JPWO2019021972A1 - 光波長分離装置及び光波長分離方法 - Google Patents

光波長分離装置及び光波長分離方法 Download PDF

Info

Publication number
JPWO2019021972A1
JPWO2019021972A1 JP2019532573A JP2019532573A JPWO2019021972A1 JP WO2019021972 A1 JPWO2019021972 A1 JP WO2019021972A1 JP 2019532573 A JP2019532573 A JP 2019532573A JP 2019532573 A JP2019532573 A JP 2019532573A JP WO2019021972 A1 JPWO2019021972 A1 JP WO2019021972A1
Authority
JP
Japan
Prior art keywords
optical
wavelength
bandpass filter
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532573A
Other languages
English (en)
Other versions
JP7074137B2 (ja
Inventor
吉朗 佐藤
吉朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2019021972A1 publication Critical patent/JPWO2019021972A1/ja
Application granted granted Critical
Publication of JP7074137B2 publication Critical patent/JP7074137B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0208Interleaved arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0015Construction using splitting combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0039Electrical control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0052Interconnection of switches
    • H04Q2011/0058Crossbar; Matrix

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

WDM信号の多様なチャンネル間隔に柔軟に適応できる光波長分離装置及び光波長分離方法を提供するために、光波長分離回路は、複数のチャンネルの光信号が多重された波長多重光信号を分岐する光カプラと、光カプラの出力ポート毎に配置され、光カプラの出力ポートから入力された波長多重光信号に含まれる光信号を中心周波数が隣接しないチャンネル毎に分離し、分離された光信号をそれぞれ異なる出力ポートから出力するバンドパスフィルタと、それぞれのバンドパスフィルタの出力ポートから入力される光信号の経路のいずれか1つを選択する光スイッチと、を備える。

