WO2017152912A1 - Wankstabilisator für ein kraftfahrzeug - Google Patents

Wankstabilisator für ein kraftfahrzeug Download PDF

Info

Publication number
WO2017152912A1
WO2017152912A1 PCT/DE2017/100182 DE2017100182W WO2017152912A1 WO 2017152912 A1 WO2017152912 A1 WO 2017152912A1 DE 2017100182 W DE2017100182 W DE 2017100182W WO 2017152912 A1 WO2017152912 A1 WO 2017152912A1
Authority
WO
WIPO (PCT)
Prior art keywords
roll stabilizer
mass
absorber
vibration
tilgerfeder
Prior art date
Application number
PCT/DE2017/100182
Other languages
English (en)
French (fr)
Inventor
Dustin Knetsch
Mario Arnold
Michael KLEBL
Silvia Kutzberger
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to US16/083,607 priority Critical patent/US11235633B2/en
Priority to KR1020187025647A priority patent/KR102368343B1/ko
Priority to CN201780010758.5A priority patent/CN108698461B/zh
Publication of WO2017152912A1 publication Critical patent/WO2017152912A1/de
Priority to US17/557,764 priority patent/US20220111693A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/16Resilient suspensions characterised by arrangement, location or type of vibration dampers having dynamic absorbers as main damping means, i.e. spring-mass system vibrating out of phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G11/00Resilient suspensions characterised by arrangement, location or kind of springs
    • B60G11/18Resilient suspensions characterised by arrangement, location or kind of springs having torsion-bar springs only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G15/00Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type
    • B60G15/02Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring
    • B60G15/04Resilient suspensions characterised by arrangement, location or type of combined spring and vibration damper, e.g. telescopic type having mechanical spring and mechanical damper or dynamic damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G21/00Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
    • B60G21/02Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
    • B60G21/04Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
    • B60G21/05Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
    • B60G21/055Stabiliser bars
    • B60G21/0551Mounting means therefor
    • B60G21/0553Mounting means therefor adjustable
    • B60G21/0555Mounting means therefor adjustable including an actuator inducing vehicle roll
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/14Torsion springs consisting of bars or tubes
    • F16F1/16Attachments or mountings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/112Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on fluid springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/25Dynamic damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/442Rotary actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/41Elastic mounts, e.g. bushings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/40Auxiliary suspension parts; Adjustment of suspensions
    • B60G2204/43Fittings, brackets or knuckles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/61Adjustable during maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/42Springs
    • B60G2206/427Stabiliser bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/73Rubber; Elastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/44Vibration noise suppression

