WO2017150578A1 - 物体表面修正方法、ワークの加工方法および加工システム - Google Patents

物体表面修正方法、ワークの加工方法および加工システム Download PDF

Info

Publication number
WO2017150578A1
WO2017150578A1 PCT/JP2017/007999 JP2017007999W WO2017150578A1 WO 2017150578 A1 WO2017150578 A1 WO 2017150578A1 JP 2017007999 W JP2017007999 W JP 2017007999W WO 2017150578 A1 WO2017150578 A1 WO 2017150578A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
object surface
workpiece
roughness curve
machining
Prior art date
Application number
PCT/JP2017/007999
Other languages
English (en)
French (fr)
Inventor
佐藤 隆太
中西 巧
光成 尾田
野生 中山
Original Assignee
国立大学法人神戸大学
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人神戸大学, 株式会社牧野フライス製作所 filed Critical 国立大学法人神戸大学
Priority to US16/080,530 priority Critical patent/US10788812B2/en
Priority to EP17760042.6A priority patent/EP3425540B1/en
Priority to CN201780013796.6A priority patent/CN108701167B/zh
Publication of WO2017150578A1 publication Critical patent/WO2017150578A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37402Flatness, roughness of surface

Definitions

  • the present invention relates to a method for correcting the shape of an object surface by accurately predicting in advance the shape of an apparent object surface (machined surface) by human vision and a method for processing a workpiece.
  • Patent Document 1 the maximum luminance and the minimum luminance of reflected light on the processing surface are calculated, the contrast is calculated from the maximum luminance and the minimum luminance, the spatial frequency of the processing surface is calculated, and the contrast is calculated based on the contrast and the spatial frequency.
  • a processing surface evaluation method is disclosed that uses a sensitivity function to determine whether or not the contrast of the processing surface is perceptible to human vision.
  • Patent Document 2 an object image is generated based on object shape information and viewpoint information, and reflection or refraction information on the object surface is calculated based on the object shape information and viewpoint information.
  • An image generation apparatus that generates an image by combining an image with reflection or refraction information is disclosed.
  • All of these conventional technologies are based on image data obtained by photographing the processed surface, and it is possible to determine the quality of the processed surface after processing, but the relationship between the shape of the processed surface and the visual appearance of the human is Since it has not been clarified, it is impossible to accurately predict in advance the shape of an object surface (processed surface) that appears by human vision, and to obtain a surface shape of an object that has a desired appearance.
  • the present invention has a technical problem to solve such a problem of the prior art, and a method for correcting the shape of an object surface by accurately predicting in advance the shape of an object surface (machined surface) as seen by human vision. It aims at providing the processing method of a work.
  • a surface shape correction method for predicting whether the shape of an object surface can be recognized by human vision, and correcting the object surface based on the prediction
  • predicting the shape of an object surface based on data related to object shape, surface roughness curve, viewpoint position, incident light and reflected light Dividing the object surface into a plurality of regions; For each of the plurality of regions, calculate the luminance of the object surface when observing the object surface from the viewpoint position based on the data, Based on the calculated brightness, predict whether the shape of the object surface is recognizable by human vision,
  • An object surface correction method is provided that corrects data related to at least one of the object shape or the surface roughness curve so as to obtain a desired object surface appearance based on the predicted object surface shape. Is done.
  • a workpiece machining method of driving a machine tool and machining a workpiece based on a machining program generated by a CAM device for obtaining a desired workpiece shape When predicting the shape of an object surface based on data related to the workpiece shape, surface roughness curve, viewpoint position, incident light and reflected light, Divide the object surface into multiple areas, For each of the plurality of regions, calculate the luminance of the object surface when observing the object surface from the viewpoint position based on the data, For each of a plurality of meshes on the object surface, predicting whether the shape of the object surface is recognizable by human vision based on the calculated luminance, Changing data associated with at least one of the object shape or surface roughness curve to obtain a desired object surface appearance based on the predicted object surface shape; A workpiece machining method is provided in which a machine tool is driven based on the changed data to machine the workpiece.
  • a machine tool When predicting the shape of the object surface based on the shape of the object to be processed by the machine tool, the surface roughness curve, the viewpoint position, the data related to the incident light and the reflected light, When the object surface to be processed by the machine tool is divided into a plurality of regions, and the object surface is observed from the viewpoint position based on data related to the shape of the object and the surface roughness curve for each of the plurality of regions.
  • An object surface prediction display device capable of correcting data related to at least one of the object shape or surface roughness curve so as to obtain a desired object surface appearance based on the predicted object surface shape;
  • the shape of the object surface when the shape of the object surface is actually manufactured, it is possible to predict in advance how the image is visually recognized by the observer.
  • FIG. 1 is a block diagram of an object surface prediction display device according to a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method for predicting and displaying an object surface according to a preferred embodiment of the present invention. It is a schematic diagram for explaining incident light, regular reflection light, scattered light, and absorbed light on the object surface. It is a graph which shows an example of the measurement result of the reflection characteristic of an object surface. It is a schematic diagram for demonstrating irregular reflection by surface roughness. It is a graph showing the relationship between the surface roughness in the surface where surface roughness is large, and the angle distribution of reflected light. It is a graph showing the relationship between the surface roughness in the surface where surface roughness is small, and the angle distribution of reflected light.
  • FIG. 3 is a flowchart illustrating an object surface correction method according to a preferred embodiment of the present invention. It is the photograph of the printed matter which displayed the prediction result of the object surface by this invention at the time of changing backlash correction amount as a correction parameter. It is the photograph which image
  • FIGS. 3 to 6B the visibility of the object surface in the present invention will be described with reference to FIGS. 3 to 6B.
  • a human recognizes the shape and texture of an object by feeling the intensity (brightness) of light reflected from the object surface.
  • FIG. 3 schematically showing reflection and scattering when light is irradiated on the object surface, a part of the incident light is absorbed by the characteristics of the material constituting the object, and in addition to the characteristics of the material, The light is scattered by a change in surface shape that is finer than the wavelength of incident light. Scattered light propagates almost uniformly in all directions regardless of the macro direction of the object surface.
  • the direction of specularly reflected light due to a change in surface shape larger than the wavelength of incident light is determined by the relationship between the incident light and the direction of the object surface.
  • the reflected light propagates in all directions regardless of the orientation and shape of the object surface, so the orientation and shape of the object surface can be visually recognized. Cannot be done, that is, the visibility becomes worse.
  • the component reflected as scattered light is small and the specular reflection light component is large, the orientation and shape of the object surface can be easily recognized visually, and the visibility is improved.
  • FIG. 4 shows measurement results of reflection characteristics with respect to wavelength for two types of metal materials.
  • the total reflectance of the regular reflection light and the scattered light is indicated by a solid line, and the reflectance of only the scattered light is indicated by a broken line. That the reflectance shown by the solid line is not 100% indicates absorption on the object surface.
  • the ratio of scattered light is small and the reflectance is substantially the same at all wavelengths, the glossy whitish surface is obtained.
  • the ratio of scattered light is large and the reflectance at a short wavelength is low, so that the surface becomes dull and reddish.
  • the amplitude and / or wavelength of the surface roughness curve is often larger than the wavelength of incident light.
  • the incident light on the object surface is irregularly reflected by the surface irregularities as shown in FIG.
  • the direction of the reflected light changes in various ways, and it reflects with an angular distribution with respect to the direction of the reflected light when complete plane light is incident. It will be. Even in such a case, as in the case where the ratio of scattered light is large, the shape change of the object surface is not clearly recognized and visibility is deteriorated.