Description

本発明は、波長多重された光信号を分離する光波長分離装置及び光波長分離方法に関する。
DWDM(Dense Wavelength Division Multiplexing)システムで用いられるキャリア周波数のグループは、「周波数グリッド」としてITU−T勧告G.694.1に規定されている。周波数グリッドのチャンネル間隔には、例えば100GHz、50GHz、25GHz、12.5GHzがある。一方、海底ケーブルシステムでは、周波数の利用効率を優先するためにITU−T勧告にない40GHzあるいは33.3GHzのチャンネル間隔の周波数グリッドを用いてDWDM伝送が行われる場合がある。ITU−Tは、Telecommunication Standardization Sector of International Telecommunication Unionを意味する。
本発明に関連して、特許文献1には、波長選択スイッチ(Wavelength Selective Switch、WSS)の間に光スイッチが配された光クロスコネクトシステムが記載されている。
特許文献2には、WSSの前後にインターリーバが配された光伝送装置が記載されている。
特開2008−259132号公報 特開2010−098545号公報
図13は、一般的な光波長分離回路201の構成例を示す図である。光波長分離回路201は、1ポート入力、10ポート出力のArrayed Waveguide Grating(1×10 AWG)である。AWGは、入力ポートと各出力ポートとの間の光路にバンドパスフィルタ特性を備えており、入力された波長多重光信号(以下、「WDM信号」という。)から特定の波長の光信号(キャリア)を分離して出力する。また、近年、波長選択スイッチ(Wavelength Selective Switch、WSS)が開発された。WSSは、入出力ポート間のバンドパスフィルタ特性を、所定の条件に基づいてポート毎に設定できる。例えば、1個の入力ポートと複数の出力ポートとの間のバンドパスフィルタの中心周波数を6.25GHz又は12.5GHzのステップで可変できるWSSが知られている。さらに、各出力ポートの帯域幅を6.25GHz又は12.5GHz単位で設定できるWSSも知られている。ただし、WSSの各出力ポートのバンドパスフィルタの周波数範囲を重複させることはできない。
WDM信号の周波数グリッドが6.25GHz又は12.5GHzで規定されている陸上のWDM伝送システムでは、AWGに代わってWSSが光波長分離回路201として用いられることがある。しかしながら、海底ケーブルシステムにはチャンネル間隔が40GHz又は33.3GHzの周波数グリッドを用いるシステムもある。このため、周波数の制御単位が6.25GHz又は12.5GHzであるWSSを用いると、バンドパスフィルタの中心周波数及び帯域幅が、チャンネル間隔が40GHz又は33.3GHzのWDM信号に含まれる光信号の波長及び帯域幅と合わない場合がある。この場合、WSSはWDM信号に含まれる光信号を、スペクトルに影響を与えずに分離することができない。一方、WSSを制御単位が40GHzであるWSS又は33.3GHzであるWSSに変更すると、それ以外のチャンネル間隔の周波数グリッドのWDM信号を好適に分離することができなくなる。また、WSSの制御単位を6.25GHzよりも小さくすることによって50GHz、40GHz、33.3GHz、25GHz等の全てのチャンネル間隔に対応させようとすると、結局、制御単位が0.1GHzのWSSが必要となる。しかし、このような細かい設定が可能なWSSの実現は技術的に困難である。
このような背景の下、WDM信号の多様なチャンネル間隔に柔軟に適応できる光波長分離回路が求められている。しかしながら、特許文献1及び2は、このような要求を満たす技術を開示していない。
(発明の目的)
本発明は、WDM信号の多様なチャンネル間隔に柔軟に適応できる光波長分離装置及び光波長分離方法を実現するための技術を提供することを目的とする。
本発明の光波長分離回路は、
複数のチャンネルの光信号が多重された波長多重光信号を分岐する光カプラと、
前記光カプラの出力ポート毎に配置され、前記光カプラの出力ポートから入力された前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、分離された前記光信号をそれぞれ異なる出力ポートから出力するバンドパスフィルタと、
それぞれの前記バンドパスフィルタの出力ポートから入力される光信号の経路のいずれか1つを選択する光スイッチと、
を備える。
本発明の光波長分離方法は、
複数のチャンネルの光信号が多重された波長多重光信号を分岐し、
分岐された前記波長多重光信号毎に、前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、
バンドパスフィルタを用いて前記チャンネル毎に分離された前記光信号を出力し、
前記分離された前記光信号が出力される複数の経路から1つを選択して出力する、
手順を含む。
本発明は、WDM信号の多様なチャンネル間隔に柔軟に適応できる光波長分離装置及び光波長分離方法を提供する。
第1実施形態の光波長分離回路100の構成例を示すブロック図である。 光波長分離回路100に入力されるWDM信号の周波数グリッドの例を示す表である。 図2の周波数グリッドにおける、各チャンネルに対する理想的なバンドパスフィルタの設定例を示す表である。 チャンネル番号に対する、光波長分離回路100の出力ポート番号及び光スイッチ104〜113の入力ポートの選択の例を示す表である。 チャンネル番号に対する、光波長分離回路100の出力ポート番号及び光スイッチ104〜113の入力ポートの選択の例を示す表である。 チャンネル間隔が40GHzの周波数グリッドのWDM信号が光波長分離回路100に入力される場合のWSS102及び103のバンドパスフィルタの設定例を示す表である。 光波長分離回路100の制御手順の例を示すフローチャートである。 チャンネル間隔が33.3GHzの周波数グリッドにおける、各チャンネルに対する理想的なバンドパスフィルタの設定例を示す表である。 チャンネル間隔が33.3GHzのWDM信号が光波長分離回路100に入力される場合のWSS102及び103のバンドパスフィルタの設定例を示す表である。 第2実施形態の光受信器300の構成例を示すブロック図である。 第3実施形態の光送信器400の構成例を示すブロック図である。 第4実施形態の光ノード500の構成例を示すブロック図である。 一般的な光波長分離回路201の構成例を示す図である。
以下の実施形態では、陸上のWDM伝送システムで主に用いられるチャンネル間隔に適合したWSSを用いて、海底ケーブルシステム特有のチャンネル間隔のWDM信号を分離して出力する光波長分離回路について説明する。光波長分離回路では、例えばチャンネル間隔が50GHz、25GHz又は12.5GHzの周波数グリッドの、陸上のWDM伝送システムに適合するWSSが使用される。そして、光波長分離回路には、チャンネル間隔が40GHz又は33.3GHzの周波数グリッドのWDM信号が入力される。光波長分離回路は、入力されたWDM信号を分離して、任意の出力ポートに任意の波長の光信号を出力する。光波長分離回路は、各出力ポート間で光信号の波長が競合しないように、WDM信号を分離する。なお、以下の実施形態の各図の構成例に付された矢印は説明のために信号の方向を例示するものであり、信号の向きを限定しない。
(第1実施形態)
図1は、第1実施形態の光波長分離回路100の構成例を示すブロック図である。光波長分離回路100では、2個の1×10 WSS(波長選択スイッチ)が並列に配置される。一方のWSS(WSS102)は、WDM信号のチャンネル番号が奇数の光信号を分離するバンドパスフィルタとして設定される。他方のWSS(WSS103)は、チャンネル番号が偶数の光信号を分離するバンドパスフィルタとして設定される。WSS102及び103の出力に接続された10台の2×1光スイッチ(光スイッチ104〜113)は、奇数番号のチャンネルと偶数番号のチャンネルとのいずれかを選択して出力する。このような構成を備える光波長分離回路は、10本の光波長分離回路の任意のポートに、ポート間で波長が競合しない範囲で任意の波長を分離して出力することができる。
図2は、光波長分離回路100に入力される波長多重光信号(WDM信号)の周波数グリッドの例を示す表である。周波数グリッドは、WDM信号を構成する光信号の中心周波数のグループである。図2に示される、中心周波数が193100.0GHzから、周波数が低い方向へ40GHz間隔で並ぶチャンネル(Ch1〜10)のWDM信号が、光波長分離回路100の入力ポート(すなわち、光カプラ101の入力ポート10)へ入力される。各チャンネルの光信号の帯域幅はチャンネル間隔と等しく、中心周波数に対して対称である。すなわち、図2では、各チャンネルの光信号の帯域は中心周波数の前後20GHzである。
