockwise on the paper surface, the eccentric part 25a and the curved plate 26a held on the outer periphery thereof are counterclockwise centered on the axis O. Do the revolving movement around. Thereby, the recessed part 34 of the outer periphery of the curve board 26a is sequentially engaged with the outer pin 27 in the circumferential direction. As a result, the curved plate 26a receives a load Fi as indicated by an arrow in the drawing from the plurality of outer pins 27, and rotates clockwise. At this time, as the speed reducer input shaft 25 rotates once, the curved plate 26a revolves once and rotates clockwise by one pitch of the recess 34.
 そして、曲線板26aの貫通孔30aと内ピン31とが周方向で係合することで、曲線板26aの自転運動が減速機出力軸28に伝達され、減速機出力軸28が時計周りに回転する。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、曲線板26aは、複数の内ピン31から図中矢印で示すような荷重Fjを受ける。これらの複数の荷重Fi、Fjの合力Fsが減速機入力軸25にかかる。 Then, when the through hole 30a of the curved plate 26a and the inner pin 31 are engaged in the circumferential direction, the rotational motion of the curved plate 26a is transmitted to the reduction gear output shaft 28, and the reduction gear output shaft 28 rotates clockwise. To do. At this time, the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives a load Fj as indicated by arrows in the figure from the plurality of inner pins 31. A resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
 合力Fsの方向は、曲線板26aの外周部の波形形状や凹部34の数などの幾何学的条件や、遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直交し軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。上記の荷重Fi、Fjの方向や大きさは、減速機入力軸25が1回転(360°)する間に変動し、その結果、減速機入力軸25に作用する合力Fsの方向や大きさも変動する。 The direction of the resultant force Fs varies depending on geometrical conditions such as the waveform shape of the outer peripheral portion of the curved plate 26a, the number of the concave portions 34, and the influence of centrifugal force. Specifically, the angle α between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the axis O 2 and the resultant force Fs varies in a range of approximately 30 ° to 60 °. . The directions and magnitudes of the loads Fi and Fj fluctuate while the reduction gear input shaft 25 makes one rotation (360 °), and as a result, the direction and magnitude of the resultant force Fs acting on the reduction gear input shaft 25 also fluctuates. To do.
 このため、モータ部Aの駆動時、曲線板26a,26bを支持する転がり軸受(円筒ころ軸受)40には、高速回転に加えて、荷重の方向と大きさが変動するラジアル荷重およびモーメント荷重が負荷されることになる。その結果、転がり軸受40の温度が大幅に上昇することに加え、転がり軸受40の内外輪(本実施形態では、内輪41および曲線板26a,26b)間の温度差が予想以上に大きくなることが判明した。これに対応するために、転がり軸受40の初期すきまδ0を設定した場合でも、初期すきまδ0の量が少しでも小さいと、運転すきまが負すきまになり、発熱が起こり、早期はく離や焼き付きに至ることが判明した。 For this reason, when the motor unit A is driven, the rolling bearing (cylindrical roller bearing) 40 that supports the curved plates 26a and 26b receives a radial load and a moment load that vary in the direction and size of the load in addition to the high-speed rotation. Will be loaded. As a result, in addition to the temperature of the rolling bearing 40 significantly increasing, the temperature difference between the inner and outer rings of the rolling bearing 40 (in this embodiment, the inner ring 41 and the curved plates 26a and 26b) may become larger than expected. found. To cope with this, even when the initial clearance δ0 of the rolling bearing 40 is set, if the amount of the initial clearance δ0 is as small as possible, the operating clearance becomes negative and heat is generated, resulting in early separation and seizure. There was found.
 かかる問題が生じるのを回避するためには、転がり軸受40の初期すきまδ0の値を増加させれば良いが、初期すきまδ0の値が過大であると、減速部B内に配置される種々の回転体の振れ回りによる振動が発生したり、曲線板26a,26bと外ピン27および内ピン31とのかみ合い部等の当たりによる異音や振動が発生したりする。これら異音や振動について、サイクロイド減速機を備えたインホイールモータ駆動装置21は敏感であることが判明した。また、ばね下重量となるインホイールモータ駆動装置21という特殊条件が重畳することにより、上記の異音や振動を減衰させることが難しく、NVH(Noise,Vibration,Harshness)特性に悪影響を及ぼし、運転者および搭乗者に不快感を与えることも判明した。 In order to avoid such a problem, the value of the initial clearance δ0 of the rolling bearing 40 may be increased. However, if the value of the initial clearance δ0 is excessive, various values arranged in the speed reduction portion B are used. Vibration due to the rotation of the rotating body may occur, or abnormal noise or vibration may occur due to the contact between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31. It has been found that the in-wheel motor drive device 21 equipped with the cycloid reduction gear is sensitive to these abnormal sounds and vibrations. In addition, since the special condition of the in-wheel motor drive device 21 that is the unsprung weight is superimposed, it is difficult to attenuate the abnormal noise and vibration, which adversely affects the NVH (Noise, Vibration, Harshness) characteristics, and driving. It has also been found to cause discomfort to passengers and passengers.
