WO2017150277A1 - 光伝送装置 - Google Patents

光伝送装置 Download PDF

Info

Publication number
WO2017150277A1
WO2017150277A1 PCT/JP2017/006387 JP2017006387W WO2017150277A1 WO 2017150277 A1 WO2017150277 A1 WO 2017150277A1 JP 2017006387 W JP2017006387 W JP 2017006387W WO 2017150277 A1 WO2017150277 A1 WO 2017150277A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
awg
input
signals
optical signal
Prior art date
Application number
PCT/JP2017/006387
Other languages
English (en)
French (fr)
Inventor
友理恵 松山
健史 小熊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP17759743.2A priority Critical patent/EP3425827B1/en
Priority to US16/078,912 priority patent/US10659165B2/en
Priority to JP2018503057A priority patent/JP6645571B2/ja
Priority to CN201780013625.3A priority patent/CN109075885B/zh
Publication of WO2017150277A1 publication Critical patent/WO2017150277A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects

Definitions

  • the present invention relates to an optical transmission device, and more particularly to an optical transmission device used in an optical communication network.
  • WDM wavelength division multiplexing
  • optical transmission devices are required to have greater long-distance transmission and operational flexibility, and research and development of elastic optical technology is also being conducted.
  • Patent Document 1 and Non-Patent Document 1 disclose a technique related to an optical transmission apparatus that can autonomously change the passband of an optical signal during operation in an optical network using WDM technology.
  • CDC Colorless, “Directionless” and “Contentionless”-ROADM
  • WSS wavelength selective switches
  • Non-Patent Document 1 As one method for solving the problem of operational flexibility, there is a configuration disclosed in Non-Patent Document 1, but this configuration cannot solve the above-mentioned problem of band narrowing. In addition, there is a problem that the flexible grid indispensable for realizing the elastic network cannot be supported.
  • an object of the present invention is to provide an optical transmission apparatus that realizes flexibility of optical communication such as wavelength reuse while suppressing optical signals from being cut by band narrowing of an optical filter, and is compatible with a flexible grid. Is to provide.
  • the optical transmission apparatus includes a recursive AWG that filters each optical signal input to each input port.
  • Each of the optical signals is configured to be able to assign a plurality of wavelength multiplexed signals within one channel band, and each of the optical signals is filtered in units of the channel, and each of the input ports of the cyclic AWG
  • the pass bandwidth corresponds to the channel bandwidth.
  • an optical transmission apparatus that realizes the flexibility of optical communication such as wavelength reuse while suppressing optical signals from being cut by band narrowing of an optical filter, and is compatible with a flexible grid.
  • FIG. 2 is a diagram for explaining the optical transmission apparatus according to the first embodiment
  • FIG. 3 is a diagram for explaining a bandwidth of a channel used in the optical transmission apparatus according to the first embodiment.
  • FIG. 3 is a diagram for explaining details of a revolving AWG used in the optical transmission apparatus according to the first embodiment; It is a figure for demonstrating the optical transmission apparatus concerning a comparative example. It is a figure for demonstrating the bandwidth of the channel used with the optical transmission apparatus concerning a comparative example.
  • FIG. 6 is a diagram for explaining another configuration example of the optical transmission apparatus according to the first embodiment; 10 is a diagram for illustrating a problem in the second embodiment.
  • FIG. FIG. 6 is a diagram for explaining a pass bandwidth of a circulating AWG included in the optical transmission device according to the second exemplary embodiment;
  • FIG. 1 is a diagram for explaining the outline of the optical transmission apparatus according to each embodiment.
  • the optical transmission apparatus according to each embodiment has a recurring AWG (Arrayed Waveguide Grating) that filters each optical signal (Ch11 to Ch33) input to each input port P1 to P3.
  • AWG Arrayed Waveguide Grating
  • optical signals Ch11 to Ch13 are input to the input port P1
  • optical signals Ch21 to Ch23 are input to the input port P2
  • optical signals Ch31 to Ch33 are input to the input port P3.
  • Each optical signal is configured so that a plurality of wavelength multiplexed signals can be allocated within one channel band (see FIG. 3).
  • Each optical signal is filtered on a channel basis.
  • the optical signals Ch11 to Ch33
  • optical signals Ch11, Ch32, and Ch23 are output from the output port.
  • the pass bandwidth of each input port of the recursive AWG corresponds to the bandwidth of the channel.
  • the optical signal (Ch11, Ch11, P11) having a predetermined bandwidth is obtained by expanding the pass bandwidth of each of the input ports P1 to P3 of the revolving AWG to the bandwidth of the channel.
  • Each of Ch12, Ch13,... Ch33) can be filtered.
  • FIG. 2 is a diagram for explaining the optical transmission apparatus according to the first embodiment.
  • the optical transmission device 1 according to the present embodiment is configured using a plurality of beam splitters BS_1 to BS_3 and a plurality of circularity AWG_1 to AWG_3.
  • the optical transmission device 1 according to the present embodiment can be used for an optical node in an optical communication network, more specifically, an optical cross-connect node.
  • each input side of the beam splitters BS_1 to BS_3 is connected to three input side paths IN_ # 1 to IN_ # 3.
  • the optical signals output from the beam splitters BS_1 to BS_3 are supplied to the circularity AWG_1 to AWG_3 provided at the subsequent stage of the beam splitters BS_1 to BS_3.
  • the beam splitters BS_1 to BS_3 are one-input three-output (1 ⁇ 3) beam splitters, and the revolving AWG_1 to AWG_3 are three-input one-output (3 ⁇ 1) revolving AWGs.
  • the output ports of the circulating AWG_1 to AWG_3 are connected to the output side paths OUT_ # 1 to OUT_ # 3, respectively.
  • Each of the beam splitters BS_1 to BS_3 outputs each optical signal input to each of the beam splitters BS_1 to BS_3 to each input port of the circulating AWG_1 to AWG_3.
  • the beam splitter BS_1 divides the optical signals Ch11, Ch12, and Ch13 supplied from the input side path IN_ # 1, and inputs the input port P1 of the circularity AWG_1, the input port P2 of the circularity AWG_2, and the circularity.
  • Optical signals Ch11, Ch12, and Ch13 are supplied to the input port P3 of AWG_3.
  • the beam splitter BS_2 divides the optical signals Ch21, Ch22, and Ch23 supplied from the input side path IN_ # 2, and inputs the input port P2 of the circular AWG_1, the input port P3 of the circular AWG_2, and the circular AWG_3.
  • Optical signals Ch21, Ch22, and Ch23 are supplied to the input port P1.
  • the beam splitter BS_3 divides the optical signals Ch31, Ch32, and Ch33 supplied from the input side path IN_ # 3, and inputs the input port P3 of the circular AWG_1, the input port P1 of the circular AWG_2, and the circular AWG_3.
  • Optical signals Ch31, Ch32, and Ch33 are supplied to the input port P2.
  • Each of the circulating AWG_1 to AWG_3 filters (selects) each optical signal input to each of the input ports P1 to P3 and outputs it to the output side path.
  • the circulating AWG_1 outputs the optical signals Ch11, Ch32, and Ch23 among the optical signals input to the input ports P1 to P3 to the output side path OUT_ # 1.
  • the circulating AWG_2 outputs the optical signals Ch21, Ch12, and Ch33 among the optical signals input to the input ports P1 to P3 to the output side path OUT_ # 2.
  • the circulating AWG_3 outputs the optical signals Ch31, Ch22, and Ch13 among the optical signals input to the input ports P1 to P3 to the output side path OUT_ # 3.
  • each of the optical signals Ch11, Ch12, and Ch13 passing through the input side path IN_ # 1 is an optical signal in a different frequency band.
  • the optical signal Ch11 of the input side path IN_ # 1, the optical signal Ch21 of the input side path IN_ # 2, and the optical signal Ch31 of the input side path IN_ # 3 are optical signals in the same frequency band. In order to realize WDM communication, it is necessary to prevent these optical signals from being output to the same output side path.
  • the optical signal Ch12 on the input side path IN_ # 1, the optical signal Ch22 on the input side path IN_ # 2, and the optical signal Ch32 on the input side path IN_ # 3 are optical signals in the same frequency band. In order to realize WDM communication, it is necessary to prevent these optical signals from being output to the same output side route.
  • the optical signal Ch13 on the input side path IN_ # 1, the optical signal Ch23 on the input side path IN_ # 2, and the optical signal Ch33 on the input side path IN_ # 3 are optical signals in the same frequency band. In order to realize WDM communication, it is necessary to prevent these optical signals from being output to the same output side route.
  • each optical signal (Ch11, Ch12, Ch13,... Ch33) is routed in units of channels.
  • a plurality of wavelength division multiplexed signals can be assigned within one channel band.
  • FIG. 3 is a diagram for explaining the channel bandwidth used in the optical transmission apparatus 1 according to the present embodiment.
  • a plurality of wavelength multiplexed signals (optical signals) 12 can be allocated in one channel band 11.
  • FIG. 3 shows a case where the bandwidth of each of the channels Ch11, Ch12, and Ch13 is 150 GHz as an example, and three optical signals having a bandwidth of 50 GHz are assigned to the channel Ch11.