  • the angular distribution of reflected light can be calculated geometrically from the surface roughness curve of the object.
  • 6A and 6B show an example in which a roughness curve of a cut metal surface is obtained for measurement, and the angle distribution of reflected light is obtained by calculation based on the roughness curve.
  • the surface roughness is large (FIG. 6A)
  • the angle distribution of the reflected light is widened, and the shape change of the processed surface becomes difficult to visually recognize, and the visibility is deteriorated.
  • the surface roughness is reduced (FIG. 6B)
  • the angle distribution of the reflected light is narrowed, the shape change of the processed surface is easily visible, and the visibility is improved.
  • Non-Patent Document 1 when a metal surface is observed from a distance of 250 mm, the human visual resolution is about 0.25 mm, that is, when the wavelength of the surface roughness curve is 0.25 mm or more. , It will be visually perceived as a shape change, not as surface roughness. Assuming human vision, that is, observation with the naked eye, the reflected light from the processed surface is generally recognized as scattered light when the surface roughness wavelength of the processed surface is several hundred nm or less, and several hundred nm to several hundred ⁇ m. In this case, it is recognized as irregularly reflected light.
  • the shape change means a shape intentionally provided on the object surface or a locally generated step or shape error, and the surface roughness partially spreads over the entire object surface or a certain range. It means periodic irregularities of several hundred ⁇ m or less.
  • the object surface prediction display device 10 (hereinafter simply referred to as the prediction display device 10) includes an input unit 12, a data storage unit 14, a luminance calculation unit 16, an RGB distribution unit 18, and an output unit 20 as main components. It can be constituted by an electronic device such as a computer provided with a RAM, a ROM, a CPU, a hard drive, an SSD, an input / output port, and a bidirectional bus interconnecting them.
  • the input unit 12 is a server or personal computer connected to the prediction display device 10 via a communication means such as a computer network such as a keyboard, a touch panel, or a LAN for inputting various data to the data storage unit 14, or a prediction display.
  • a communication means such as a computer network such as a keyboard, a touch panel, or a LAN for inputting various data to the data storage unit 14, or a prediction display.
  • a non-volatile memory that can be attached to the input / output port of the apparatus 10, such as a USB memory, can be used.
  • the data storage unit 14 can be formed from a storage device such as a hard drive or SSD, and is related to a shape data storage area for storing data related to the shape of the object or the processed shape of the workpiece, and the surface roughness curve of the object surface.
  • Surface roughness curve storage area for storing the measured data, data related to the observer's viewpoint position with respect to the object surface, for example, a viewpoint position storage area for storing the coordinate position, incident light such as incident light direction, angular distribution and intensity It has an incident light storage area for storing related data, and a reflected light storage area for storing data related to reflectance and scattering characteristics for each wavelength on the object surface.
  • the luminance calculation unit 16 calculates the luminances of reflected light and scattered light on the object surface based on data stored in the data storage unit 14 as will be described later.
  • the RGB distribution unit 18 determines the brightness of the reflected light and scattered light on the object surface obtained by the brightness calculation unit 16 based on the reflectance for each wavelength of the object surface stored in the data storage unit 14.
  • the brightness is converted to R (red), G (green), and B (blue).
  • the output unit 20 can be formed by a display device such as a liquid crystal panel or a color printer, and based on the luminance of each of R (red), G (green), and B (blue) obtained by the RGB distributing unit 18,
  • the object surface is displayed or printed so that the operator can visually recognize it.
  • action of the prediction display apparatus 10 is demonstrated, referring the flowchart shown in FIG.
  • the object shape data (work shape of the workpiece), the data related to the surface roughness curve, the data related to the viewpoint position, the data related to the incident light, the data related to the reflected light Data is input.
  • These data can be data based on measurement results, data based on simulation results based on mathematical models, data based on predictions based on databases, or a combination thereof.
  • Tool conditions can include tool type, tool diameter, optimum cutting speed, and the like.
  • the machining conditions can include a pick feed amount, a feed speed, a spindle rotation speed, and the like.
  • the parameters can include acceleration / deceleration time constants, gain constants, and other correction parameters of the NC device.
  • the luminance calculation unit 16 reads these data from the data storage unit 14 and calculates the luminance of each point on the object surface when the object surface is observed from the viewpoint position (step S10).
  • the luminance of a point on the object surface when observed from a certain viewpoint is the total amount of light incident on the viewpoint from a certain point on the object surface.
  • the luminance of the point A on the object surface is obtained as the sum of components parallel to a straight line connecting the point A and the viewpoint among the scattered light from the point A and the reflected light from the point A.
  • the luminance of point B different from point A is the sum of components parallel to a straight line connecting point B and the viewpoint among the scattered light from point B and the reflected light from point B.
  • incident light for example, solar rays can be regarded as parallel rays from one direction, but actually reflected light and scattered light from the surrounding environment are also included and are completely from one direction. It will not be parallel rays.
  • incident light is not completely a parallel light beam from one direction, but has an angular distribution as schematically shown in FIG.
  • the angular distribution of the reflected light can be obtained by calculating and superimposing the reflected light with respect to the incident light from each direction. For example, as shown in FIG.
  • the angle distribution of incident light is determined by measuring or assuming the intensity of incident light from each direction, with the maximum direction being the center of the incident light, and the change in angle from the center of the incident light. It can be expressed as a change in intensity with respect to.
  • the intensity of incident light from each direction is shown normalized by the intensity of incident light at the center.
  • the luminance calculated in the luminance calculation unit 16 is distributed to the luminances of R (red), G (green), and B (blue) in the RGB distribution unit 18 in consideration of the difference in reflectance for each wavelength on the object surface. (Step S12). More specifically, the reflectance Rr (red, 700 nm), Rg (green, 546 nm), and Rb (blue, 436 nm) for each wavelength measured by the spectrophotometer is used, and the total luminance of each wavelength is calculated by the luminance calculation unit. 16 is distributed to the luminance R, the luminance G, and the luminance B so that the luminance Ir calculated in 16 is obtained.
  • the object surface is displayed on the output unit 20 on, for example, a liquid crystal panel or printed by a color printer (step S14).
  • the shape of the mesh is not limited to a rectangle or a triangle, and the object surface may be divided into an appropriate shape. Moreover, the shape may differ between adjacent meshes.
  • FIGS. 10A to 10D show the results of predicting how the surface of an object is actually viewed by the human eye using the prediction display device 10 of the present embodiment.
  • FIGS. 10A and 10B show cases where the surface roughness is larger than those in FIGS. 10C and 10D.
  • FIGS. 10A and 10C are printed results of prediction, and the images on the lower side of FIGS. 10B and 10D are actually produced. It is the photograph which image
  • FIGS. 10A to 10D as indicated by reference numeral “M”, a relatively clear streak is observed near the center of the object surface. This is because the normal direction of the object surface changes near the center. It is. 10A to 10D, according to the prediction display device 10 of the present embodiment, in both the prediction result and the actual imaging result of the object surface, when the surface roughness is small and the irregular reflection is small, the shape change near the center Is observed more clearly, and it can be seen that it is difficult to visually recognize the shape change when the surface roughness is large. As described above, according to the prediction display device 10 according to the present embodiment, it is possible to predict how the object surface looks by human vision in consideration of the surface roughness of the object surface.
  • the shape data, the data related to the surface roughness curve, and the data related to the viewpoint position stored in the data storage unit 14 are determined in advance as specifications, actually measured, or compared by a mathematical model, for example. Accurate data can be input.
  • the data related to the incident light incident light direction, angular distribution and intensity
  • the data related to the reflected light may not be able to measure the exact value. Predictions are often difficult and can affect the prediction results. Furthermore, the result may be different depending on the characteristics of the display and printer constituting the output unit 20.