光波長分離回路100に入力されたWDM信号は、光カプラ101の出力ポート11と出力ポート12に、等しい光パワーで分岐される。出力ポート11から出力されるWDM信号はWSS102の入力ポート52に入力される。出力ポート12から出力されるWDM信号はWSS103の入力ポート53に入力される。
WSS102は、10個の出力ポート21〜30を持つ。WSS102の入力ポート52と出力ポート21〜30のそれぞれとの間で、バンドパスフィルタの特性を設定できる。本実施形態では、WSS102に設定できるバンドパスフィルタの中心周波数は193100.0GHzを基準に12.5GHzステップである。バンドパスフィルタに設定できる帯域幅も、12.5GHzステップである。また、WSS102の出力ポート21〜30のうち任意のポートの光出力を停止できる。本実施形態では、WSS102は、WDM信号に含まれるCh1〜10の光信号のうち、奇数チャンネル(Ch1、3、5、7、9)を分離して出力するように設定される。
WSS103は、WSS102と同様に、WSS103の入力ポート53と出力ポート31〜40のそれぞれとの間で、バンドパスフィルタの特性を設定できる。WSS102と同様に、WSS103も、バンドパスフィルタの中心周波数を193100.0GHzを基準に12.5GHzのステップで設定できる。また、バンドパスフィルタの帯域幅も12.5GHzのステップで可変できる。そして、出力ポート31〜40のうち任意のポートの出力を停止できる。本実施形態では、WSS103は、WDM信号に含まれるCh1〜10の光信号のうち、偶数チャンネル(Ch2、4、6、8、10)を分離して出力するように設定される。
光スイッチ104〜113は、2入力1出力の光スイッチ(2×1光スイッチ)である。WSS102の出力ポート21は光スイッチ104の入力ポート1に接続される。WSS103の出力ポート31は光スイッチ104の入力ポート2に接続される。光スイッチ104は、WSS102の出力ポート21及びWSS103の出力ポート31から入力される光信号の一方を選択して、光波長分離回路100の出力ポート41から出力する。
同様に、WSS102の出力ポート22〜30は光スイッチ105〜113の入力ポート1にそれぞれ接続される。WSS103の出力ポート32〜40は光スイッチ105〜113の入力ポート2にそれぞれ接続される。そして、光スイッチ105〜113は、光スイッチ104と同様にWSS102とWSS103との一方の出力を選択して光波長分離回路100の出力ポート42〜50から出力する。
制御端末120は、光波長分離回路100の外部に配置される。制御端末120は例えばパーソナルコンピュータであり、通信回線によって制御部114と接続される。制御端末120は、光カプラ101に入力されるWDM信号の周波数グリッド情報(すなわち、Ch1〜Ch10の中心周波数及び帯域幅の情報)、並びに光波長分離回路100の出力ポート41〜50とCh1〜10との対応を制御部114にあらかじめ設定する。制御部114は、この情報に基づいてWSS102及びWSS103にバンドパスフィルタの設定情報(WSS102及び103のバンドパスフィルタ情報及び出力ポート情報)を通知することで、バンドパスフィルタの設定を出力ポート毎に行う。WSS102及びWSS103において、使用されない出力ポートは光信号が出力されないように設定される。制御部114は、さらに、光スイッチ104〜113のそれぞれに対して入力ポート1及び2のいずれを選択して出力するかの情報(切替情報)を通知することで光スイッチ104〜113の入力ポートを設定する。WSS102、WSS103及び光スイッチ104〜113は、制御部114からの指示に基づき、それぞれの機能を設定する。
制御部114の機能は、制御部114が備える電気回路により実現されてもよい。あるいは、制御部114が備える中央処理装置(central processing unit、CPU)がプログラムを実行することにより制御部114の機能が実現されてもよい。プログラムは、固定された、一時的でない記録媒体に記録される。記録媒体としては半導体メモリ又は固定磁気ディスク装置が用いられるが、これらには限定されない。CPUは例えば制御部114に備えられるコンピュータであるが、光波長分離回路100の内部の他の場所に備えられてもよい。
上述したWSS102及び103のバンドパスフィルタの設定変更及び光スイッチ104〜113の入力の切り替えによって、光波長分離回路100は、任意の出力ポート41〜50に、WDM信号から分離されたCh1〜Ch10の任意の光信号を出力できる。
(動作の説明)
WSS102、WSS103のバンドパスフィルタ及び出力ポートの設定と、光スイッチ104〜113における入力ポートの選択について説明する。外部の制御端末120は、Ch1〜Ch10の中心周波数及び帯域幅(すなわち周波数グリッドの情報)、並びに光波長分離回路100の出力ポート41〜50のそれぞれから出力される光信号のチャンネル番号の情報を制御部114に設定する。制御部114は周波数グリッドの情報からWSS102、WSS103に設定するバンドパスフィルタの中心周波数並びに透過周波数の下限及び上限(透過開始周波数及び透過終了周波数)を計算する。
図3は、図2の周波数グリッドにおける、各チャンネルに対する理想的なバンドパスフィルタの設定例を示す表である。WDM信号の周波数グリッドの間隔が40GHzの場合、理想的なバンドパスフィルタの帯域幅は、中心周波数から±20GHzになる。図3を参照すると、例えば、Ch1の光信号の中心周波数は193100.0GHzであり、透過開始周波数は20GHz高い193120.0GHz、透過終了周波数は20GHz低い193080.0GHzである。透過開始周波数はバンドパスフィルタの透過周波数の上限(透過波長の下限)であり、透過終了周波数は透過周波数の下限(透過波長の上限)である。すなわち、理想的にはバンドパスフィルタの中心周波数は光信号の中心周波数と等しく、帯域幅は周波数グリッドの間隔と等しい。しかし、WSS102及び103のバンドパスフィルタに設定可能な中心周波数及び帯域幅は、WSS102及び103に設定可能な周波数に依存する。このため、バンドパスフィルタの中心周波数及び帯域幅は、光波長分離回路100に入力されるWDM信号の周波数グリッドにおける理想値とはならない場合がある。
そのため、本実施形態では、WSS102を奇数チャンネルの光信号を出力するバンドパスフィルタとして設定する。バンドパスフィルタの中心周波数が奇数チャンネルの中心周波数と厳密に一致していなくても、透過開始周波数及び透過終了周波数が奇数チャンネルの光信号に必要な帯域を包含していれば、割り当てられた奇数チャンネルの光信号を透過させることができる。具体的には、制御部114はWSS102に対し、WSS102の出力ポート21〜30のうち所定の5ポートにCh1、Ch3、Ch5、Ch7、Ch9を透過させるバンドパスフィルタを設定すればよい。
同様に、WSS103を偶数チャンネルの光信号を出力するバンドパスフィルタとして設定する。透過開始周波数及び透過終了周波数が偶数チャンネルの光信号に必要な帯域を包含していれば、割り当てられた偶数チャンネルの光信号を透過させることができる。具体的には、制御部114はWSS103に対し、WSS103の出力ポート31〜40のうち所定の5ポートに、Ch2、Ch4、Ch6、Ch8、Ch10を透過させるバンドパスフィルタを設定すればよい。WSS102及び103の出力ポートとチャンネルとの対応は、制御端末120から設定された、出力ポート41〜50と出力されるチャンネルとの対応に基づいて設定される。
ここで、WSS102を奇数チャンネル用、WSS103を偶数チャンネル用とすることで、それぞれのWSSにおいて、透過させる光信号の波長は周波数グリッド上で1つおきに設定される。このような設定により、WSS102及び103に理想値よりも広い透過帯域が設定されたバンドパスフィルタの透過帯域内に他のチャンネルの光信号が含まれた場合でも、デジタルコヒーレント受信器が用いられる場合には受信するチャンネルのみを選択して受信できるため、信号が劣化することはない。さらに、奇数チャンネルと偶数チャンネルとで異なるWSSを用いることで、WSS102及び103がそれぞれにおいてバンドパスフィルタの周波数範囲を重複して設定できないという問題も回避される。