 このように、本実施形態のインホイールモータ駆動装置21の転がり軸受40は、種々の要因が絡む特殊な環境で使用される。そこで、本実施形態では、インホイールモータ駆動装置21の減速部Bにおいて、転がり軸受40の初期のラジアル内部すきま(初期すきまδ0)を15~60μm、好ましくは15~45μmに設定した。これにより、減速機入力軸25との嵌め合い(圧入)、温度上昇、内外輪の温度差拡大といった状況下でも、転がり軸受40の発熱や焼き付きを防止することができ、しかも、異音や振動の影響によるNVH特性の低下を加工可能な範囲で最小限に抑制できる。これにより、ばね下重量となるインホイールモータ駆動装置やサイクロイド減速機という特殊条件にも拘わらず、異音や振動の発生を抑え、NVH特性の優れたインホイールモータ駆動装置を実現することができる。尚、本実施形態では、転がり軸受40が、外輪(曲線板26a,26b)、内輪41、円筒ころ44、および保持器45で構成され、内輪41の内周に減速機入力軸25を挿入する前の転がり軸受40単体の常温下でのラジアル内部すきまが、初期すきまδ0となる。 As described above, the rolling bearing 40 of the in-wheel motor drive device 21 of the present embodiment is used in a special environment involving various factors. Therefore, in the present embodiment, the initial radial internal clearance (initial clearance δ0) of the rolling bearing 40 is set to 15 to 60 μm, preferably 15 to 45 μm, in the speed reduction portion B of the in-wheel motor drive device 21. As a result, heat generation and seizure of the rolling bearing 40 can be prevented even under conditions such as fitting (press fitting) with the speed reducer input shaft 25, temperature rise, and temperature difference between the inner and outer rings, and noise and vibration can be prevented. It is possible to minimize the degradation of the NVH characteristics due to the influence of the effect within the processable range. Thereby, in spite of special conditions such as an in-wheel motor drive device and a cycloid reducer that are unsprung weights, it is possible to realize an in-wheel motor drive device that suppresses abnormal noise and vibration and has excellent NVH characteristics. . In the present embodiment, the rolling bearing 40 includes an outer ring ( curved plates 26 a and 26 b), an inner ring 41, a cylindrical roller 44, and a cage 45, and the speed reducer input shaft 25 is inserted into the inner periphery of the inner ring 41. The radial internal clearance of the previous rolling bearing 40 alone at room temperature is the initial clearance δ0.
 また、本実施形態では、転がり軸受40の軌道輪(内輪41および曲線板26a,26b)を軸受鋼または浸炭鋼で作製した。軸受鋼としては、例えば、JIS G 4805に規定された高炭素クロム軸受鋼を使用することができ、特に、Siを0.35wt%以上、Mnを0.50wt%以上含むSUJ3やSUJ5を好適に使用できる。また、浸炭鋼としては、例えば、SCM415、SCM420、SCr420などを使用することができる。本実施形態では、内輪41および曲線板26a,26bをSUJ3で作製した。 Further, in this embodiment, the bearing rings (inner ring 41 and curved plates 26a and 26b) of the rolling bearing 40 are made of bearing steel or carburized steel. As the bearing steel, for example, a high carbon chromium bearing steel specified in JIS G 4805 can be used, and in particular, SUJ3 and SUJ5 containing 0.35 wt% or more of Si and 0.50 wt% or more of Mn are preferable. Can be used. Moreover, as carburized steel, SCM415, SCM420, SCr420 etc. can be used, for example. In this embodiment, the inner ring 41 and the curved plates 26a and 26b are made of SUJ3.
 上記のような素材で形成した軌道輪に浸炭窒化処理を施した後、焼入れ焼き戻し処理を施すことにより、軌道輪の表層部(特に軌道面)に窒素を拡散して25~50%の残留オーステナイトを安定保持させた。このとき、軌道輪の芯部の残留オーステナイトは、15~20%とする。 After carbonitriding the bearing ring formed of the above materials, a quenching and tempering treatment is performed, so that nitrogen is diffused into the surface layer portion (especially the raceway surface) of the bearing ring and 25 to 50% residual Austenite was kept stable. At this time, the retained austenite at the core of the raceway is 15 to 20%.
 また、本実施形態では、転がり軸受40の円筒ころ44を軸受鋼で作製し、これらに浸炭窒化処理を施し、これらの表層部に窒素を拡散して残留オーステナイトを安定保持させた。円筒ころ44の材料として使用できる軸受鋼の具体例は、上記と同様であるため重複説明を省略する。本実施形態では、円筒ころ44をSUJ3で作製した。また、円筒ころ44の浸炭窒化処理後の熱処理条件を、軌道輪の浸炭窒化処理後の熱処理条件と異ならせることで、円筒ころ44の表層部の残留オーステナイトの割合を若干低め(20~35%)に設定した。 Further, in this embodiment, the cylindrical roller 44 of the rolling bearing 40 is made of bearing steel and subjected to carbonitriding treatment, and nitrogen is diffused in these surface layers to stably retain the retained austenite. Specific examples of the bearing steel that can be used as the material of the cylindrical roller 44 are the same as those described above, and thus a duplicate description is omitted. In the present embodiment, the cylindrical roller 44 is made of SUJ3. Further, by making the heat treatment condition after the carbonitriding treatment of the cylindrical roller 44 different from the heat treatment condition after the carbonitriding treatment of the raceway ring, the ratio of retained austenite in the surface layer portion of the cylindrical roller 44 is slightly lowered (20 to 35%). ).