  • the observation result of the actually manufactured object surface is compared with the prediction result by the prediction display device 10, and when the actual appearance by human vision is different from the prediction result, Prediction of object surface (work surface of workpiece) by correcting data related to incident light (incident light direction, angular distribution, intensity, etc.) and data related to reflected light (reflectance, scattering characteristics, etc. for each wavelength) Try again. Changing the direction, angle distribution, intensity, and scattering characteristics of the incident light changes the visibility of the brightness and shape change of the object surface. Changing the reflectance for each wavelength on the object surface (work surface) changes the color of the object surface. Changes. Such correction of data is repeated until the actual appearance matches the prediction result, and more accurate prediction is possible by calibrating these data.
  • FIG. 11 an embodiment in which the prediction display device 10 of the present invention is combined with a CAD / CAM device that supports the machine tool 100 is shown.
  • workpiece design data generated by the CAD device 102 is sent to the CAM device 104 and input to the data storage unit 14 as workpiece shape data.
  • the CAM device 104 generates a machining program for machining a workpiece by the machine tool 100 based on the design data from the CAD device 102.
  • the machining program generated by the CAM device 104 is output to the NC device 108 of the machine tool 100.
  • the NC device 108 outputs a current for driving a servo motor of each feed shaft (not shown) of the machine tool 100 based on the machining program.
  • the machining program generated by the CAM device 104 includes information on the tool relative path (tool path) with respect to the workpiece.
  • the tool condition, machining condition, and other parameters 108 are input to the CAM device 104.
  • the tool conditions include a tool type, a tool diameter, an optimum cutting speed, and the like.
  • the machining conditions include a pick feed amount, a feed speed, a spindle rotation speed, and the like.
  • Such tool paths, machining conditions, and parameters are also output from the CAM device 104 to the machining simulator 110.
  • the machining simulator 110 simulates machining by the machine tool 100 with a computer based on the tool path, machining conditions, and parameters from the CAM device 104.
  • the machining simulator 110 outputs data related to the surface roughness curve of the machined surface of the workpiece after machining to the data storage unit 14.
  • the surface roughness curve of the work surface of the workpiece can be obtained by calculating the cusp height from the pick feed amount and the tool diameter.
  • the cusp height can be calculated from the following equation. However, x is the pick feed amount R is the tool diameter.
  • FIG. 12 is a flowchart showing an object surface correction method according to a preferred embodiment of the present invention.
  • the luminance calculation unit 16 reads these data from the data storage unit 14, and calculates the luminance of each point on the workpiece machining surface when the workpiece machining surface is observed from the viewpoint position (step S20).
  • the luminance calculated by the luminance calculation unit 16 is converted into the luminance of each of R (red), G (green), and B (blue) in the RGB distribution unit 18 in consideration of the difference in reflectance for each wavelength on the workpiece processing surface.
  • Distribution is performed (step S22).
  • characteristics surface characteristics
  • the workpiece processing surface is displayed on the liquid crystal panel in the output unit 20 or displayed by printing with a color printer. (Step S24).
  • a user such as an operator of the machine tool visually determines whether the displayed machining surface looks as intended or whether a desired machining surface can be obtained (step S26). If the displayed machining surface is not intended (No in step S26), the workpiece shape (machining surface shape) and / or the display roughness curve are changed (step S28), and the workpiece machining surface is changed again. The display is repeated until the processed surface looks as intended (Yes in step S26).
  • step S26 If it is determined that the displayed machining surface has the intended appearance (Yes in step S26), the machining program, machining conditions, and parameters for realizing the final workpiece shape data and / or surface roughness curve. Is calculated (step S30).
  • the CAD device 102 and the CAM device 104 change the shape of the workpiece (the shape of the machining surface), the tool path, and the machining conditions.
  • the set values of the acceleration / deceleration time constant, gain constant and other correction parameters of the apparatus can be changed.
  • the machining conditions, tool conditions, and parameters input to the simulator data related to the shape of the workpiece (object) and data related to the surface roughness curve are changed.
  • the amplitude can be changed while maintaining the wavelength of the surface roughness curve of the processed surface.
  • the wavelength can be changed while maintaining the amplitude of the surface roughness curve of the processed surface by changing the tool diameter and the pick feed amount.
  • the shape data is changed by changing the set values of the acceleration / deceleration time constant, gain constant and other correction parameters of the NC device, and the machining conditions such as the tool path and peak feed amount and / or the tool conditions such as the tool diameter are changed. As a result, the surface roughness curve is changed.
  • FIGS. 13A and 13B An example in which the backlash correction amount is changed as a correction parameter is shown in FIGS. 13A and 13B.
  • the backlash correction amount is a correction parameter that determines the position error to be added.
  • FIG. 13A shows a prediction result according to the present invention
  • FIG. 13B shows a result of actual processing.
  • 13A and 13B, (I), (II), and (III) show cases where the backlash correction amounts are 140, 53, and 31, respectively.
  • FIG. 14A and 14B show examples in which the feed speed, which is a machining condition, is changed.
  • the feed speed is a relative speed between the tool and the workpiece.
  • FIG. 14A shows a prediction result according to the present invention
  • FIG. 14B shows a result of actual processing using a feed speed corresponding to the prediction result.
  • 14A and 14B, (I), (II), and (III) show cases where the feed rates are 1000 mm / min, 2000 mm / min, and 3000 mm / min, respectively. Processing conditions, tool conditions, and parameters other than the feed rate are the same.
  • FIG. 14A shows a prediction result according to the present invention
  • FIG. 14B shows a result of actual processing using a feed speed corresponding to the prediction result.
  • FIG. 14A and 14B, (I), (II), and (III) show cases where the feed rates are 1000 mm / min, 2000 mm / min, and 3000 mm / min, respectively. Processing conditions, tool conditions, and
  • FIGS. 15A and 15B An example in which the tool diameter, which is a tool condition, is changed is shown in FIGS. 15A and 15B.
  • Figure 15A, 160 .mu.m a pick feed amount, under the same processing conditions and parameters spindle rotational speed as 15,000 min -1, and a tool diameter 6 mm ((the case of I)), and a 2 mm ((the case of II)) The prediction result in the case is shown.
  • FIG. 15B is a photograph of the machining surface of a workpiece obtained by actually machining the tool diameter only at 6 mm (in the case of (I)) and 2 mm (in the case of (II)) under the same machining conditions and parameters. is there.
  • FIG. 15A which is a prediction result according to the present invention
  • Ra is 0.2832 ⁇ m, which is caused by a shape change as indicated by reference signs “M 1 ” and “M 2 ”. Two streaks were seen.
  • Ra is 0.8410 ⁇ m by setting the tool diameter to 2 mm, but it can be seen that the two streaks are difficult to see. Even when the machining experiment was performed under the same conditions, as shown in FIG. 15B, the same tendency as the prediction result could be confirmed.
  • the machining surface shape of the workpiece can be predicted while changing the machining surface shape, tool path and machining conditions, and changing the NC device acceleration / deceleration time constant, gain constant and other correction parameter settings. By doing so, it is possible to efficiently create a desired processed surface.
  • the number of days required for mold production is several days.
  • mold parts are manufactured. Therefore, the appearance of the manufactured mold part can be evaluated only after the part is manufactured. For this reason, if the appearance is poorly evaluated, it is necessary to redesign and remanufacture the mold as quickly as possible, which is a burden on engineers. Also, defective manufactured parts are difficult to reuse, resulting in significant material loss.
  • the present invention it is possible to predict the mold design that the customer will be satisfied without manufacturing the mold part, and even when the mold part is manufactured, the customer is satisfied. It will be possible to supply molds that look good. According to the present invention, it is not limited to simply reducing time and cost, and there is an effect that a mold can be easily and quickly designed even by a skilled engineer. In addition, the present invention can be used effectively even in a country such as a developing country where there are few skilled engineers, and the effect is great.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Computer Graphics (AREA)
  • Numerical Control (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