図4及び図5は、WDM信号に含まれる光信号のチャンネル番号に対する、光波長分離回路100の出力ポート番号及び光スイッチ104〜113の入力ポートの選択の例を示す表である。光波長分離回路100の出力ポート41〜50と対応して、光スイッチ104〜113のそれぞれに選択位置が設定される。光スイッチ104〜113の設定は、制御部114に設定されたCh1〜Ch10の中心波長と光波長分離回路100の出力ポート41〜50との関係によって定まる。
図4は、光波長分離回路100の出力ポート41〜50がチャンネル番号の順に光信号を出力する例である。この場合、WSS102の出力ポート21、23、25、27、29は、それぞれCh1、Ch3、Ch5、Ch7、Ch9の光信号を出力する。そして、WSS103の出力ポート32、34、36、38、40は、それぞれCh2、Ch4、Ch6、Ch8、10の光信号を出力する。さらに、光波長分離回路100の出力ポート番号が奇数(41、43、45、47、49)である光スイッチ104、106、108、110、112は、WSS102側の入力ポート1を選択する。また、光波長分離回路100の出力ポート番号が偶数(42、44、46、48、50)である光スイッチ105、107、109、111、113は、WSS103側の入力ポート2を選択する。
図5は、光波長分離回路100の出力ポート41〜45にCh1、3、5、7、9を割り当て、出力ポート46〜50にCh2、4、6、8、10を割り当てた例である。この場合、WSS102の出力ポート21、22、23、24、25は、それぞれCh1、Ch3、Ch5、Ch7、Ch9の光信号を出力する。そして、WSS103の出力ポート36、37、38、39、40は、それぞれCh2、Ch4、Ch6、Ch8、10の光信号を出力する。さらに、光波長分離回路100の出力ポート番号が41〜45である光スイッチ104〜108は、WSS102側の入力ポート1を選択する。また、光波長分離回路100の出力ポート番号が46〜50である光スイッチ109〜113は、WSS103側の入力ポート2を選択する。
(バンドパスフィルタの設定の計算手順)
図6は、チャンネル間隔が40GHzの周波数グリッドのWDM信号が光波長分離回路100に入力される場合のWSS102及び103のバンドパスフィルタの設定例を示す表である。WSS102及び103のバンドパスフィルタの透過周波数の計算方法について周波数グリッドのチャンネル間隔が40GHzである場合を例として説明する。図6では、WSS102は奇数チャンネルの光信号を分離して出力し、WSS103は偶数チャンネルの光信号を分離して出力する。図4及び図5で説明したように、WSS102及び103における各チャンネルの出力ポートは光波長分離回路100の出力ポートの設定により定まるため、図6では出力ポートは示されていない。以下では、WSS102及び103を総称してWSSと記載する。
(1)中心周波数の設定
バンドパスフィルタに設定される中心周波数として、透過させる光信号の中心周波数に最も近く、かつ、WSSに設定可能な周波数が選択される。本実施形態では、WSSのバンドパスフィルタに設定可能な中心周波数は、193100.0GHzを基準に12.5GHzステップの周波数であるとする。従って、透過させる光信号の周波数(GHz)に最も近い12.5の倍数が、中心周波数(GHz)として設定される。例えば、Ch5の光信号の中心周波数は図6に示すように192940.0GHzである。従って、Ch5の光信号を透過させるバンドパスフィルタの中心周波数は192937.5(=12.5×15435)GHzに設定される。他のチャンネルのバンドパスフィルタの中心周波数も同様に計算される。
(2)透過開始周波数の算出
透過開始周波数は、同一のWSSに設定される隣接する短波長側(高周波側)のチャンネルのバンドパスフィルタの中心周波数とのちょうど中間の周波数に最も近く、かつ、その周波数よりも高い、12.5GHzステップの周波数とする。例えば、WSS102に設定されるCh5に隣接する高周波側のチャンネルはCh3であり、Ch3のバンドパスフィルタの中心周波数は193025.0GHzである。従って、Ch3とCh5との中間の周波数は192981.25GHzである。この周波数よりも低く最も近い12.5の倍数は192975.0であるので、Ch5の透過開始周波数は192975.0GHzとなる。
(3)透過終了周波数の算出
透過終了周波数は、同一のWSSに設定される隣接する長波長側(低周波側)のチャンネルのバンドパスフィルタの中心周波数とのちょうど中間の周波数に最も近く、かつ、その周波数よりも高い、12.5GHzステップの周波数とする。例えば、WSS102においてCh5に隣接して設定される低周波側のチャンネルはCh7であり、そのバンドパスフィルタの中心周波数は192862.5GHzである。従って、Ch5とCh7との中間の周波数は192900.0GHzである。この周波数は12.5の倍数であるので、Ch5の透過終了周波数は192900.0GHzとなる。
図6には、上記(1)〜(3)の手順によって計算された、バンドパスフィルタの設定周波数が示される。図3に示した理想的なバンドパスフィルタの設定と比較して、図6の各チャンネルのバンドパスフィルタの透過帯域は図3の各チャンネルの透過帯域を包含する。このため、図6の設定を用いても、各チャンネルの光信号のスペクトルはバンドパスフィルタによる減衰を受けない。
バンドパスフィルタの設定について、数式を用いて説明する。
光信号の中心周波数をfs(GHz)、
xを小数点以下y桁に四捨五入する関数をROUND(x,y)、
xを小数点以下y桁までで切り捨てた値で示す関数をROUNDDOWN(x,y)、
同一のWSS内における、光信号を透過させる隣接するチャンネル間のバンドパスフィルタの中心周波数間隔をfb、
WSSのバンドパスフィルタの中心周波数をfc(GHz)、
透過開始周波数をf1、
透過終了周波数をf2、
で示すと、上記(1)〜(3)の計算は以下の式1〜式3で与えられる。なお、WSSを2台使用し、周波数グリッドのチャンネル間隔が40GHzである本実施形態の構成では、同一WSS内の隣接チャンネル間隔であるfbは80GHzである。
fc=ROUND(fs÷12.5,0)×12.5・・・(式1)
f1=fc+12.5×ROUNDDOWN(fb÷2÷12.5,0)・・(式2)
f2=fc−12.5×ROUNDDOWN(fb÷2÷12.5,0)・・(式3)
式1は、fcに最も近い12.5の倍数を求める式である。式2及び式3は、隣接チャンネルとのちょうど中間の周波数のすぐ内側までを透過帯域とするように透過開始周波数f1及び透過終了周波数f2を求める式である。本実施形態ではy=0であり、ROUND(x,0)はxの小数点第1位を四捨五入した整数値を示し、ROUNDDOWN(x,0)はxの小数点以下を切り捨てた整数値を示す。
式2及び式3によれば、透過帯域幅は最大でfb、すなわち光信号の帯域幅の2倍となる。具体的な計算例である図6を参照すると、バンドパスフィルタに設定される透過帯域幅はCh5で75GHz(192900.0GHz〜192975.0GHz)であり、光信号の帯域幅(40GHz)に対してかなり広い。バンドパスフィルタの透過帯域幅は光信号の中心周波数に対して±20GHz以上あればよいため、バンドパスフィルタの透過帯域幅が上記の範囲より狭くなるように透過開始周波数f1及び透過終了周波数f2が設定されてもよい。例えば、Ch5の透過開始周波数f1を192962.5GHz、透過終了周波数f2を192912.5GHz(すなわち、192937.5±25GHz)としてもよい。このような設定でも、周波数範囲が192940.0±20GHzのCh5の光信号を透過させることができる。いいかえれば、周波数グリッドのチャンネル間隔をfg(40GHz)とすると、透過開始周波数f1及び透過終了周波数f2は以下の式4及び式5から求めてもよい。
f1≧fc+(fg÷2)・・・(式4)
f2≦fc−(fg÷2)・・・(式5)
ただし、式4及び式5で求めた透過開始周波数f1及び透過終了周波数f2も、バンドパスフィルタの透過周波数の範囲が式2及び式3で求めたf1、f2による範囲を超えないように決める必要がある。
図7は、第1実施形態における光波長分離回路100の制御手順の例を示すフローチャートである。制御部114は、入力されるWDM信号の周波数グリッドの情報を制御端末120から読み込む(図7のステップS01)。続いて、未設定のチャンネルに対して、WSS102又はWSS103の中心周波数fcを求めて設定する(ステップS02)。