Definitions

  • the present invention relates to a roll stabilizer for a motor vehicle.
  • Such roll stabilizers stabilize the vehicle body when cornering and counteract the rolling of the vehicle body.
  • the invention relates to an active roll stabilizer comprising an actuator which can actively apply torque to a torsion bar spring of the roll stabilizer to counteract the roll of the vehicle body.
  • active roll stabilizers have become known, for example, from DE200810033270 A1.
  • the roll stabilizer which is arranged transversely to the vehicle longitudinal axis, has a divided torsion bar spring, between which mutually facing ends the actuator is effectively arranged.
  • These roll stabilizers are mounted on the vehicle body. When driving, noises emitted by the roll stabilizer have been observed, which can be perceived as disturbing in the passenger compartment.
  • Object of the present invention was to provide a roll stabilizer according to the features of the preamble of claim 1, which counteracts a disturbing noise. According to the invention this object has been solved by the roll stabilizer according to claim 1; expedient embodiments of the invention are specified in the subclaims.
  • the roll stabilizer according to the invention for a motor vehicle is provided with a torsion bar spring.
  • This torsion bar can be connected with their ends in a known manner to wheel.
  • a vibration damper is arranged, which has an absorber mass oscillatable with respect to the roll stabilizer and an absorber spring operatively arranged between the roll stabilizer and the absorber mass.
  • Anti-roll stabilizers according to the invention counteract unwanted noise formation: the vibration damper prevents or reduces vibrations of the roll stabilizer, which is usually mounted on the vehicle body via stabilizer bearings.
  • the absorber mass, together with the absorber spring, can form a pendulum whose own frequency is set to the oscillating frequency to be eliminated.
  • the vibration damper can perform sufficiently large deflections.
  • the vibration damper extracts at this frequency the roll stabilizer vibration energy for its own swinging movements.
  • the vibrations of the roll stabilizer take place substantially transversely to the axis of the roll stabilizer.
  • An expedient embodiment of the invention therefore provides a vibration absorber with a preferred vibration axis, in which the absorber mass of the vibration absorber is capable of oscillation. Accordingly, knowing the main direction of the vibration frequency of the roll stabilizer, the vibration damper can be arranged so that the main direction of the vibration frequency and the preferred vibration axis of the vibration absorber coincide.
  • the vibration damper can be arranged in a freely selectable with respect to the longitudinal axis of the roll stabilizer rotational position to adjust the preferred swing axis to the main direction of the oscillation frequency of the roll stabilizer.
  • the direction of action of the vibration absorber is therefore freely selectable in this development.
  • the vibration damper can be provided with an adjusting device for adjusting a stiffness of the Tilgerfeder.
  • the vibration frequencies of the roll stabilizers can vary. Depending on the vehicle type and structural design, natural frequencies were observed, for example, between approximately 150 and 350 Hz.
  • the natural frequency of the vibration absorber can be adjusted to the determined vibration frequency by deliberately adjusting the stiffness of the absorber spring.
  • the Tilgerfeder is designed as an elastomeric part, which is supported on the one hand to the roll stabilizer and the other part of the absorber mass.
  • Elastomer parts can be provided in an economically favorable manner in any form, for example as a plate.
  • an elastomer with a certain Shore hardness can be used. Shore hardnesses of about 60 to 80 Shore may be particularly advantageous for purposes of this invention.
  • the elastomeric member may favorably have an exposed spring portion, one end of which is attached to the roll stabilizer and the other end is secured to the absorber mass.
  • the stiffness of the Tilgerfeder can be determined by the usual calculation methods at least approximately, the thickness of the exposed spring portion and the free spring length between absorber mass and roll stabilizer in each case with the third power in the stiffness flows, ie have a great influence on the spring stiffness.
  • the absorber mass may have several parts by mass, wherein the Tilgerfeder is clamped on the one hand between these mass parts of the absorber mass and on the other hand supported on the roll stabilizer.
  • the Tilgerfeder preferably formed as a plate-shaped elastomeric part Tilgerfeder be clamped between the absorber masses. It was found that the stiffness of this absorber spring changes as a function of the clamping force and thus the natural frequency of the vibration absorber can be set to the vibration frequency of the roll stabilizer.
  • the vibration absorber may have a holding device for holding on the roll stabilizer.
  • an economically advantageous holding device may be designed in the manner of a pipe clamp, which is clamped onto the torsion bar.
  • the clamp-like attachment allows mounting of the vibration damper in any rotational position about the longitudinal axis of the roll stabilizer around.
  • the Tilgerfeder can be fixed in this case, for example, to a holding shell of the holding device by gluing or scorching.
  • a Tilgerfeder plate-shaped elastomeric member having a longitudinal edge attached to the holding device and is clamped with a clamping portion of its two sides of the sheets between the mass parts, wherein between the longitudinal edge and the chucking an exposed spring portion the plate-shaped elastomer part is arranged.
  • the preferred vibration axis of the vibration absorber is in this case transversely to the plate-shaped elastomer part.
  • the absorber mass can perform vibrations transversely to the torsion bar spring and elastic deflection of the exposed spring portion of the plate-shaped elastomer part.
  • a further expedient development provides to attach a plate-shaped elastomer part with a longitudinal edge on the absorber mass and fasten with an opposite longitudinal edge on the headband.
  • eliminates the clamping section and the exposed spring section determines the spring stiffness of the Tilgerfeder.
  • the adjusting device may comprise at least one adjusting screw, which is supported on the one hand on the one mass part and on the other hand screwed to the other mass part for clamping the Tilgerfeder.
  • the roll stabilizer according to the invention may be provided in a favorable manner with a split torsion bar spring, wherein an actuator is arranged between the torsion bar parts and connected to both torsion bar parts for transmitting a torque.
  • the vibration absorber can be arranged depending on the space either on the actuator or on the torsion bar or on angled bar sections connected to the wheel carrier. These angled rod sections are part of the torsion bar or are firmly connected to the torsion bar.
  • FIG. 1 shows a view of a roll stabilizer according to the invention
  • Figure 2 is a perspective view of a vibration absorber of
  • FIG. 3 shows the vibration damper according to FIG. 2 in cross section along the
  • Figure 4 shows the vibration absorber according to Figure 2 in a view
  • FIG. 5 shows the vibration damper according to Figure 2 in cross section along the
  • Figure 7 shows the vibration damper of Figure 2 in an exploded view
  • FIG. 8 shows details of the vibration absorber according to FIG. 2.
  • the roll stabilizer shown in FIG. 1 has a divided torsion bar spring 1 with torsion bar parts 2, 3 arranged one behind the other, between which mutually facing ends an actuator 4 is effectively arranged.
  • the actuator 4 has a not further illustrated electric motor with a gear whose output shaft is rotatably connected to the one rotary bar part 2, wherein a housing 5 of the actuator 4 is rotatably connected to the other rotating bar part 3.
  • a torsional moment can be introduced by actuating the actuator 4 in the torsion bar spring 1.
  • the torsion spring 1 is mounted on two stabilizer bearings 6 on a vehicle body not shown here. Angled rotary rod ends 7, 8 are connected in a known manner to not shown here wheel carrier.
  • Both torsion bar parts 2, 3 are each provided with a vibration damper 9, which will be explained in more detail below.
  • FIG. 2 shows the vibration damper 9 in perspective view. He has an absorber mass 10, which is formed here by two half-shell-shaped mass parts 1 1, which are arranged in a ring. Between two oppositely arranged ends of the two mass parts 1 1, a Tilgerfeder 12 is clamped in each case, which is formed in the embodiment by a plate-shaped elastomeric parts 13. Further, a holding device 14 is provided for clamping the vibration damper 9 on the turning bar part 2, 3, which will be described in more detail below.
  • FIG. 3 clearly shows that the two mass parts 1 1 are screwed together by means of adjusting screws 15.
  • the clamping of the plate-shaped elastomeric parts 13 is dependent on the set screw force of the screws 15.
  • Figures 2 and 3 it can be seen that the elastomeric parts 13 abut with their sides of the plates at the peripheral ends of the mass parts 1 1 plan.
  • the axial length of the elastomeric parts 13 corresponds in the embodiment of the length of the mass parts 1 1.
  • Figure 3 is a clear annular space 20 can be seen, which is formed between the absorber mass 10 and the turntable part 2, 3, not shown. This annular space 20 makes it possible to oscillate the absorber mass 10 transversely to the torsion bar spring with elastic deformation of the absorber spring 12.
  • FIGS. 4 and 5 clearly show clamping screws 16 of the holding device 14, which screw an upper holding cup 17 to lower holding clips 18. Under tightening the clamping screws 16, the headband 18 and the upper holding shell 17 are pressed against the turntable part 2, 3, not shown here. With this holding device 14, it is therefore possible to attach the vibration damper 9 in any rotational position on the tubular torsion bar part 2, 3.
  • Figure 6 shows in a cutaway enlargement of Figure 3, the connection of the Tilgerfeder 12 on the one hand to the holding device 14 and on the other hand to the absorber mass 10.
  • the plate-shaped elastomer member 13 is fixed with its longitudinal edge 19 on a peripheral portion of the upper holding shell 17, in the embodiment by a Kle- bever connection.
  • the plate-shaped elastomer part 13 has an exposed spring portion F with a spring length s.
  • This spring portion F extends over the entire length of the elastomeric part 13.
  • the remaining part of the elastomeric part 13 is clamped as a clamping section E between the two mass parts 1 1.
  • the holding shell 17 is so long in the exemplary embodiment in the axial direction that the elastomer part can be glued to the holding shell 17 with its complete longitudinal edge 19.
  • Figure 7 clearly shows the individual parts of the vibration damper 9 in exploded view.
  • the plate-shaped elastomer parts 13 are arranged in the axial direction between angled tabs 21 of the upper holding shell 17, which are provided for the screw connection.
  • FIG. 8 clearly shows the plate-shaped elastomer parts 13 firmly connected to the upper holding shell 17.
  • the vibration damper 9 described here has a preferred direction of vibration transversely to the plate-shaped elastomer part 13, which is deflected resiliently with its exposed spring portion F when the absorber mass 10 oscillates.
  • the spring length s is essential for determining the suitable natural frequency of the vibration absorber 9; the spring length s enters the calculation of the natural frequency with the third power.
  • the spring length s is essential for the rigidity of the Tilgerfeder 12th
  • the two mass parts 1 1 of the absorber mass 10 together with the adjusting screws 15 form an adjusting device 22, by means of which the rigidity of the absorber spring 12 is likewise adjustable. It has been found that the clamping force of the plate-shaped elastomer part 13 has a significant influence on its rigidity. Consequently, an exact natural frequency of the vibration damper 9 can be adjusted well by means of the adjusting screws 15.
  • the type of vibration of the vibration absorber can be referred to as a tangential vibration transversely to the torsion bar spring.
  • the vibration dampers described here can also be applied to the angled rotary rod ends 7, 8 or to the housing 5 of the actuator 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)