物体表面に複数のメッシュを定義し、該複数のメッシュの各々について、加工形状、表面粗さ曲線、視点位置、物体表面への入射光の方向、角度分布および強度、物体表面上における波長毎の反射率および散乱特性に関連したデータに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、該輝度に基づいて物体表面の形状を表示し、所望の物体表面の見た目が得られるように物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを修正する。

Description

物体表面修正方法、ワークの加工方法および加工システム
 本発明は、ヒトの視覚による見た目の物体表面(加工面)の形状を正確に事前に予測して物体表面の形状を修正する方法およびワークの加工方法に関する。
 NC工作機械による加工ではNC工作機械の加工誤差によって、加工面に見た目上の不具合が生じることがあるが、加工誤差の大きさの絶対値と見た目に感じる不具合の印象とは必ずしも一致しないことが経験的に知られている。見た目の印象にはコントラスト感度曲線などのヒトの視覚特性が影響していると考えられる。そこで、これまでにも、仕上げ加工面の見た目を評価するための方法が提案されている。
 特許文献1には、加工面における反射光の最大輝度と最小輝度とを演算し、最大輝度と最小輝度からコントラストを演算し、加工面の空間周波数を演算し、コントラストと空間周波数に基づき、コントラスト感度関数を用いて、加工面のコントラストがヒトの視覚にて感知可能であるか否かを判定するようにした加工面評価方法が開示されている。
 特許文献2には、物体の形状情報と視点情報を基に物体の画像を生成し、物体の形状情報と視点情報を基に、物体表面における反射或いは屈折情報を算出し、作成された物体の画像と、反射或いは屈折情報とを合成して画像を生成するようにした画像生成装置が開示されている。
国際公開第2014/155727号 特開2000-040164号公報
 こうした従来技術は全て加工面を撮影した画像データに基づく評価であり、加工後の加工面の良否を判定することは可能とはなるが、加工面の形状とヒトの視覚による見た目との関係は明らかにされていないため、ヒトの視覚による見た目の物体表面(加工面)の形状を正確に事前に予測し、所望の見た目となるような物体の表面形状を得ることができない。
 本発明は、こうした従来技術の問題を解決することを技術課題としており、ヒトの視覚による見た目の物体表面(加工面)の形状を正確に事前に予測して物体表面の形状を修正する方法およびワークの加工方法を提供することを目的としている。
 上述の目的を達成するために、本発明によれば、物体表面の形状をヒトの視覚に認識可能かを予測して、該予測に基づき物体表面を修正する表面形状修正方法において、
 物体の形状、表面粗さ曲線、視点位置、入射光および反射光に関連したデータに基づいて、物体表面の形状を予測する場合、
 前記物体表面を複数の領域に分割し、
 前記複数の領域の各々について、前記データに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、
 前記計算された輝度に基づいて、前記物体表面の形状がヒトの視覚で認識可能かを予測し、
 前記予測した物体表面の形状に基づき、所望の物体表面の見た目が得られるように前記物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを修正するようにした物体表面修正方法が提供される。
 また、本発明によれば、所望のワークの形状を得るためのCAM装置で生成した加工プログラムに基づいて工作機械を駆動しワークを加工するワークの加工方法において、
 ワークの加工形状、表面の表面粗さ曲線、視点位置、入射光および反射光に関連したデータに基づいて、物体表面の形状を予測する場合、
 物体表面を複数の領域に分割し、
 前記複数の領域の各々について、前記データに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、
 前記物体表面上の複数のメッシュの各々について、計算された輝度に基づいて、前記物体表面の形状がヒトの視覚で認識可能かを予測し、
 前記予測した物体表面の形状に基づき、所望の物体表面の見た目が得られるように前記物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを変更し、
 前記変更したデータに基づいて工作機械を駆動してワークを加工するようにしたワークの加工方法が提供される。
 更に、本発明によれば、工作機械と、
 前記工作機械で加工する物体の形状、表面粗さ曲線、視点位置、入射光および反射光に関連したデータに基づいて、物体表面の形状を予測する場合、
 前記工作機械で加工する物体表面を複数の領域に分割し、前記複数の領域の各々について、前記物体の形状と表面粗さ曲線に関連したデータに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、前記計算された輝度に基づいて、前記物体表面の形状がヒトの視覚で認識可能かを予測し、
 前記予測した物体表面の形状に基づき、所望の物体表面の見た目が得られるように前記物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを修正できる物体表面の予測表示装置とで構成された加工システムが提供される。
 本実施形態によれば、物体表面の形状を実際に製作した場合に、観察者によってどのように視覚的に認識されるかを事前に予測することが可能となり、例えば、数値制御工作機械によってワークを切削加工する場合に、CAD/CAM装置上で加工面の形状、工具経路、加工条件の変更を行ったり、NC装置の加減速時定数、ゲイン定数その他の補正パラメータの設定値の変更を行い望ましい加工面を創成することが可能となる。
本発明の好ましい実施形態による物体表面の予測表示装置のブロック図である。 本発明の好ましい実施形態による物体表面の予測表示方法を示すフローチャートである。 物体表面上における入射光、正反射光、散乱光、吸収される光を説明するための模式図である。 物体表面の反射特性の測定結果の一例を示すグラフである。 表面粗さによる乱反射を説明するための模式図である。 表面粗さが大きな表面における表面粗さと反射光の角度分布との関係を表すグラフである。 表面粗さが小さな表面における表面粗さと反射光の角度分布との関係を表すグラフである。 物体表面の特性を考慮した輝度計算方法を説明するための模式図である。 入射光の角度分布と反射光の角度分布を説明するための模式図である。 入射光の角度分布の一例を表すグラフである。 表面粗さが大きい場合について本発明による物体表面の予測結果を表示した印刷物の写真である。 図10Aと同一条件で実際に製作したワーク(物体)の加工面を撮影した写真である。 表面粗さが小さい場合について本発明による物体表面の予測結果を表示した印刷物の写真である。 図10Cと同一条件で実際に製作したワーク(物体)の加工面を撮影した写真である。 図1の物体表面の予測表示装置をCAD/CAM装置と組み合わせた実施形態を示すブロック図である。 本発明の好ましい実施形態による物体表面修正方法を示すフローチャートである。 補正パラメータとしてバックラッシ補正量を変更した場合の本発明による物体表面の予測結果を表示した印刷物の写真である。 図13Aと同一条件で実際に製作したワーク(物体)の加工面を撮影した写真である。 加工条件である送り速度を変更した場合の本発明による物体表面の予測結果を表示した印刷物の写真である。 図14Aと同一条件で実際に製作したワーク(物体)の加工面を撮影した写真である。 工具条件である工具径を変更した場合の本発明による物体表面の予測結果を表示した印刷物の写真である。 図15Aと同一条件で実際に製作したワーク(物体)の加工面を撮影した写真である。
 先ず、図3~図6Bを参照して、本発明における物体表面の視認性について説明する。
 一般的に、ヒトは物体表面から反射された光の強弱(輝度)を感じることによって、物体の形状や質感を認識している。物体表面に光が照射される場合の反射と散乱を模式的に示した図3を参照すると、物体を構成する材料の特性によって、入射光の一部は吸収され、また、材料の特性に加えて入射光の波長よりも微細な表面形状の変化によって散乱する。散乱光は物体表面のマクロ的な方向によらず全方位に概ね均等に伝播する。入射光の波長よりも大きな表面形状の変化による正反射光は、入射光と物体表面の向きとの関係で方向が決定される。
 今、入射光の全てが散乱光として反射(再放射)されると、その反射光は物体表面の向きや形状によらず全方位に伝播するので、物体表面の向きや形状を視覚的に認識することはできない、つまり視認性が悪くなる。反対に散乱光として反射される成分が小さく、正反射光成分が大きくなると、物体表面の向きや形状を視覚的に認識し易くなり、視認性がよくなる。
 また、波長ごとに反射率が異なれば、物体表面の色の変化として認識されることとなる。図4は、2種類の金属材料について波長に対する反射特性の測定結果を示している。図4において、正反射光と散乱光を合計した反射率を実線で、散乱光のみの反射率を破線で示す。実線で示す反射率が100%となっていないことは、物体表面への吸収を示している。第1の材料では、散乱光の割合が小さく、全ての波長で略同じ反射率となっているため、光沢のある白っぽい表面となる。第2の材料では、散乱光の割合が大きく、短波長での反射率が低くなっているので、光沢のない赤みがかった表面となる。
 切削加工など機械加工された表面では、その表面粗さ曲線の振幅および/または波長が、入射光の波長よりも大きくなっていることが多い。そのような場合、物体表面への入射光は、図5に示すように、表面の凹凸により乱反射する。一定の方向から光が入射した場合でも、物体表面の方向が変化すると、反射光の方向は様々に変化し、完全な平面光が入射した場合の反射光の方向に対して角度分布をもって反射することとなる。こうした場合であっても、散乱光の割合が大きい場合と同様に、物体表面の形状変化は明確に視認されず、視認性が悪くなる。