  • a case is shown in which four optical signals having a bandwidth of 37.5 GHz are allocated to the channel Ch12.
  • an optical signal having a bandwidth of 100 GHz and an optical signal having a bandwidth of 50 GHz are assigned to the channel Ch13.
  • the example shown in FIG. 3 is an example, and the bandwidth of each channel band 11 can be arbitrarily determined.
  • the bandwidth and number of optical signals 12 allocated within the band of each channel can be arbitrarily determined.
  • the pass bandwidths (that is, the filter bandwidths) of the input ports P1 to P3 of the circulating AWG_1 to AWG_3 are set to the channels (Ch11, Ch12, Ch13,. ... Corresponding to the bandwidth of Ch33).
  • an optical signal having a predetermined bandwidth that is, channels Ch11, Ch12, Ch13,...) Is obtained by expanding the pass bandwidth of each of the input ports P1 to P3 of the circulating AWG_1 to AWG_3 to the channel bandwidth. .. Ch33
  • three optical signals 12 having a bandwidth of 50 GHz can be filtered in the same direction.
  • optical signals Ch11, Ch12, and Ch13 are supplied to the input port P1 of the circulating AWG_1, optical signals Ch21, Ch22, and Ch23 are supplied to the input port P2, and the input port P3.
  • optical signals Ch31, Ch32 and Ch33 are supplied with optical signals Ch31, Ch32 and Ch33.
  • the optical signal among the optical signals Ch11, Ch12, and Ch13 supplied to the input port P1 by matching the pass band and the center frequency of the input port P1 of the circular AWG_1 with the frequency band and the center frequency of the optical signal Ch11. Only Ch11 can pass (that is, the optical signals Ch12 and Ch13 can be removed).
  • the optical signals Ch21, Ch22, and Ch23 supplied to the input port P2 Only the signal Ch23 can be passed.
  • the optical signals Ch31, Ch32, and Ch33 supplied to the input port P3 Only the signal Ch32 can be passed.
  • the pass bandwidth of each of the input ports P1 to P3 of the circulating AWG_1 is 150 GHz
  • the center frequency interval is 150 GHz.
  • the pass bandwidth of each of the input ports P1 to P3 of each of the cyclic AWGs 1 to AWG_3 may be m times the adjacent frequency interval of a plurality of wavelength multiplexed signals (m is a positive real number of 2 or more).
  • m is a positive real number of 2 or more.
  • the pass bandwidth of the input ports P1 to P3 is 150 GHz (see Ch12 in FIG. 3).
  • four optical signals with a bandwidth of 37.5 GHz can be allocated to one channel, so communication with a capacity of 400 Gbps is realized. can do.
  • the pass bandwidth of the input ports P1 to P3 is 150 GHz (see Ch11 in FIG. 3).
  • the pass bandwidth of the input ports P1 to P3 is 150 GHz (see Ch11 in FIG. 3).
  • three optical signals with a bandwidth of 50 GHz can be allocated to one channel, so that communication with a capacity of 300 Gbps can be realized.
  • the passband width of the input ports P1 to P3 is 150 GHz.
  • the optimal signal interval and the additional bandwidth of the AWG are determined from the modulation scheme and capacity of the signal.
  • the optical transmission device 1 is configured to be able to assign a plurality of wavelength division multiplexed signals within one channel band.
  • the number and bandwidth of a plurality of wavelength division multiplexed signals allocated in one channel band can be arbitrarily set (flexible grid).
  • the optical transmission device 1 since the optical transmission device 1 according to the present embodiment is configured using a recursive AWG, the number of optical filters that pass per node is reduced as compared with the case where a wavelength selective switch (WSS) is used. Thus, the influence of band narrowing due to the optical filter can be reduced.
  • WSS wavelength selective switch
  • the circulating AWG_1 to AWG_3 are used for filtering each optical signal, so that signals in the same frequency band are output to the same output side path. Can be avoided.
  • the invention according to the present embodiment realizes the flexibility of optical communication such as wavelength reuse while suppressing the optical signal from being cut off due to the band narrowing of the optical filter, and is compatible with the flexible grid. Can be provided.
  • FIG. 5 is a diagram for explaining an optical transmission apparatus according to a comparative example.
  • the optical transmission apparatus 101 according to the comparative example is configured using a plurality of AWG_11 to AWG_13 provided in the previous stage and a plurality of AWG_21 to AWG_23 provided in the subsequent stage.
  • AWG_11 to AWG_13 are 1-input 3-output (1 ⁇ 3) AWGs
  • AWG_21 to AWG_23 are 3-input 1-output (3 ⁇ 1) AWGs.
  • the AWG_11 demultiplexes the optical signals ⁇ 11 to ⁇ 13 supplied from the input side path IN_ # 1, and the optical signal ⁇ 11 to the port P1 of the AWG_21, the optical signal ⁇ 12 to the port P2 of the AWG_22, and the optical signal ⁇ 13 to the port AWG_23. Output to port P3.
  • the AWG_12 demultiplexes the optical signals ⁇ 21 to ⁇ 23 supplied from the input side path IN_ # 2, the optical signal ⁇ 21 is set to the port P1 of the AWG_22, the optical signal ⁇ 22 is set to the port P2 of the AWG_23, and the optical signal ⁇ 23 is set.
  • the data is output to the port P3 of AWG_21.
  • the AWG_13 demultiplexes the optical signals ⁇ 31 to ⁇ 33 supplied from the input side path IN_ # 3, the optical signal ⁇ 31 is sent to the port P1 of the AWG_23, the optical signal ⁇ 32 is sent to the port P2 of the AWG_21, and the optical signal ⁇ 33 is sent.
  • the data is output to the port P3 of AWG_22.
  • the AWG_21 combines the optical signal ⁇ 11 supplied to the port P1, the optical signal ⁇ 32 supplied to the port P2, and the optical signal ⁇ 23 supplied to the port P3, and outputs the combined signal to the output side path OUT_ # 1.
  • the AWG_22 combines the optical signal ⁇ 21 supplied to the port P1, the optical signal ⁇ 12 supplied to the port P2, and the optical signal ⁇ 33 supplied to the port P3, and outputs the resultant signal to the output side path OUT_ # 2.
  • the AWG_23 combines the optical signal ⁇ 31 supplied to the port P1, the optical signal ⁇ 22 supplied to the port P2, and the optical signal ⁇ 13 supplied to the port P3, and outputs the resultant signal to the output side path OUT_ # 3. .
  • FIG. 6 is a diagram for explaining the channel bandwidth used in the optical transmission apparatus according to the comparative example.
  • one optical signal is assigned to one channel. That is, one optical signal ⁇ 11 (bandwidth 50 GHz) is assigned to the channel Ch1.
  • optical signals ⁇ 12 and ⁇ 13 are assigned to the channels Ch2 and Ch3, respectively. The same applies to the other optical signals ⁇ 21 to ⁇ 23 and optical signals ⁇ 31 to ⁇ 33.
  • the channel and the optical signal have a one-to-one correspondence. Therefore, each optical signal supplied to the input side paths IN_ # 1 to IN_ # 3 and the output The relationship with each optical signal output from the side paths OUT_ # 1 to OUT_ # 3 has been uniquely determined. In other words, the relationship between each optical signal supplied to the input side paths IN_ # 1 to IN_ # 3 and each optical signal output from the output side paths OUT_ # 1 to OUT_ # 3 is fixed. It was. For this reason, there is a problem that the flexible grid cannot be handled.
  • the optical transmission device 1 in the optical transmission device 1 according to the present embodiment, a configuration is possible in which a plurality of wavelength multiplexed signals can be allocated within a band of one channel, and the recursive AWG filters the optical signal in units of channels. As possible, the passband width of the input port of the circulating AWG is increased. Therefore, since the number and bandwidth of a plurality of wavelength division multiplexed signals allocated in each channel can be arbitrarily set, the optical signal to be transmitted can have flexibility. That is, as shown in FIG. 3, the number of optical signals allocated in one channel can be changed (refer to channels Ch11 and Ch12), and optical signals having different bandwidths can be allocated in one channel (refer to channel Ch13). The optical signal to be transmitted can be made flexible.
  • FIG. 5 Since the AWG has a two-stage configuration, the number of filters through which each optical signal passes is larger than that in the optical transmission apparatus 1 shown in FIG. For this reason, the influence of the band narrowing by an optical filter becomes large.
  • FIG. There is a configuration using an N ⁇ M AWG as disclosed in FIG.
  • the AWG principle it is impossible to realize the overlap of the filters as in the second embodiment to be described later, so the influence of the band narrowing due to the optical filter cannot be minimized.
  • CDC-ROADM is a highly flexible system because it uses an active WSS.
  • WSS active WSS.
  • the number of optical filters that pass through each node increases, and the influence of band narrowing due to the optical filters is great.
  • the optical transmission device 1 according to the present embodiment since the circulating AWG used is one stage, the number of filters through which each optical signal passes is also in the comparative example shown in FIG. The number can be smaller than that of the optical transmission apparatus 101. In addition, since the optical transmission device 1 according to the present embodiment does not use WSS, it is possible to reduce the influence of band narrowing due to the optical filter.
  • the invention according to the present embodiment described above realizes the flexibility of optical communication such as wavelength reuse while suppressing the optical signal from being cut by the band narrowing of the optical filter, and is compatible with a flexible grid.
  • a transmission apparatus can be provided.
  • the number of input side routes and the number of output side routes is three is shown as an example.