Abstract

Wankstabilisator für ein Kraftfahrzeug, mit einer Drehstabfeder (1), wobei ein Schwingungstilger (9) an dem Wankstabilisator angeordnet ist, der eine gegenüber dem Wankstabilisator schwingfähige Tilgermasse (10) und eine zwischen dem Wankstabilisator und der Tilgermasse (10) wirksam angeordnete Tilgerfeder (12) aufweist

Description

Wankstabilisator für ein Kraftfahrzeug
Die vorliegende Erfindung betrifft einen Wankstabilisator für ein Kraftfahrzeug. Derartige Wankstabilisatoren stabilisieren den Fahrzeugaufbau bei Kurvendurchfahrten und wirken einem Wanken des Fahrzeugaufbaus entgegen. Die Erfindung betrifft insbesondere einen aktiven Wankstabilisator, der einen Aktuator umfasst, der aktiv eine Drehstabfeder des Wankstabilisators mit einem Drehmoment beaufschlagen kann, um dem Wanken des Fahrzeugaufbaus entgegenzuwirken. Derartige aktive Wankstabilisatoren sind beispielsweise aus DE200810033270 A1 bekannt geworden. Der quer zur Fahrzeuglängsachse angeordnete Wankstabilisator hat eine geteilte Drehstabfeder, zwischen deren einander zugewandten Enden der Aktuator wirksam angeordnet ist. Diese Wankstabilisatoren sind an dem Fahrzeugaufbau gelagert. Im Fahrbetrieb sind vom Wankstabilisator ausgehende Geräusche beobach- tet worden, die in der Fahrgastzelle als störend wahrgenommen werden können.
Aufgabe der vorliegenden Erfindung war es, einen Wankstabilisator nach den Merkmalen des Oberbegriffs des Anspruchs 1 anzugeben, der einer störenden Geräuschbildung entgegenwirkt. Erfindungsgemäß wurde diese Aufgabe durch den Wankstabi- lisator gemäß Anspruch 1 gelöst; zweckdienliche Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Der erfindungsgemäße Wankstabilisator für ein Kraftfahrzeug ist mit einer Drehstabfeder versehen. Diese Drehstabfeder kann mit ihren Enden in bekannter Weise an Radträger angeschlossen werden. Erfindungsgemäß ist ein Schwingungstilger angeordnet, der eine gegenüber dem Wankstabilisator schwingfähige Tilgermasse und eine zwischen dem Wankstabilisator und der Tilgermasse wirksam angeordnete Tilgerfeder aufweist. Erfindungsgemäße Wankstabilisatoren wirken einer unerwünschten Geräuschbildung entgegen: der Schwingungstilger verhindert oder reduziert Schwingungen des Wankstabilisators, der üblicherweise über Stabilisatorlager am Fahrzeugaufbau gelagert ist. Die Tilgermasse kann zusammen mit der Tilgerfeder ein Pendel bilden, dessen Eigen- frequenz auf die zu eliminierende Schwingfrequenz eingestellt wird. Bei dieser Frequenz kann der Schwingungstilger hinreichend große Auslenkungen ausführen. Der Schwingungstilger entzieht bei dieser Frequenz dem Wankstabilisator Schwingungsenergie für seine eigenen Schwingbewegungen. Die Schwingungen des Wankstabili- sators erfolgen im Wesentlichen quer zur Achse des Wankstabilisators.
Es ist beobachtet worden, dass die Eigenschwingungen des Wankstabilisators mit Bezug auf deren Schwingrichtung und deren Frequenz abhängig vom Fahrzeugtyp und von der der konstruktiven Auslegung des Wankstabilisators sind.
Eine zweckdienliche Ausgestaltung der Erfindung sieht daher einen Schwingungstilger mit bevorzugter Schwingachse auf, in der die Tilgermasse des Schwingungstilgers schwingfähig ist. In Kenntnis der Hauptrichtung der Schwingfrequenz des Wankstabilisators kann demzufolge der Schwingungstilger so angeordnet werden, dass die Hauptrichtung der Schwingfrequenz und die bevorzugte Schwingachse des Schwingungstilgers zusammenfallen.
In bevorzugter Weise kann der Schwingungstilger in einer mit Bezug auf die Längsachse des Wankstabilisators frei wählbaren Drehlage angeordnet werden, um die be- vorzugte Schwingachse auf die Hauptrichtung der Schwingfrequenz des Wankstabilisators einzustellen. Die Wirkrichtung des Schwingungstilgers ist demzufolge bei dieser Weiterbildung frei wählbar.
In bevorzugter Weise kann der Schwingungstilger mit einer Stelleinrichtung zum Ein- stellen einer Steifigkeit der Tilgerfeder versehen sein. Wie oben bereits erwähnt wurde, können die Schwingfrequenzen der Wankstabilisatoren variieren. Beobachtet wurden je nach Fahrzeugtyp und konstruktiver Gestaltung Eigenfrequenzen beispielsweise zwischen etwa 150 und 350 Hz. Durch gezieltes Einstellen der Steifigkeit der Tilgerfeder kann die Eigenfrequenz des Schwingungstilgers auf die ermittelte Schwing- frequenz eingestellt werden.
Vorzugsweise ist die Tilgerfeder als Elastomerteil ausgeführt, das einerseits an dem Wankstabilisator und das andererseits an der Tilgermasse gehaltert ist. Derartige Elastomerteile können auf wirtschaftlich günstiger Weise in beliebiger Form bereitgestellt werden, beispielsweise als Platte. Ja nach Anwendungsfall kann ein Elastomer mit einer bestimmten Shorehärte verwendet werden. Für erfindungsgemäße Zwecke können Shorehärten von etwa 60 bis 80 Shore besonders vorteilhaft sein. Das Elastomerteil kann in günstiger Weise einen frei liegenden Federabschnitt aufweisen, dessen eines Ende an dem Wankstabilisator befestigt und dessen anderes Ende an der Tilgermasse befestigt ist. Wenn der freiliegende Federabschnitt als frei schwingender Balken aufgefasst wird, kann die Steifigkeit der Tilgerfeder mit den üblichen Berechnungsmethoden wenigstens näherungsweise ermittelt werden, wobei die Dicke des freiliegenden Federabschnitts und die freie Federlänge zwischen Tilgermasse und Wankstabilisator jeweils mit der dritten Potenz in die Steifigkeit einfließen, also großen Einfluss auf die Federsteifigkeit haben.
