WO2017149684A1 - 湿式高濃度水素混合ガス呼吸システム - Google Patents

湿式高濃度水素混合ガス呼吸システム Download PDF

Info

Publication number
WO2017149684A1
WO2017149684A1 PCT/JP2016/056317 JP2016056317W WO2017149684A1 WO 2017149684 A1 WO2017149684 A1 WO 2017149684A1 JP 2016056317 W JP2016056317 W JP 2016056317W WO 2017149684 A1 WO2017149684 A1 WO 2017149684A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
supply
concentration
air
Prior art date
Application number
PCT/JP2016/056317
Other languages
English (en)
French (fr)
Inventor
隆夫 河村
Original Assignee
株式会社グレイトチレン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グレイトチレン filed Critical 株式会社グレイトチレン
Priority to JP2016530025A priority Critical patent/JP6029044B1/ja
Priority to PCT/JP2016/056317 priority patent/WO2017149684A1/ja
Priority to TW106106661A priority patent/TWI648074B/zh
Publication of WO2017149684A1 publication Critical patent/WO2017149684A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases

Definitions

  • the present invention relates to a wet high-concentration hydrogen mixed gas breathing system for supplying a gas containing at least hydrogen to a supply target such as a person or an animal.
  • Hydrogen molecules are known to have an action of selectively detoxifying hydroxyl radicals (.OH) among active oxygens harmful to the body.
  • hydroxyl radicals .OH
  • water or infusion / preservation solution used for infusion treatment in which hydrogen gas is dissolved is taken into the body, or hydrogen mixed gas is taken into the alveoli by breathing.
  • Patent Document 1 A patent application has already been filed for the invention of a high-concentration hydrogen mixed gas breathing system that can be obtained (Patent Document 1).
  • Patent Document 1 has a means for protecting the human respiratory organ from explosions and detonations, and a high-concentration hydrogen mixture capable of performing tests and experiments using hydrogen gas in a concentration range exceeding 4.0%.
  • a gas breathing system is described.
  • the first problem to be solved by the present invention is that the respiratory organ tends to dry. That is, in the conventional high-concentration hydrogen mixed gas breathing system, during breath recirculation breathing using a carbon dioxide absorbent, water vapor during breathing is partially reduced in the absorbent portion. As a result, the mucus layer of the respiratory organ could not be kept in a normal state, and the respiratory airway mucosa could not be protected by the mucus layer. Furthermore, although a means for protecting a human respiratory organ when an explosion and detonation occur in the middle of a hydrogen mixed gas supply path is provided, it has been insufficient to suppress the explosion and detonation.
  • the second problem is that, except for the “exhalation recirculation method” of the high-concentration hydrogen mixed gas breathing system described in Patent Document 1, the consumption of hydrogen gas becomes enormous, and the high concentration of inhaled hydrogen gas The consumption of hydrogen gas increased in proportion to the length of use time. This increase in consumption of hydrogen gas has led to an increase in danger in a sense. Therefore, there has been a demand for the development of a breathing method and the like (system) that achieves a medically effective effect with a relatively small amount of hydrogen gas consumption by making some improvements such as the breathing method.
  • the third problem is to review the problem of wearing a medical mask and the allowable atmospheric pressure from the viewpoint of safety and effects on the human body. Some users do not like wearing medical masks and others are not suitable. For such a person, it is possible to draw a high-concentration hydrogen mixed gas by a plurality of persons at the same time without troublesome work, and a system capable of using high atmospheric pressure within a range in which safety is ensured. Development was required.
  • the fourth problem is that regarding the functional aerosol, in the conventional type of Patent Document 1, the high-concentration hydrogen mixed gas and the functional aerosol are exclusively used.
  • the high-concentration hydrogen mixed gas and the functional aerosol can be sucked at the same time, and the type of the functional aerosol and the method for producing the functional aerosol have to be expanded.
  • the fifth problem is that the high-concentration hydrogen mixed gas breathing system disclosed in Patent Document 1 has a small number of element selections. Therefore, with regard to hydrogen and oxygen and all related elements, the selectivity of system components has been increased, from small medical bases to large medical bases, from fixed housing to vehicles such as vehicles, aircraft and ships. Furthermore, it was necessary to be able to provide a wide range of system elements, ranging from business respiratory devices used by individuals on foot.
  • an object of the present invention is to provide a wet high-concentration hydrogen mixed gas breathing system that can prevent respiration on the respiratory side and suppress detonation and explosion.
  • a wet high-concentration hydrogen mixed gas breathing system includes a gas supply flow path for supplying a gas containing at least hydrogen to a supply target such as a human or an animal, and the gas supply flow path is A gas supply means for supplying the gas; a temperature / humidity adjustment means for adjusting the temperature and humidity of the gas; and a gas supply section for supplying the gas to the supply target.
  • Hydrogen is supplied to the supply object at a concentration exceeding 4.0% (Vol%).
  • Non-patent Document 1 a minimum humidity condition that does not generate static electricity in the respiratory air flow path was determined using related technical data (Non-patent Document 1) of the Osaka Prefectural Industrial Technology Research Institute.
  • Non-patent Document 1 As a safety condition from the relationship between chargeability and humidity in FIGS. 17 and 18, the corresponding temperature / humidity value at an absolute humidity of 10 mg / L or more was obtained, and a relative humidity of 60% or more was derived at a temperature of 20 ° C.
  • various combustion explosion test results of hydrogen gas analysis of Table 5 and FIG. 19 to FIG. 26 (up to 200 atm), non-patent document 7 Nippon Techno Co., Ltd.
  • the present invention basically controls the temperature and humidity of the sucked hydrogen gas mixture to set values based on the hydrogen gas concentration (relative humidity 60% to 100%, temperature 20 ° C. to 40 ° C. as setting conditions).
  • a warming humidifier is installed.
  • ignition of combustible gas can be avoided or generation
  • a flame interrupting device as a means for protecting the respiratory organ and an impact pressure buffering portion for buffering pressure fluctuation due to explosion are installed.
  • the first feature is to enable the safe use of the high-pressure oxygen-hydrogen mixed gas treatment apparatus up to 3 atm as the user allowable atmospheric pressure.
  • the high-concentration hydrogen mixed gas breathing system described in Patent Document 1 was a lung breathing type and used an oral mask, and the sucked hydrogen mixed gas was taken into blood through the alveoli.
  • a humidified hydrogen mixed gas having a hydrogen gas concentration exceeding the upper limit of explosion or a humidified hydrogen gas through a nasal cavity instead of the oral cavity is newly mounted. Is configured to be able to inject a constant volume exclusively. Therefore, humidified hydrogen gas having a high concentration can be directly applied to the inner brain nerve cells and the like without passing through the blood-brain barrier from the olfactory portion of the olfactory cell portion.
  • the oral cavity can breathe arbitrarily, and high-humidified hydrogen gas that has passed through the nasal cavity merges with the breathing air of humidified air or humidified oxygen gas from the oral cavity and the pharyngeal part, and is guided to the alveoli and absorbed from the alveoli. This is the second feature.
  • a sealed nose mouth mask and a sealed eye nose mask in addition to the sealed nose mask.
  • This sealed eye-nose mask can supply the humidified hydrogen gas to the eyeball and nasal cavity to be supplied, and allow the hydrogen gas to contact the eyeball.
  • the sealed nasal mouth mask is a nasal mouth mask that supplies humidified hydrogen gas to the nasal cavity to be supplied, and the nasal mouth mask includes a nasal passage that supplies the humidified hydrogen gas to the nasal cavity; A mouth channel for supplying air or the like to the oral cavity, and an opening / closing valve is provided between the nasal channel and the mouth channel to connect and isolate the nasal channel and the mouth channel. It is characterized by.
  • the nasal passage mask is provided with the on-off valve capable of communicating and isolating the nasal passage and the oral passage so that mouth breathing and nasal breathing can be selected. .
  • the apparatus further comprises an exhalation exhaust flow path for exhausting exhaled air from the supply target, the exhalation exhaust flow path including exhalation receiving means for receiving the exhalation from the supply target, and hydrogen in the exhalation And a hydrogen concentration reducing means for reducing the gas concentration.
  • the exhalation discharge flow path has the hydrogen concentration reducing means for reducing the hydrogen gas concentration, the exhalation can be safely discharged into the atmosphere.
  • the apparatus further includes an air supply flow path for supplying oxygen and / or air to the supply target, the air supply flow path including air supply means for supplying the oxygen and / or air, and the oxygen And / or a humidity adjusting means for adjusting the humidity of the air, and an air supply unit for supplying the oxygen and / or air to the supply target.
  • the downstream of the exhalation discharge channel is connected to the upstream of the air supply channel, and the carbon dioxide concentration of the exhalation is set between the exhalation discharge channel and the air supply channel.
  • Carbon dioxide concentration lowering means for lowering is provided, and oxygen supply means is further provided upstream of the air supply flow path.
  • the gas supply means and the air supply means are an electrolysis-type hydrogen oxygen supply device, the electrolysis-type hydrogen oxygen supply device supplies hydrogen gas to the gas supply flow path, and Oxygen gas is supplied to the air supply channel.
  • the fuel cell unit further includes a fuel cell unit that generates electric power from the hydrogen gas. As described above, by having the fuel cell unit, it is possible to effectively process the hydrogen gas generated excessively for power generation.