  • the number of input side routes and output side routes may be other than this. That is, in the case of a configuration having n (n is a natural number of 2 or more) input side paths IN_ # 1 to IN_ # n and n output side paths OUT_ # 1 to OUT_ # n, N beam splitters BS_1 to BS_n (1-input n-output beam splitters) respectively connected to the paths IN_ # 1 to IN_ # n are provided.
  • n circular AWG_1 to AWG_n (circular AWG with n inputs and 1 output) are provided at the subsequent stage of the n beam splitters BS_1 to BS_n.
  • Each of the n beam splitters BS_1 to BS_n outputs each optical signal input to each of the n beam splitters BS_1 to BS_n to each input port of the n circulating AWG_1 to AWG_n.
  • Each of the n circulating AWG_1 to AWG_n filters each optical signal input to each input port and outputs it to the output side path.
  • the filtered optical signals are output from the respective circularity AWG_1 to AWG_n to the output side paths OUT_ # 1 to OUT_ # n.
  • FIG. 7 is a diagram for explaining another configuration example of the optical transmission apparatus according to the present embodiment.
  • the input sides of the beam splitters BS_1 to BS_4 are connected to four input side paths IN_ # 1 to IN_ # 4.
  • the optical signals output from the beam splitters BS_1 to BS_4 are supplied to the circulating AWG_1 to AWG_4 provided at the subsequent stage of the beam splitters BS_1 to BS_4.
  • the beam splitters BS_1 to BS_4 are one-input four-output (1 ⁇ 4) beam splitters, and the revolving AWG_1 to AWG_4 are four-input one-output (4 ⁇ 1) revolving AWGs.
  • the output ports of the circulating AWG_1 to AWG_4 are connected to the output side paths OUT_ # 1 to OUT_ # 4, respectively.
  • Each of the beam splitters BS_1 to BS_4 outputs each optical signal input to each of the beam splitters BS_1 to BS_4 to each input port of the circulating AWG_1 to AWG_4.
  • the beam splitter BS_1 divides the optical signals Ch11 to Ch18 supplied from the input side path IN_ # 1.
  • the beam splitter BS_1 supplies the divided optical signals Ch11 to Ch18 to the input port P1 of the revolving AWG_1, the input port P2 of the revolving AWG_2, the input port P3 of the revolving AWG_3, and the input port P4 of the revolving AWG_4.
  • the beam splitter BS_2 divides the optical signals Ch21 to Ch28 supplied from the input side path IN_ # 2.
  • the beam splitter BS_2 supplies the divided optical signals Ch21 to Ch28 to the input port P2 of the revolving AWG_1, the input port P3 of the revolving AWG_2, the input port P4 of the revolving AWG_3, and the input port P1 of the revolving AWG_4.
  • the beam splitter BS_3 divides the optical signals Ch31 to Ch38 supplied from the input side path IN_ # 3.
  • the beam splitter BS_3 supplies the divided optical signals Ch31 to Ch38 to the input port P3 of the circulating AWG_1, the input port P4 of the circulating AWG_2, the input port P1 of the circulating AWG_3, and the input port P2 of the circulating AWG_4.
  • the beam splitter BS_4 divides the optical signals Ch41 to Ch48 supplied from the input side path IN_ # 4.
  • the beam splitter BS_4 supplies the divided optical signals Ch41 to Ch48 to the input port P4 of the revolving AWG_1, the input port P1 of the revolving AWG_2, the input port P2 of the revolving AWG_3, and the input port P3 of the revolving AWG_4.
  • Each circularity AWG_1 to AWG_4 filters each optical signal input to each input port and outputs it to the output side path.
  • the optical signals output from the revolving AWG_1 to AWG_4 to the output side paths OUT_ # 1 to OUT_ # 4 are as shown in FIG.
  • the optical signals Ch11 to Ch18 passing through the input side path IN_ # 1 are optical signals in different frequency bands.
  • each optical signal (Ch11, Ch12, Ch13,... Ch48) is filtered on a channel basis.
  • a plurality of wavelength division multiplexed signals can be assigned within a band of one channel (see FIG. 3). Also in this case, the bandwidth of each channel can be determined arbitrarily. In addition, the bandwidth and number of optical signals allocated within the band of each channel can be arbitrarily determined.
  • a plurality of wavelength-multiplexed signals are assigned within one channel band (see FIG. 3).
  • the bandwidth of the filter 21 and the bandwidth of the four optical signals 22 that is, per channel
  • the optical signal can be transmitted with high density by setting the filter bandwidth 21 to 150 GHz.
  • the shape of the optical filter is not rectangular, and there are individual variations in the center frequency and bandwidth, when the number of filters increases, the bandwidth of the filter seen at the receiving end becomes narrower (band narrowing). Due to such filter characteristics, both ends of the optical signal are cut off during the transmission process, and signal components are lost. Eventually, signal errors at the receiving end increase, and reception becomes impossible. More specifically, as shown in the lower diagram of FIG. 8, when the filters are connected in multiple stages, the filter bandwidth (150 GHz) 21 becomes narrower as indicated by reference numeral 23. As a result, the signals at both ends of the four optical signals 22 are deleted (shaded portions are indicated by hatching), so that the signals at both ends may not be received.
  • the optical transmission apparatus is configured such that a part of passbands (that is, filter bands) of adjacent input ports of the circular AWG overlap each other. is doing.
  • a part of the pass band of the port P1 and a part of the pass band of the port P2 of the circular AWG_1 shown in FIG. 4 are mutually connected like pass bands 31_1 and 31_2 shown in FIG. It is configured to overlap (that is, the overlap region 35 is provided).
  • a part of the pass band of the port P2 of the circular AWG_1 shown in FIG. 4 and a part of the pass band of the port P3 are configured to overlap each other like the pass bands 31_2 and 31_3 shown in FIG. (That is, the overlapping region 36 is provided).
  • a part of the pass band of each adjacent input port can be overlapped with each other by widening the pass band width of each input port while maintaining the frequency interval between adjacent input ports of the circulating AWG. it can.
  • the passband of each input port of the recursive AWG is widened so that there is an overlapping region between the passbands of adjacent input ports. Can do.
  • the passband of each input port of the recursive AWG adjusts the shape of the recirculation AWG input waveguide and input slab waveguide coupling, and the output slab waveguide and output waveguide coupling It can be expanded by doing.
  • the width of the pass bands 31_1 to 31_3 of the ports P1 to P3 is increased from 150 GHz to 162.5 GHz while the frequency interval 34 is set to 150 GHz.
  • a part of the pass band 31_1 of the input port P1 and a part of the pass band 31_2 of the input port P2 can be superimposed.
  • the width of the overlapping region 35 where the pass band 31_1 of the input port P1 and the pass band 31_2 of the input port P2 overlap is 12.5 GHz.
  • a part of the pass band 31_2 of the input port P2 and a part of the pass band 31_3 of the input port P3 can be superimposed.
  • the width of the overlapping region 36 where the pass band 31_2 of the input port P2 and the pass band 31_3 of the input port P3 are overlapped is 12.5 GHz.
  • the optical transmission apparatus is configured such that the passbands 31_1 to 31_3 overlap each other between adjacent input ports of the circulating AWG. Therefore, it is possible to suppress the removal of both ends of the optical signal 32 in the process of transmitting the optical signal 32, and it is possible to suppress the generation of an optical signal that cannot be received. Therefore, it is possible to suppress deterioration of transmission characteristics.
  • the passbands between adjacent input ports are overlapped, the optical signal of other adjacent input ports leaks and crosstalk occurs, but the optical signal is degraded by comparing the filter band narrowing and crosstalk. Optimum transmission characteristics can be obtained by optimizing the overlap width of the filters so that is minimized.
  • a recursive AWG for filtering each optical signal input to each input port;
  • Each of the optical signals is configured to be able to assign a plurality of wavelength multiplexed signals within one channel band,
  • Each of the optical signals is filtered per channel,
  • the pass bandwidth of each input port of the recursive AWG corresponds to the bandwidth of the channel;
  • Optical transmission device
  • Appendix 2 The optical transmission apparatus according to appendix 1, wherein a pass bandwidth of each input port of the cyclic AWG is m times an adjacent frequency interval of the plurality of wavelength multiplexed signals (m is a positive real number of 2 or more). .
  • n beam splitters respectively connected to n (n is a natural number of 2 or more) input side paths; N circulatory AWGs provided in a subsequent stage of the n beam splitters, and each of the n beam splitters is an optical signal input to each of the n beam splitters.
  • the n cyclic AWGs are cyclic AWGs with n inputs and 1 output,
  • Each of the n circular AWGs filters the respective optical signals input to the respective input ports and outputs the filtered optical signals to an output side path.
  • the optical transmission device according to any one of appendices 1 to 6.
  • Appendix 8 The optical transmission device according to any one of appendices 1 to 7, wherein a part of passbands of adjacent input ports of the circular AWG overlap each other.
  • the passband width of each input port of the cyclic AWG is m times the adjacent frequency interval of the plurality of wavelength multiplexed signals (m is a positive real number of 2 or more). Transmission method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