Die Tilgermasse kann mehrere Masseteile aufweisen, wobei die Tilgerfeder einerseits zwischen diesen Masseteilen der Tilgermasse eingespannt und andererseits an dem Wankstabilisator gehaltert ist. Hier kann die vorzugsweise als plattenförmiges Elastomerteil ausgebildete Tilgerfeder zwischen den Tilgermassen eingespannt werden. Es wurde festgestellt, dass sich die Steifigkeit dieser Tilgerfeder in Abhängigkeit der Ein- spannkraft verändert und somit die Eigenfrequenz des Schwingungstilgers auf die Schwingfrequenz des Wankstabilisators eingestellt werden kann.
Der Schwingungstilger kann eine Halteeinrichtung zum Haltern an dem Wankstabilisator aufweisen. Beispielsweise kann eine wirtschaftlich günstige Halteeinrichtung nach Art einer Rohrschelle ausgebildet sein, die auf die Drehstabfeder geklemmt wird. Die rohrschellenartige Befestigung ermöglicht eine Halterung des Schwingungstilgers in einer beliebigen Drehlage um die Längsachse des Wankstabilisators herum. Die Tilgerfeder kann in diesem Fall beispielsweise an einer Halteschale der Halteeinrichtung durch Ankleben oder Anvulkanisieren befestigt werden. Vorzugsweise kann ein als Tilgerfeder vorgesehenes plattenförmiges Elastomerteil mit einem Längsrand an der Halteeinrichtung befestigt und mit einem Einspannabschnitt seiner beiden Plattenseiten zwischen den Masseteilen eingespannt ist, wobei zwischen dem Längsrand und dem Einspannabschnitt ein frei liegender Federabschnitt des plattenförmigen Elastomerteils angeordnet ist. Die bevorzugte Schwingachse des Schwingungstilgers liegt in diesem Fall quer zu dem plattenförmigen Elastomerteil. Die Tilgermasse kann Schwingungen quer zur Drehstabfeder ausführen und elastischer Auslenkung des frei liegenden Federabschnitts des plattenförmigen Elastomer- teils. Bei dieser Weiterbildung kann es zweckmäßig sein, einen Längsrand des Elastomerteils an die Halteschale der Halteeinrichtung durch Kleben oder Vulkanisieren zu befestigen.
Eine weitere zweckmäßige Weiterbildung sieht vor, ein plattenförmiges Elastomerteil mit einem Längsrand an der Tilgermasse zu befestigen und mit einem gegenüberliegenden Längsrand an dem Haltebügel zu befestigen. In diesem Fall entfällt der Einspannabschnitt und der frei liegende Federabschnitt bestimmt die Federsteifigkeit der Tilgerfeder. Die Stelleinrichtung kann wenigstens eine Stellschraube aufweisen, die einerseits an dem einen Masseteil abgestützt und andererseits mit dem anderen Masseteil zum Einspannen der Tilgerfeder verschraubt ist. Hier wurde herausgefunden, dass durch Variieren der Einspannkraft eines plattenförmigen Elastomerteils als Tilgerfeder deren Steifigkeit in günstiger Weise an die zu eliminierende Störfrequenz des Wankstabilisa- tors angepasst werden kann.
Der erfindungsgemäße Wankstabilisator kann in günstiger Weise mit einer geteilten Drehstabfeder versehen sein, wobei ein Aktuator zwischen den Drehstabteilen angeordnet und mit beiden Drehstabteilen zur Übertragung eines Drehmomentes verbun- den ist.
Der Schwingungstilger kann abhängig von den Platzverhältnissen wahlweise am Aktuator oder an der Drehstabfeder oder an abgewinkelte an die Radträger angeschlossene Stababschnitte angeordnet sein. Diese abgewinkelten Stababschnitte sind Teil der Drehstabfeder oder sind fest mit der Drehstabfeder verbunden.
Nachstehend wird die Erfindung anhand eines in insgesamt acht Figuren abgebildeten Ausführungsbeispieles näher erläutert. Es zeigen: Figur 1 eine Ansicht eines erfindungsgemäßen Wankstabilisators,
Figur 2 in perspektivischer Darstellung einen Schwingungstilger des
Wankstabilisators gemäß Figur 1 ,
Figur 3 Den Schwingungstilger gemäß Figur 2 im Querschnitt entlang der
Linie III-III in Figur 4, Figur 4 den Schwingungstilger gemäß Figur 2 in einer Ansicht,
Figur 5 den Schwingungstilger gemäß Figur 2 im Querschnitt entlang der
Linie V-V in Figur 4, Figur 6 eine Ausschnittvergrößerung vom Ausschnitt VI in Figur 3,
Figur 7 den Schwingungstilger aus Figur 2 in Explosionsdarstellung und
Figur 8 Einzelheiten des Schwingungstilgers gemäß Figur 2.
Der in Figur 1 abgebildete Wankstabilisator weist eine geteilte Drehstabfeder 1 mit hintereinander angeordneten Drehstabteilen 2, 3 auf, zwischen deren einander zuge- wandten Enden ein Aktuator 4 wirksam angeordnet ist. Der Aktuator 4 weist einen nicht weiter abgebildeten Elektromotor mit einem Getriebe auf, dessen Ausgangswelle an das eine Drehstabteil 2 drehfest angeschlossen ist, wobei ein Gehäuse 5 des Ak- tuators 4 an das andere Drehstabteil 3 drehfest angeschlossen ist. In bekannter Weise kann ein Torsionsmoment unter Betätigung des Aktuators 4 in die Drehstabfeder 1 eingebracht werden. Die Drehstabfeder 1 ist über zwei Stabilisatorlager 6 an einem hier nicht abgebildeten Fahrzeugaufbau gelagert. Abgewinkelte Drehstabenden 7, 8 sind in bekannter Weise an hier nicht abgebildete Radträger angeschlossen. Beide Drehstabteile 2, 3 sind mit je einem Schwingungstilger 9 versehen, der nachstehend näher erläutert wird.