 反射光の角度分布は、物体の表面粗さ曲線から幾何学的に計算することが可能である。図6A、6Bは、切削加工された金属表面の粗さ曲線を測定に求め、それに基づいて反射光の角度分布を計算により求めた一例を示している。表面粗さが大きい場合(図6A)には、反射光の角度分布が広がって、加工面の形状変化は視認し難くなり、視認性が悪くなる。表面粗さが小さくなると(図6B)、反射光の角度分布が狭まり、加工面の形状変化が視認し易くなり、視認性がよくなる。
 例えば、非特許文献1では、250mmの距離から金属表面を観察したとき、ヒトの視覚の解像度は約0.25mmとされている、つまり、表面粗さの曲線の波長が0.25mm以上になると、それは表面粗さとしてではなく、形状変化として視覚的に認識されることとなる。ヒトの視覚、つまり裸眼による観察を前提とすると、加工面からの反射光は、概ね加工面の表面粗さの波長が数百nm以下の場合散乱光として認識され、数百nm~数百μmの場合乱反射光として認識され、数百μm以上の場合形状変化として認識されると言える。なお、本願では、形状変化は物体表面に意図的に設けた形状または局所的に発生した段差や形状誤差を意味し、表面粗さは物体表面の全体またはある範囲を以って部分的に広がる数百μm以下の周期的な凹凸を意味する。
 そこで、物体(製品)表面がヒトの視覚によってどのように見えるのか予測することが、製品を製造する上で重要となる。例えば、ワークをフライス盤のような加工機によって加工する場合、ワークの加工面がヒトの視覚によってどのように見えるのか、視認性を考慮してワークを設計したりワークの加工の条件を決定することが重要となる。
 図1を参照すると、ヒトの視覚によって物体表面がどのように見えるかを予測表示する物体表面の予測表示装置の本発明の好ましい実施形態が図示されている。物体表面の予測表示装置10(以下、単に予測表示装置10と記載する)は、入力部12、データ記憶部14、輝度計算部16、RGB分配部18、出力部20を主要な構成要素として備えており、RAM、ROM、CPU、ハードドライブ、SSD、出入力ポートおよびこれらを相互接続する双方向バスを備えた、例えばコンピューターのような電子機器によって構成することができる。
 入力部12は、データ記憶部14に種々のデータを入力するキーボード、タッチパネル、LAN等のコンピューターネットワークのような通信手段を介して予測表示装置10に接続されたサーバーやパーソナルコンピューター、或いは、予測表示装置10の出入力ポートに装着可能な不揮発性メモリ、例えばUSBメモリ等によって構成することができる。
 データ記憶部14は、ハードドライブやSSDのような記憶装置から形成することでき、物体の形状またはワークの加工形状に関連したデータを記憶する形状データ記憶領域、物体表面の表面粗さ曲線に関連したデータを記憶する表面粗さ曲線記憶領域、物体表面に対する観察者の視点位置に関連したデータ、例えば座標位置を記憶する視点位置記憶領域、入射光の方向、角度分布および強度等の入射光に関連したデータを記憶する入射光記憶領域、および、物体表面における波長毎の反射率および散乱特性等に関連したデータを記憶する反射光記憶領域を有している。
 輝度計算部16は、後述するように、データ記憶部14に記憶されているデータに基づいて、物体表面の反射光および散乱光の輝度を計算する。RGB分配部18は、後述するように、データ記憶部14に記憶されている物体表面の波長毎の反射率に基づいて、輝度計算部16で求めた物体表面の反射光および散乱光の輝度をR(赤)G(緑)B(青)の輝度に変換する。出力部20は、液晶パネルのような表示装置や、カラープリンターによって形成することができ、RGB分配部18で求めたR(赤)G(緑)B(青)の各々の輝度に基づいて、操作者が視覚的に認識できるように、物体表面を表示または印刷する。
 次に、図2に示すフローチャートを参照しつつ、予測表示装置10の作用を説明する。
 先ず、入力部12から、データ記憶部14に物体の形状データ(ワークの加工形状)、表面粗さ曲線に関連したデータ、視点位置に関連したデータ、入射光に関連したデータ、反射光に関連したデータが入力される。これらのデータは、測定結果に基づくデータとしたり、数学モデルによるシミュレーション結果に基づくデータ、データベースによる予測に基づくデータ、或いは、これらの組合せとすることができる。
 例えば、形状データに数学モデルによるシミュレーションによる予測結果を用いた場合、その形状を実際に製作したときに、その加工面が観察者によってどのように視覚的に認識されるかを事前に予測することが可能となる。また、後述するように、数学モデルによるシミュレーションを行うためには、シミュレータに工具条件や加工条件その他のパラメータが入力される。工具条件は、工具の種類、工具径および最適の切削速度等を含むことができる。加工条件は、ピックフィード量、送り速度および主軸回転速度等を含むことができる。パラメータは、NC装置の加減速時定数、ゲイン定数その他の補正パラメータを含むことができる。
 輝度計算部16は、これらのデータをデータ記憶部14から読み込み、視点位置から物体表面を観察したときの物体表面上の各点の輝度を計算する(ステップS10)。ある視点から観察したときの物体表面のある点の輝度は、物体表面上のある点から視点へ入射する光の総量である。図7を参照すると、物体表面上の点Aの輝度は、点Aからの散乱光と、点Aからの反射光のうち、点Aと視点とを結ぶ直線に平行な成分の総和として求められる。同様に、点Aとは異なる点Bの輝度は、点Bからの散乱光と点Bからの反射光のうち、点Bと視点とを結ぶ直線に平行な成分の総和となる。
 ここで、入射光として、例えば太陽光線は一方向からの平行光線と見做すことができるが、実際には周囲環境からの反射光や散乱光も含まれており、完全に一方向からの平行光線とはならない。同様に、室内においても、入射光は完全に一方向からの平行光線とならず、図8に模式的に示すように角度分布を有している。このように、入射光の角度分布が存在する場合においても、各方向からの入射光に対する反射光を計算して重ね合わせることによって、反射光の角度分布を求めることができる。入射光の角度分布は、例えば図9に示すように、各方向からの入射光の強度を測定または仮定して、最大となる方向を入射光の中心とし、入射光の中心からの角度の変化に対する強度の変化として表現することができる。図9では、各方向からの入射光の強度を中心の入射光の強度で規格化して示されている。
 物体表面から視点へ入射する光の輝度Irの計算には、例えば米国計算機学会論文集の1982年1月号のVol. 1, No. 1,第7~24頁(ACM Transactions on Graphics, Vol. 1, No. 1, January 1982, Pages 7-24)に掲載の「コンピューターグラフィックスのための反射率モデル(A Reflectance Model for Computer Graphics)」に記載されている以下の式を用いることができる。
Figure JPOXMLDOC01-appb-M000001
である。
 輝度計算部16において計算された輝度は、RGB分配部18において、物体表面における波長毎の反射率の違いを考慮して、R(赤)G(緑)B(青)の各々の輝度に分配される(ステップS12)。より詳細には、分光光度計により測定された波長ごとの反射率Rr(赤、700nm)、Rg(緑、546nm)、Rb(青、436nm)を用い、各波長の輝度の合計が輝度計算部16において計算された輝度Irとなるよう輝度R、輝度G、輝度Bに分配される。
Figure JPOXMLDOC01-appb-M000002
 以上の処理を物体表面を矩形または三角形のような適当なメッシュに分割して、各メッシュについて上記の処理を行うことによって、物体表面の表面粗さ、反射率、散乱といった特性(表面特性)を考慮して、出力部20において物体表面が例えば液晶パネル上に表示したり、或いは、カラープリンターによって印刷することによって、表示される(ステップS14)。
 なお、メッシュの形状は、矩形または三角形に限定されるものではなく、物体表面が適当な形状に分割できればよい。また、隣接するメッシュ間でその形状が異なっていてもよい。
 本実施形態の予測表示装置10により、実際に物体表面のヒトの視覚による見え方を予測した結果を図10A~10Dに示す。図10A、10Bは表面粗さが図10C、10Dに比べて大きな場合を示しており、図10A、10Cは予測した結果を印刷したものであり、図10B、10D下側の画像は実際に製作したワーク(物体)の表面を撮影した写真である。
 図10A~10Dにおいて、参照符号「M」で示すように、物体表面の中心付近に比較的明確な筋が観察されるが、これは中心付近で物体表面の法線方向が変化しているためである。図10A~10Dからは、本実施形態の予測表示装置10によれば、予測結果と実際の物体表面の撮影結果の双方において、表面粗さが小さく乱反射が少ない場合には、中心付近の形状変化が一層明確に観察され、表面粗さが大きい場合には形状変化が視認し難くなっていることが分かる。このように、本実施形態による予測表示装置10によれば、物体表面の表面粗さを考慮して物体表面がヒトの視覚によってどのように見えるか予測することが可能となる。
 但し、データ記憶部14に記憶される形状データ、表面粗さ曲線に関連したデータ、視点位置に関連したデータは、例えば仕様として予め決定したり、実際に測定したり、或いは、数学モデルによって比較的正確なデータを入力可能とである。然しながら、入射光に関連したデータ(入射光の方向、角度分布および強度)と、反射光に関連したデータ(波長毎の反射率、散乱特性)は、その正確な値を測定できない場合があるほか、予測も困難であることが多く、それが予測結果に影響することがある。更には、出力部20を構成するディスプレイやプリンターの特性によっても、結果が異なる場合があり得る。
 そこで、実際に製作した物体表面(ワークの加工面)の観察結果と、予測表示装置10による予測結果とを比較し、ヒトの視覚による実際の見え方と、予測結果とが異なる場合には、入射光に関連したデータ(入射光の方向、角度分布および強度等)と、反射光に関連したデータ(波長毎の反射率、散乱特性等)を修正した物体表面(ワークの加工面)の予測をやり直す。入射光の方向、角度分布および強度や散乱特性を変更すると、物体表面の明るさや形状変化の視認性が変化し、物体表面(ワーク加工面)における波長毎の反射率を変更すると物体表面の色が変化する。こうしたデータの修正を実際の見え方と予測結果とが一致するまで繰り返して、これらのデータを校正することにより一層正確な予測が可能となる。