[課題]光フィルタの帯域狭窄を抑制しつつ波長再利用などの光通信の柔軟性を実現し、且つフレキシブルグリッドに対応した光伝送装置を提供することである。 [解決手段]本発明にかかる光伝送装置は、各々の入力ポートに入力された各々の光信号をフィルタリングする周回性AWGを備えている。各々の光信号は1つのチャネル帯域内に複数の波長多重信号を割り当て可能に構成されており、各々の光信号はチャネル単位でフィルタリングされ、周回性AWGの各々の入力ポートの通過帯域幅はチャネルの帯域幅に対応している。

Description

光伝送装置
 本発明は光伝送装置に関し、特に光通信ネットワークに用いられる光伝送装置に関する。
 インターネットや映像配信等の広帯域マルチメディア通信サービスの需要増加に伴い、幹線系やメトロ系では長距離かつ大容量の光ファイバ通信システムの導入が進んでいる。こうした光ファイバを使用した光通信システムでは、光ファイバ1本当たりの伝送効率を高めることが重要である。このため、複数の異なる波長の光信号を多重化して伝送する、波長分割多重(WDM:Wavelength Division Multiplex)通信が広く用いられている。
 また、近年の情報通信トラフィックの増加により、光伝送装置には一層の長距離伝送と運用の柔軟性が求められており、エラスティック光技術の研究開発も行われている。
 特許文献1や非特許文献1には、WDM技術を利用した光ネットワークにおいて、運用中に光信号の通過帯域を自律的に変更することが可能な光伝送装置に関する技術が開示されている。
特開2015-19289号公報
Shin Kamei et al.、"N×N Cyclic-Frequency Router With Improved Perfomance Based on Arrayed-Waveguide Grating"、JOURNAL OF LIGHTWAVE TECHNOLOGY、2009年9月15日、VOL.27、NO.18、p4097-4104
 背景技術で説明したように、光通信ネットワークに用いられる光伝送装置には長距離伝送と運用の柔軟性が求められている。例えば、CDC(Colorless, Directionless and Contentionless)-ROADM(Reconfigurable Optical Add Drop Multiplexer)は柔軟性が高いシステムである。しかし、CDC-ROADMは、波長選択スイッチ(WSS:Wavelength Selective Switch)を用いているため、ノード当たりに通過する光フィルタの数が多くなり、光フィルタによる帯域狭窄の影響が大きくなり、伝送特性が劣化するという問題がある。
 また、運用の柔軟性の問題を解決する方法の一つとして、非特許文献1に開示されている構成が挙げられるが、この構成では上記の帯域狭窄の問題を解決することができない。また、エラスティックネットワークの実現に不可欠なフレキシブルグリッドに対応することができないという問題がある。
 上記課題に鑑み本発明の目的は、光フィルタの帯域狭窄によって光信号が削られることを抑制しつつ波長再利用などの光通信の柔軟性を実現し、且つフレキシブルグリッドに対応した光伝送装置を提供することである。
 本発明にかかる光伝送装置は、各々の入力ポートに入力された各々の光信号をフィルタリングする周回性AWGを備える。前記各々の光信号は1つのチャネル帯域内に複数の波長多重信号を割り当て可能に構成されており、前記各々の光信号は前記チャネル単位でフィルタリングされ、前記周回性AWGの前記各々の入力ポートの通過帯域幅は前記チャネルの帯域幅に対応している。
 本発明により、光フィルタの帯域狭窄によって光信号が削られることを抑制しつつ波長再利用などの光通信の柔軟性を実現し、且つフレキシブルグリッドに対応した光伝送装置を提供することができる。
本発明にかかる光伝送装置の概要を説明するための図である。 実施の形態1にかかる光伝送装置を説明するための図である。 実施の形態1にかかる光伝送装置で用いられているチャネルの帯域幅を説明するための図である。 実施の形態1にかかる光伝送装置で用いられている周回性AWGの詳細を説明するための図である。 比較例にかかる光伝送装置を説明するための図である。 比較例にかかる光伝送装置で用いられているチャネルの帯域幅を説明するための図である。 実施の形態1にかかる光伝送装置の他の構成例を説明するための図である。 実施の形態2における課題を説明するための図である。 実施の形態2にかかる光伝送装置が備える周回性AWGの通過帯域幅を説明するための図である。
 以下、図面を参照して本発明の実施の形態について説明する。
 まず、本発明の実施の形態の概要について説明する。図1は、各実施の形態にかかる光伝送装置の概要を説明するための図である。図1に示すように、各実施の形態にかかる光伝送装置は、各々の入力ポートP1~P3に入力された各々の光信号(Ch11~Ch33)をフィルタリングする周回性AWG(Arrayed Waveguide Grating)を備える。図1に示すように、入力ポートP1には光信号Ch11~Ch13が入力され、入力ポートP2には光信号Ch21~Ch23が入力され、入力ポートP3には光信号Ch31~Ch33が入力される。
 各々の光信号は1つのチャネル帯域内に複数の波長多重信号を割り当て可能に構成されている(図3参照)。また、各々の光信号はチャネル単位でフィルタリングされる。図1に示す周回性AWGでは、各々の光信号(Ch11~Ch33)のうち、光信号Ch11、Ch32、Ch23が出力ポートから出力される。ここで、周回性AWGの各々の入力ポートの通過帯域幅はチャネルの帯域幅に対応している。
 つまり、各実施の形態にかかる光伝送装置では、周回性AWGの各々の入力ポートP1~P3の通過帯域幅をチャネルの帯域幅まで広げることで、所定の帯域幅を持った光信号(Ch11、Ch12、Ch13、・・・Ch33)を各々フィルタリングすることができる。
 よって、各々のチャネル内に割り当てられる複数の波長多重信号の数や帯域幅を任意に設定することができるので(図3参照)、伝送する光信号に柔軟性を持たせることができる。以下、各実施の形態にかかる光伝送装置について詳細に説明する。
<実施の形態1>
 図2は、実施の形態1にかかる光伝送装置を説明するための図である。図2に示すように、本実施の形態にかかる光伝送装置1は、複数のビームスプリッタBS_1~BS_3と複数の周回性AWG_1~AWG_3とを用いて構成されている。本実施の形態にかかる光伝送装置1は、光通信ネットワークにおける光ノード、より具体的には光クロスコネクトノードに用いることができる。
 図2に示すように、ビームスプリッタBS_1~BS_3の各々の入力側は、3つの入力側方路IN_#1~IN_#3と接続されている。ビームスプリッタBS_1~BS_3から出力された光信号は、ビームスプリッタBS_1~BS_3の後段に設けられている周回性AWG_1~AWG_3に供給される。ビームスプリッタBS_1~BS_3は1入力3出力(1×3)のビームスプリッタであり、周回性AWG_1~AWG_3は3入力1出力(3×1)の周回性AWGである。周回性AWG_1~AWG_3の各々の出力ポートは、出力側方路OUT_#1~OUT_#3にそれぞれ接続されている。
 ビームスプリッタBS_1~BS_3の各々は、ビームスプリッタBS_1~BS_3の各々に入力された各々の光信号を周回性AWG_1~AWG_3の各々の入力ポートに出力する。具体的には、ビームスプリッタBS_1は入力側方路IN_#1から供給された光信号Ch11、Ch12、Ch13を分割し、周回性AWG_1の入力ポートP1、周回性AWG_2の入力ポートP2、及び周回性AWG_3の入力ポートP3に光信号Ch11、Ch12、Ch13を供給する。同様に、ビームスプリッタBS_2は入力側方路IN_#2から供給された光信号Ch21、Ch22、Ch23を分割し、周回性AWG_1の入力ポートP2、周回性AWG_2の入力ポートP3、及び周回性AWG_3の入力ポートP1に光信号Ch21、Ch22、Ch23を供給する。同様に、ビームスプリッタBS_3は入力側方路IN_#3から供給された光信号Ch31、Ch32、Ch33を分割し、周回性AWG_1の入力ポートP3、周回性AWG_2の入力ポートP1、及び周回性AWG_3の入力ポートP2に光信号Ch31、Ch32、Ch33を供給する。
 各々の周回性AWG_1~AWG_3は、各々の入力ポートP1~P3に入力された各々の光信号をフィルタリング(選択)して出力側方路に出力する。具体的には、周回性AWG_1は、入力ポートP1~P3に入力された光信号のうち光信号Ch11、Ch32、Ch23を出力側方路OUT_#1に出力する。また、周回性AWG_2は、入力ポートP1~P3に入力された光信号のうち光信号Ch21、Ch12、Ch33を出力側方路OUT_#2に出力する。また、周回性AWG_3は、入力ポートP1~P3に入力された光信号のうち光信号Ch31、Ch22、Ch13を出力側方路OUT_#3に出力する。
 ここで、入力側方路IN_#1を通る各々の光信号Ch11、Ch12、Ch13は、各々異なる周波数帯域の光信号である。入力側方路IN_#2を通る各々の光信号Ch21、Ch22、Ch23、及び入力側方路IN_#3を通る各々の光信号Ch31、Ch32、Ch33についても同様である。
 一方、入力側方路IN_#1の光信号Ch11、入力側方路IN_#2の光信号Ch21、及び入力側方路IN_#3の光信号Ch31は同一の周波数帯域の光信号であるため、WDM通信を実現するためには、これらの光信号が同一の出力側方路に出力されないようにする必要がある。同様に、入力側方路IN_#1の光信号Ch12、入力側方路IN_#2の光信号Ch22、及び入力側方路IN_#3の光信号Ch32は同一の周波数帯域の光信号であるため、WDM通信を実現するためには、これらの光信号が同一の出力側方路に出力されないようにする必要がある。同様に、入力側方路IN_#1の光信号Ch13、入力側方路IN_#2の光信号Ch23、及び入力側方路IN_#3の光信号Ch33は同一の周波数帯域の光信号であるため、WDM通信を実現するためには、これらの光信号が同一の出力側方路に出力されないようにする必要がある。
 また、本実施の形態にかかる光伝送装置1では、各々の光信号(Ch11、Ch12、Ch13、・・・Ch33)はチャネル単位でルーティングされる。また、1つのチャネルの帯域内に複数の波長多重信号を割り当て可能に構成されている。
 図3は、本実施の形態にかかる光伝送装置1で用いられているチャネルの帯域幅を説明するための図である。図3に示すように、本実施の形態にかかる光伝送装置1では、1つのチャネル帯域11の中に複数の波長多重信号(光信号)12を割り当てることができる。図3では、一例として、各々のチャネルCh11、Ch12、Ch13の帯域幅を150GHzとし、チャネルCh11の中に50GHzの帯域幅の光信号を3つ割り当てた場合を示している。また、チャネルCh12の中に37.5GHzの帯域幅の光信号を4つ割り当てた場合を示している。また、チャネルCh13の中に100GHzの帯域幅の光信号と50GHzの帯域幅の光信号とを割り当てた場合を示している。なお、図3に示した例は一例であり、各々のチャネル帯域11の帯域幅は任意に決定することができる。また、各々のチャネルの帯域内に割り当てる光信号12の帯域幅および数は任意に決定することができる。