Figur 2 zeigt den Schwingungstilger 9 in perspektivischer Darstellung. Er weist eine Tilgermasse 10 auf, die hier durch zwei halbschalenförmig ausgebildete Masseteile 1 1 gebildet ist, die ringförmig angeordnet sind. Zwischen einander gegenüberliegend angeordneten Enden der beiden Masseteile 1 1 ist jeweils eine Tilgerfeder 12 eingespannt, die im Ausführungsbeispiel durch ein plattenförmiges Elastomerteile 13 gebildet ist. Ferner ist eine Halteeinrichtung 14 zum Klemmen des Schwingungstilgers 9 auf das Drehstabteil 2, 3 vorgesehen, die weiter unten näher beschrieben wird.
Figur 3 zeigt deutlich, dass die beiden Masseteile 1 1 mittels Stellschrauben 15 miteinander verschraubt sind. Die Einspannung der plattenförmigen Elastomerteile 13 ist abhängig von der eingestellten Schraubenkraft der Stellschrauben 15. Den Figuren 2 und 3 ist zu entnehmen, dass die Elastomerteile 13 mit ihren Plattenseiten an den um- fangsseitigen Enden der Masseteile 1 1 plan anliegen. Die axiale Länge der Elastomerteile 13 entspricht im Ausführungsbeispiel der Länge der Masseteile 1 1. In der Figur 3 ist ein lichter Ringraum 20 zu erkennen, der zwischen der Tilgermasse 10 und dem nicht abgebildeten Drehstabteil 2, 3 ausgebildet ist. Dieser Ringraum 20 ermög- licht ein Schwingen der Tilgermasse 10 quer zur Drehstabfeder unter elastischer Verformung der Tilgerfeder 12.
Die Figuren 4 und 5 zeigen deutlich Klemmschrauben 16 der Halteeinrichtung 14, die eine obere Halteschale 17 mit unteren Haltebügeln 18 verschrauben. Unter Festzie- hen der Klemmschrauben 16 werden die Haltebügel 18 sowie die obere Halteschale 17 gegen das hier nicht abgebildete Drehstabteil 2, 3 angepresst. Mit dieser Halteeinrichtung 14 ist es demzufolge möglich, den Schwingungstilger 9 in einer beliebigen Drehlage auf dem rohrförmigen Drehstabteil 2, 3 zu befestigen. Figur 6 zeigt in einer Ausschnittvergrößerung der Figur 3 die Anbindung der Tilgerfeder 12 einerseits an die Halteeinrichtung 14 und andererseits an die Tilgermasse 10. Das plattenförmige Elastomerteil 13 ist mit seinem Längsrand 19 an einem Umfangs- abschnitt der oberen Halteschale 17 befestigt, im Ausführungsbeispiel durch eine Kle- beverbindung. Insbesondere ist deutlich zu erkennen, dass das plattenförmige Elastomerteil 13 einen freiliegenden Federabschnitt F mit einer Federlänge s aufweist. Dieser Federabschnitt F erstreckt sich über die gesamte Länge des Elastomerteils 13. Der übrige Teil des Elastomerteils 13 ist als Einspannabschnitt E zwischen den beiden Masseteilen 1 1 eingespannt. Die Halteschale 17 ist im Ausführungsbeispiel in axialer Richtung so lang, dass das Elastomerteil mit seinem vollständigen Längsrand 19 an die Halteschale 17 angeklebt werden kann.
Figur 7 zeigt deutlich die einzelnen Teile des Schwingungstilgers 9 in Explosionsdar- Stellung. Insbesondere ist deutlich zu erkennen, dass die plattenförmigen Elastomerteile 13 in axialer Richtung zwischen abgewinkelten Laschen 21 der oberen Halteschale 17 angeordnet sind, die für die Verschraubung vorgesehen sind.
Figur 8 zeigt deutlich die fest mit der oberen Halteschale 17 verbundenen plattenför- migen Elastomerteile 13.
Der hier beschriebene Schwingungstilger 9 hat eine bevorzugte Schwingrichtung quer zu dem plattenförmigen Elastomerteil 13, das mit seinem freiliegenden Federabschnitt F federelastisch ausgelenkt wird, wenn die Tilgermasse 10 schwingt. Die Federlänge s ist wesentlich für die Ermittlung der geeigneten Eigenfrequenz des Schwingungstilgers 9; die Federlänge s geht mit der dritten Potenz in die Berechnung der Eigenfrequenz ein. Die Federlänge s ist wesentlich für die Steifigkeit der der Tilgerfeder 12.
Die beiden Masseteile 1 1 der Tilgermasse 10 bilden gemeinsam mit den Stellschrau- ben 15 eine Stelleinrichtung 22, mittels der die Steifigkeit der Tilgerfeder 12 ebenfalls einstellbar ist. Es wurde herausgefunden, dass die Einspannkraft des plattenförmigen Elastomerteils 13 erheblichen Einfluss auf dessen Steifigkeit nimmt. Demzufolge kann eine exakte Eigenfrequenz des Schwingungstilgers 9 mittels der Stellschrauben 15 gut eingestellt werden.
Die Art der Schwingung des Schwingungstilgers kann je nach Einbaulage als Tangen- tialschwingung quer zur Drehstabfeder bezeichnet werden. ln einer Variante können die hier beschriebenen Schwingungstilger auch an die abgewinkelten Drehstabenden 7, 8 oder auf das Gehäuse 5 des Aktuators 4 aufgebracht werden.
Bezugszeichenliste
Drehstabfeder
Drehstabteil
Drehstabteil
Aktuator
Gehäuse
Stabilisatorlager
Drehstabende
Drehstabende
Schwingungstilger
Tilgermasse
Masseteil
Tilgerfeder
plattenförmiges Elastomerteil
Halteeinrichtung
Stellschraube
Klemmschraube
obere Halteschale
Haltebügel
Längsrand
Ringraum
1 Lasche
Stelleinrichtung