  • an air conditioner that can be used for air conditioning of a sealed space (sealed room) where humans or animals can survive.
  • hydrogen gas, oxygen gas, external air, moisture, means for supplying functional aerosol, and carbon dioxide removing means are incorporated in a system in parallel. Therefore, temperature, humidity, hydrogen gas concentration, oxygen gas concentration, and carbon dioxide concentration can be adjusted, and by controlling the indoor gas environment, the atmosphere environment in the sealed room can be set to a humidified hydrogen mixed gas environment and created. it can.
  • a system is constructed in which a human or animal can safely breathe the humidified hydrogen mixed gas without using a breathing mask or the like.
  • the components of this system are designed for safe explosion-proof specifications.
  • the indoor unit of this system is composed of the following three parts.
  • the first is an indoor part of an air conditioner for air conditioning.
  • the second is an additional function unit that supplies a humidified hydrogen mixed gas and a functional aerosol connected to the lower part of the first indoor unit.
  • This additional function unit has a functional aerosol supply function, a heating and humidification function, a hydrogen gas / oxygen gas / air supply function, and an indoor ventilation function.
  • the third is carbon dioxide removal reducing means for reducing and removing carbon dioxide.
  • This carbon dioxide removal reducing means has a unique gas intake and blowing function.
  • This indoor unit is characterized in that these three parts are integratedly controlled.
  • a plurality of sensors are installed in a plurality of locations in the room in order to obtain necessary atmosphere information for controlling them.
  • These various sensors measure data such as temperature, humidity, hydrogen concentration, oxygen concentration, carbon dioxide concentration, indoor airflow velocity, etc., and send them to an integrated control device (integrated control unit).
  • integrated control unit integrated control unit
  • the above-described three elements are controlled to control the indoor airflow, temperature, humidity, hydrogen gas concentration, oxygen gas concentration, carbon dioxide concentration, and the type and amount of functional aerosol.
  • a volume-replacement type air bag that efficiently ventilates a gas (gas) that fills the interior of the sealed chamber (survivable sealed space) is provided for early adjustment of the hydrogen gas concentration. It is provided.
  • the air conditioner's air blowing capability prevents local bias in the gas concentration, and stirring and mixing while injecting the corresponding gas, ventilating the injected amount to keep the pressure balance constant.
  • the target gas injection, stirring and mixing, and ventilation scavenging
  • an antistatic air bag that can be expanded (expanded) to approximately the size of the room is installed on the ceiling of the room, etc., and when a person does not enter the room, it is inflated and deployed using pressurized air, and a mixed gas of target components At the same time as the injection of the gas mixture, the air in the airbag is exhausted at the same speed (with a gas flow rate) as that of the gas mixture, so that the gas mixture can be replaced in a short time without waste.
  • the third feature is that a volume-replacement type air bag that efficiently ventilates the gas (gas) filling the interior of the room is provided.
  • a microbubble / nanobubble generating apparatus that can be generated without using a high voltage is used to install the apparatus in a warming humidifier.
  • water / hot water containing microbubbles / nanobubbles is separately generated and used in a nebulizer or the like.
  • the aerosol material shown in Table 2 can be used individually with a nebulizer or the like.
  • the degree of freedom of the means for supplying hydrogen gas and oxygen gas is improved.
  • a means for supplying hydrogen gas first of all, a high pressure hydrogen cylinder, a hydrogen storage alloy canister, a hydrogen generating agent (several types of hydrogen blowing agents used with water or hot water), a water electrolysis device (diaphragm type) In this case, hydrogen gas and oxygen gas are generated).
  • a means for supplying oxygen gas hospitals and the like are often equipped with oxygen supply lines up to each room, but an oxygen cylinder for inhalation can also be used.
  • oxygen is produced by electrolysis of water, but hydrogen: oxygen is generated at a ratio of 2: 1. Therefore, hydrogen gas is generated depending on use. It is possible to obtain water as a product by using extra generated hydrogen gas for power generation. Therefore, a fifth feature is to provide a convenient system even in an environment where both oxygen gas and hydrogen gas are difficult to obtain.
  • the sealed chamber is formed of a pressure-resistant container configured according to a standard according to JIS T7321 and “safety standard for hyperbaric oxygen treatment”, and the inside of the pressure-resistant container is configured to be pressurized. It is characterized by being.
  • the present invention can provide a wet high-concentration hydrogen mixed gas breathing system that can prevent the respiratory side from being dried and can suppress the occurrence of detonation and explosion.
  • the present invention can obtain a medically effective effect by using a relatively small amount of hydrogen gas by adopting a breathing method that exclusively supplies the humidified hydrogen gas only to the nasal cavity.
  • this invention can supply hydrogen gas to a supply object by using an airtight chamber without using a mask or the like that is troublesome to wear.
  • the introduction of a high-pressure oxygen-hydrogen treatment apparatus makes it possible to use it for high-level disease treatment.
  • Table 2 shows a comparison between the high-concentration hydrogen mixed gas breathing system described in Patent Document 1 and the wet high-concentration hydrogen mixed gas breathing system according to the present invention.
  • An electrostatic atomizing humidifier using a high voltage exhibits high performance as a means for supplying functional aerosol (such as Nanoe manufactured by Panasonic), but cannot be used in a high-concentration hydrogen gas mixture that is a combustible gas mixture. It can be used in oxygen gas and hydrogen gas. It is impossible when mixed.
  • a micro / nano bubble generator as shown in FIG. 28 is incorporated in an apparatus such as a warming humidifier.
  • the micro / nano bubble generator is installed in the gas path of the combustible gas mixture, and it can be used simultaneously with breathing of high-concentration humidified hydrogen gas mixture. Improved. Furthermore, by increasing the types of functional aerosols that can be selected, countermeasures for a wide range of pathological conditions have been improved.
  • An example of the aerosol added this time from Table 2 is Pt (platinum nanocolloid). Although it has been reported that it is generated when a voltage of about 5000 V is applied in water vapor using a platinum electrode, it is sold by several domestic manufacturers as a platinum nanocolloid solution, and it is said that it increases the medical efficacy by itself. ing. However, it has been reported that platinum or platinum-coated parts as metals are ignited by a catalytic action when used on a high concentration hydrogen mixed gas passage. Other materials also have various features and advantages.
  • FIG. 6 is a schematic view of a sealed nostril mask used in a wet high-concentration hydrogen mixed gas breathing system according to Embodiments 1 to 5 of the present invention.
  • FIG. 6 is a schematic view showing a production example of a sealed nose mouth mask used in the wet high-concentration hydrogen mixed gas breathing system according to Embodiments 1 to 5 of the present invention. It is the schematic which shows the wet high concentration hydrogen mixed gas breathing system which concerns on Embodiment 6 of this invention. It is the schematic which shows the wet high concentration hydrogen mixed gas breathing system which concerns on Embodiment 6 of this invention. It is the schematic which shows the wet high concentration hydrogen mixed gas breathing system which concerns on Embodiment 7 of this invention. It is the schematic which shows the wet high concentration hydrogen mixed gas breathing system which concerns on Embodiment 8 of this invention. It is the schematic which shows the wet high concentration hydrogen mixed gas breathing system which concerns on Embodiment 9 of this invention.
  • the wet high-concentration hydrogen mixed gas breathing system is configured to supply a hydrogen gas (H 2 ) to a supply target H such as a person.
  • a hydrogen gas H 2
  • the hydrogen gas supply channel 1 includes a hydrogen gas generation means 11 (an example of a gas supply means) that generates hydrogen gas, and a heating humidifier 12 (an example of a humidity / humidity adjustment means) that adjusts the temperature and humidity of the hydrogen gas.
  • the hydrogen gas generating means 11 is provided at the starting point of the hydrogen gas supply flow path 1, and a hydrogen gas foaming agent, a hydrogen gas generating device by electrolysis, or the like is employed.
  • a means for supplying hydrogen gas such as a hydrogen storage alloy cylinder or a hydrogen gas line may be employed.
  • the warming humidifier 12 is provided in the middle of the hydrogen gas supply channel 1 and is configured to be able to adjust the temperature and humidity of the hydrogen gas.
  • the temperature setting range by the warming humidifier 12 is desirably set to 20 to 40 ° C. at a point where the hydrogen gas reaches the sealed nasal mask 13 (or the sealed eye-nose mask 16).
  • a preferable setting range of the humidity by the warming humidifier 12 is 60 to 100% relative humidity, a more preferable setting range is 90 to 100% relative humidity, and more preferably, a relative humidity of 100% which is a saturated water vapor amount. It is desirable to set.
  • the maximum value of this setting condition is determined based on the physiological conditions of the respiratory organs, and is based on the human lung gas conditions (temperature 37 ° C., relative humidity 100%, absolute humidity 44 mg / L). Is set. Further, the minimum value of the setting condition is obtained based on the minimum temperature and humidity condition that does not generate static electricity in the hydrogen mixed gas. Usually, in the case of combustible gas containing hydrogen gas, it is recommended to handle it under the condition of relative humidity of 60% or more. In addition to this, it is known that when the humidity increases, the electrical resistance of a substance (gas or the like) decreases and static electricity hardly occurs (see Non-Patent Document 1).