 そして、本実施の形態にかかる光伝送装置1では、周回性AWG_1~AWG_3の各々の入力ポートP1~P3の通過帯域幅(つまり、フィルタの帯域幅)を、チャネル(Ch11、Ch12、Ch13、・・・Ch33)の帯域幅に対応するようにしている。換言すると、周回性AWG_1~AWG_3の各々の入力ポートP1~P3の通過帯域幅をチャネルの帯域幅まで広げることで、所定の帯域幅を持った光信号(つまり、チャネルCh11、Ch12、Ch13、・・・Ch33)を各々フィルタリングすることができる。例えば、チャネルCh11をチャネル単位でフィルタリングすることで、50GHzの帯域幅の光信号12を3つ同一方向にフィルタリングすることができる。
 図4を用いて詳細に説明すると、例えば周回性AWG_1の入力ポートP1には光信号Ch11、Ch12、Ch13が供給され、入力ポートP2には光信号Ch21、Ch22、Ch23が供給され、入力ポートP3には光信号Ch31、Ch32、Ch33が供給される。このとき、各々の入力ポートP1~P3の通過帯域幅を150GHzとすることで、1チャネル当たりの帯域幅が150GHzの光信号をフィルタリングすることができる。
 例えば、周回性AWG_1の入力ポートP1の通過帯域と中心周波数とを光信号Ch11の周波数帯域と中心周波数とに合わせることで、入力ポートP1に供給された光信号Ch11、Ch12、Ch13のうち光信号Ch11のみを通過させることができる(つまり、光信号Ch12、Ch13を除去することができる)。同様に、周回性AWG_1の入力ポートP2の通過帯域と中心周波数とを光信号Ch23の周波数帯域と中心周波数とに合わせることで、入力ポートP2に供給された光信号Ch21、Ch22、Ch23のうち光信号Ch23のみを通過させることができる。同様に、周回性AWG_1の入力ポートP3の通過帯域と中心周波数とを光信号Ch32の周波数帯域と中心周波数とに合わせることで、入力ポートP3に供給された光信号Ch31、Ch32、Ch33のうち光信号Ch32のみを通過させることができる。このとき、周回性AWG_1の各々の入力ポートP1~P3の通過帯域幅は150GHzであり、中心周波数間隔は150GHzである。
 例えば、各々の周回性AWG_1~AWG_3の各々の入力ポートP1~P3の通過帯域幅は、複数の波長多重信号の隣接周波数間隔のm倍(mは2以上の正の実数)としてもよい。例えば、波長多重信号の隣接周波数間隔を37.5GHz、m=4とした場合、入力ポートP1~P3の通過帯域幅は150GHzとなる(図3のCh12参照)。この場合は、1つの光信号で100Gbpsの容量の通信を行うとすると、1つのチャネルの中に37.5GHzの帯域幅の光信号を4つ割り当てることができるので、400Gbpsの容量の通信を実現することができる。
 また、例えば、波長多重信号の隣接周波数間隔を50GHz、m=3とした場合、入力ポートP1~P3の通過帯域幅は150GHzとなる(図3のCh11参照)。この場合は、1つの光信号で100Gbpsの容量の通信を行うとすると、1つのチャネルの中に50GHzの帯域幅の光信号を3つ割り当てることができるので、300Gbpsの容量の通信を実現することができる。また、例えば、波長多重信号の隣接周波数間隔を75GHz、m=2とした場合も、入力ポートP1~P3の通過帯域幅は150GHzとなる。また、上記の例はあくまでも一例であり、当該信号の変調方式、容量から最適な信号間隔、AWGの追加帯域幅(信号間隔のm倍)が決定される。
 上記で説明したように、本実施の形態にかかる光伝送装置1では、1つのチャネルの帯域内に複数の波長多重信号を割り当て可能に構成されている。ここで、1つのチャネルの帯域内に割り当てられる複数の波長多重信号の数や帯域幅は任意に設定することができる(フレキシブルグリッド)。
 また、本実施の形態にかかる光伝送装置1は、周回性AWGを用いて構成しているので、波長選択スイッチ(WSS)を用いた場合と比べるとノード当たりに通過する光フィルタの数を低減させ、光フィルタによる帯域狭窄の影響を低減させることができる。
 また、本実施の形態にかかる光伝送装置1では、各々の光信号のフィルタリングに周回性AWG_1~AWG_3を用いているので、同一の周波数帯域の信号が同一の出力側方路に出力されることを回避できる。
 よって、本実施の形態にかかる発明により、光フィルタの帯域狭窄によって光信号が削られることを抑制しつつ波長再利用などの光通信の柔軟性を実現し、且つフレキシブルグリッドに対応した光伝送装置を提供することができる。
 以下で、本実施の形態の効果について詳細に説明する。
 図5は、比較例にかかる光伝送装置を説明するための図である。図5に示すように、比較例にかかる光伝送装置101は、前段に設けられた複数のAWG_11~AWG_13と後段に設けられた複数のAWG_21~AWG_23とを用いて構成されている。AWG_11~AWG_13は1入力3出力(1×3)のAWGであり、AWG_21~AWG_23は3入力1出力(3×1)のAWGである。
 AWG_11は、入力側方路IN_#1から供給された光信号λ11~λ13を分波し、光信号λ11をAWG_21のポートP1に、光信号λ12をAWG_22のポートP2に、光信号λ13をAWG_23のポートP3に、それぞれ出力する。また、AWG_12は、入力側方路IN_#2から供給された光信号λ21~λ23を分波し、光信号λ21をAWG_22のポートP1に、光信号λ22をAWG_23のポートP2に、光信号λ23をAWG_21のポートP3に、それぞれ出力する。また、AWG_13は、入力側方路IN_#3から供給された光信号λ31~λ33を分波し、光信号λ31をAWG_23のポートP1に、光信号λ32をAWG_21のポートP2に、光信号λ33をAWG_22のポートP3に、それぞれ出力する。
 AWG_21は、ポートP1に供給された光信号λ11、ポートP2に供給された光信号λ32、及びポートP3に供給された光信号λ23を合波して出力側方路OUT_#1に出力する。また、AWG_22は、ポートP1に供給された光信号λ21、ポートP2に供給された光信号λ12、及びポートP3に供給された光信号λ33を合波して出力側方路OUT_#2に出力する。また、AWG_23は、ポートP1に供給された光信号λ31、ポートP2に供給された光信号λ22、及びポートP3に供給された光信号λ13を合波して出力側方路OUT_#3に出力する。
 図6は、比較例にかかる光伝送装置で用いられているチャネルの帯域幅を説明するための図である。図6に示すように、比較例にかかる光伝送装置101では、1つのチャネルに1つの光信号を割り当てている。つまり、チャネルCh1には1つの光信号λ11(帯域幅50GHz)が割り当てられている。同様に、チャネルCh2、Ch3には、光信号λ12、λ13がそれぞれ割り当てられている。他の光信号λ21~λ23、及び光信号λ31~λ33についても同様である。
 つまり、比較例にかかる光伝送装置101では、チャネルと光信号とが一対一に対応しており、このため入力側方路IN_#1~IN_#3に供給される各々の光信号と、出力側方路OUT_#1~OUT_#3から出力される各々の光信号との関係は一意に決定されていた。換言すると、入力側方路IN_#1~IN_#3に供給される各々の光信号と、出力側方路OUT_#1~OUT_#3から出力される各々の光信号との関係は固定されていた。そのため、フレキシブルグリッドに対応することができないという問題があった。
 これに対して本実施の形態にかかる光伝送装置1では、1つのチャネルの帯域内に複数の波長多重信号を割り当て可能に構成し、更に周回性AWGがチャネル単位で光信号をフィルタリングすることができるように、周回性AWGの入力ポートの通過帯域幅を広げている。よって、各々のチャネル内に割り当てられる複数の波長多重信号の数や帯域幅を任意に設定することができるので、伝送する光信号に柔軟性を持たせることができる。つまり、図3に示すように、1チャネル内に割り当てる光信号の数を変えたり(チャネルCh11、Ch12参照)、1チャネル内に各々異なる帯域幅を有する光信号を割り当て可能なので(チャネルCh13参照)、伝送する光信号に柔軟性を持たせることができる。
 また、図5に示す光伝送装置101では、AWGを2段構成としているので各々の光信号が通過するフィルタの数が図2に示した光伝送装置1よりも多くなる。このため、光フィルタによる帯域狭窄の影響が大きくなる。フィルタを減らす手段として、例えば、非特許文献1のFig.2に開示されているようなN×MのAWGを用いた構成がある。しかし、AWGの原理上、後述する実施の形態2のようなフィルタのオーバーラップを実現できないので、光フィルタによる帯域狭窄の影響を最小化できない。
 また、CDC-ROADMはアクティブなWSSを用いているので柔軟性が高いシステムである。しかしながら、CDC-ROADMは、WSSを用いているが故に、ノード当たりに通過する光フィルタの数が多くなり、光フィルタによる帯域狭窄の影響が大きい。
 これに対して、本実施の形態にかかる光伝送装置1では、使用している周回性AWGが1段であるので、各々の光信号が通過するフィルタの数も図5に示した比較例にかかる光伝送装置101よりも少なくすることができる。また、本実施の形態にかかる光伝送装置1では、WSSを用いていないので、光フィルタによる帯域狭窄の影響を少なくすることができる。
 以上で説明した本実施の形態にかかる発明により、光フィルタの帯域狭窄によって光信号が削られることを抑制しつつ波長再利用などの光通信の柔軟性を実現し、且つフレキシブルグリッドに対応した光伝送装置を提供することができる。
 なお、図2に示した光伝送装置1では、入力側方路および出力側方路の数がそれぞれ3つである場合を例として示した。しかし本実施の形態にかかる光伝送装置では、入力側方路および出力側方路の数はこれ以外であってもよい。つまり、n個(nは2以上の自然数)の入力側方路IN_#1~IN_#nとn個の出力側方路OUT_#1~OUT_#nとを有する構成の場合は、入力側方路IN_#1~IN_#nにそれぞれ接続されたn個のビームスプリッタBS_1~BS_n(1入力n出力のビームスプリッタ)を設ける。また、n個のビームスプリッタBS_1~BS_nの後段にn個の周回性AWG_1~AWG_n(n入力1出力の周回性AWG)を設ける。n個のビームスプリッタBS_1~BS_nの各々は、n個のビームスプリッタBS_1~BS_nの各々に入力された各々の光信号をn個の周回性AWG_1~AWG_nの各々の入力ポートに出力する。n個の周回性AWG_1~AWG_nの各々は、各々の入力ポートに入力された各々の光信号をフィルタリングして出力側方路に出力する。これにより、各々の周回性AWG_1~AWG_nから出力側方路OUT_#1~OUT_#nにフィルタリング後の光信号が出力される。
 図7は、本実施の形態にかかる光伝送装置の他の構成例を説明するための図である。図7に示す光伝送装置2では、上記nの値をn=4とした場合の構成を示している。図7に示すように、ビームスプリッタBS_1~BS_4の各々の入力側は、4つの入力側方路IN_#1~IN_#4と接続されている。ビームスプリッタBS_1~BS_4から出力された光信号は、ビームスプリッタBS_1~BS_4の後段に設けられている周回性AWG_1~AWG_4に供給される。ビームスプリッタBS_1~BS_4は1入力4出力(1×4)のビームスプリッタであり、周回性AWG_1~AWG_4は4入力1出力(4×1)の周回性AWGである。周回性AWG_1~AWG_4の各々の出力ポートは、出力側方路OUT_#1~OUT_#4とそれぞれ接続されている。