Claims

Patentansprüche
1. Wankstabilisator für ein Kraftfahrzeug, mit einer Drehstabfeder (1), dadurch gekennzeichnet, dass ein Schwingungstilger (9) an dem Wankstabilisator angeordnet ist, der eine gegenüber dem Wankstabilisator schwingfähige Tilgermasse (10) und eine zwischen dem Wankstabilisator und der Tilgermasse (10) wirksam angeordnete Tilgerfeder (12) aufweist.
2. Wankstabilisator nach Anspruch 1 , dessen Schwingungstilger (9) eine bevorzugte Schwingachse aufweist, in der die Tilgermasse (10) des Schwingungstilgers (9) schwingfähig ist.
3. Wankstabilisator nach wenigstens einem der Ansprüche 1 bis 2, dessen Schwingungstilger (9) in einer mit Bezug auf die Längsachse des Wankstabilisators frei wählbaren Drehlage angeordnet werden kann.
4. Wankstabilisator nach wenigstens einem der Ansprüche 1 bis 3, dessen Schwingungstilger (9) mit einer Stelleinrichtung (22) zum Einstellen einer Steifigkeit der Tilgerfeder (12) versehen ist.
5. Wankstabilisator nach wenigstens einem der Ansprüche 1 bis 4, dessen Tilgerfeder (12) als Elastomerteil (13) ausgeführt ist, das einerseits an dem Wankstabilisator und das andererseits an der Tilgermasse (10) gehaltert ist.
6. Wankstabilisator nach wenigstens einem der Ansprüche 1 bis 5, dessen Tilgermasse (10) mehrere Masseteile (1 1 ) aufweist, wobei die Tilgerfeder (12) einerseits zwischen diesen Masseteilen ( 1 ) der Tilgermasse (10) eingespannt und andererseits an dem Wankstabilisator gehaltert ist.
7. Wankstabilisator nach wenigstens einem der Ansprüche 1 bis 6, dessen Schwingungstilger (9) eine Halteeinrichtung (14) zum Haltern an dem Wankstabilisator aufweist.
8. Wankstabilisator nach den Ansprüchen 6 und 7, dessen plattenförmiges Elastomerteil (13) mit einem Längsrand (19) an der Halteeinrichtung (14) befestigt und mit einem Einspannabschnitt (E) seiner beiden Plattenseiten zwischen den Masseteilen (11) eingespannt ist, wobei zwischen dem Längsrand (19) und dem Einspannabschnitt (E) ein frei liegender Federabschnitt (F) des plattenförmigen Elastomerteils (13) angeordnet ist.
9. Wankstabilisator nach Anspruch 8, dessen Halteinrichtung (14) eine Halteschale (17) aufweist, an den der Längsrand (19) des Elastomerteils (13) angeklebt oder anvulkanisiert ist.
10. Wankstabilisator nach Anspruch 4, deren Stelleinrichtung (22) wenigstens eine Stellschraube (15) aufweist, die einerseits an dem einen Masseteil (11) abgestützt und andererseits mit dem anderen Masseteil (11 ) zum Einspannen der Tilgerfeder (12) verschraubt ist.
11. Wankstabilisator nach wenigstens einem der Ansprüche 1 bis 10, zwischen dessen die Drehstabfeder (1) bildenden Drehstabteilen (2, 3) ein Aktuator (4) angeordnet und mit beiden Drehstabteilen (2, 3) zur Übertragung eines Drehmomentes verbunden ist.
PCT/DE2017/100182 2016-03-10 2017-03-08 Wankstabilisator für ein kraftfahrzeug WO2017152912A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/083,607 US11235633B2 (en) 2016-03-10 2017-03-08 Roll stabilizer for a motor vehicle
KR1020187025647A KR102368343B1 (ko) 2016-03-10 2017-03-08 자동차용 롤 스태빌라이저
CN201780010758.5A CN108698461B (zh) 2016-03-10 2017-03-08 用于机动车辆的侧倾稳定器
US17/557,764 US20220111693A1 (en) 2016-03-10 2021-12-21 Roll stabilizer for a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016203950.4A DE102016203950A1 (de) 2016-03-10 2016-03-10 Wankstabilisator für ein Kraftfahrzeug
DE102016203950.4 2016-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/083,607 A-371-Of-International US11235633B2 (en) 2016-03-10 2017-03-08 Roll stabilizer for a motor vehicle
US17/557,764 Continuation US20220111693A1 (en) 2016-03-10 2021-12-21 Roll stabilizer for a motor vehicle