 上記の材料および熱処理により、残留オーステナイトが亀裂敏感性を低下させるため、補正定格寿命(ISO281)を向上させることができ、転がり軸受40が長寿命となる。逆を言えば、同等の寿命を確保する上では、上記構成を具備しない転がり軸受(軌道輪や転動体)を採用する場合に比べ、軌道輪(内輪41)を薄肉化し、転がり軸受40を径方向に小型化することができる。このように、転がり軸受40の耐久性向上や小型化を通じて、耐久性に富み、しかも小型・軽量なインホイールモータ駆動装置21を実現することができる。特に、軌道輪を、Siを0.35wt%以上、Mnを0.50wt%以上含む高炭素クロム軸受鋼で形成することで、焼入れ性が向上するため、残留オーステナイトが得られやすくなる。 Because of the above materials and heat treatment, the retained austenite reduces crack sensitivity, so the corrected rated life (ISO 281) can be improved, and the rolling bearing 40 has a long life. In other words, in order to ensure the equivalent life, the bearing ring (inner ring 41) is made thinner and the rolling bearing 40 has a diameter compared to the case where a rolling bearing (race ring or rolling element) not having the above-described configuration is employed. It can be downsized in the direction. In this way, through the improvement and miniaturization of the rolling bearing 40, the in-wheel motor drive device 21 that is rich in durability and that is small and light can be realized. In particular, by forming the bearing ring with a high carbon chromium bearing steel containing 0.35 wt% or more of Si and 0.50 wt% or more of Mn, the hardenability is improved, so that retained austenite is easily obtained.
 なお、転がり軸受40を構成する内輪41、曲線板26a,26b、および円筒ころ44の材料や熱処理方法は上記に限られない。例えば、円筒ころ44を、軌道輪と同様の条件で熱処理を施してもよい。また、転がり軸受40を構成する内輪41、曲線板26a,26b、および円筒ころ44のうちの一部の部材が、軸受鋼からなり、浸炭窒化処理により表層部の残留オーステナイト量が上記範囲とされた構成としてもよい。 In addition, the material and heat treatment method of the inner ring 41, the curved plates 26a and 26b, and the cylindrical roller 44 constituting the rolling bearing 40 are not limited to the above. For example, the cylindrical roller 44 may be heat-treated under the same conditions as the race. Further, some members of the inner ring 41, the curved plates 26a and 26b, and the cylindrical roller 44 constituting the rolling bearing 40 are made of bearing steel, and the amount of retained austenite in the surface layer portion is set in the above range by carbonitriding. It is good also as a structure.
 次に潤滑機構を説明する。潤滑機構は、モータ部Aおよび減速部Bの各所に潤滑油を供給するものであって、図1および図2に示すように、モータ回転軸24に設けた潤滑油路24a,24bと、減速機入力軸25に設けた潤滑油路25c,25d,25eと、スタビライザ31bに設けた潤滑油路(図示せず)と、内ピン31に設けた潤滑油路(図示せず)と、ケーシング22に設けた潤滑油排出口22b、潤滑油貯留部22d、潤滑油路22eおよび潤滑油路49と、ケーシング22内に配置され、潤滑油をケーシング22の潤滑油路49に圧送する回転ポンプ51とを主に備える。図1中に示した白抜き矢印は潤滑油の流れる方向を示している。 Next, the lubrication mechanism will be explained. The lubricating mechanism supplies lubricating oil to various parts of the motor part A and the speed reducing part B. As shown in FIGS. 1 and 2, the lubricating oil paths 24a and 24b provided on the motor rotating shaft 24, and the speed reducing part are provided. Lubricating oil passages 25c, 25d, 25e provided on the machine input shaft 25, a lubricating oil passage (not shown) provided on the stabilizer 31b, a lubricating oil passage (not shown) provided on the inner pin 31, and the casing 22 A lubricating oil discharge port 22b, a lubricating oil reservoir 22d, a lubricating oil passage 22e, a lubricating oil passage 49, and a rotary pump 51 disposed in the casing 22 for pumping the lubricating oil to the lubricating oil passage 49 of the casing 22. Is mainly provided. The white arrow shown in FIG. 1 indicates the direction in which the lubricating oil flows.
 潤滑油路24aは、モータ回転軸24の内部を軸方向に沿って延びている。潤滑油路24aには、減速機入力軸25の内部を軸方向に沿って延びた潤滑油路25cが接続されている。潤滑油路25dは、潤滑油路25cから減速機入力軸25の外周面に向かって径方向に延びており、図示例の潤滑油路25dの外径端部は偏心部25a,25bの外周面に開口している。潤滑油路25eは、潤滑油路25cのアウトボード側の端部から軸方向に延び、減速機入力軸25のアウトボード側の端面に開口している。なお、径方向に延びる潤滑油路25dの形成位置はこれに限らず、減速機入力軸25の軸方向の任意の位置に設けることができる。 The lubricating oil passage 24a extends along the axial direction inside the motor rotating shaft 24. A lubricating oil passage 25c extending in the axial direction inside the reduction gear input shaft 25 is connected to the lubricating oil passage 24a. The lubricating oil passage 25d extends radially from the lubricating oil passage 25c toward the outer peripheral surface of the speed reducer input shaft 25, and the outer diameter end of the lubricating oil passage 25d in the illustrated example is the outer peripheral surface of the eccentric portions 25a and 25b. Is open. The lubricating oil passage 25e extends in the axial direction from the end portion on the outboard side of the lubricating oil passage 25c, and opens to the end face on the outboard side of the reduction gear input shaft 25. The formation position of the lubricating oil passage 25d extending in the radial direction is not limited to this, and can be provided at any position in the axial direction of the reduction gear input shaft 25.