  • FIG. 17 published in Non-Patent Document 1, it can be seen that the scattering time ⁇ during which static electricity is eliminated decreases exponentially as the absolute humidity increases, making it difficult to charge. Therefore, the inventor in FIG. 17 shows that the minimum temperature is 20 ° C. and the absolute humidity is 10 mg / L (relative humidity 60%: see Table 3 and Table 4) as conditions where static electricity hardly occurs and does not affect the human body. And humidity conditions were estimated. Table 3 shows the relationship between the temperature in the range of 0 ° C. to 46 ° C. and the saturated water vapor amount, and Table 4 shows the relationship between the temperature in the range of 0 ° C. to 100 ° C. and the saturated water vapor amount. Moreover, according to FIG. 18 published in the nonpatent literature 1, it turns out that electrical resistance is decreasing exponentially as relative humidity becomes high. Therefore, it can be seen that the higher the relative humidity, the less likely it is that static electricity will cause explosion and detonation.
  • the sealed nasal mask 13 is provided at the end point of the hydrogen gas supply channel 1 and is configured to cover only the nasal cavity. Therefore, this sealed nasal mask 13 can always supply hydrogen gas with a gas concentration of 100% to the nasal cavity, and keep the space inside the nasal cavity at a high hydrogen gas concentration.
  • the hermetic nasal mask 13 can be fixed from behind the head with a band or the like, but may be grasped by hand and kept in close contact with the nose. In addition, when only the nose is covered, it is possible to drink water from the drinking water bottle W at any time for thirst even when the present system is being used.
  • an underwater spectacles type sealed eye-nose mask 16 having an eyeball air supply unit for supplying hydrogen gas to the eyeball may be used.
  • hydrogen gas can be brought into contact with the eyeball.
  • a nose mouth mask 13a in which an artificial nose filter that covers the oral cavity is provided below the sealed nose mask 13 may be used.
  • the artificial nasal filter traps water vapor in the exhaled breath discharged from the supply target, so that the moisture around the oral cavity can be kept high.
  • a pressure switch may be attached to these masks so that the supply amount of hydrogen gas in the hydrogen gas generation means 11 can be controlled. In the case of such a configuration, it is possible to take a break by removing the sealed nasal mask 13 during use of the system, and it is possible to continue the suction of the humidified hydrogen gas by attaching it.
  • the nebulizer 14 is provided in the middle of the hydrogen gas supply channel 1 and can introduce a functional aerosol into the hydrogen gas as necessary.
  • a functional aerosol for example, fine particles containing hydroxyl radicals (.OH), fine particles containing hypochlorous acid, Pt (platinum nanocolloid) solution and the like can be employed.
  • this functional aerosol may be configured to be introduced in the warming humidifier 12, or different functional aerosols may be introduced in the warming humidifier 12 and the nebulizer 14. It is also possible to select not to use a functional aerosol.
  • hydrogen gas to which functional aerosol is added is supplied to the nasal cavity at 100 to 500 mL per minute from the sealed nasal mask 13 (or the sealed eye nasal mask 16) (when the resting respiratory rate is 5 L per minute) ).
  • the amount of hydrogen gas supplied is determined by the amount of hydrogen gas generated by the hydrogen gas generating means 11 and is not supplied beyond the amount generated by the hydrogen gas generating means 11 even if the user strongly inhales from the nasal cavity.
  • the supply amount of hydrogen gas is preferably set within 10% of the total respiratory volume per minute from the oral cavity.
  • the 100% concentration hydrogen gas supplied from the sealed nasal mask 13 (or the sealed eye nasal mask 16) fills the nasal cavity, which is approximately 50 mL, at a high concentration. Therefore, even with an extremely small hydrogen gas supply amount of about 100 to 500 mL per minute, the periphery of the olfactory portion H1 in the upper nasal cavity can be filled with hydrogen gas having a concentration of 50% or more. Part of the hydrogen gas supplied to the periphery of the olfactory part H1 directly reaches the cerebral nerve cell through the blood-brain barrier from the olfactory part H1.
  • the hydrogen gas concentration in the lung is considered to be about 10% at the maximum.
  • the indoor humidity when using the wet high-concentration hydrogen mixed gas breathing system according to the present invention is 60% or more relative humidity.
  • sensors such as indoor temperature, humidity and hydrogen concentration are installed, a blower etc. that generates air flow in the room is installed, and for safety, a pulse oximeter is installed at least as a human body sensor It is desirable.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 1 can be implemented with a simple configuration, it can be used most economically if the surrounding environment is in place.
  • hydrogen gas having a concentration exceeding the upper limit of explosion is supplied to the nasal cavity, thereby efficiently entering the cranial nervous system.
  • Hydrogen molecules can be supplied. That is, hydrogen molecules can be supplied to the brain via the olfactory portion H1 by filling the periphery of the olfactory portion H1 above the nasal cavity with hydrogen gas having a concentration of 50% or more.
  • hydrogen molecules can be supplied to the brain without going through the blood-brain barrier, and active oxygen generated in the cranial nervous system can be reduced efficiently.
  • the oxidative stress of the hippocampus close to the olfactory part H1 can be reduced, it can be expected as an effective means for treating and preventing various diseases derived from the cranial nervous system such as Alzheimer's disease.
  • a configuration in which hydrogen gas is supplied to the nasal cavity can provide a medically effective effect with a small amount of hydrogen gas used. That is, since the volume of the nasal cavity is about 50 mL, the space inside the nasal cavity can be kept in a high hydrogen gas concentration state even if the supply amount of hydrogen gas is small.
  • the wet high-concentration hydrogen mixed gas breathing system according to the second embodiment includes an exhalation discharge channel 2 and an air supply channel 3 in addition to the configuration of the wet high-concentration hydrogen mixed gas breathing system according to the first embodiment. It is characterized by that.
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the wet high-concentration hydrogen mixed gas breathing system includes a hydrogen gas supply channel 1 that supplies hydrogen gas H 2 to a supply target H such as a person, and a supply target H.
  • the exhalation discharge flow path 2 for discharging the exhalation E and the air supply flow path 3 for supplying oxygen and / or air A to the supply target H are provided.
  • the exhalation discharge flow path 2 receives the exhalation E from the humidifier 21 that raises the humidity of the exhalation E, the agitation discharger 22 (an example of a hydrogen concentration lowering unit) that diffuses the exhalation E into the atmosphere, and the oral cavity H3. It has a sealed mouth mask 23 (an example of an exhalation receiving means) and a merging portion 24 that merges with the air supply flow path 3.
  • the exhaled air E in the exhaled air discharge channel 2 is discharged into the room by the stirring and discharging device 22 with the hydrogen gas concentration being reduced. It is desirable for the humidifier 21 to make the breath E visible in a mist state by humidifying the breath E to a saturated state. Thereby, the diffusion range of exhaled air E containing hydrogen gas can be roughly confirmed. Of course, the humidifier 21 may be omitted.
  • the air supply flow path 3 includes a pump P for sending gas (air A), a heating humidifier 31 for adjusting the temperature and humidity of the air A, a nebulizer 32 for introducing functional aerosol, and an air A And a closed mouth mask 33 (an example of an air supply unit) that sucks air from the oral cavity H3, and is connected to the exhalation discharge flow path 2 via the merging unit 24. Therefore, respiration (suction and discharge of oxygen) in the oral cavity H3 is performed via the sealed mouth masks 23 and 33.
  • Air A is supplied from the outside into the warming humidifier 31 by the pump P, and after the temperature and humidity are adjusted, the air A is supplied to the hermetic mouth mask 33 via the nebulizer 32.
  • the confluence 24 is a confluence of exhaled air E and inhaled air (air A).
  • the exhaled air E is humidified by a humidifier 21 provided in the exhaled air discharge flow path 2, and the hydrogen gas concentration is diluted by the agitating and releasing device 22. Released to the outside.
  • the minimum required amount of air supplied to the pump P is 5 L per minute, but in order to prevent dew condensation in the flow path and reduce the hydrogen concentration in the exhaled air E, the pump P is normally operated at an amount about twice the minimum required amount. It is desirable.
  • a sealed nose mouth mask 17 (an example of a nose mouth air supply unit) as shown in FIG. 6 may be used.
  • a hydrogen gas supply channel 1 and an air supply channel 3 are connected to the sealed nasal mouth mask 17, and hydrogen gas is supplied to the nasal cavity and air is supplied to the oral cavity in the sealed nasal mask 17.
  • hydrogen gas air is mixed, and a hydrogen mixed gas having a similar hydrogen gas concentration can be supplied to the nasal cavity and the oral cavity.
  • the cell size is a characteristic value determined by the composition, temperature, and pressure of the target combustible mixture, and it is known that the degree of detonation increases as the cell size decreases.
  • FIG. 23 published in Non-Patent Document 2 shows cell size test data of high-speed combustion characteristics of hydrogen at high temperatures. According to FIG. 23, it can be seen that the cell size is minimized when the hydrogen gas concentration is 30%, and the cell size tends to increase when the hydrogen gas concentration is 30% or less.
  • FIG. 24 published in Non-Patent Document 2 shows the relationship between the cell size and the water vapor concentration in the high-speed combustion characteristics of hydrogen at high temperatures. According to FIG. 24, it can be seen that as the relative humidity increases, the flame cell size tends to increase. In view of the above tendency, it is estimated that the degree of detonation is suppressed as the relative humidity increases.
  • Table 6 summarizes the characteristics of the hydrogen gas mixture explosion range and detonation range. This Table 6 is obtained by estimating the characteristics of hydrogen gas in a saturated state and adding it to the contents of Table 1 of Patent Document 1 previously filed by the present inventor.