 こうして構成した入射光に関連したデータ(入射光の方向、角度分布および強度等)と、反射光に関連したデータ(波長毎の反射率、散乱特性等)とを保存しておくことで、形状データ、表面粗さ曲線に関連したデータおよび視点位置に関連したデータを変更した場合に、物体表面がヒトの視覚によってどのように視認されるかを予測することが可能となり、例えば、数値制御工作機械によってワークを切削加工する場合に、CAD/CAM装置上で加工面の形状、工具経路、加工条件の変更を行ったり、NC装置の加減速時定数、ゲイン定数その他の補正パラメータの設定値の変更を行い望ましい加工面を創成することが可能となる。
 図11を参照すると、本発明の予測表示装置10を工作機械100を支援するCAD/CAM装置と組み合わせた実施形態が示されている。図11において、CAD装置102にて生成されたワークの設計データが、CAM装置104に送出されると共に、ワークの加工形状データとしてデータ記憶部14に入力される。CAM装置104は、CAD装置102からの設計データに基づいて、工作機械100によりワークを加工するための加工プログラムを生成する。CAM装置104により生成された加工プログラムは、工作機械100のNC装置108に出力される。NC装置108は、加工プログラムに基づいて、工作機械100の各送り軸(図示せず)のサーボモータを駆動するための電流を出力する。
 CAM装置104が生成する加工プログラムには、ワークに対する工具の相対的な経路(工具経路)に関する情報が含まれている。また、CAM装置104には、工具条件や加工条件その他のパラメータ108が入力される。工具条件には、工具の種類、工具径および最適の切削速度等が含まれる。加工条件には、ピックフィード量、送り速度および主軸回転速度等が含まれる。
 こうした工具経路や加工条件、パラメータは、CAM装置104から加工シミュレータ110にも出力される。加工シミュレータ110は、CAM装置104からの工具経路や加工条件、パラメータに基づいて、工作機械100による加工を計算機にて模擬する。加工シミュレータ110は、加工後のワークの加工面の表面粗さ曲線に関連したデータをデータ記憶部14に出力する。ワークの加工面の表面粗さ曲線は、ピックフィード量および工具径からカスプ高さを計算することによって求めることができる。カスプ高さは、以下の式から計算することができる。
Figure JPOXMLDOC01-appb-M000003
但し、
xはピックフィード量
Rは工具径
である。
 図12は、本発明の好ましい実施形態による物体表面修正方法を示すフローチャートある。図12において、輝度計算部16は、これらのデータをデータ記憶部14から読み込み、視点位置からワークの加工面を観察したときのワーク加工面上の各点の輝度を計算する(ステップS20)。輝度計算部16において計算された輝度は、RGB分配部18において、ワーク加工面における波長毎の反射率の違いを考慮して、R(赤)G(緑)B(青)の各々の輝度に分配される(ステップS22)。ワーク加工面の表面粗さ、反射率、散乱といった特性(表面特性)を考慮して、出力部20においてワーク加工面が例えば液晶パネル上に表示したり、或いは、カラープリンターによって印刷することによって表示される(ステップS24)。
 次いで、例えば、工作機械のオペレータのようなユーザが、表示された加工面が意図したように見えるか、或いは、所望の加工面の見た目が得られるかどうかを目視により判定する(ステップS26)。表示された加工面が意図したものでない場合(ステップS26のNoの場合)、ワークの形状(加工面の形状)および/または表示粗さ曲線を変更し(ステップS28)、再びワークの加工面を表示し、加工面が意図した見え方になる(ステップS26でYesとなる)まで繰り返す。
 表示された加工面が意図した見え方のものであると判定されると(ステップS26のYes)、最終的なワークの形状データおよび/または表面粗さ曲線を実現する加工プログラムや加工条件、パラメータが演算される(ステップS30)。
 本実施形態によれば、上述したように、実際にワークをする前に、CAD装置102およびCAM装置104でワークの形状(加工面の形状)、工具経路、加工条件の変更を行ったり、NC装置の加減速時定数、ゲイン定数その他の補正パラメータの設定値の変更を行うことができる。シミュレータに入力される加工条件、工具条件、パラメータを変更することによって、ワーク(物体)の形状に関連したデータおよび表面粗さ曲線に関連したデータが変更される。
 例えば、工具径を変更することによって、加工面の表面粗さ曲線の波長を保持しつつ振幅を変更するこができる。或いは、工具径とピックフィード量とを変更することによって、加工面の表面粗さ曲線の振幅を保持しつつ波長を変更するこができる。NC装置の加減速時定数、ゲイン定数その他の補正パラメータの設定値を変更することによって形状データが変更され、工具経路やピークフィード量といった加工条件および/または工具径のような工具条件を変更することによって、表面粗さ曲線が変更される。
 以下、他の実施例について説明する。
 補正パラメータとしてバックラッシ補正量を変更した例を図13A、13Bに示す。バックラッシ補正は、運動方向の反転に伴う運動誤差を低減するために、機械の運動方向反転に伴う位置誤差分を予め位置指令に加えることである。バックラッシ補正量は、その加える位置誤差を定める補正パラメータである。図13Aは、本発明による予測結果を示し、図13Bは、実際に加工を行った結果を示している。図13A、13Bにおいて(I)、(II)、(III)は、それぞれバックラッシ補正量を140、53、31とした場合を示している。バックラッシ補正量以外の加工条件、工具条件、パラメータは同一である。図13Aに示す本発明による予測結果では、バックラッシ補正量を140とした(I)の場合には、参照符号「M」で示すように、形状変化に起因する筋が見えているが、バックラッシ補正量を53((II)の場合)、31((III)の場合)に修正することで、前記筋が見えなくなってくるという予測結果を得ている。図13Bに示すように、実際の加工結果においても、同様な結果を得ており、本発明の有効性が確認された。
 加工条件である送り速度を変更した例を図14A、14Bに示す。ここで、送り速度は、工具とワークとの間の相対速度である。図14Aは、本発明による予測結果であり、図14Bは、予測結果に対応する送り速度を使って、実際に加工を行った結果である。図14A、14Bにおいて(I)、(II)、(III)は、それぞれ送り速度を1000mm/min、2000mm/min、3000mm/minとした場合を示している。送り速度以外の加工条件、工具条件、パラメータは同一である。図14Aの本発明を用いた予測結果では、送り速度が1000 mm/minである(I)の場合には、参照符号「M」で示すように形状変化に起因する筋が見られたが、送り速度を2000mm/min((II)の場合)、3000mm/min((III)の場合)と増加するに従い、前記筋が見えにくくなっていることが分る。同様な加工実験を行った場合でも、図14Bの(I)~(III)に示すように、予測結果と同様な傾向が確認された。
 工具条件である工具径を変更した例を図15A、15Bに示す。図15Aは、ピックフィード量を160μm、主軸回転速度を15000min-1として同一の加工条件およびパラメータの下、工具径を6mm((I)の場合)と、2mm((II)の場合)とした場合の予測結果を示している。その結果、工具径が6mm((I)の場合)の例では加工面の算術平均粗さRaが0.2832μmであり、工具径が2mm((II)の場合)の例では加工面の算術平均粗さRaが0.8410μmであった。図15Bは、同一の加工条件およびパラメータの下で、工具径のみ6mm((I)の場合)、2mm((II)の場合)として実際に加工を行い得られたワークの加工面の写真である。
 本発明による予測結果である図15Aにおいて、工具径が6mmの(I)の場合、Raが0.2832μmであり、参照符号「M1」、「M2」で示すように、形状変化に起因する2本の筋が見られた。一方、(II)の場合、工具径が2mmとしたことでRaが0.8410μmとなるが、前記2本の筋は見えにくくなっていることが分る。同じ条件で加工実験を行った場合でも、図15Bに示すように、予測結果と同様な傾向を確認できた。
 このように、加工面の形状、工具経路、加工条件の変更を行ったり、NC装置の加減速時定数、ゲイン定数その他の補正パラメータの設定値の変更を行いつつ、ワークの加工面形状を予測することによって、効率的に所望の加工面を創成することが可能となる。
 以下、具体的に本発明を利用した金型での事例を説明する。金型の製作日数は、数日程度を要する。従来、金型設計を行った後、金型の部品が製造される。従って、製造された金型部品の見え方の評価は、部品製造後でないとできない。その為に、見え方の評価が悪い場合には、金型の再設計、再製造を可及的迅速に行う必要があり、技術者の負担になっている。また、不良な製造された部品は再利用が難しいので、材料の大きな損失にもなる。
 このような中で、本発明によれば、金型部品を製造することなく、顧客が満足いく見え方の金型設計を予測することができ、金型部品を製造した場合でも、顧客に満足いく見え方の金型を供給できるようになる。本発明によれば、単に時間と費用とを低減できるということに留まらず、熟練の技術者でなくても、金型を容易かつ迅速に設計可能になるとの効果を奏する。また、本発明は、発展途上国のような、熟練の技術者が少なく国においても、有用に活用でき、その効果は大である。
 10  予測表示装置
 12  入力部
 14  データ記憶部
 16  輝度計算部
 18  RGB分配部
 20  出力部
 100  工作機械
 102  CAD装置
 104  CAM装置
 108  パラメータ
 108  装置
 110  加工シミュレータ