 ケーシング22に設けられた潤滑油排出口22bは、減速部B内部の潤滑油を排出するものであって、減速部Bの位置におけるケーシング22の少なくとも1箇所に設けられている。潤滑油排出口22bとモータ回転軸24の潤滑油路24aとは、潤滑油貯留部22d、潤滑油路22eおよび潤滑油路49を介して接続されている。そのため、潤滑油排出口22bから排出された潤滑油は、潤滑油路22eや潤滑油路49等を経由してモータ回転軸24の潤滑油路24aに還流する。なお、潤滑油貯留部22dは、潤滑油を一時的に貯留する機能を有する。潤滑油路49は、ケーシング22の内部を軸方向に延びる軸方向油路49aと、軸方向油路49aのアウトボード側およびインボード側の端部にそれぞれ接続されて径方向に延びる径方向油路49b,49cとで構成される。 The lubricating oil discharge port 22b provided in the casing 22 discharges the lubricating oil in the speed reduction part B, and is provided in at least one location of the casing 22 at the position of the speed reduction part B. The lubricating oil discharge port 22b and the lubricating oil path 24a of the motor rotating shaft 24 are connected via a lubricating oil reservoir 22d, a lubricating oil path 22e, and a lubricating oil path 49. Therefore, the lubricating oil discharged from the lubricating oil discharge port 22b returns to the lubricating oil path 24a of the motor rotating shaft 24 through the lubricating oil path 22e, the lubricating oil path 49, and the like. The lubricating oil reservoir 22d has a function of temporarily storing the lubricating oil. The lubricating oil passage 49 is connected to the axial oil passage 49a extending in the axial direction inside the casing 22 and the end portions on the outboard side and the inboard side of the axial oil passage 49a and extends in the radial direction. It is composed of paths 49b and 49c.
 回転ポンプ51は、潤滑油貯留部22dに接続された潤滑油路22eと潤滑油路49との間に設けられている。回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21が全体として大型化するのを防止することができる。 The rotary pump 51 is provided between the lubricating oil passage 22e and the lubricating oil passage 49 connected to the lubricating oil reservoir 22d. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 from being enlarged as a whole.
 図5に示すように、回転ポンプ51は、減速機出力軸28の回転を利用して回転するインナーロータ52と、インナーロータ52の回転に伴って従動回転するアウターロータ53と、両ロータ52,53間の空間に設けられた複数のポンプ室54と、潤滑油路22eに連通する吸入口55と、潤滑油路49の径方向油路49bに連通する吐出口56とを備えるサイクロイドポンプである。インナーロータ52は、回転中心cを中心として回転し、アウターロータ53は、インナーロータ52の回転中心cとは異なる回転中心cを中心として回転する。そのため、ポンプ室54の容積は連続的に変化する。これにより、吸入口55からポンプ室54に流入した潤滑油は吐出口56から潤滑油路49の径方向油路49bに圧送される。 As shown in FIG. 5, the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the reducer output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, both rotors 52, 53 is a cycloid pump including a plurality of pump chambers 54 provided in a space between 53, a suction port 55 communicating with the lubricating oil passage 22e, and a discharge port 56 communicating with the radial oil passage 49b of the lubricating oil passage 49. . The inner rotor 52 rotates around the rotation center c 1 , and the outer rotor 53 rotates around a rotation center c 2 different from the rotation center c 1 of the inner rotor 52. Therefore, the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing into the pump chamber 54 from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 49 b of the lubricating oil passage 49.
 潤滑機構は、主に以上の構成を有しており、以下のようにしてモータ部Aおよび減速部Bの各所を潤滑・冷却する。 The lubrication mechanism mainly has the above configuration, and lubricates and cools each part of the motor part A and the reduction part B as follows.
 まず、図1に示すように、モータ回転軸24の潤滑油路24aを流れる潤滑油の一部が、モータ回転軸24の回転に伴って生じる遠心力および回転ポンプ51の圧力の影響を受けて潤滑油路24bの外径側開口部から吐出される。この潤滑油が、モータ部Aのうち、ロータ23bおよびステータ23aに供給される。また、潤滑油路49を流れる潤滑油の一部が、ケーシング22とモータ回転軸24との間から滲み出し、この潤滑油が、モータ回転軸24のインボード側の端部を支持する転がり軸受36に供給される。さらに、潤滑油路24bから吐出された潤滑油の一部が、ケーシング22のうち、モータ部Aを収容した部分のアウトボード側の内壁面を伝い落ち、この潤滑油が、モータ回転軸24のアウトボード側の端部を支持する転がり軸受36に供給される。 First, as shown in FIG. 1, a part of the lubricating oil flowing through the lubricating oil passage 24 a of the motor rotating shaft 24 is affected by the centrifugal force generated by the rotation of the motor rotating shaft 24 and the pressure of the rotary pump 51. It is discharged from the outer diameter side opening of the lubricating oil passage 24b. This lubricating oil is supplied to the rotor 23b and the stator 23a in the motor part A. Further, a part of the lubricating oil flowing through the lubricating oil passage 49 oozes out from between the casing 22 and the motor rotating shaft 24, and this lubricating oil supports the inboard side end of the motor rotating shaft 24. 36. Further, a part of the lubricating oil discharged from the lubricating oil passage 24 b travels down the inner wall surface on the outboard side of the portion of the casing 22 in which the motor part A is accommodated, and this lubricating oil passes through the motor rotating shaft 24. It is supplied to a rolling bearing 36 that supports the end on the outboard side.