  • FIG. 27 is a conceptual diagram comparing the combustion characteristics of a hydrogen-oxygen mixture (dry) and a hydrogen-oxygen mixture (saturated steam).
  • FIG. 22 published in Non-Patent Document 4 shows the measured value of the hydrogen fire escape limit in the 8 L vessel. According to FIG. 22, it can be seen that the flame is extinguished if the flow path is 0.20 mm or less at any hydrogen gas concentration.
  • the structure of the human lung is configured like a detonation frame arrester. Therefore, since the terminal bronchiole of the lung has a size that is less than the flame escape limit, even when a flame occurs, it is naturally extinguished and protected.
  • Table 7 shows virtual values (assuming complete combustion) of the volume fluctuation at the time of explosion combustion (implosion) of the hydrogen mixed gas. That is, when hydrogen and oxygen react to form water, the volume shrinks. At this time, since the pressure in the respiratory organ is rapidly reduced, there is a possibility that the human body is adversely affected. Therefore, the risk of adversely affecting the human body can be reduced by referring to the values in Table 7 and employing a hydrogen oxygen concentration with a low reduction rate.
  • the exhalation E containing hydrogen gas can be safely discharged.
  • a radius of about 1.5 m eliminates the cause of generation of static electricity or the like. It was necessary to take safety measures.
  • exhaled air E containing hydrogen gas can be moved to a safe position and discharged by the exhaled air discharge channel 2. Further, by diluting the hydrogen gas concentration with the agitation discharger 22, the exhaled air E can be safely discharged.
  • the air supplied to the respirator can be humidified. Therefore, even when this system is used for a long time, it is possible to prevent the respiratory side from drying, keep the respiratory mucus layer in the respiratory system in a normal state, and protect the respiratory airway mucosa with the mucus layer. it can. Further, since the respiratory mucous membrane is protected with a mucus layer, the mucous membrane in the respiratory organ can be protected even in the event of an unexpected accident.
  • the hydrogen mixed gas is brought to a temperature and humidity at which no detonation occurs. Can be adjusted. That is, when supplying the hydrogen mixed gas to the oral cavity and the nasal cavity using the sealed nose mouth mask 17, the relative humidity of the sucked hydrogen mixed gas is in the range of 60 to 100% and the temperature is in the range of 20 to 40 ° C. By adjusting to, hydrogen gas ignition can be suppressed and detonation can be prevented.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 3 of the present invention will be described in detail with reference to FIG.
  • the wet high-concentration hydrogen mixed gas breathing system according to the third embodiment is configured such that the downstream side of the exhalation exhaust flow path 2 is the air supply flow path 3. It is characterized by being connected to the upstream side.
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the wet high-concentration hydrogen mixed gas breathing system includes a hydrogen gas supply channel 1 that supplies hydrogen gas to a supply target H such as a person, and an exhalation of the supply target H.
  • An exhalation exhaust passage 2 for exhausting E and an air supply passage 3 for supplying oxygen and / or air A to the supply target H are provided.
  • a gas flow distribution device 43 is provided in the middle of the exhalation discharge flow path 2, and the flow path is divided into two hands.
  • One flow path is connected to an agitation discharger 22 that discharges exhaled air E to the outside, and is configured to discharge the exhaled gas to the outside.
  • the other channel is connected to a heating / humidifying device 31 arranged upstream of the air supply channel 3 so that the hydrogen gas H 2 contained in the exhalation E is supplied to the supply target H again.
  • a carbon dioxide concentration reducing means 41 for reducing the carbon dioxide concentration of the exhaled air E is provided between the gas flow rate distribution device 43 and the warming humidifier 31.
  • the warming humidifier 31 is provided with oxygen supply means 42 for supplementing the oxygen gas consumed by the supply target H.
  • the carbon dioxide concentration lowering means 41 As the carbon dioxide concentration lowering means 41, a carbon dioxide absorbent such as lithium chloride or compound A is adopted, and the carbon dioxide in the breath E is absorbed. Further, by adding the oxygen consumed by the oxygen supply means 42, an oxygen concentration of 21% is secured, and the air can be sucked from the sealed mouth mask 33 through the air supply flow path 3 again.
  • the oxygen supply means 42 can use an oxygen supply line or an oxygen cylinder to each hospital room in a normal hospital.
  • any oxygen supply means 42 can supply oxygen gas that can be supplied to the supply target H.
  • the hydrogen gas may be supplied only from the hydrogen gas generating means 11, and the humidified hydrogen mixed gas, air added with air or oxygen, and the circulated hydrogen gas are ingested from the oral cavity.
  • the gas flow distribution device 43 is provided in the exhalation discharge flow path 2 so that the exhalation E in the exhalation discharge flow path 2 can be discharged to the outside from the agitation discharger 22.
  • the gas flow distribution device 43 and the agitating / discharging device 22 are used to discharge nitrogen and the like remaining in the lung of the supply target H at the start of use of the present system and increase the hydrogen gas concentration in the flow path.
  • 44 for thermally decomposing the hydrogen mixed gas may be provided around the stirring and releasing device 22, 44 for thermally decomposing the hydrogen mixed gas.
  • the hydrogen gas supply channel 1 may be provided with a sensor 18 that monitors the humidity, temperature, pressure, and flow rate of the hydrogen gas, and a control pump CP that can adjust the supply amount of the hydrogen gas.
  • the air supply channel 3 may be provided with a sensor 34 for monitoring the temperature, humidity, flow rate, pressure, hydrogen gas concentration, oxygen gas concentration, and carbon dioxide gas concentration of the air A. Based on the information acquired by these sensors 18 and 34, the supply amount of hydrogen gas supplied from the hydrogen gas supply flow path 1, the oxygen amount of 42, the discharge amount of exhaled air from the stirring and discharging device 22, and the like are determined. Can do.
  • the downstream of the exhalation discharge flow path 2 is connected to the upstream of the air supply flow path 3 to form a circulation path, thereby reducing the consumption of hydrogen gas. That is, the supply amount of hydrogen gas can be reduced by supplying again the hydrogen gas contained in the exhalation to the supply target H.
  • a hydrophilic coating is provided in the flow path.
  • the wet high-concentration hydrogen mixed gas breathing system according to the fourth embodiment integrates the hydrogen gas supply channel 1 and the air supply channel 3 of the wet high-concentration hydrogen mixed gas breathing system according to the third embodiment.
  • the hydrogen mixed gas supply flow path 5 (an example of a gas supply flow path) is provided.
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the wet high-concentration hydrogen mixed gas breathing system is a humidified hydrogen mixed gas supply channel 5 (gas supply) that supplies a humidified hydrogen mixed gas to a supply target H such as a person.
  • a supply target H such as a person.
  • the hydrogen mixed gas supply flow path 5 includes a supply line 51 capable of supplying hydrogen gas and oxygen gas, a heating humidifier 52 that adjusts the temperature and humidity of the hydrogen mixed gas, a filter 53 that supplies outside air, and a face. And a sealed face mask 54 for supplying a humidified hydrogen mixed gas.
  • the sealed surface mask 54 is provided with flame extinguishing means such as a detonation frame arrester 55 and shock pressure buffering means such as a reservoir 56 for reducing the impact pressure.
  • a sealed nose mouth mask 17b formed to cover the nose and mouth may be used.
  • the detonation frame arrester 55 is configured so that a flame does not enter the respirator even when an explosion or detonation occurs in the hydrogen gas supply flow path 1, the exhalation discharge flow path 2, or the air supply flow path 3. Yes.
  • the detonation flame arrester 55 may be configured such that the temperature is controlled by electric heating so that condensation does not occur when saturated water vapor passes.
  • the reservoir 56 is provided so that impact pressure generated during detonation does not reach the respiratory organ.
  • the heating humidifier provided in the flow path is combined into one. can do. Therefore, the system configuration can be simplified and the manufacturing cost and the like can be reduced.
  • the wet high-concentration hydrogen mixed gas breathing system according to the fifth embodiment has a power generation unit 6 that generates hydrogen gas as fuel in addition to the configuration of the wet high-concentration hydrogen mixed gas breathing system according to the third embodiment. It is characterized by.
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the hydrogen gas generation means 11 is an electrolysis-type hydrogen oxygen supply device, and oxygen gas O 2 and hydrogen gas H are obtained by electrolyzing water. 2 is obtained.
  • the oxygen gas O 2 is supplied to the air supply channel 3 by the pump P, and the hydrogen gas H 2 is supplied to the hydrogen gas supply channel 1.
  • the exhalation discharge channel 2 may be configured to provide a sensor 27 for monitoring the H 2 / O 2 / CO 2 concentration of the exhalation E so as to acquire a component of the exhalation E.
  • the power generation unit 6 is installed between the hydrogen oxygen gas generation means 11 a and the 12 heating humidifier in the hydrogen gas supply flow path 1, and the power generation means 61 capable of generating power from the hydrogen gas H 2 as fuel.
  • Power storage means 62 for storing the obtained electric power.
  • the hydrogen gas contained in the exhalation E is supplied again from the air supply flow path 3 to the supply target H, as in the third embodiment.
  • concentration of hydrogen gas supplied from the air supply channel 3 to the respirator reaches a target value
  • the required amount of hydrogen gas supplied from the hydrogen gas supply channel 1 decreases.
  • it is necessary to continue supplying oxygen it is necessary to safely process the excessively generated hydrogen gas.