Claims (7)

  1.  物体表面の形状をヒトの視覚に認識可能かを予測して、該予測に基づき物体表面を修正する表面形状修正方法において、
     物体の形状、表面粗さ曲線、視点位置、入射光および反射光に関連したデータに基づいて、物体表面の形状を予測する場合、
     前記物体表面を複数の領域に分割し、
     前記複数の領域の各々について、前記データに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、
     前記計算された輝度に基づいて、前記物体表面の形状がヒトの視覚で認識可能かを予測し、
     前記予測した物体表面の形状に基づき、所望の物体表面の見た目が得られるように前記物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを修正することを特徴とした物体表面修正方法。
  2.  物体表面の表面粗さ曲線、入射光および反射光に関連したデータの少なくとも1が測定できる請求項1に記載の物体表面修正方法。
  3.  試験片を準備し、
     前記試験片の表面について、加工形状、表面粗さ曲線、視点位置、試験片表面への入射光の方向、強度、試験片表面上における波長毎の反射率および散乱特性を実測し、
     実測した加工形状、表面粗さ曲線、視点位置、試験片表面への入射光の方向、強度、試験片表面上における波長毎の反射率および散乱特性に関連したデータに基づいて、入射光の角度分布を変更しながら試験片の表面の形状予測、表示を繰返し、
     表示された試験片の表面形状と、観察者の視覚により知覚された試験片表面形状とが一致するように、試験片表面への入射光の角度分布を校正することを含む請求項1に記載の物体表面修正方法。
  4.  所望のワークの形状を得るためのCAM装置で生成した加工プログラムに基づいて工作機械を駆動しワークを加工するワークの加工方法において、
     ワークの加工形状、表面の表面粗さ曲線、視点位置、入射光および反射光に関連したデータに基づいて、物体表面の形状を予測する場合、
     物体表面を複数の領域に分割し、
     前記複数の領域の各々について、前記データに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、
     前記計算された輝度に基づいて、前記物体表面の形状がヒトの視覚で認識可能かを予測し、
     前記予測した物体表面の形状に基づき、所望の物体表面の見た目が得られるように前記物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを変更し、
     前記変更したデータに基づいて工作機械を駆動してワークを加工することを特徴としたワークの加工方法。
  5.  前記表面粗さ曲線に関連したデータは、工具条件と加工条件とからなり、
     前記ワーク表面の形状がヒトの視覚で認識可能かを予測し、該予測に基づき所望のワーク表面の形状が得られるように前記工具条件と前記加工条件とを変更し、
     変更した工具条件と加工条件に基づいて前記CAM装置で加工プログラムを生成し、
     生成した前記加工プログラムで工作機械を駆動してワークを加工することを特徴とした請求項4に記載のワークの加工方法。
  6.  前記表面粗さ曲線に関連したデータは、工作機械のNC装置の補正パラメータであり、
     前記ワーク表面の形状がヒトの視覚で認識可能かを予測し、該予測に基づき所望のワーク表面の形状が得られるように前記補正パラメータを変更し、
     変更した補正パラメータで工作機械を駆動してワークを加工することを特徴とした請求項4に記載のワークの加工方法。
  7.  工作機械と、
     前記工作機械で加工する物体の形状、表面粗さ曲線、視点位置、入射光および反射光に関連したデータに基づいて、物体表面の形状を予測する場合、
     前記工作機械で加工する物体表面を複数の領域に分割し、前記複数の領域の各々について、前記物体の形状と表面粗さ曲線に関連したデータに基づいて視点位置から物体表面を観察したときの物体表面の輝度を計算し、前記計算された輝度に基づいて、前記物体表面の形状がヒトの視覚で認識可能かを予測し、
     前記予測した物体表面の形状に基づき、所望の物体表面の見た目が得られるように前記物体の形状または表面粗さ曲線の少なくとも1つに関連したデータを修正できる物体表面の予測表示装置とで構成された加工システム。
PCT/JP2017/007999 2016-02-29 2017-02-28 物体表面修正方法、ワークの加工方法および加工システム WO2017150578A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/080,530 US10788812B2 (en) 2016-02-29 2017-02-28 Object-surface correcting method, and processing method and processing system for workpiece
EP17760042.6A EP3425540B1 (en) 2016-02-29 2017-02-28 Object-surface correcting method and processing method
CN201780013796.6A CN108701167B (zh) 2016-02-29 2017-02-28 物体表面修正方法、工件的加工方法以及加工系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038223 2016-02-29
JP2016038223A JP6762003B2 (ja) 2016-02-29 2016-02-29 物体表面修正方法およびワークの加工方法