 次に、モータ回転軸24の潤滑油路24aを経由して減速機入力軸25の潤滑油路25cに流入した潤滑油は、減速機入力軸25の回転に伴う遠心力および回転ポンプ51の圧力の影響を受けて潤滑油路25d,25e(図2参照)の開口部から吐出され、主に遠心力により減速部B内の各所に供給される。そして、ケーシング22の内壁面に到達した潤滑油は、潤滑油排出口22bから排出されて潤滑油貯留部22dに貯留される。このように、潤滑油排出口22bと回転ポンプ51に接続された潤滑油路22eとの間に潤滑油貯留部22dが設けられているので、特に高速回転時などに回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、その潤滑油を潤滑油貯留部22dに貯留しておくことができる。その結果、減速部Bの各所における発熱やトルク損失の増加を防止することができる。一方、特に低速回転時などには、潤滑油排出口22bに到達する潤滑油量が少なくなるが、このような場合であっても、潤滑油貯留部22dに貯留されている潤滑油を潤滑油路24a,25cに還流することができるので、モータ部Aおよび減速部Bに安定して潤滑油を供給することができる。 Next, the lubricating oil that has flowed into the lubricating oil passage 25c of the reduction gear input shaft 25 via the lubricating oil passage 24a of the motor rotation shaft 24 is subjected to centrifugal force and pressure of the rotary pump 51 accompanying the rotation of the reduction gear input shaft 25. The oil is discharged from the openings of the lubricating oil passages 25d and 25e (see FIG. 2) and is supplied to various places in the speed reduction portion B mainly by centrifugal force. And the lubricating oil which reached | attained the inner wall surface of the casing 22 is discharged | emitted from the lubricating oil discharge port 22b, and is stored by the lubricating oil storage part 22d. As described above, since the lubricating oil reservoir 22d is provided between the lubricating oil discharge port 22b and the lubricating oil passage 22e connected to the rotary pump 51, it can be completely discharged by the rotary pump 51 especially during high-speed rotation. Even if no lubricating oil is temporarily generated, the lubricating oil can be stored in the lubricating oil storage unit 22d. As a result, it is possible to prevent an increase in heat generation and torque loss at various portions of the deceleration portion B. On the other hand, the amount of lubricating oil reaching the lubricating oil discharge port 22b decreases particularly during low-speed rotation. Even in such a case, the lubricating oil stored in the lubricating oil reservoir 22d is used as the lubricating oil. Since it can recirculate | reflux to the path | routes 24a and 25c, lubricating oil can be supplied to the motor part A and the deceleration part B stably.
 なお、減速部B内部の潤滑油は、遠心力に加え、重力によっても外側に移動する。したがって、このインホイールモータ駆動装置21は、潤滑油貯留部22dがインホイールモータ駆動装置21の下部に位置するように、電気自動車11に取り付けるのが望ましい。 In addition, the lubricating oil inside the deceleration part B moves to the outside by gravity in addition to the centrifugal force. Therefore, it is desirable that the in-wheel motor drive device 21 is attached to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
 以上の構成を有するインホイールモータ駆動装置21の全体的な作動原理を、図1および図3を参照しながら説明する。 The overall operating principle of the in-wheel motor drive device 21 having the above configuration will be described with reference to FIGS.
 モータ部Aでは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これに伴って、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a、26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27は、曲線板26a,26bの外周部に設けられた曲線形状の波形と周方向で係合し、曲線板26a,26bを減速機入力軸25の回転方向とは逆向きに自転させる。 In the motor part A, for example, the rotor 23b made of a permanent magnet or a magnetic material rotates by receiving an electromagnetic force generated by supplying an alternating current to the coil of the stator 23a. Accordingly, when the speed reducer input shaft 25 connected to the motor rotating shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotational axis of the speed reducer input shaft 25. At this time, the outer pin 27 engages with the curved waveform provided on the outer periphery of the curved plates 26a and 26b in the circumferential direction, and the curved plates 26a and 26b are opposite to the rotation direction of the speed reducer input shaft 25. Rotate to
 貫通孔30aに挿通された内ピン31は、曲線板26a,26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a,26bの公転運動が内ピン31に伝わらず、曲線板26a,26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。このとき、減速機入力軸25の回転が減速部Bによって減速された上で減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪(後輪)14に必要なトルクを伝達することが可能となる。 The inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, and only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28. At this time, since the rotation of the speed reducer input shaft 25 is decelerated by the speed reducing portion B and then transmitted to the speed reducer output shaft 28, even when the low torque, high speed type motor portion A is employed, the drive wheels ( The required torque can be transmitted to the (rear wheel) 14.