Publications (1)

Publication Number Publication Date
WO2017152912A1 true WO2017152912A1 (de) 2017-09-14

Family

ID=58428019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2017/100182 WO2017152912A1 (de) 2016-03-10 2017-03-08 Wankstabilisator für ein kraftfahrzeug

Country Status (5)

Country Link
US (2) US11235633B2 (de)
KR (1) KR102368343B1 (de)
CN (1) CN108698461B (de)
DE (1) DE102016203950A1 (de)
WO (1) WO2017152912A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052716B2 (en) 2018-04-18 2021-07-06 Ford Global Technologies, Llc Motor vehicle axle

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019207826A1 (de) * 2019-05-28 2020-12-03 Zf Friedrichshafen Ag Segmentierter Schwingungstilger
DE102019003884A1 (de) * 2019-06-03 2020-12-03 Sumitomo Riko Company Limited Halterung für einen Fahrzeugstabilisator, Fahrzeugstabilisator und Verfahren
US11642932B2 (en) * 2021-10-08 2023-05-09 GM Global Technology Operations LLC Bushing assembly for a stabilizer bar of a vehicle
GB2611776B (en) * 2021-10-14 2024-02-07 Jaguar Land Rover Ltd Active roll bar damper assembly
DE102022118478A1 (de) 2022-07-25 2024-01-25 Bayerische Motoren Werke Aktiengesellschaft Anordnung eines Schwingungstilgers an einem Fahrwerksbauteil für einen Kraftwagen sowie Kraftwagen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1953028U (de) * 1963-12-03 1967-01-05 Bbc Brown Boveri & Cie Schwingungstilger zur daempfung mechanischer schwingungen eines bauteiles oder gehaeuses, vorzugsweise eines transformatorgehaeuses.
FR2710381A1 (fr) * 1993-09-23 1995-03-31 Hutchinson Batteur pour barre vibrante.
DE19741535A1 (de) * 1997-09-20 1999-03-25 Volkswagen Ag Schwingungstilger zur Dämpfung der Schwingungen eines Bauteils
DE102008033270A1 (de) 2008-07-15 2010-01-21 Schaeffler Kg Elektromechanischer Aktuator, insbesondere für einen Wankstabilisator eines Kraftfahrzeugs
KR20110022199A (ko) * 2009-08-27 2011-03-07 현대모비스 주식회사 차량의 다이나믹 댐퍼
DE102015008952B3 (de) * 2015-07-10 2016-07-28 Audi Ag Schwingungstilger zur Reduktion von Schwingungen am Fahrwerk eines Kraftfahrzeugs
DE102016011753A1 (de) * 2016-09-28 2017-03-30 Daimler Ag Werkzeug zur Montage von Schwingungstilgermassen am Drehstab eines Fahrwerks eines Kraftfahrzeugs