  • the hydrogen gas generated by the hydrogen oxygen gas generation means 11a is led to the power generation means 61 through the gas flow distribution device 43 to generate power, thereby effectively using the hydrogen gas while safely processing it. Can do.
  • the electric power obtained by the power generation means 61 is transmitted to the power storage means 62, and the water obtained at the time of power generation can be reused as water for a warming humidifier or the like.
  • the hydrogen gas supply amount of the electrolysis-type hydrogen oxygen supply apparatus has a capacity of about 1000 mL per minute at the maximum, even when the exhaled air E is discharged to the outside and operated, about 20% of inhaled hydrogen The concentration can be kept. Even in this case, oxygen gas can be supplied to the warming humidifier 31 and added to the air A to perform suction in an oxygen-enriched state. Further, by causing the carbon dioxide absorption means 22 to absorb the carbon dioxide of the exhaled air E to perform the circulation breathing operation, the concentration of hydrogen gas supplied to the supply target H can be increased to nearly 80%.
  • a sealed nose mouth mask 17 is provided at the end point of the hydrogen gas supply channel 1.
  • the sealed nose mouth mask 17 includes a flame extinguishing means such as a detonation frame arrester 55, an impact pressure buffering means such as a reservoir 56 that relieves the impact pressure, and a nose mouth that separates the mouth and nose channels.
  • a partition opening / closing valve 57 may be provided. This nostril septum opening / closing valve 57 is provided with an open / close slide valve (internally open / close slide gate) to select mouth breathing and nasal breathing by opening and closing the mouth and nose passages. Is configured to be possible.
  • the sealed nasal mouth mask 17 has a nasal channel that supplies the hydrogen gas to the nasal cavity and a mouth channel that supplies air to the oral cavity, and is between the nasal channel and the mouth channel. Is provided with an on-off valve capable of communicating and isolating the nasal passage and the mouth passage.
  • This hermetic nasal mask 17 can be grasped by hand and used in close contact with the mouth-nose part, and when the grasping of the hand is stopped, the wet high-concentration hydrogen mixed gas breathing system is stopped by pressure detection. May be. Of course, it can be fixedly held on the face with a band or the like.
  • a sealed nose mouth mask 17 that matches the person's profile can be created using a facial scanning device 7 and a 3D printer. Good.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 6 further includes a sealed chamber 8 and an air conditioning equipment 9.
  • a sealed chamber 8 and an air conditioning equipment 9.
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the wet high-concentration hydrogen mixed gas breathing system includes a sealed chamber 8 that can be filled with a humidified hydrogen mixed gas, and an air conditioner that manages the air conditioning of the sealed chamber 8. And a facility 9.
  • the sealed chamber 8 includes an entry / exit gate 81 for a user to enter the sealed chamber 8, an internal gate 82 for sealing the sealed chamber 8, and the temperature / humidity / pressure / H 2 in the sealed chamber 8. It has a sensor 83 that acquires air conditioning information such as / O 2 / CO 2 concentration, and carbon dioxide absorption means 84 that absorbs carbon dioxide contained in the exhalation E of the supply target H.
  • the sealed chamber 8 is preferably provided with a transparent heat-insulating window at an appropriate position so that the inside of the sealed chamber 8 can be grasped from the outside.
  • the walls, ceiling, and floor of the sealed chamber 8 are provided with heating means or have a heat insulating and heat-insulating structure so that the temperature in the sealed chamber 8 can be maintained.
  • the carbon dioxide concentration in the sealed chamber 8 is managed by the carbon dioxide absorbing means 84 so as to be within a certain value.
  • the air conditioner 9 includes an air conditioner 91, a control unit 92 that controls the air conditioner 91, a power generation unit 93 that supplies power to the air conditioner 91, and a hydrogen gas cylinder that supplies hydrogen gas to the air conditioner 91 and the power generation unit 93.
  • 94 an example of a hydrogen gas supply means.
  • the air conditioner 91 is provided with an indoor unit 91a, an outdoor unit 91b, and a heat exchanger 91c.
  • the air conditioner 91 supplies hydrogen gas to a user individually with a hydrogen gas supply tube 1 a, an indoor air discharge channel 2 b that discharges gas in the sealed chamber 8, and external air into the sealed chamber 8.
  • the outside air supply channel 3c is connected.
  • the control unit 92 receives information from sensors provided in the sealed chamber 8 and controls air conditioning preferable for the user.
  • the hydrogen gas concentration in the sealed chamber 8 is adjusted by the amount of hydrogen gas supplied through the hydrogen gas supply channel 1 and is assumed to be 20% at the maximum.
  • the temperature and humidity in the sealed chamber 8 are controlled by the function of the air conditioner 91, and the control conditions at that time are preferably a relative humidity of 100% and a temperature of 37 ° C.
  • the pressure in the sealed chamber 8 is basically a normal pressure, and the air in the sealed chamber 8 is ventilated and pressure-adjusted by appropriately operating the exhalation discharge channel 2 and the air supply channel 3.
  • the control unit 92 can control the wall surface temperature and the direction and strength of the internal airflow so that condensation does not occur on the wall surface of the sealed chamber 8.
  • Power generation unit 93 a generator capable of generating means 93a hydrogen gas H 2 to the fuel, the storage means 93b for storing electric electricity obtained by the power generation unit 93a, the water storage of storing water discharged from the power generating means 93a Part 93c.
  • Generating means 93a the air - a hydrogen fuel cell, the hydrogen gas H 2 supplied from the hydrogen gas cylinder 94 to the fuel, it is possible to obtain a power and water.
  • the obtained electric power is stored in the power storage means 93b, and the obtained water is stored in the water storage section 93c.
  • This electric power is transmitted to and used by each device operated by the electric power of the wet high-concentration hydrogen mixed gas breathing system such as the air conditioner 91.
  • the water is sent to the air conditioner 91 and used to humidify the air in the sealed chamber 8.
  • the hydrogen gas cylinder 94 has an emergency hydrogen gas discharge valve 95 and an emergency hydrogen gas discharge passage 96, and is provided with a means for dumping hydrogen gas when a danger is imminent due to some disaster. ing.
  • the emergency hydrogen gas discharge valve 95 and the emergency hydrogen gas discharge passage 96 are also controlled by the control unit 92.
  • a plurality of supply targets H can enter the sealed chamber 8, and hydrogen gas is supplied to the supply target H through the hydrogen gas supply flow path 1 extending from the air conditioner 91.
  • a plurality of pumps P are provided in the hydrogen gas supply channel 1 as shown in FIG. 9, and a humidified hydrogen gas is supplied from the pump P by connecting a gas tube GC for nasal cavity injection to the pump P. Is done.
  • the injection amount of the humidified hydrogen gas is controlled by the control unit 92 so as not to be supplied excessively.
  • the indoor unit 91a of the air conditioner 91 has two functions.
  • the first function is a function equivalent to that of a normal air conditioner, and is a function for controlling room temperature, room airflow, and the like.
  • the second function is an additional function, which includes a hydrogen gas supply unit, an oxygen gas supply unit, a humidification unit, a functional aerosol supply unit, and a ventilation unit.
  • This additional function is, for example, an arrangement in which individual gas discharge ports are arranged in a row in the lower half of the indoor unit 91a.
  • the two functions of the indoor unit 91a are controlled by the control unit 92.
  • the release of hydrogen gas and oxygen gas into the room is performed at separate timings instead of continuous gas release. For example, when 50 L humidified hydrogen gas is released into the room, 1 to 2 L is blown in pulses (intermittently), and this is repeated 25 to 50 times. That is, there is a time lag between the fumarole and the next fumarole.
  • the indoor unit 91a can generate an air flow in conjunction with the humidified hydrogen gas to disperse the humidified hydrogen gas in the room.
  • the humidified oxygen gas is dispersed in the room.
  • the oxygen gas supply unit and the hydrogen gas supply unit are arranged at the farthest positions. Both hydrogen gas and oxygen gas are humidified before being released (humidified before mixing), and oxygen gas and hydrogen gas are not released at the same time. Further, an appropriate odor (such as aromatherapy) may be attached to the hydrogen gas so that the dispersion of the hydrogen gas can be understood.
  • the functional aerosol supply unit and the humidification unit are operated separately from the indoor release of hydrogen gas and oxygen gas. Moreover, the functional aerosol supply part and the humidification part each have a separate discharge port, and each performs continuous operation for a certain time.
  • An ultraviolet sensor for detecting the combustion of hydrogen gas is installed in a place where there is a danger such as having a hydrogen gas unit outside the room, and invisible hydrogen gas combustion can be monitored.
  • the target value cannot be set and operated after the patient H to be supplied enters the room. Therefore, before the patient enters the room, the target value is determined in advance. Create and prepare a state.
  • the specialist determines the value to be set for temperature, humidity, oxygen concentration, hydrogen concentration, aerosol type and spray amount, etc.
  • Use of a volume replacement airbag 85 which will be described later, is convenient when setting the atmosphere state of the room for the first time (see Embodiment 8).
  • This airbag system can be used not only at the time of initial setting, but also when the patient is completely removed and a new environment setting is required. It can also be used during room maintenance. In addition, it is standard to put on special clothes when entering a patient.