 上記構成の減速部Bの減速比は、外ピン27の数をZ、曲線板26a,26bの外周部に設けた波形(凹部34)の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。 The speed reduction ratio of the speed reduction portion B having the above-described configuration is (Z A −Z B ), where Z A is the number of outer pins 27 and Z B is the number of waveforms (concave portions 34) provided on the outer periphery of the curved plates 26a and 26b. ) / is calculated by Z B. In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, a very large reduction ratio of 1/11 can be obtained.
 このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31を回転自在に支持する転がり軸受(針状ころ軸受)61,31aを設けたことにより、曲線板26a,26bと外ピン27および内ピン31との間の摩擦抵抗が低減されるので、この点からも減速部Bにおける動力伝達効率が向上する。 In this way, by adopting the reduction part B that can obtain a large reduction ratio without using a multistage configuration, the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing rolling bearings (needle roller bearings) 61 and 31a that rotatably support the outer pin 27 and the inner pin 31, friction between the curved plates 26a and 26b and the outer pin 27 and the inner pin 31 is achieved. Since the resistance is reduced, the power transmission efficiency in the speed reduction portion B is also improved from this point.
 上述したように、本実施形態のインホイールモータ駆動装置21は、装置全体として軽量・コンパクト化が図られている。そのため、このインホイールモータ駆動装置21を電気自動車11に搭載すれば、ばね下重量を抑えることができるので、走行安定性およびNVH特性に優れた電気自動車11を実現することができる。 As described above, the in-wheel motor drive device 21 of the present embodiment is lightweight and compact as a whole device. Therefore, if the in-wheel motor drive device 21 is mounted on the electric vehicle 11, the unsprung weight can be suppressed, so that the electric vehicle 11 excellent in running stability and NVH characteristics can be realized.
 以上、本発明の一実施形態に係るインホイールモータ駆動装置21について説明を行ったが、インホイールモータ駆動装置21には、本発明の要旨を逸脱しない範囲で種々の変更を施すことが可能である。 As described above, the in-wheel motor driving device 21 according to the embodiment of the present invention has been described. However, the in-wheel motor driving device 21 can be variously modified without departing from the gist of the present invention. is there.
 例えば、上記の実施形態では、曲線板26a,26bを回転自在に保持する転がり軸受(円筒ころ軸受)40の内側軌道面42を、減速機入力軸25の偏心部25a,25bに固定された内輪41の外周面に設けた場合を示したが、これに限らず、例えば、偏心部25aの外周面に内側軌道面42を直接形成することで内輪41を省略してもよい。このようにすれば、転がり軸受40、ひいては減速部Bをさらに軽量・コンパクト化することができる。 For example, in the above embodiment, the inner race surface 42 of the rolling bearing (cylindrical roller bearing) 40 that rotatably holds the curved plates 26 a and 26 b is fixed to the eccentric portions 25 a and 25 b of the speed reducer input shaft 25. Although the case where it provided in the outer peripheral surface of 41 was shown, it does not restrict to this, For example, you may abbreviate | omit the inner ring | wheel 41 by forming the inner track surface 42 directly in the outer peripheral surface of the eccentric part 25a. If it does in this way, the rolling bearing 40 and by extension, the deceleration part B can be further reduced in weight and compactness.
 また、上記の実施形態では、転がり軸受40の外側軌道面43を曲線板26a,26bの貫通孔30bの内周面に直接設けたが、これに限らず、例えば、外側軌道面43を有する外輪を別体に設け、この外輪の外周面を曲線板26a,26bの貫通孔30bの内周面に固定してもよい。 Further, in the above embodiment, the outer raceway surface 43 of the rolling bearing 40 is directly provided on the inner peripheral surface of the through hole 30b of the curved plates 26a and 26b. May be provided separately, and the outer peripheral surface of the outer ring may be fixed to the inner peripheral surface of the through hole 30b of the curved plates 26a, 26b.
 また、上記の実施形態では、回転ポンプ51としてサイクロイドポンプの例を示したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらには、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。 Moreover, in said embodiment, although the example of the cycloid pump was shown as the rotary pump 51, not only this but the rotary pump driven using the rotation of the reduction gear output shaft 28 is employable. . Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
 また、上記の実施形態では、減速部Bの曲線板26a、26bを180°位相を変えて2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相を変えて設けるとよい。 In the above-described embodiment, an example in which two curved plates 26a and 26b of the deceleration unit B are provided with a 180 ° phase change is shown. However, the number of curved plates can be arbitrarily set, for example, When three curved plates are provided, it is preferable to change the phase by 120 °.
 また、上記の実施形態では、運動変換機構が、減速機出力軸28に固定された内ピン31と、曲線板26a、26bに設けられた貫通孔30aとで構成された例を示したが、これに限ることなく、減速部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピンと減速機出力軸に形成された穴とで構成される運動変換機構であってもよい。 In the above embodiment, the motion conversion mechanism is configured by the inner pin 31 fixed to the reduction gear output shaft 28 and the through hole 30a provided in the curved plates 26a and 26b. Without being limited thereto, any configuration capable of transmitting the rotation of the speed reduction portion B to the hub wheel 32 can be employed. For example, it may be a motion conversion mechanism composed of an inner pin fixed to a curved plate and a hole formed in a reduction gear output shaft.