そして、透過開始周波数f1を求めて設定し(ステップS03)、透過終了周波数f2を求めて設定する(ステップS04)。ステップS03とS04との順序は逆でもよく、あるいはこれらは並行して実行されてもよい。WSSへの設定は、全チャンネルあるいは全WSSの計算が終了してから行われてもよい。ステップS02〜S04において、式1〜式3を用いて周波数を計算することができる。
設定の対象となっているWSSにおいてチャンネルの設定が終了していなければ(ステップS05:NO)、未設定のチャンネルが計算の対象として選択される(ステップS06)。この場合、選択されたチャンネルについて、バンドパスフィルタの中心周波数fc、透過開始周波数f1、透過終了周波数f2の計算及び設定を継続する。全てのチャンネルの計算及び設定の終了後(ステップS05:YES)、未設定のWSSがある場合には(ステップS07:NO)、当該WSSが選択されて、ステップS02〜S05の手順が実行される。
全てのWSSの設定が終了すると(ステップS07:YES)、例えば図4又は図5の「スイッチ選択位置」の設定に基づいて光スイッチ104〜113の入力ポートが切り替えられる(ステップS09)。
以上では、チャンネル間隔が40GHzの周波数グリッドのWDM信号を分離する場合のWSS102及び103の設定について説明した。しかし、上記の設定手順はチャンネル間隔が40GHzの場合以外にも適用できる。
図8は、チャンネル間隔が33.3GHzの周波数グリッドにおける、各チャンネルに対する理想的なバンドパスフィルタの設定例を示す表である。いずれのチャンネルも、透過帯域幅は33.3GHzである。
図9は、チャンネル間隔が33.3GHzのWDM信号が光波長分離回路100に入力される場合のWSS102及び103のバンドパスフィルタの設定例を示す表である。チャンネル間隔が33.3GHzの場合も、fg=33.3GHz(すなわちfb=66.6GHz)とすることで、式1〜式3を用いてバンドパスフィルタの設定値を求めることができる。図8の理想的な設定値と比較して、図9の設定値ではバンドパスフィルタの透過帯域は、図8に示した透過帯域を包含する。このため、図9の設定を用いても、各チャンネルの光信号のスペクトルはバンドパスフィルタによる減衰を受けない。
以上説明したように、光波長分離回路100は、2台のWSS(WSS102及び103)を備える。WSS102は周波数グリッドの奇数チャンネルの光信号を任意の出力ポートから出力し、WSS103は偶数チャンネルの光信号を任意の出力ポートから出力する。ここで、WSS102及び103は、各WSSに設定される出力ポートの透過帯域幅を、1チャンネルの帯域幅以上、1チャンネルの帯域幅の2倍以下で設定する。これにより、WSS102及び103の出力ポートに設定された中心周波数と当該ポートを通過する光信号の中心周波数とが一致しない場合でも、当該光信号を、スペクトルに影響を与えることなく通過させることができる。また、WSSにおいて隣接して設定されるチャンネル間で通過帯域の重なりを防ぐことができる。
さらに、光波長分離回路100は、WSS102及び103の出力を光スイッチ104〜113で選択する。この結果、入力されたWDM信号(Ch1〜10)を、光波長分離回路100の任意の出力ポートから出力させることができる。
(第1実施形態の変形例)
図1では、WSS102が奇数チャンネルの光信号を出力し、WSS103が偶数チャンネルの光信号を出力する光波長分離回路100について説明した。しかし、3個以上のWSSを用いて、WDM信号を3組以上のチャンネルに分割してもよい。例えば、光波長分離回路は、中心周波数が異なるCh1〜Ch12の光信号を含む周波数グリッドのWDM信号が1×3光カプラで3分岐され、それぞれが第1、第2、第3のWSSに入力される構成を備えてもよい。例えば、第1のWSSは「Ch1、4、7、10」の光信号を出力し、第2のWSSが「Ch2、5、8、11」の光信号を出力し、第3のWSSが「Ch3、6、9、12」の光信号を出力する。そして、光波長分離回路の出力に並列に備えられた12台の3×1光スイッチのそれぞれが、第1〜第3のWSSの出力のいずれかを選択して出力してもよい。
この場合、制御部114は、Ch1〜Ch12を12台の光スイッチのどのポートから出力するかの情報と、Ch1〜Ch12の周波数グリッドの情報とに基づいて、第1から第3のWSSのバンドパスフィルタ及び光スイッチの設定を行う。バンドパスフィルタの設定手順は、図1の光波長分離回路100の手順を準用できる。すなわち、各WSSにおいて、透過させるチャンネルの光信号の中心周波数に近い中心周波数をバンドパスフィルタの中心周波数に設定し、透過開始周波数及び透過終了周波数を、透過させるチャンネルの光信号の帯域よりも広くなるように設定する。
一般に、N個(Nは2以上の整数)のWSSを用いてWDM信号を分離する場合には、WSSはN個並列に配置される。そして、WSSの出力にはN×1光スイッチが並列に配置され、N個のWSSの出力のいずれかを選択して光波長分離回路から出力する。光スイッチの並列数は、同時に出力される最大のチャンネル数である。
以上の説明では周波数グリッドのチャンネル間隔が40GHz又は33.3GHzの場合について説明した。しかし、式1〜式5は、チャンネル間隔が他の値である周波数グリッド(例えば50GHz、37.5GHz又は25GHz)にも適用できる。また、WSSに設定可能な周波数の最小単位が12.5GHz以外の場合には、式1〜式3の「12.5」を対応する値に置き換えることで、WSSのバンドパスフィルタに設定される周波数を求めることができる。
(効果の説明)
光波長分離回路100は、WSS102及び103に設定可能な周波数以外の周波数の光信号を含むWDM信号であっても、光信号を分離して出力できる。このような構成を備える光波長分離回路100は、WSSに設定可能な周波数グリッドとはチャンネル間隔が異なる周波数グリッドが採用された光海底伝送システムに適用可能である。
また、周波数グリッドの間隔は、上記の例に限定されない。例えば、周波数グリッドの間隔が50GHz、37.5GHz、33.3GHz、25GHzであっても各部の設定手順は同様である。このような場合でも、周波数グリッドの情報及び光波長分離回路100の出力ポートとチャンネルとの関係に基づいてWSS及び光スイッチを設定することにより、光波長分離回路100の任意の出力ポートに任意のチャンネルを分離して出力できる。
なお、上記の効果を奏する光波長分離回路100は、以下の最小構成としても表現できる。すなわち、光波長分離回路100は、光カプラ101と、WSS102及び103と、光スイッチ104〜113とを備える。光カプラ101は、複数のチャンネルの光信号が多重されたWDM信号を分岐する。WSS102及び103は光カプラ101の出力ポート毎に配置され、バンドパスフィルタとして機能する。WSS102及び103は、光カプラ101の出力ポートから入力されたWDM光信号に含まれる光信号を中心周波数が隣接しないチャンネル毎に分離して、分離された光信号をそれぞれ異なる出力ポートから出力する。光スイッチ104〜113は、WSS102及び103の出力ポートから入力される光信号の経路のいずれか1つを選択する。
(第2実施形態)
図10は、本発明の第2実施形態の光受信器300の構成例を示すブロック図である。
光受信器300は、光電気変換回路301と、第1実施形態で説明した光波長分離回路100と、を備える。光電気変換回路301は、光波長分離回路100から出力された、チャンネル毎に分離された光信号を、それぞれ、電気信号に変換する。光電気変換回路301は、フォトダイオードなどの受光素子と、受光素子から出力される電気信号を増幅する増幅器を備えてもよい。
このような構成を備える光受信器300は、光電気変換回路301と第1実施形態の光波長分離回路100とを備えることにより、WDM信号をチャンネル毎に分離して、その信号を電気信号として出力することができる。そして、光受信器300は、WDM信号の多様なチャンネル間隔に柔軟に適応できるという、第1実施形態と同様の効果を奏する。
(第3実施形態)
図11は、本発明の第3実施形態の光送信器400の構成例を示すブロック図である。
光送信器400は、電気光変換回路401と、第1実施形態で説明した光波長分離回路100と、を備える。電気光変換回路401は、例えば、半導体レーザダイオード等の発光素子であり、入力された電気信号を所定のチャンネル間隔の周波数グリッドの光信号に変換し、光波長分離回路100の出力ポートへ出力する。