  • the room entry time is a matter determined by medical personnel (specialists, etc.), but is assumed to be about 60 minutes. It is also assumed that doctors, nurses, etc. will be present at any time in addition to the patient in the room to care for the patient. It is possible to leave the room at any time for a patient who wants to leave on the way, or for a sudden change in medical condition.
  • the ventilation unit is used to keep the room pressure constant when changing the gas configuration filling the room, or when blowing hydrogen gas or the
  • the control unit 92 preferably includes a high-performance control unit for controlling the atmosphere state of the room in conjunction with these.
  • Data such as the size and volume of the sealed chamber 8 is registered in the control unit or calculated by a distance sensor of the control unit to determine how much each element is moved.
  • the number of occupants, the estimated oxygen consumption, etc. are calculated by a heat sensor or the like, and the control of the oxygen gas supply amount, the operation control of the carbon dioxide removal device, etc. are determined.
  • the carbon dioxide removal device can know the remaining usable amount by changing the color of the absorbent (it can also be grasped by a gas sensor).
  • the sealed room 8 can be used not only for a large number of people but also for a small one or two. Small-scale products are expected not only for patients, but also for measures against late-stage radiation damage that occurs after radiation exposure of medical staff (during X-ray examination, CT examination, and patient radiotherapy).
  • the sealed chamber 8 can use a simple sealed tent depending on the hydrogen gas concentration. The hydrogen gas concentration at that time is assumed to be about 8%. This is because, for example, in a large building such as a lecture hall in order to protect people who have evacuated to a school auditorium in the district from gamma ray damage (radiation damage) as much as possible without being able to evacuate due to a nuclear accident, etc.
  • a simple sealed tent can be installed and used.
  • the sealed chamber 8 is assumed to be used in various ways. Utilizing the hydrogen gas supply tube 1a of hydrogen gas or hydrogen mixed gas installed inside, the hydrogen mixed gas is not released into the room, and the patient is highly humidified with the hydrogen gas supply tube 1a of hydrogen gas or hydrogen mixed gas. It is also possible to inhale hydrogen and release exhaled air as it is, or to suck a mixed gas of 20% wet oxygen and 80% wet hydrogen from hydrogen gas or a hydrogen gas supply tube 1a of hydrogen mixed gas. Many repertoires are assumed in this way.
  • a mask or the like is worn in a humidified environment by including the sealed chamber 8 that can be filled with the humidified hydrogen mixed gas and the air conditioning equipment 9 that manages the air conditioning of the sealed chamber 8.
  • the sealed chamber 8 that can be filled with the humidified hydrogen mixed gas
  • the air conditioning equipment 9 that manages the air conditioning of the sealed chamber 8.
  • hydrogen gas can be sucked into a person who does not like wearing a medical mask or an unsuitable person without troublesome work.
  • a plurality of supply targets H can simultaneously suck high concentration hydrogen gas.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 7 of the present invention has a hydrogen gas generation means 97. .
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the air conditioning equipment 9 of the wet high-concentration hydrogen mixed gas breathing system includes an air conditioner 91, a control unit 92 that controls the air conditioner 91, and hydrogen gas that supplies hydrogen gas to the air conditioner 91. It has the generation
  • the hydrogen gas generation means 97 includes a reversible fuel cell 97a that obtains hydrogen gas and oxygen gas by electrolyzing water with electric power, a power storage means 97b that stores electric power supplied to the reversible fuel cell 97a, and a reversible fuel cell 97a. And a water tank 97c for storing water to be supplied to the fuel cell 97a.
  • the hydrogen gas generation means 97 is illustrated as being disposed outside the sealed chamber 8, but may be disposed within the sealed chamber 8.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 7 of the present invention is a type that uses external power, and uses the power supplied from the power supply means 98 to electrolyze water by the reversible fuel cell 97a. To obtain hydrogen gas and oxygen gas. On the other hand, in the case where surplus hydrogen gas is generated, it is also possible to generate water by reacting the hydrogen gas with oxygen in the air to obtain water. The generated electric power and water are used in the storage battery, and the water is sent to the water tank 97c and reused.
  • the wet high-concentration hydrogen mixed gas breathing system according to the eighth embodiment includes a gas replacement airbag 85 in addition to the configuration of the wet high-concentration hydrogen mixed gas breathing system according to the sixth embodiment. .
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the sealed chamber 8 of the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 8 of the present invention has a gas replacement airbag 85.
  • the gas replacement airbag 85 is formed of a material that does not generate static electricity, and can be inflated and contracted by introducing / extracting external air from the air line 85a.
  • the sealed chamber 8 is provided with a storage portion 85b for the gas replacement airbag 85 so that the contracted gas replacement airbag 85 can be stored.
  • hydrogen gas is supplied from the gas cylinder 94, electric power is supplied from the power supply means 98, and water is supplied from the water storage unit 99.
  • the gas replacement airbag 85 is used when the gas in the sealed chamber 8 is replaced. First, by injecting air to expand the volume of the gas replacement airbag 85, the air present in the sealed chamber 8 is discharged out of the sealed chamber 8 through the expiration discharge channel 2. At this time, there is almost no pressure fluctuation inside the sealed chamber 8. Next, the air inside the expanded gas replacement airbag 85 is discharged by a pump, and the humidified hydrogen mixed gas is supplied into the sealed chamber 8 from the air conditioner 91 at a speed similar to the discharge speed. During this time, pressure fluctuations in the sealed chamber 8 hardly occur. This series of operations is controlled by the control unit 92.
  • the gas (gas) filling the sealed chamber 8 can be efficiently ventilated.
  • the gas replacement airbag 85 When ventilating without using the gas replacement airbag 85, it is necessary to introduce new gas while discharging the old gas that fills the sealed chamber 8, and the old gas and the new gas are mixed together. It was difficult to increase the hydrogen gas concentration.
  • the new gas can be introduced after the old gas is discharged by using the gas replacement airbag 85, air with a high hydrogen gas concentration is contained in the sealed chamber 8 with a minimum amount of hydrogen gas used. Can be filled with.
  • Embodiment 9 a wet high-concentration hydrogen mixed gas breathing system according to Embodiment 9 of the present invention will be described in detail with reference to FIG.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 9 is characterized in that the sealed chamber 8 includes a pressure vessel 86.
  • components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 9 of the present invention employs a pressure-resistant container 86 as the sealed chamber 8. As shown in FIG. 12, the supply object H enters the pressure vessel 86 and supplies hydrogen gas and oxygen gas to the user in a high pressure environment by introducing hydrogen gas, oxygen gas, air, etc. under pressure. be able to.
  • FIG. 19 published in Non-Patent Document 5 shows the range of the hydrogen-air explosion limit. According to FIG. 19, it can be seen that even when the hydrogen-air system gas is pressurized, the explosion limit range does not change significantly.
  • FIG. 20 published in Non-Patent Document 5 shows the range of the hydrogen-oxygen explosion limit. According to FIG. 20, it can be seen that even when the hydrogen-oxygen-based gas is pressurized, the explosion limit range does not change significantly.
  • FIG. 21 published in Non-Patent Document 5 shows the explosive limit ranges of the hydrogen-air system and the hydrogen-oxygen system. As can be seen from FIG.
  • FIG. 26 published in Non-Patent Document 6 shows the effect of pressure on the explosion limit of a hydrogen-air mixture. According to FIG. 26, it can be seen that even when the hydrogen-air mixture is placed in a high-pressure environment (1 to 220 atm), the explosion limit range does not vary greatly. From FIG. 19 to FIG. 21 and FIG. 26 described above, it was determined that the explosion limit range does not vary greatly even when the hydrogen mixed gas is pressurized.
  • Table 8 shows a summary of the means for ingesting hydrogen gas and the simple calculated estimated values of the dissolved amount in blood.
  • Table 8 estimates the amount of dissolved hydrogen gas in the blood at the time of pressurization by calculation. The calculation method employs the equation shown in Patent Document 1 (see FIG. 10 of Patent Document 1).
  • the human body contains 60 kg of body weight and an average of about 4 g of iron ions, and cancer cells have a high amount of iron specifically. Therefore, by placing the human body in a hyperbaric oxygen environment and making it easy to generate active oxygen, by generating active oxygen in iron ions in cancer cells (Fenton reaction) and inducing ferrotosis, Can try treatment. At this time, normal cells are also attacked by active oxygen generated separately, so an appropriate amount of hydrogen gas is added to protect them. Each parameter is determined through animal experiments and clinical trials.
  • a medical instrument device conforming to the standards of JIS T 7321 and “Safety standard for high pressure oxygen treatment” of related standards is used.
  • the criteria for Type 1 devices are a regular treatment pressure of 2 ATA (in any case within 2.8 ATA) and a treatment time of 60 minutes.
  • the standard of the type 2 device is that the treatment pressure is 2 ATA or more and 3 ATA or less, and in any case, 3 ATA is not exceeded, and the treatment time is 60 minutes or more and 90 minutes or less.
  • the component ratio of the treatment gas used in this hyperbaric oxygen-hydrogen treatment apparatus is an exclusive matter of the specialist.
  • a breathing method there is a method of wearing a mask or the like in a high-pressure oxygen-hydrogen treatment apparatus and breathing high-pressure oxygen-hydrogen gas through the mask or the like, but the container may be filled with high-pressure air and breathe.
  • the wet high-concentration hydrogen mixed gas breathing system according to the tenth embodiment further includes a micro / nano bubble generator 10.