 また、上記の実施形態では、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を駆動輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪14側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器等の作動に用いたりしてもよい。 In the above embodiment, a case has been described in which electric power is supplied to the motor unit A to drive the motor unit, and power from the motor unit A is transmitted to the drive wheels 14. When decelerating or going down a hill, the power from the drive wheel 14 side is converted into high-rotation low-torque rotation by the deceleration unit B and transmitted to the motor unit A. Good. Furthermore, the electric power generated here may be stored in a battery, and the motor unit A may be driven later, or used for the operation of other electric devices provided in the vehicle.
 本実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えば、ステータとロータとを軸方向の隙間を介して対向させたアキシャルギャップモータを採用してもよい。 In the present embodiment, an example in which a radial gap motor is adopted as the motor unit A has been shown, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied. For example, an axial gap motor in which a stator and a rotor are opposed to each other via an axial gap may be employed.
 さらに、図6に示した電気自動車11は、後輪14を駆動輪とした例を示したが、これに限ることなく、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。 Furthermore, although the electric vehicle 11 shown in FIG. 6 showed the example which used the rear wheel 14 as the driving wheel, it is not restricted to this, The front wheel 13 may be used as a driving wheel and may be a four-wheel driving vehicle. . In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.
21   インホイールモータ駆動装置
22   ケーシング
24   モータ回転軸
25   減速機入力軸
25a,25b偏心部
26a,26b曲線板(公転部材)
27   外ピン(外周係合部材)
28   減速機出力軸
31   内ピン
33   車輪用軸受
40   転がり軸受
A     モータ部
B     減速部
C     車輪用軸受部
 
21 In-wheel motor drive device 22 Casing 24 Motor rotating shaft 25 Reducer input shaft 25a, 25b Eccentric part 26a, 26b Curved plate (revolving member)
27 Outer pin (outer peripheral engagement member)
28 Reduction gear output shaft 31 Inner pin 33 Wheel bearing 40 Rolling bearing A Motor part B Reduction part C Wheel bearing part

Claims (4)

  1.  モータ部、減速部、および車輪用軸受部を備え、前記モータ部の回転駆動力を、前記減速部で減速して前記車輪用軸受部に伝達するインホイールモータ駆動装置であって、
     前記減速部は、偏心部を有し、前記モータ部の回転軸に接続された減速機入力軸と、前記車輪用軸受部に接続された減速機出力軸と、前記減速機入力軸の偏心部の外周に設けられた転がり軸受と、前記転がり軸受を介して前記偏心部の外周に回転自在に保持され、前記減速機入力軸の回転に伴ってその回転軸心を中心とする公転運動を行う公転部材と、前記公転部材の外周部に係合して前記公転部材に自転運動を生じさせる外周係合部材と、前記公転部材の自転運動を前記減速機出力軸の回転運動に変換する運動変換機構とを備え、
     前記転がり軸受の初期のラジアル内部すきまを15~60μmとしたことを特徴とするインホイールモータ駆動装置。
    An in-wheel motor drive device comprising a motor part, a speed reduction part, and a wheel bearing part, wherein the rotational driving force of the motor part is decelerated by the speed reduction part and transmitted to the wheel bearing part,
    The speed reduction part has an eccentric part, a speed reducer input shaft connected to the rotating shaft of the motor part, a speed reducer output shaft connected to the wheel bearing part, and an eccentric part of the speed reducer input shaft A rolling bearing provided on the outer periphery of the shaft, and is rotatably held on the outer periphery of the eccentric portion via the rolling bearing, and performs a revolving motion centering on the rotating shaft as the speed reducer input shaft rotates. A revolving member, an outer peripheral engaging member that engages with an outer peripheral portion of the revolving member and causes the revolving member to generate a revolving motion, and a motion conversion that converts the revolving motion of the revolving member into a rotational motion of the reducer output shaft. With a mechanism,
    An in-wheel motor drive device characterized in that an initial radial internal clearance of the rolling bearing is 15 to 60 μm.
  2.  前記転がり軸受の軌道輪が、軸受鋼又は浸炭鋼からなり、浸炭窒化処理が施され、表層の残留オーステナイトが25~50%であり、且つ、芯部の残留オーステナイトが15~20%である請求項1記載のインホイールモータ駆動装置。 The rolling bearing raceway ring is made of bearing steel or carburized steel, carbonitrided, surface austenite is 25 to 50%, and core austenite is 15 to 20%. Item 2. The in-wheel motor drive device according to Item 1.
  3.  前記軌道輪が、Siを0.35wt%以上、Mnを0.50wt%以上含む軸受鋼からなる請求項1又は2に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1 or 2, wherein the race is made of bearing steel containing Si of 0.35 wt% or more and Mn of 0.50 wt% or more.
  4.  前記転がり軸受の転動体が、軸受鋼からなり、浸炭窒化処理が施され、且つ、表層の残留オーステナイトが20~35%である請求項1~3の何れかに記載のインホイールモータ駆動装置。
     
    The in-wheel motor drive device according to any one of claims 1 to 3, wherein the rolling elements of the rolling bearing are made of bearing steel, are subjected to carbonitriding, and the residual austenite of the surface layer is 20 to 35%.