Publications (1)

Publication Number Publication Date
WO2017150578A1 true WO2017150578A1 (ja) 2017-09-08

Family

ID=59744107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007999 WO2017150578A1 (ja) 2016-02-29 2017-02-28 物体表面修正方法、ワークの加工方法および加工システム

Country Status (5)

Country Link
US (1) US10788812B2 (ja)
EP (1) EP3425540B1 (ja)
JP (1) JP6762003B2 (ja)
CN (1) CN108701167B (ja)
WO (1) WO2017150578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147232A1 (ja) * 2017-02-10 2018-08-16 国立大学法人神戸大学 運動評価方法、評価装置および該評価方法を用いたパラメータ調節方法、ワークの加工方法および工作機械
WO2022034646A1 (ja) * 2020-08-12 2022-02-17 三菱電機株式会社 表示制御装置、加工シミュレーション装置、表示制御方法及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599956B2 (ja) 2017-10-23 2019-10-30 ファナック株式会社 工作機械の加工条件選定装置
US20190196422A1 (en) * 2017-12-22 2019-06-27 Industrial Technology Research Institute Tuning system, simulation unit and tuning and simulation method thereof
CN115032175B (zh) * 2022-04-22 2024-09-10 清华大学深圳国际研究生院 散射介质的物理特性估计方法及装置
JP7406053B1 (ja) * 2023-07-25 2023-12-26 ファナック株式会社 形状復元装置およびコンピュータ読み取り可能な記憶媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123657A (ja) * 1997-10-24 1999-05-11 Seiko Seiki Co Ltd 力情報を考慮したcad/cam装置及び加工装置
JP2000040164A (ja) 1998-07-24 2000-02-08 Dainippon Printing Co Ltd 画像生成装置
US6246416B1 (en) * 1998-12-01 2001-06-12 Silicon Graphics, Inc. Method for modeling reflection of light from an anisotropic surface
JP2009282909A (ja) * 2008-05-26 2009-12-03 Sodick Co Ltd 加工条件生成装置
WO2014155727A1 (ja) 2013-03-29 2014-10-02 株式会社牧野フライス製作所 ワークの加工面評価方法、制御装置および工作機械
WO2015027196A1 (en) * 2013-08-22 2015-02-26 Bespoke, Inc. Method and system to create custom products
JP2015064674A (ja) * 2013-09-24 2015-04-09 大日本印刷株式会社 不陸隠蔽性可視化装置、不陸隠蔽性可視化方法、プログラム、記憶媒体、エンボス版製造方法、シート製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO206596A0 (en) * 1996-08-30 1996-09-26 Anca Pty Ltd Tool grinding simulation system
JP2982060B2 (ja) * 1997-04-28 1999-11-22 セイコー精機株式会社 研磨エネルギー制御装置
EP0875809A3 (en) 1997-04-28 2000-09-06 Seiko Seiki Kabushiki Kaisha CAD/CAM apparatus and machining apparatus
EP2202688B1 (en) * 2007-02-13 2013-11-20 Panasonic Corporation System, method and apparatus for image processing and image format

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11123657A (ja) * 1997-10-24 1999-05-11 Seiko Seiki Co Ltd 力情報を考慮したcad/cam装置及び加工装置
JP2000040164A (ja) 1998-07-24 2000-02-08 Dainippon Printing Co Ltd 画像生成装置
US6246416B1 (en) * 1998-12-01 2001-06-12 Silicon Graphics, Inc. Method for modeling reflection of light from an anisotropic surface
JP2009282909A (ja) * 2008-05-26 2009-12-03 Sodick Co Ltd 加工条件生成装置
WO2014155727A1 (ja) 2013-03-29 2014-10-02 株式会社牧野フライス製作所 ワークの加工面評価方法、制御装置および工作機械
WO2015027196A1 (en) * 2013-08-22 2015-02-26 Bespoke, Inc. Method and system to create custom products
JP2015064674A (ja) * 2013-09-24 2015-04-09 大日本印刷株式会社 不陸隠蔽性可視化装置、不陸隠蔽性可視化方法、プログラム、記憶媒体、エンボス版製造方法、シート製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"A Reflectance Model for Computer Graphics", ACM TRANSACTION ON GRAPHICS, vol. 1, no. 1, January 1982 (1982-01-01), pages 7 - 24
See also references of EP3425540A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147232A1 (ja) * 2017-02-10 2018-08-16 国立大学法人神戸大学 運動評価方法、評価装置および該評価方法を用いたパラメータ調節方法、ワークの加工方法および工作機械
WO2022034646A1 (ja) * 2020-08-12 2022-02-17 三菱電機株式会社 表示制御装置、加工シミュレーション装置、表示制御方法及びプログラム
JPWO2022034646A1 (ja) * 2020-08-12 2022-02-17
JP7479480B2 (ja) 2020-08-12 2024-05-08 三菱電機株式会社 表示制御装置、加工シミュレーション装置、表示制御方法及びプログラム

Also Published As

Publication number Publication date
CN108701167A (zh) 2018-10-23
EP3425540A1 (en) 2019-01-09
EP3425540A4 (en) 2019-11-06
JP2017156170A (ja) 2017-09-07
JP6762003B2 (ja) 2020-09-30
US10788812B2 (en) 2020-09-29
US20190064771A1 (en) 2019-02-28
EP3425540B1 (en) 2021-09-29
CN108701167B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2017150578A1 (ja) 物体表面修正方法、ワークの加工方法および加工システム
US11966209B2 (en) Simulator, numerical control device, and simulation method
US10018989B2 (en) Method of evaluating a machined surface of a workpiece, a controlling apparatus and a machine tool
WO2016125797A1 (ja) 形状評価方法および形状評価装置
EP2098840A1 (en) Texture map of coated color, its making method, making program, making system and data structure
JP2021530712A (ja) 成形されたガラスシートの表面を測定するためのシステム及び方法
US20230339188A1 (en) Predicted object attributes
WO2016203951A1 (ja) 面材模様仕上がりシミュレーション装置及び面材模様仕上がりシミュレーション方法
EP3582039B1 (en) Object surface evaluation method, evaluation device, workpiece machining method using said evaluation method, and machine tool
MX2008014907A (es) Metodo para analisis de las propiedades de reflexion.
JP2007256240A (ja) 表面歪み欠陥検査装置、検査方法及びコンピュータプログラム
DE112020007505T5 (de) Anzeigesteuerungseinrichtung, verarbeitungssimulations-vorrichtung,anzeigesteuerungsverfahren und -programm
CN117473653B (zh) 一种车辆的后视镜尺寸确定方法及电子设备
WO2023017560A1 (ja) 加工面品位を評価する評価システム及び評価用プログラム
WO2023171095A1 (ja) 溶接における欠陥予測システム、機械学習装置、欠陥予測方法、およびプログラム
KR100187215B1 (ko) 제품의 제조성 평가방법
TW202117276A (zh) 用於測量弧曲玻璃片之表面的系統及方法
JP2019016145A (ja) 板厚寸法評価方法及びその装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017760042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017760042

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760042

Country of ref document: EP

Kind code of ref document: A1