  • a micro / nano bubble generator 10 In the same embodiment, components that are basically the same as those of the previous embodiment are denoted by the same reference numerals, and description thereof is simplified.
  • the wet high-concentration hydrogen mixed gas breathing system according to Embodiment 10 of the present invention further includes a micro / nano bubble generating device 10 as a supply means for functional aerosol.
  • the micro / nano bubble generating apparatus 10 includes a container body 10a for containing a liquid W, a micro bubble generating means 10b connected to a power source PW, a heating means 10c connected to a power source PW, a gas supply path 10d, and a gas discharge. And a road 10e.
  • the micro / nano bubble generator 10 may be provided inside a bubble-type heating / humidifier.
  • the micro / nano bubble generating device 10 generates a large amount of nano bubbles in a liquid and collects water vapor containing nano bubbles together with hydrogen gas, oxygen gas, air, and the like used for respiration.
  • FIG. 28 uses a porous electrode unit and generates oxygen and hydrogen nanobubbles.
  • there are some means for generating micro / nano bubbles but one that can be compactly equipped must be selected.
  • Toray in Japan also uses a micro-structured film, and produces what is generated by injecting gas into the film placed in water. The rising speed of the gas in the liquid in FIG. 28 is schematically designed by referring to the data in FIGS. 15 and 16.
  • the water or hot water in FIG. 28 is in a state called functional water, and the oxidation-reduction potential is usually in a state of minus 50 mV to minus 200 mV.
  • Functional aerosols have a low surface tension and a low burden on human respiratory organs.
  • a microbubble / nanobubble generating device that can be generated without using a high voltage is used.
  • This microbubble / nanobubble generating apparatus is installed in a humidifying humidifier.
  • water or hot water containing microbubbles or nanobubbles is separately generated and used in a nebulizer or the like.
  • the mucus protecting the respiratory airway mucosa can be kept normal.
  • a detonation frame arrester and an impact pressure buffering part were provided on the respiratory mask to construct a composite safety system.
  • a sealed mask that sends gas separately to the nasal cavity and oral cavity, enabling hydrogen gas to be injected into the nasal cavity.
  • the entire room can be used as a treatment room, and the humidified high-concentration hydrogen mixed gas can be sucked without wearing a respirator.
  • the humidified hydrogen gas nasal injection system is extremely promising for the treatment of cranial nerve diseases from the treatment of acute cerebral infarction to the treatment of dementia.
  • the method of safely filling the humidified high-concentration hydrogen mixed gas with the entire room as a treatment room can be widely applied from a nuclear shelter to an evacuation facility around a nuclear power plant, a vehicle, a ship, an aircraft, and a treatment room of a hospital.
  • adaptation to a hyperbaric oxygen-hydrogen therapy device can be a means for opening up the path of cancer treatment by inducing ferrotosis.
  • it can be applied to ventilators or cardiopulmonary systems and is expected to improve therapeutic effects.
  • Hydrogen gas generation means 11a Hydrogen oxygen gas generation means (water electrolysis apparatus) 12 Heating Humidifier 13 Sealed Nasal Mask 14 Nebulizer 15 Water Trap 16 Sealed Eye Nose Mask 17 Sealed Nasal Mouth Mask (With Oral Nasal Septum) 17b Sealed nose and mouth mask (without mouth-nose barrier) 2 Expiratory exhaust flow path 2b Indoor air exhaust flow path 21 Humidifier 22 Stirred discharger 23 Sealed mouth mask 3 Air supply flow path 3c Outside air supply flow path 31 Heating humidifier 32 Nebulizer 33 Sealed mouth mask 33a Sealed nose mouth Mask 41 Carbon dioxide concentration lowering means 42 Oxygen supply means 43 Gas flow distribution device 44 Pyrolysis device 5 Hydrogen gas mixture supply channel 51 Supply line 52 Heating humidifier (functional aerosol generation function added) 53 Filter 54 Face Mask 55 Detonation Frame Arrester 56 Reservoir 57 Nose Mouth Bulkhead Open / Close Valve 6 Power Generation Unit 61 Power Generation Means (Air Hydrogen Fuel Cell)

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

本発明は、呼吸器側の乾燥を防ぐと共に、爆轟・爆発の発生を抑制することができる湿式高濃度水素混合ガス呼吸システムを、各種新たな要素技術開発に付加して提供することを課題とする。 人や動物等の供給対象(H)に少なくとも水素を含むガスを供給するガス供給流路(1)を備え、前記ガス供給流路(1)は、前記ガスを供給するガス供給手段(11)と、前記ガスの温度及び湿度を調整する温度湿度調整手段(12)と、前記供給対象(H)に前記ガスを供給するガス給気部(13)と、を有し、前記ガスの水素濃度は、4.0%(Vol%)を超える濃度で前記供給対象(H)に供給され、併せて新たな呼吸法に基づく呼吸システムと関連する構成要素を導入したことを特徴とする構成となっている。

Description

湿式高濃度水素混合ガス呼吸システム
 本発明は、人や動物等の供給対象に少なくとも水素を含むガスを供給する湿式高濃度水素混合ガス呼吸システムに関する。
 水素分子(H)は、体に有害な活性酸素の内、ヒドロキシルラジカル(・OH)を選択的に無害化する作用があることが知られている。近年この作用に着目して、水または点滴治療で使う輸液・保存液に水素ガスを溶存させたものを体内に取り入れることや、水素混合ガスを呼吸によって肺胞に取り入れることが行われている。
 従来、水素混合ガスを吸引する方法では、水素ガス濃度4%未満の混合ガスを用いた動物実験或は臨床試験が行なわれており、体内中のヒドロキシルラジカルを選択的に消去する優れた効果が見出されている。しかしながら、この水素ガス濃度4%未満という範囲は、水素混合ガスの爆発危険範囲を避けるために安全面から見て設定された上限であった。