PCT/JP2015/074241 2014-09-19 2015-08-27 In-wheel motor drive device WO2016043011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014191483A JP2016061403A (en) 2014-09-19 2014-09-19 In-wheel motor driving device
JP2014-191483 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016043011A1 true WO2016043011A1 (en) 2016-03-24

Family

ID=55533052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074241 WO2016043011A1 (en) 2014-09-19 2015-08-27 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP2016061403A (en)
WO (1) WO2016043011A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070729A (en) * 2016-10-17 2018-12-21 Ntn株式会社 In-wheel motor drive unit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190072A (en) * 1993-12-27 1995-07-28 Ntn Corp Method for thermally treating rolling bearing
JPH11101247A (en) * 1997-09-29 1999-04-13 Ntn Corp Rolling bearing part
JP2000018256A (en) * 1998-07-02 2000-01-18 Ntn Corp Gear shaft supporting device of vehicle differential device
JP2000233656A (en) * 1998-12-18 2000-08-29 Ntn Corp Gear shaft support device for vehicle differential gear
JP2003056315A (en) * 2001-08-22 2003-02-26 Ntn Corp Roller-equipped cam follower
JP2004060015A (en) * 2002-07-30 2004-02-26 Koyo Seiko Co Ltd Sliding component and method for manufacturing the same
JP2005214390A (en) * 2004-02-02 2005-08-11 Nsk Ltd Needle bearing, planetary gear mechanism and pinion shaft
JP2008201353A (en) * 2007-02-22 2008-09-04 Ntn Corp In-wheel motor drive unit
JP2010032038A (en) * 2008-07-02 2010-02-12 Ntn Corp Cycloid speed reduction gear, in-wheel motor driving device, and motor driving device for vehicle
JP2013228031A (en) * 2012-04-25 2013-11-07 Nsk Ltd Planetary gear mechanism
JP2014020394A (en) * 2012-07-12 2014-02-03 Nsk Ltd Planetary gear device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190072A (en) * 1993-12-27 1995-07-28 Ntn Corp Method for thermally treating rolling bearing
JPH11101247A (en) * 1997-09-29 1999-04-13 Ntn Corp Rolling bearing part
JP2000018256A (en) * 1998-07-02 2000-01-18 Ntn Corp Gear shaft supporting device of vehicle differential device
JP2000233656A (en) * 1998-12-18 2000-08-29 Ntn Corp Gear shaft support device for vehicle differential gear
JP2003056315A (en) * 2001-08-22 2003-02-26 Ntn Corp Roller-equipped cam follower
JP2004060015A (en) * 2002-07-30 2004-02-26 Koyo Seiko Co Ltd Sliding component and method for manufacturing the same
JP2005214390A (en) * 2004-02-02 2005-08-11 Nsk Ltd Needle bearing, planetary gear mechanism and pinion shaft
JP2008201353A (en) * 2007-02-22 2008-09-04 Ntn Corp In-wheel motor drive unit
JP2010032038A (en) * 2008-07-02 2010-02-12 Ntn Corp Cycloid speed reduction gear, in-wheel motor driving device, and motor driving device for vehicle
JP2013228031A (en) * 2012-04-25 2013-11-07 Nsk Ltd Planetary gear mechanism
JP2014020394A (en) * 2012-07-12 2014-02-03 Nsk Ltd Planetary gear device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109070729A (en) * 2016-10-17 2018-12-21 Ntn株式会社 In-wheel motor drive unit
CN109070729B (en) * 2016-10-17 2022-08-30 Ntn株式会社 In-wheel motor drive device

Also Published As

Publication number Publication date
JP2016061403A (en) 2016-04-25

Similar Documents

Publication Publication Date Title
WO2015008606A1 (en) Device for driving in-wheel motor
WO2015093215A1 (en) In-wheel motor drive device
JP2016114184A (en) Cycloid speed reducer and in-wheel motor drive with cycloid speed reducer
WO2015141387A1 (en) In-wheel motor drive device
JP2016166639A (en) Cycloid reduction gear and motor drive unit having the same
JP2016161117A (en) Cycloid speed reducer and motor drive device with cycloid speed reducer
WO2015046087A1 (en) In-wheel motor drive device
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
JP6324761B2 (en) In-wheel motor drive device
JP6328429B2 (en) In-wheel motor drive device
JP6400297B2 (en) In-wheel motor drive device
WO2015046086A1 (en) In-wheel motor drive device
WO2015133278A1 (en) In-wheel motor drive device
WO2015060135A1 (en) In-wheel motor driving device
WO2016043011A1 (en) In-wheel motor drive device
JP6333579B2 (en) In-wheel motor drive device
WO2015137088A1 (en) In-wheel motor drive device
WO2016043012A1 (en) In-wheel motor drive device
WO2015141389A1 (en) In-wheel motor drive device
WO2015098490A1 (en) In-wheel motor drive device
JP2018002149A (en) In-wheel motor drive device
WO2015137073A1 (en) In-wheel motor drive device
JP2016191447A (en) Cycloid reducer and motor drive device including the same
WO2015098487A1 (en) In-wheel motor drive device
WO2015137085A1 (en) In-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842130

Country of ref document: EP

Kind code of ref document: A1