 ビームスプリッタBS_1~BS_4の各々は、ビームスプリッタBS_1~BS_4の各々に入力された各々の光信号を周回性AWG_1~AWG_4の各々の入力ポートに出力する。具体的には、ビームスプリッタBS_1は入力側方路IN_#1から供給された光信号Ch11~Ch18を分割する。ビームスプリッタBS_1は、分割した光信号Ch11~Ch18を、周回性AWG_1の入力ポートP1、周回性AWG_2の入力ポートP2、周回性AWG_3の入力ポートP3、及び周回性AWG_4の入力ポートP4に供給する。
 同様に、ビームスプリッタBS_2は入力側方路IN_#2から供給された光信号Ch21~Ch28を分割する。ビームスプリッタBS_2は分割した光信号Ch21~Ch28を、周回性AWG_1の入力ポートP2、周回性AWG_2の入力ポートP3、周回性AWG_3の入力ポートP4、及び周回性AWG_4の入力ポートP1に供給する。
 同様に、ビームスプリッタBS_3は入力側方路IN_#3から供給された光信号Ch31~Ch38を分割する。ビームスプリッタBS_3は分割した光信号Ch31~Ch38を、周回性AWG_1の入力ポートP3、周回性AWG_2の入力ポートP4、周回性AWG_3の入力ポートP1、及び周回性AWG_4の入力ポートP2に供給する。
 同様に、ビームスプリッタBS_4は入力側方路IN_#4から供給された光信号Ch41~Ch48を分割する。ビームスプリッタBS_4は分割した光信号Ch41~Ch48を、周回性AWG_1の入力ポートP4、周回性AWG_2の入力ポートP1、周回性AWG_3の入力ポートP2、及び周回性AWG_4の入力ポートP3に供給する。
 各々の周回性AWG_1~AWG_4は、各々の入力ポートに入力された各々の光信号をフィルタリングして出力側方路に出力する。各々の周回性AWG_1~AWG_4から各々の出力側方路OUT_#1~OUT_#4に出力される光信号は図7に示すとおりである。
 図7に示す光伝送装置2においても、入力側方路IN_#1を通る各々の光信号Ch11~Ch18は、各々異なる周波数帯域の光信号である。入力側方路IN_#2を通る各々の光信号Ch21~Ch28、入力側方路IN_#3を通る各々の光信号Ch31~Ch38、及び入力側方路IN_#4を通る各々の光信号Ch41~Ch48についても同様である。
 また、図7に示す光伝送装置2においても、各々の光信号(Ch11、Ch12、Ch13、・・・Ch48)はチャネル単位でフィルタリングされる。そして、1つのチャネルの帯域内に複数の波長多重信号を割り当て可能に構成されている(図3参照)。この場合も、各々のチャネルの帯域幅は任意に決定することができる。また、各々のチャネルの帯域内に割り当てる光信号の帯域幅および数も任意に決定することができる。
<実施の形態2>
 次に、本発明の実施の形態2について説明する。
 まず、図8を用いて本実施の形態にかかる発明の課題について説明する。実施の形態1で説明した光伝送装置1では、1つのチャネルの帯域内に複数の波長多重信号を割り当てている(図3参照)。このとき、光信号を高密度(高収容率)で伝送するためには、図8の上図に示すように、フィルタの帯域幅21と4つの光信号22の帯域幅(つまり、1チャネル当たりの帯域幅)との間に差がないほうが好ましい。例えば、図8の上図に示す場合は、1つの光信号22の帯域幅が37.5GHzでこの光信号22の数が4つであるので、4つの光信号22の帯域幅(1チャネル当たりの帯域幅)は37.5GHz×4=150GHzとなる。この場合は、フィルタの帯域幅21も150GHzとすることで、光信号を高密度に伝送することができる。
 しかしながら、光フィルタの形状は矩形ではなく、中心周波数と帯域幅に個体ばらつきがあるため、フィルタ数が増えると、受信端で見るフィルタの帯域幅は狭くなっていく(帯域狭窄)。このようなフィルタの特性により、光信号は伝送過程で両端が削られ信号成分が失われていき、最終的には受信端での信号誤りが増え、受信できなくなる。具体的に説明すると、図8の下図に示すように、フィルタが多段連なると、フィルタの帯域幅(150GHz)21が符号23に示すように狭くなる。その結果として、4つある光信号22のうちの両端の信号が削られるため(削られた部分をハッチングで示す)、両端の信号が受信できないレベルになる場合がある。
 このような現象を抑制するために、光信号とフィルタ帯域の両端との間に空白エリア(つまり、ガードバンド)を設けることも考えられる。しかし、この場合は、ガードバンドを設けた分だけ光信号の収容率が低下してしまうという問題がある。
 このような問題を解決するために、本実施の形態にかかる光伝送装置では、周回性AWGの隣接する入力ポートの各々の通過帯域(つまり、フィルタ帯域)の一部が互いに重畳するように構成している。具体例を用いて説明すると、図4に示した周回性AWG_1のポートP1の通過帯域の一部とポートP2の通過帯域の一部とが、図9に示す通過帯域31_1、31_2のように互いに重畳するように構成している(つまり、重畳領域35を設けている)。また、図4に示した周回性AWG_1のポートP2の通過帯域の一部とポートP3の通過帯域の一部とが、図9に示す通過帯域31_2、31_3のように互いに重畳するように構成している(つまり、重畳領域36を設けている)。
 例えば、周回性AWGの隣接する入力ポート間の周波数間隔を維持しつつ、入力ポートの各々の通過帯域幅を広げることで、隣接する入力ポートの各々の通過帯域の一部を互いに重畳させることができる。
 周回性AWGの各入力ポートの通過帯域は、例えば、周回性AWGの入出力導波路の形状を調整することで、隣接する入力ポートの通過帯域との間に重畳領域が存在するように広げることができる。例えば、周回性AWGの各入力ポートの通過帯域は、周回性AWGの入力導波路と入力側のスラブ導波路の結合部と、出力側のスラブ導波路と出力導波の結合部の形状を調整することで広げることができる。
 具体例を用いて説明すると、図9に示すように、周波数間隔34を150GHzとしたまま、各々のポートP1~P3の通過帯域31_1~31_3の幅を150GHzから162.5GHzに広げる。このようにすることで、入力ポートP1の通過帯域31_1の一部と入力ポートP2の通過帯域31_2の一部とを重畳させることができる。このとき、入力ポートP1の通過帯域31_1と入力ポートP2の通過帯域31_2とが重畳する重畳領域35の幅は12.5GHzとなる。また、入力ポートP2の通過帯域31_2の一部と入力ポートP3の通過帯域31_3の一部とを重畳させることができる。このとき、入力ポートP2の通過帯域31_2と入力ポートP3の通過帯域31_3とが重畳する重畳領域36の幅は12.5GHzとなる。
 上記で説明したように、本実施の形態にかかる光伝送装置では、周回性AWGの隣接する入力ポート間において通過帯域31_1~31_3が互いに重畳するように構成している。よって、光信号32の伝送の過程で光信号32の両端が削られることを抑制でき、受信できない光信号の発生を抑制できる。したがって、伝送特性の劣化を抑制することができる。一方で、隣接する入力ポート間の通過帯域を重畳させると、隣接する他の入力ポートの光信号が漏れ込みクロストークが発生するが、フィルタ帯域狭窄とクロストークとを比較して光信号の劣化が最小となるようにフィルタのオーバーラップ幅を最適化することにより、最良の伝送特性を得ることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)
 各々の入力ポートに入力された各々の光信号をフィルタリングする周回性AWGを備え、
 前記各々の光信号は1つのチャネル帯域内に複数の波長多重信号を割り当て可能に構成されており、
 前記各々の光信号は前記チャネル単位でフィルタリングされ、
 前記周回性AWGの前記各々の入力ポートの通過帯域幅は前記チャネルの帯域幅に対応している、
 光伝送装置。
 (付記2)
 前記周回性AWGの前記各々の入力ポートの通過帯域幅は、前記複数の波長多重信号の隣接周波数間隔のm倍(mは2以上の正の実数)である、付記1に記載の光伝送装置。
 (付記3)
 前記周回性AWGの前記各々の入力ポートの通過帯域幅は150GHzであり、中心周波数間隔は150GHzである、付記2に記載の光伝送装置。
 (付記4)
 前記隣接周波数間隔は37.5GHzであり、前記mの値はm=4である、付記3に記載の光伝送装置。
 (付記5)
 前記隣接周波数間隔は50GHzであり、前記mの値はm=3である、付記3に記載の光伝送装置。
 (付記6)
 前記隣接周波数間隔は75GHzであり、前記mの値はm=2である、付記3に記載の光伝送装置。
 (付記7)
 n個(nは2以上の自然数)の入力側方路にそれぞれ接続されたn個のビームスプリッタと、
 前記n個のビームスプリッタの後段に設けられたn個の前記周回性AWGと、を備え、 前記n個のビームスプリッタの各々は、前記n個のビームスプリッタの各々に入力された各々の光信号を前記n個の周回性AWGの前記各々の入力ポートに出力し、
 前記n個の周回性AWGはn入力1出力の周回性AWGであり、
 前記n個の周回性AWGの各々は、前記各々の入力ポートに入力された前記各々の光信号をフィルタリングして出力側方路に出力する、
 付記1乃至6のいずれか一項に記載の光伝送装置。
 (付記8)
 前記周回性AWGの隣接する入力ポートの各々の通過帯域の一部が互いに重畳している、付記1乃至7のいずれか一項に記載の光伝送装置。
 (付記9)
 前記周回性AWGの前記隣接する入力ポート間の周波数間隔を維持しつつ前記入力ポートの各々の通過帯域幅を広げることで、前記隣接する入力ポートの各々の通過帯域の一部を互いに重畳させる、付記8に記載の光伝送装置。
 (付記10)
 入力ポートごとの通過帯域幅が各チャネルの帯域幅に対応している周回性AWGの前記入力ポートそれぞれに、
 チャネル帯域内で複数の光信号がそれぞれ波長多重化された複数の前記チャネルの波長多重信号を入力し、
 前記波長多重信号を前記チャネル単位でフィルタリングして出力する、光信号の伝送方法。
 (付記11)
 前記周回性AWGの前記各々の入力ポートの通過帯域幅は、前記複数の波長多重信号の隣接周波数間隔のm倍(mは2以上の正の実数)である、付記10に記載の光信号の伝送方法。
 (付記12)
 n個(nは2以上の自然数)の入力側方路にそれぞれ接続されたn個のビームスプリッタに入力された前記波長多重信号を、n個のn入力1出力の前記周回性AWGの前記入力ポートにそれぞれ出力し、
 前記入力ポートにそれぞれ入力された前記波長多重信号をフィルタリングして出力側方路に出力する、付記10または11に記載の光信号の伝送方法。
 (付記13)
 前記周回性AWGの隣接する入力ポートの各々の通過帯域の一部が互いに重畳している、付記10乃至12のいずれか一項に記載の光信号の伝送方法。
 (付記14)
 前記周回性AWGの前記隣接する入力ポート間の周波数間隔を維持しつつ前記入力ポートの各々の通過帯域幅を広げることで、前記隣接する入力ポートの各々の通過帯域の一部を互いに重畳させる、付記13に記載の光信号の伝送方法。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2016年2月29日に出願された日本出願特願2016-38162を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1、2 光伝送装置
11 チャネル帯域
12 波長多重信号
21 フィルタの帯域幅
22 光信号
31_1~31_3 通過帯域(フィルタ帯域)
32 光信号
34 周波数間隔
35、36 重畳領域