第1実施形態で説明した光波長分離回路100を構成するそれぞれの光部品は、透過する光信号の向きにかかわらず機能する。従って、光波長分離回路100は、出力ポート41〜50から入力された互いに中心波長が異なる光信号を合波して、WDM信号を生成することができる。この場合、光波長分離回路100の光スイッチ104〜113、WSS102及びWSS103は、例えば、出力ポートに入力された光信号の奇数チャンネルがWSS102に入力され、偶数チャンネルがWSS103に分配されるように設定される。
光送信器400は、電気光変換回路401と第1実施形態の光波長分離回路100とを備えることにより、電気光変換回路401が生成した光信号を波長分離回路で合波してWDM信号として出力することができる。そして、電気光変換回路401から入力される光信号のチャンネル間隔がWSS102及び103に設定可能なチャンネル間隔以外の周波数であっても、光信号を分離して出力できる。すなわち、光送信器400は、多様なチャンネル間隔の光信号を合波してWDM信号を生成できるという効果を奏する。
(第4実施形態)
図12は、本発明の第4実施形態の光ノード500の構成例を示すブロック図である。
光ノード500は、光マトリクススイッチ501と、光合分波回路502と、第1実施形態で説明した光波長分離回路100と、を備える。光マトリクススイッチ501は、入力された複数の光信号の出力先を切り替えることができる周知の光部品である。
図12の左側の光波長分離回路100(第1の光波長分離回路)は、光ノード500の外部から入力されたWDM信号を分離して光マトリクススイッチ501へ出力する。図12の右側の光波長分離回路100(第2の光波長分離回路)は、光マトリクススイッチ501から出力された光信号を合波し、合波したWDM信号を光ノード500の外部へ出力する。
光合分波回路502は、光マトリクススイッチ501から出力された光信号を合波し、合波したWDM信号を光ノード500の外部へ出力するとともに、光ノード500の外部から入力されたWDM信号を分離して光マトリクススイッチ501へ出力する。
本実施形態の光ノード500は、光波長分離回路100をWDM信号の分離又は合成に用いることで、多様なチャンネル間隔の光信号が用いられる光伝送システムに柔軟に対応できる。
なお、光合分波回路502を2台の光波長分離回路100に置き換え、一方を光マトリクススイッチ501から出力される光信号の合波に用い、他方を外部から入力されるWDM信号の分波に用いてもよい。この構成により、光合分波回路502を介して入出力される光信号のチャンネル間隔に対しても柔軟な設定が可能となる。
なお、本発明の実施形態は以下の付記のようにも記載されうるが、これらには限定されない。
(付記1)
複数のチャンネルの光信号が多重された波長多重光信号を分岐する光カプラと、
前記光カプラの出力ポート毎に配置され、前記光カプラの出力ポートから入力された前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、分離された前記光信号をそれぞれ異なる出力ポートから出力するバンドパスフィルタと、
それぞれの前記バンドパスフィルタの出力ポートから入力される光信号の経路のいずれか1つを選択する光スイッチと、
を備える光波長分離回路。
(付記2)
前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記バンドパスフィルタに設定可能な最小単位の周波数並びに前記光信号の中心周波数及び前記光信号の帯域幅に基づいて設定される、
付記1に記載された光波長分離回路。
(付記3)
前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記最小単位の周波数の倍数となるように設定される、
付記2に記載された光波長分離回路。
(付記4)
前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記光信号の帯域を包含する、
付記2又は3に記載された光波長分離回路。
(付記5)
前記バンドパスフィルタは、前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅を前記バンドパスフィルタの出力ポート毎に設定可能な波長選択スイッチである、付記2乃至4のいずれかに記載された光波長分離回路。
(付記6)
前記波長多重光信号に含まれる光信号の中心周波数及び帯域幅の情報及び前記光スイッチから出力される前記光信号の周波数の情報に基づいて前記中心周波数及び前記帯域幅を設定するとともに前記光スイッチを切り替える制御回路をさらに備える、
付記1乃至5のいずれかに記載された光波長分離回路。
(付記7)
付記1乃至6のいずれかに記載された光波長分離回路と、
前記光波長分離回路から出力された、チャンネル毎に分離された光信号を、それぞれ、電気信号に変換する光電気変換回路と、を備える光受信器。
(付記8)
付記1乃至6のいずれかに記載された光波長分離回路と、
入力された電気信号をチャンネル毎に互いに中心波長が異なる光信号に変換して前記光波長分離回路の出力ポートへ出力する電気光変換回路と、を備え、
前記光波長分離回路は、前記光波長分離回路の出力ポートから入力された前記光信号を合波してWDM信号を生成する、
光送信器。
(付記9)
光マトリクススイッチと、
前記光マトリクススイッチから出力された光信号を合波して波長多重光信号を出力するとともに、入力された波長多重光信号を分離して前記光マトリクススイッチへ出力する光合分波回路と、
第1の光波長分離回路と、
第2の光波長分離回路と、を備え、
前記第1及び第2の光波長分離回路は、付記1乃至6のいずれかに記載された光波長分離回路であり、
前記第1の光波長分離回路は、入力された波長多重光信号をチャンネル毎に分離して前記光マトリクススイッチへ出力し、前記第2の光波長分離回路は、前記光マトリクススイッチから出力された光信号を合波し、合波して生成された波長多重光信号を外部へ出力する、光ノード。
(付記10)
複数のチャンネルの光信号が多重された波長多重光信号を分岐し、
分岐された前記波長多重光信号毎に、前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、
バンドパスフィルタを用いて前記チャンネル毎に分離された前記光信号を出力し、
前記分離された前記光信号が出力される複数の経路から1つを選択して出力する、
光波長分離方法。
(付記11)
前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅を、前記バンドパスフィルタに設定可能な最小単位の周波数並びに前記光信号の中心周波数及び前記光信号の帯域幅に基づいて設定する、
付記10に記載された光波長分離方法。
(付記12)
前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅を、前記最小単位の周波数の倍数となるように設定する、
付記11に記載された光波長分離方法。
(付記13)
前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記光信号の帯域を包含するように設定される、
付記11又は12に記載された光波長分離方法。
(付記14)
光波長分離回路のコンピュータに、
複数のチャンネルの光信号が多重された波長多重光信号を分岐する光カプラの出力ポート毎に配置されたバンドパスフィルタを、前記光カプラの出力ポートから入力された前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、分離された前記光信号をそれぞれ異なる出力ポートから出力するように制御する手順、
それぞれの前記バンドパスフィルタの出力ポートから入力される光信号の経路のいずれか1つを選択するように光スイッチを制御する手順、
を実行させるための光波長分離回路の制御プログラム。
以上、実施形態を参照して本発明を説明したが、本発明は上記の実施形態に限定されない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
また、それぞれの実施形態に記載された構成は、必ずしも互いに排他的なものではない。本発明の作用及び効果は、上述の実施形態の全部又は一部を組み合わせた構成によって実現されてもよい。
この出願は、2017年7月28日に出願された日本出願特願2017−146888を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100 光波長分離回路
101 光カプラ
104〜113 光スイッチ
114 制御部
120 制御端末
201 光波長分離回路
300 光受信器
301 光電気変換回路
400 光送信器
401 電気光変換回路
500 光ノード
501 光マトリクススイッチ
502 光合分波回路