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US921471A (en) * 1908-02-10 1909-05-11 Mont D Shilling Shock-absorber for vehicle-springs.
US2251416A (en) * 1939-03-01 1941-08-05 Chrysler Corp Spring and method of making same
US2773698A (en) * 1952-08-22 1956-12-11 Gen Tire & Rubber Co Resilient mounting in the form of a bushing and axle assembly for vehicle suspensionsystems and the like
US2878689A (en) * 1957-10-09 1959-03-24 Chrysler Corp Tuned vibration damping system for drive trains
US3863871A (en) * 1973-05-14 1975-02-04 Jr Daniel T Meisenheimer Vibration isolation mounting assembly
US4648620A (en) * 1985-05-20 1987-03-10 Ford Motor Company Adjustable suspension stabilizer bar
US5413374A (en) * 1991-08-30 1995-05-09 Nai Neway, Inc. Adjustable bushing
FR2714433B1 (fr) * 1993-12-24 1996-02-23 Caoutchouc Manuf Plastique Elément résonateur dynamique et son procédé de montage.
US5685555A (en) * 1995-02-21 1997-11-11 The Raymond Corporation Lift truck with inertial damper
US5613665A (en) * 1995-11-09 1997-03-25 Lund; Ronn A. Vehicle suspension component
US6095486A (en) * 1997-03-05 2000-08-01 Lord Corporation Two-way magnetorheological fluid valve assembly and devices utilizing same
DE19930444C5 (de) * 1999-07-02 2005-10-20 Daimler Chrysler Ag Stabilisatoranordnung für ein Kraftfahrzeug
KR100337305B1 (ko) * 2000-07-05 2002-05-22 이계안 스태빌라이저 바
US6695102B1 (en) * 2002-12-31 2004-02-24 Lord Corporation Magnetorheological twin-tube damping device
DE102004034217A1 (de) * 2004-07-14 2006-02-09 Zf Friedrichshafen Ag Geteilter Stabilisator mit optimierter Federrate
US7380775B2 (en) * 2004-12-13 2008-06-03 Toyo Tire Rubber Co., Ltd. Vibration isolator and attachment method thereof
FR2883349B1 (fr) * 2005-03-15 2007-10-19 Cf Gomma Spa Batteur modulaire pour arbre rotatif
JP2007161022A (ja) * 2005-12-12 2007-06-28 Bridgestone Corp インホイールモータシステム
DE102006032826A1 (de) * 2006-07-14 2008-01-17 Carl Freudenberg Kg Stabilisator zur Anlenkung einer Stabilisatorstange an einem Kraftfahrzeug
US8496224B1 (en) * 2011-07-18 2013-07-30 Dennis W. Gilstad Tunable valve assembly

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1953028U (de) * 1963-12-03 1967-01-05 Bbc Brown Boveri & Cie Schwingungstilger zur daempfung mechanischer schwingungen eines bauteiles oder gehaeuses, vorzugsweise eines transformatorgehaeuses.
FR2710381A1 (fr) * 1993-09-23 1995-03-31 Hutchinson Batteur pour barre vibrante.
DE19741535A1 (de) * 1997-09-20 1999-03-25 Volkswagen Ag Schwingungstilger zur Dämpfung der Schwingungen eines Bauteils
DE102008033270A1 (de) 2008-07-15 2010-01-21 Schaeffler Kg Elektromechanischer Aktuator, insbesondere für einen Wankstabilisator eines Kraftfahrzeugs
KR20110022199A (ko) * 2009-08-27 2011-03-07 현대모비스 주식회사 차량의 다이나믹 댐퍼
DE102015008952B3 (de) * 2015-07-10 2016-07-28 Audi Ag Schwingungstilger zur Reduktion von Schwingungen am Fahrwerk eines Kraftfahrzeugs
DE102016011753A1 (de) * 2016-09-28 2017-03-30 Daimler Ag Werkzeug zur Montage von Schwingungstilgermassen am Drehstab eines Fahrwerks eines Kraftfahrzeugs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11052716B2 (en) 2018-04-18 2021-07-06 Ford Global Technologies, Llc Motor vehicle axle

Also Published As

Publication number Publication date
US20220111693A1 (en) 2022-04-14
KR102368343B1 (ko) 2022-02-28
DE102016203950A1 (de) 2017-09-14
US20190100066A1 (en) 2019-04-04
KR20180120695A (ko) 2018-11-06
US11235633B2 (en) 2022-02-01
CN108698461A (zh) 2018-10-23
CN108698461B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2017152912A1 (de) Wankstabilisator für ein kraftfahrzeug
EP0901707B1 (de) Haltevorrichtung für einen elektromotor
EP1078176B1 (de) Übertragungselement zur kraft- und/oder momentenübertragung, schwingungstilger und verfahren zur dämpfung von schwingungen
DE102012200001A1 (de) Gummimetallager für Kraftfahrzeug-Radaufhängung, Trapezlenker und Radaufhängung
EP2767421A1 (de) Drehstabfedersystem für eine Radaufhängung eines Kraftfahrzeugs
DE10234134B4 (de) Vorrichtung, Fahrzeugaufhängungssystem und Verfahren zur Fahrgeräuschreduzierung mittels selektiver Anordnung von aktiven Vibrationsdämpfern
EP2291293B1 (de) Gegenlenkende fahrzeug-hinterachse
WO2009152821A1 (de) Stabilisator für ein nutzfahrzeug
EP2282900A1 (de) Gegenlenkende fahrzeug-hinterachse
DE102014003222B4 (de) Koaxiale Federanordnung
DE102009047404B4 (de) Radaufhängung
DE102014208403A1 (de) Einzelradaufhängung für ein Fahrzeug
EP3554869A1 (de) Verstellbarer wankstabilisator für ein fahrwerk eines kraftfahrzeugs
DE102012214996B4 (de) Fliehkraftpendel mit Axialschwingungsdämpfung
DE3402401C2 (de)
DE102020211051A1 (de) Dämpferlager zur Befestigung eines Hinterachs-Unterflurschwingungsdämpfers an einem Fahrzeugaufbau
DE102013225978A1 (de) Aktuator für einen aktiven Wankstabilisator sowie Wankstabilisator
DE10041200B4 (de) Federbein mit Sturzausgleich
EP1197678B1 (de) Einstellbarer Tilger zur Reduzierung von Torsionsschwingungen
EP3146231A1 (de) Rotationsdämpfer
WO2014161702A1 (de) Achsführungslager zur ankopplung einer hinterachse an einen fahrzeugaufbau eines kraftfahrzeugs
DE102012221841B4 (de) Gummimetalllager für Kraftfahrzeug-Radaufhängung, Trapezlenker und Radaufhängung
EP3094545B1 (de) Anordnung zur schwingungsentkopplung eines motors für motorisierte zweiradfahrzeuge mit einer triebsatzschwinge
EP1535766B1 (de) Radaufhängung für ein Kraftfahrzeug
WO2017137186A1 (de) Lenkbare verbundlenkerachse

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187025647

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17713882

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17713882

Country of ref document: EP

Kind code of ref document: A1