Claims (14)

  1.  各々の入力ポートに入力された各々の光信号をフィルタリングする周回性AWGを備え、
     前記各々の光信号は1つのチャネル帯域内に複数の波長多重信号を割り当て可能に構成されており、
     前記各々の光信号は前記チャネル単位でフィルタリングされ、
     前記周回性AWGの前記各々の入力ポートの通過帯域幅は前記チャネルの帯域幅に対応している、
     光伝送装置。
  2.  前記周回性AWGの前記各々の入力ポートの通過帯域幅は、前記複数の波長多重信号の隣接周波数間隔のm倍(mは2以上の正の実数)である、請求項1に記載の光伝送装置。
  3.  前記周回性AWGの前記各々の入力ポートの通過帯域幅は150GHzであり、中心周波数間隔は150GHzである、請求項2に記載の光伝送装置。
  4.  前記隣接周波数間隔は37.5GHzであり、前記mの値はm=4である、請求項3に記載の光伝送装置。
  5.  前記隣接周波数間隔は50GHzであり、前記mの値はm=3である、請求項3に記載の光伝送装置。
  6.  前記隣接周波数間隔は75GHzであり、前記mの値はm=2である、請求項3に記載の光伝送装置。
  7.  n個(nは2以上の自然数)の入力側方路にそれぞれ接続されたn個のビームスプリッタと、
     前記n個のビームスプリッタの後段に設けられたn個の前記周回性AWGと、を備え、 前記n個のビームスプリッタの各々は、前記n個のビームスプリッタの各々に入力された各々の光信号を前記n個の周回性AWGの前記各々の入力ポートに出力し、
     前記n個の周回性AWGはn入力1出力の周回性AWGであり、
     前記n個の周回性AWGの各々は、前記各々の入力ポートに入力された前記各々の光信号をフィルタリングして出力側方路に出力する、
     請求項1乃至6のいずれか一項に記載の光伝送装置。
  8.  前記周回性AWGの隣接する入力ポートの各々の通過帯域の一部が互いに重畳している、請求項1乃至7のいずれか一項に記載の光伝送装置。
  9.  前記周回性AWGの前記隣接する入力ポート間の周波数間隔を維持しつつ前記入力ポートの各々の通過帯域幅を広げることで、前記隣接する入力ポートの各々の通過帯域の一部を互いに重畳させる、請求項8に記載の光伝送装置。
  10.  入力ポートごとの通過帯域幅が各チャネルの帯域幅に対応している周回性AWGの前記入力ポートそれぞれに、
     チャネル帯域内で複数の光信号がそれぞれ波長多重化された複数の前記チャネルの波長多重信号を入力し、
     前記波長多重信号を前記チャネル単位でフィルタリングして出力する、光信号の伝送方法。
  11.  前記周回性AWGの前記各々の入力ポートの通過帯域幅は、前記複数の波長多重信号の隣接周波数間隔のm倍(mは2以上の正の実数)である、請求項10に記載の光信号の伝送方法。
  12.  n個(nは2以上の自然数)の入力側方路にそれぞれ接続されたn個のビームスプリッタに入力された前記波長多重信号を、n個のn入力1出力の前記周回性AWGの前記入力ポートにそれぞれ出力し、
     前記入力ポートにそれぞれ入力された前記波長多重信号をフィルタリングして出力側方路に出力する、請求項10または11に記載の光信号の伝送方法。
  13.  前記周回性AWGの隣接する入力ポートの各々の通過帯域の一部が互いに重畳している、請求項10乃至12のいずれか一項に記載の光信号の伝送方法。
  14.  前記周回性AWGの前記隣接する入力ポート間の周波数間隔を維持しつつ前記入力ポートの各々の通過帯域幅を広げることで、前記隣接する入力ポートの各々の通過帯域の一部を互いに重畳させる、請求項13に記載の光信号の伝送方法。
PCT/JP2017/006387 2016-02-29 2017-02-21 光伝送装置 WO2017150277A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17759743.2A EP3425827B1 (en) 2016-02-29 2017-02-21 Optical transmission device
US16/078,912 US10659165B2 (en) 2016-02-29 2017-02-21 Optical transmission device
JP2018503057A JP6645571B2 (ja) 2016-02-29 2017-02-21 光伝送装置
CN201780013625.3A CN109075885B (zh) 2016-02-29 2017-02-21 光传输装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-038162 2016-02-29
JP2016038162 2016-02-29