Claims (14)

  1. 複数のチャンネルの光信号が多重された波長多重光信号を分岐する光カプラと、
    前記光カプラの出力ポート毎に配置され、前記光カプラの出力ポートから入力された前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、分離された前記光信号をそれぞれ異なる出力ポートから出力するバンドパスフィルタと、
    それぞれの前記バンドパスフィルタの出力ポートから入力される光信号の経路のいずれか1つを選択する光スイッチと、
    を備える光波長分離回路。
  2. 前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記バンドパスフィルタに設定可能な最小単位の周波数並びに前記光信号の中心周波数及び前記光信号の帯域幅に基づいて設定される、
    請求項1に記載された光波長分離回路。
  3. 前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記最小単位の周波数の倍数となるように設定される、
    請求項2に記載された光波長分離回路。
  4. 前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記光信号の帯域を包含する、
    請求項2又は3に記載された光波長分離回路。
  5. 前記バンドパスフィルタは、前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅を前記バンドパスフィルタの出力ポート毎に設定可能な波長選択スイッチである、請求項2乃至4のいずれかに記載された光波長分離回路。
  6. 前記波長多重光信号に含まれる光信号の中心周波数及び帯域幅の情報及び前記光スイッチから出力される前記光信号の周波数の情報に基づいて前記中心周波数及び前記帯域幅を設定するとともに前記光スイッチを切り替える制御回路をさらに備える、
    請求項1乃至5のいずれかに記載された光波長分離回路。
  7. 請求項1乃至6のいずれかに記載された光波長分離回路と、
    前記光波長分離回路から出力された、チャンネル毎に分離された光信号を、それぞれ、電気信号に変換する光電気変換回路と、を備える光受信器。
  8. 請求項1乃至6のいずれかに記載された光波長分離回路と、
    入力された電気信号をチャンネル毎に互いに中心波長が異なる光信号に変換して前記光波長分離回路の出力ポートへ出力する電気光変換回路と、を備え、
    前記光波長分離回路は、前記光波長分離回路の出力ポートから入力された前記光信号を合波してWDM信号を生成する、
    光送信器。
  9. 光マトリクススイッチと、
    前記光マトリクススイッチから出力された光信号を合波して波長多重光信号を出力するとともに、入力された波長多重光信号を分離して前記光マトリクススイッチへ出力する光合分波回路と、
    第1の光波長分離回路と、
    第2の光波長分離回路と、を備え、
    前記第1及び第2の光波長分離回路は、請求項1乃至6のいずれかに記載された光波長分離回路であり、
    前記第1の光波長分離回路は、入力された波長多重光信号をチャンネル毎に分離して前記光マトリクススイッチへ出力し、前記第2の光波長分離回路は、前記光マトリクススイッチから出力された光信号を合波し、合波して生成された波長多重光信号を外部へ出力する、光ノード。
  10. 複数のチャンネルの光信号が多重された波長多重光信号を分岐し、
    分岐された前記波長多重光信号毎に、前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、
    バンドパスフィルタを用いて前記チャンネル毎に分離された前記光信号を出力し、
    前記分離された前記光信号が出力される複数の経路から1つを選択して出力する、
    光波長分離方法。
  11. 前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅を、前記バンドパスフィルタに設定可能な最小単位の周波数並びに前記光信号の中心周波数及び前記光信号の帯域幅に基づいて設定する、
    請求項10に記載された光波長分離方法。
  12. 前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅を、前記最小単位の周波数の倍数となるように設定する、
    請求項11に記載された光波長分離方法。
  13. 前記バンドパスフィルタの中心周波数及び前記バンドパスフィルタの帯域幅は、前記光信号の帯域を包含するように設定される、
    請求項11又は12に記載された光波長分離方法。
  14. 光波長分離回路のコンピュータに、
    複数のチャンネルの光信号が多重された波長多重光信号を分岐する光カプラの出力ポート毎に配置されたバンドパスフィルタを、前記光カプラの出力ポートから入力された前記波長多重光信号に含まれる前記光信号を中心周波数が隣接しない前記チャンネル毎に分離し、分離された前記光信号をそれぞれ異なる出力ポートから出力するように制御する手順、
    それぞれの前記バンドパスフィルタの出力ポートから入力される光信号の経路のいずれか1つを選択するように光スイッチを制御する手順、
    を実行させるための光波長分離回路の制御プログラム、
    を記録した記録媒体。
JP2019532573A 2017-07-28 2018-07-20 光波長分離装置及び光波長分離方法 Active JP7074137B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017146888 2017-07-28
JP2017146888 2017-07-28
PCT/JP2018/027370 WO2019021972A1 (ja) 2017-07-28 2018-07-20 光波長分離装置及び光波長分離方法

Publications (2)

Publication Number Publication Date
JPWO2019021972A1 true JPWO2019021972A1 (ja) 2020-04-16
JP7074137B2 JP7074137B2 (ja) 2022-05-24

Family

ID=65040856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532573A Active JP7074137B2 (ja) 2017-07-28 2018-07-20 光波長分離装置及び光波長分離方法

Country Status (5)

Country Link
US (2) US11044034B2 (ja)
EP (1) EP3661083A4 (ja)
JP (1) JP7074137B2 (ja)
CN (1) CN110892656B (ja)
WO (1) WO2019021972A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892656B (zh) * 2017-07-28 2021-12-10 日本电气株式会社 光波长分离装置及光波长分离方法
US11863237B2 (en) 2020-11-24 2024-01-02 Solid, Inc. Optical communication device and method for setting wavelength thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259132A (ja) * 2007-04-09 2008-10-23 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクトシステム及び光クロスコネクトシステムにおける信号制御方法
JP2009210841A (ja) * 2008-03-05 2009-09-17 Nec Corp 波長多重分離フィルタ、波長多重分離方式及び波長多重分離方法
JP2010098545A (ja) * 2008-10-16 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置
US20110262143A1 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm systems and methods of operation
WO2012163301A1 (en) * 2011-06-03 2012-12-06 Huawei Technologies Co., Ltd. Method and apparatus for colorless add
US20130142510A1 (en) * 2011-12-02 2013-06-06 At&T Intellectual Property I, L.P. Apparatus and Method for Improved Distributed Compensation of Filtering Effects Mitigation in an Optical Network
EP2919404A1 (en) * 2014-03-10 2015-09-16 Alcatel Lucent Multiplexing system and demultiplexing system for WDM channel transmission

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907844B2 (en) * 2007-10-25 2011-03-15 University Of Ottawa Method and apparatus for hitless routing of optical signals in an optical transport network
FR2933256B1 (fr) * 2008-06-30 2012-11-30 Alcatel Lucent Dispositif de commutation de signaux optiques
US8538267B2 (en) * 2009-10-09 2013-09-17 Nec Laboratories America, Inc. ROADM transponder aggregator systems and methods of operation
JP2013201517A (ja) * 2012-03-23 2013-10-03 Fujitsu Ltd 光伝送システムの制御方法、光伝送装置、制御装置及び光伝送システム
JP6106977B2 (ja) * 2012-07-23 2017-04-05 日本電気株式会社 光伝送システム、及び光伝送方法
CN102970101B (zh) 2012-11-30 2016-05-04 武汉邮电科学研究院 一种高谱效率的wdm-rof载波产生方法与传输系统
JP6115364B2 (ja) * 2013-07-11 2017-04-19 富士通株式会社 光伝送装置、光伝送システム、及び光伝送方法
WO2017131125A1 (ja) * 2016-01-29 2017-08-03 国立大学法人名古屋大学 光スイッチ装置
JP2017146888A (ja) 2016-02-19 2017-08-24 株式会社日立製作所 設計支援装置及び方法及びプログラム
US11115146B2 (en) * 2017-03-31 2021-09-07 Nec Corporation Optical signal demultiplexing device, optical signal reception device, and optical signal demultiplexing method
CN110892656B (zh) * 2017-07-28 2021-12-10 日本电气株式会社 光波长分离装置及光波长分离方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259132A (ja) * 2007-04-09 2008-10-23 Nippon Telegr & Teleph Corp <Ntt> 光クロスコネクトシステム及び光クロスコネクトシステムにおける信号制御方法
JP2009210841A (ja) * 2008-03-05 2009-09-17 Nec Corp 波長多重分離フィルタ、波長多重分離方式及び波長多重分離方法
JP2010098545A (ja) * 2008-10-16 2010-04-30 Nippon Telegr & Teleph Corp <Ntt> 光伝送装置
US20110262143A1 (en) * 2010-04-21 2011-10-27 Nec Laboratories America, Inc. Roadm systems and methods of operation
WO2012163301A1 (en) * 2011-06-03 2012-12-06 Huawei Technologies Co., Ltd. Method and apparatus for colorless add
US20130142510A1 (en) * 2011-12-02 2013-06-06 At&T Intellectual Property I, L.P. Apparatus and Method for Improved Distributed Compensation of Filtering Effects Mitigation in an Optical Network
EP2919404A1 (en) * 2014-03-10 2015-09-16 Alcatel Lucent Multiplexing system and demultiplexing system for WDM channel transmission

Also Published As

Publication number Publication date
US20210281348A1 (en) 2021-09-09
CN110892656B (zh) 2021-12-10
CN110892656A (zh) 2020-03-17
WO2019021972A1 (ja) 2019-01-31
EP3661083A1 (en) 2020-06-03
US11489612B2 (en) 2022-11-01
JP7074137B2 (ja) 2022-05-24
US11044034B2 (en) 2021-06-22
US20200169348A1 (en) 2020-05-28
EP3661083A4 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US10200145B2 (en) Flexible grid optical spectrum transmitter, receiver, and transceiver
JP6015365B2 (ja) 伝送装置及び伝送方法
US8958695B2 (en) Optical adding and dropping device and optical transmission apparatus
US9264167B2 (en) Optical add drop multiplexer
JP4937983B2 (ja) 光伝送装置
JP5807338B2 (ja) 光伝送装置および光フィルタ回路
US9742519B2 (en) Photonic cross-connect with reconfigurable add-drop-functionality
US10539741B2 (en) Optical device with optical filters and processing method of optical signals
US8948593B2 (en) Optical network interconnect device
JP2014014017A (ja) 光分岐挿入装置、ネットワーク管理装置、及び波長選択スイッチ
US11489612B2 (en) Light wavelength separation device and light wavelength separation method
JP6747580B2 (ja) 光信号分波装置、光信号受信装置、光信号送受信装置、及び光信号分波方法
US10659165B2 (en) Optical transmission device
US8849113B2 (en) Wavelength selective switch and optical transmission apparatus
JP2009065434A (ja) 光周波数分配装置、光周波数収集装置および光周波数分配装置の設定方法
JP2011203539A (ja) 波長変換システム及び波長変換方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220425

R151 Written notification of patent or utility model registration

Ref document number: 7074137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151