Publications (1)

Publication Number Publication Date
WO2017150277A1 true WO2017150277A1 (ja) 2017-09-08

Family

ID=59743821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006387 WO2017150277A1 (ja) 2016-02-29 2017-02-21 光伝送装置

Country Status (5)

Country Link
US (1) US10659165B2 (ja)
EP (1) EP3425827B1 (ja)
JP (1) JP6645571B2 (ja)
CN (1) CN109075885B (ja)
WO (1) WO2017150277A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195912A1 (ja) * 2019-03-26 2020-10-01 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
JP2020161913A (ja) * 2019-03-26 2020-10-01 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038614B2 (en) * 2019-04-09 2021-06-15 Fujitsu Limited Optical system including a reconfigurable optical add/drop multiplexer and filters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025224A (ja) * 2004-07-08 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP2007208342A (ja) * 2006-01-30 2007-08-16 Nippon Telegr & Teleph Corp <Ntt> 波長多重光変調方法および装置
US20130322883A1 (en) * 2012-05-30 2013-12-05 Stefan Dahlfort Resilience in an access subnetwork ring
JP2015019289A (ja) 2013-07-11 2015-01-29 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003244102A (ja) * 2002-02-20 2003-08-29 Hitachi Ltd 光帯域狭窄化送信装置および光残留サイドバンド送信装置
JP4540289B2 (ja) * 2002-06-28 2010-09-08 富士通株式会社 波長多重光伝送システムおよび波長多重光伝送方法
JP4020809B2 (ja) * 2003-03-26 2007-12-12 富士通株式会社 波長分割多重伝送システム
JP4238069B2 (ja) * 2003-06-11 2009-03-11 日本電信電話株式会社 光波長合分波装置
US7733923B2 (en) * 2005-12-08 2010-06-08 Alcatel-Lucent Usa Inc. Wide-bandwidth mode-locked laser
JP2008139170A (ja) * 2006-12-01 2008-06-19 Fuji Heavy Ind Ltd 衝撃探知システム
JP5176598B2 (ja) * 2008-02-29 2013-04-03 富士通株式会社 光分岐挿入装置および光伝送装置
JP5593587B2 (ja) * 2008-03-05 2014-09-24 日本電気株式会社 波長多重分離方式及び波長多重分離方法
US8861957B2 (en) * 2010-04-28 2014-10-14 Telefonaktiebolaget L M Ericsson (Publ) Optical access network
US8929734B2 (en) * 2010-06-24 2015-01-06 Nec Corporation Multiplexer/demultiplexer and multiplexing/demultiplexing method
EP2426841B1 (en) * 2010-09-07 2019-01-09 Alcatel Lucent Optical add and/or drop device for an optical network element
CN102790653B (zh) * 2011-05-19 2015-02-18 武汉邮电科学研究院 可重构光分插复用器和可重构光分插复用方法
US9419742B2 (en) * 2011-12-30 2016-08-16 Infinera Corporation Optical communication system having tunable sources
JP5906870B2 (ja) * 2012-03-23 2016-04-20 富士通株式会社 光パワーモニタ
US10539741B2 (en) * 2016-02-29 2020-01-21 Nec Corporation Optical device with optical filters and processing method of optical signals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025224A (ja) * 2004-07-08 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> 光伝送システム
JP2007208342A (ja) * 2006-01-30 2007-08-16 Nippon Telegr & Teleph Corp <Ntt> 波長多重光変調方法および装置
US20130322883A1 (en) * 2012-05-30 2013-12-05 Stefan Dahlfort Resilience in an access subnetwork ring
JP2015019289A (ja) 2013-07-11 2015-01-29 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN KAMEI ET AL.: "NxN Cyclic-Frequency Router With Improved Perfomance Based on Arrayed-Waveguide Grating", JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 27, no. 18, 15 September 2009 (2009-09-15), pages 4097 - 4104

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020195912A1 (ja) * 2019-03-26 2020-10-01 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
JP2020161912A (ja) * 2019-03-26 2020-10-01 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
JP2020161913A (ja) * 2019-03-26 2020-10-01 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
WO2020195913A1 (ja) * 2019-03-26 2020-10-01 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
JP7243364B2 (ja) 2019-03-26 2023-03-22 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
JP7243365B2 (ja) 2019-03-26 2023-03-22 日本電信電話株式会社 光分岐挿入装置及び光分岐挿入装置を使用した光伝送システム
US11742976B2 (en) 2019-03-26 2023-08-29 Nippon Telegraph And Telephone Corporation Optical branch insertion device and optical transmission system using optical branch insertion device
US11757554B2 (en) 2019-03-26 2023-09-12 Nippon Telegraph And Telephone Corporation Optical branch insertion device and optical transmission system using optical branch insertion device

Also Published As

Publication number Publication date
JPWO2017150277A1 (ja) 2018-12-06
EP3425827A4 (en) 2019-10-16
CN109075885B (zh) 2020-09-18
JP6645571B2 (ja) 2020-02-14
EP3425827A1 (en) 2019-01-09
US20190058526A1 (en) 2019-02-21
US10659165B2 (en) 2020-05-19
EP3425827B1 (en) 2021-01-20
CN109075885A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109313309B (zh) 光学装置
US7627245B2 (en) System and method for re-using wavelengths in an optical network
US8965220B2 (en) Reconfigurable optical add/drop multiplexer and procedure for outputting optical signals from such multiplexer
KR100271210B1 (ko) 광회선 분배기
US20130308946A1 (en) Optical Switching Architectures for Nodes in WDM Mesh and Ring Networks
US9742519B2 (en) Photonic cross-connect with reconfigurable add-drop-functionality
JP4843659B2 (ja) 光伝送ネットワークシステム、光伝送装置、及びそれらを用いた通過帯域割り当て方法
WO2014203789A1 (ja) 光クロスコネクト装置
JP4152932B2 (ja) 光分波方法および光合波方法、並びに、それを用いた光伝送装置
WO2017150277A1 (ja) 光伝送装置
US10498479B2 (en) Reconfigurable add/drop multiplexing in optical networks
WO2015129472A1 (ja) 光ネットワーク
EP2979382A1 (en) Signal routing
JP3574754B2 (ja) 光パスクロスコネクト装置
CN115499728A (zh) 一种全光交换系统及全光交换方法
US20030206684A1 (en) Optical cross-connect device and optical network
JPWO2019021972A1 (ja) 光波長分離装置及び光波長分離方法
US20120183292A1 (en) Method and apparatus for trafficking wavelengths of different spacings within an optical node
EP2747322B1 (en) Wdm optical packet switching block
Hasegawa et al. Theory and progress of large-scale optical switching and elastically-hybrid optical switching
EP2925012B1 (en) A wavelength routing cross-connect

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018503057

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759743

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759743

Country of ref document: EP

Effective date: 20181001

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759743

Country of ref document: EP

Kind code of ref document: A1