 これに対し、本願の発明者は、4%未満という水素ガス濃度は人体に於ける必ずしも最適な値ではないと考え、4.0%を超える濃度で水素混合ガスを供給対象に供給することができる高濃度水素混合ガス呼吸システムの発明について既に特許出願を行い、特許権を取得している(特許文献1)。この特許文献1には、爆発・爆轟から人体の呼吸器を保護する手段を有し、4.0%を超える濃度範囲の水素ガスを用いた試験や実験が行うことができる高濃度水素混合ガス呼吸システムが記載されている。
特許第5612743号公報
平井学著「バチッと感じる静電気。湿度との関係は?」大阪府立産業技術総合研究 Technical Sheet No.10001 2010年4月27日 橋本孝、小笠原英雄著「高温下における水素の高速燃焼特性」 日本原子力学会誌 Vol.41,No.11(1999) 「NH混合ガスの高音域における可燃下限界測定試験」 千代田化工建設株式会社 JNC TJ8430 2001-002  2002年1月 「基礎講座」TIISニュース 公益社団法人産業安全技術樹協会2012 No.248  p.4-7 2012年4月10日 柳生昭三、外3名「産業安全研究所研究報告 水素の爆発危険性についての研究」 労働省産業安全研究所  RR-18-1 1969年6月23日 三宅淳巳 「水素の爆発と安全性」 水素エネルギーシステム Vol.22 No.2(1997) 土屋正彦、谷岡明彦、首都大学東京大学院、東工大「酸水素ガス(オオマサガス)」インターネット資料
 しかしながら、本願の発明者による特許文献1の高濃度水素混合ガス呼吸システムにおいては、なお以下のような問題点が残されていた。
 本発明が解決しようとする問題点の第1は、呼吸器が乾燥傾向になってしまうと言う問題である。すなわち、従来の高濃度水素混合ガス呼吸システムは、二酸化炭素吸収剤を用いた呼気再循環呼吸時に、同吸収剤部分で呼吸中の水蒸気が一部減少してしまう。その結果、呼吸器の粘液層を正常な状態に保つことができず、呼吸器気道粘膜を粘液層で保護することができなかった。さらに、水素混合ガス供給経路の途中で爆発及び爆轟が発生した時に、人体の呼吸器を保護する手段が設けられているものの、爆発及び爆轟を抑制することについては不十分であった。特に、火炎伝播速度が音速を超える爆轟状態は、衝撃波を伴うため人体に与える悪影響が大きい。そのため、爆轟(さらには爆発)の発生を抑制して、システムの安全性を向上させる必要があった。
 そこで吸入する高濃度水素混合ガスに適度な湿気を与えることや、吸気とする為の高濃度水素混合ガスの適切な温度と湿度を求める必要があった。また、許容雰囲気圧力を安全性と人体への効果と言う観点から、公的実験資料も含めて調査分析し、併せて医学的にも最適な値を導き、その結果を活用した新しい湿式高濃度水素混合ガス呼吸システムを提供することが求められていた。
 問題点の第2は、特許文献1に記載の高濃度水素混合ガス呼吸システムの「呼気再循環方式」以外は、水素ガスの消費量が膨大になってしまい、吸入する水素ガス濃度の高さと利用時間の長さとに比例して水素ガスの消費量も増大した。この水素ガスの消費量の増加は、ある意味で危険性の増加にもつながっていた。そこで、呼吸方法等、今迄に無い何らかの改善工夫を行い、比較的少ない水素ガスの消費量で医学的に有効な効果を得る呼吸方法等(システム)の開発が求められていた。
 問題点の第3は、医療用マスクの着用問題と許容雰囲気圧力を、安全性と人体への効果と言う観点から見直すことである。利用者の中には医療用マスクの装着を好まない人や、適さない人が存在する。このような人に対して、煩わしい手間を掛けずに、複数の人間が同時に高濃度の水素混合ガスの吸引を行なうことができ、安全性が確保される範囲での高気圧の利用可能なシステムの開発が求められていた。
 問題点の第4は、機能性エアロゾルに関して、特許文献1の従来型においては、高濃度水素混合ガスと機能性エアロゾルは排他的に利用した。これを高濃度水素混合ガスの吸引と機能性エアロゾルの吸引を同時に行なう事が可能で、又機能性エアロゾルの種類と生成方法に関しても、その選択性の拡張が求められていた。
 問題点の第5は、特許文献1の高濃度水素混合ガス呼吸システムは、システムを構成する要素選択が少ないという問題である。そのため、水素及び酸素及び関連する全要素に関し、システムの構成要素の選択性を増やして、小規模の医療拠点から大規模の医療拠点、固定的な住居用から車両、航空機、船舶等の移動体、更に個人が徒歩で用いる業務用呼吸装置に至るまで、幅広くシステム要素を提供できるようにする必要があった。
 本発明は、上記事情に鑑み、呼吸器側の乾燥を防ぐと共に、爆轟・爆発の発生を抑制することができる湿式高濃度水素混合ガス呼吸システムを提供することを課題とする。
 上記課題を解決するため、本発明に係る湿式高濃度水素混合ガス呼吸システムは、人や動物等の供給対象に少なくとも水素を含むガスを供給するガス供給流路を備え、前記ガス供給流路は、前記ガスを供給するガス供給手段と、前記ガスの温度及び湿度を調整する温度湿度調整手段と、前記供給対象に前記ガスを供給するガス給気部と、を有し、前記ガスに含まれる水素は、4.0%(Vol%)を超える濃度で前記供給対象に供給されることを特徴とする。
 先ず、呼吸気流路に静電気を発生させない最低限の湿度条件を、大阪府立産業技術総合研究所の関連技術資料(非特許文献1)を用いて求めた。図17と図18の帯電性と湿度の関係図から安全条件として、絶対湿度10mg/L以上で該当する温度湿度の値を求めると、温度20℃で相対湿度60%以上を導いた。次に、水素ガスの各種燃焼爆発試験結果と、表5及び図19から図26まで(200気圧まで)の分析と、非特許文献7の株式会社日本テクノの酸水素ガスの燃焼試験(飽和水蒸気状態)と、人の呼吸器の生理(医学的判断により)と、から、上限として吸気温度37℃の飽和水蒸気(絶対湿度44mg/L)が吸引ガスとして最適であると判断した。また、環境圧力としても図の分析に於いて3気圧の高気圧治療装置の利用も安全上可能と判断した。
 よって、本発明は、基本的に吸引する水素混合ガスの温度と湿度を、水素ガス濃度に基づく設定値(設定条件として相対湿度60%から100%、温度20℃から40℃)に制御する為の加温加湿器を設置している。これにより、可燃ガスの着火を回避、或は爆発燃焼時の少なくとも爆轟状態の発生を回避することができる。また、着火した場合に備え、呼吸器を保護する手段の火炎遮断装置と爆発による圧力変動を緩衝するための衝撃圧緩衝部分を設置している。加えて、呼吸器内での着火に対しても、加湿ガスによって得られる呼吸器粘膜上の粘液層生成による防護作用を利用して呼吸器を保護することができる。更に、利用者許容雰囲気圧力として3気圧までの高気圧酸素水素混合ガス治療装置の安全な利用を可能にすることを第1の特徴とする。
 次に、特許文献1に記載の高濃度水素混合ガス呼吸システムは、肺呼吸型で口腔マスクを使用して、吸引した水素混合ガスは肺胞を通じて血液中に取込んでいた。一方、本願発明に係る湿式高濃度水素混合ガス呼吸システムでは、新たに密閉型鼻マスク等を装着して、口腔でなく鼻腔を通じて加湿水素ガス又は爆発上限界を超える水素ガス濃度の加湿水素混合ガスを独占的に定容量注入できるように構成している。そのため濃度の高い加湿水素ガスを嗅覚細胞部分の嗅部から血液脳関門を通さずに直接内部の脳神経細胞等に作用させることができる。口腔では任意に呼吸可能とし、鼻腔を通過した濃度の高い加湿水素ガスは口腔からの加湿空気又は加湿酸素ガスの呼吸気と咽頭部分で合流し、肺胞へ導かれて肺胞からも吸収される事を第2の特徴とする。
 本発明の好ましい形態では、密閉型鼻マスクの他に、密閉型鼻口マスク、密閉型目鼻マスクを用いることが可能である。この密閉型目鼻マスクは、前記供給対象の眼球と鼻腔に前記加湿水素ガスを供給し、眼球に対しても水素ガスを接触作用させることができる。
 本発明の好ましい形態では、密閉型鼻口マスクは、供給対象の鼻腔に加湿水素ガスを供給する鼻口マスクであり、この鼻口マスクは、鼻腔に前記加湿水素ガスを供給する鼻流路と、口腔に空気等を供給する口流路とを有し、前記鼻流路と前記口流路の間には、前記鼻流路と前記口流路を連通及び隔絶可能な開閉弁が設けられていることを特徴とする。
 このように、鼻口マスクに前記鼻流路と前記口流路を連通及び隔絶可能な開閉弁が設けられていることにより、口呼吸と鼻呼吸とを選択することができるよう構成されている。
 尚、密閉型鼻マスク等を用いた呼吸方法に関して、加湿水素混合ガスの予混合鼻口呼吸方式と水素ガスと空気等の個別供給体内混合方式(咽頭部及び気管地点での混合方式)の違いを表1に示した。
Figure JPOXMLDOC01-appb-T000001
 本発明の好ましい形態では、前記供給対象から出る呼気を排出する呼気排出流路をさらに備え、前記呼気排出流路は、前記供給対象から前記呼気を受容する呼気受容手段と、前記呼気中の水素ガス濃度を低下させる水素濃度低下手段と、を有していることを特徴とする。
 このように、呼気排出流路は水素ガス濃度を低下させる水素濃度低下手段を有していることにより、安全に呼気を大気中に排出することができる。
 本発明の好ましい形態では、前記供給対象に酸素及び/又は空気を供給する空気供給流路をさらに備え、前記空気供給流路は、前記酸素及び/又は空気を供給する空気供給手段と、前記酸素及び/又は空気の湿度を調整する湿度調整手段と、前記供給対象に前記酸素及び/又は空気を供給する空気給気部と、を有していることを特徴とする。
 本発明の好ましい形態では、前記呼気排出流路の下流が、前記空気供給流路の上流に接続され、前記呼気排出流路と前記空気供給流路の間には、前記呼気の二酸化炭素濃度を低下させる二酸化炭素濃度低下手段が設けられており、前記空気供給流路の上流には、さらに酸素供給手段が設けられていることを特徴とする。
 このように、呼気排出流路が空気供給流路に接続されていることにより、呼気中に含まれる水素ガスを再び供給対象に供給することができ、水素ガスの消費量を削減することができる。
 本発明の好ましい形態では、前記ガス供給手段及び前記空気供給手段は電気分解型水素酸素供給装置であり、前記電気分解型水素酸素供給装置は、前記ガス供給流路に水素ガスを供給し、前記空気供給流路に酸素ガスを供給していることを特徴とする。
 本発明の好ましい形態では、前記水素ガスを燃料に発電する燃料電池ユニットをさらに備えることを特徴とする。
 このように、燃料電池ユニット有することにより、余剰に発生してしまう水素ガスを発電に利用して有効に処理をすることが出来る。
 本発明の好ましい形態では、人又は動物の生存可能な密閉空間(密閉室)の空調に利用可能なエアコンディショナーを備えている。このエアコンディショナーには、並列的に水素ガスと酸素ガスと外部の空気と湿気と、機能性エアロゾルを供給する手段と、二酸化炭素除去手段と、がシステムとして組込まれている。そのため、温度と湿度と水素ガス濃度と酸素ガス濃度と二酸化炭素濃度とを調節可能とし、室内ガス環境を制御することによって、密閉室内の雰囲気環境を加湿水素混合ガス環境に設定して作り出すことができる。これにより、人又は動物が呼吸用のマスク等を使用することなく、安全に加湿水素混合ガスを呼吸可能なシステムを構成したことを特徴とする。また、このシステムの構成要素は、安全防爆仕様に設計されている。
 本発明の好ましい形態では、このシステムの室内ユニットは、以下の3つの部分で構成されている。第1は空調のエアコンディショナーの室内部分である。第2は第1の室内機部分の下部に接続された、加湿水素混合ガスと機能性エアロゾルを供給する付加機能ユニットである。この付加機能ユニットは、機能性エアロゾル供給機能と、加温加湿機能と、水素ガス・酸素ガス・空気の供給機能と、室内換気機能と、を有している。第3は二酸化炭素を減少除去させる二酸化炭素除去減少手段である。この二酸化炭素除去減少手段は独自のガス取込み送風機能を有している。この室内ユニットは、これら3つの部分を統合制御することを特徴とする。
 本発明の好ましい形態では、これらを制御する為の必要な雰囲気情報を得る為に、室内に複数個所、各種センサーが設置されている。この各種センサーは、温度、湿度、水素濃度、酸素濃度、二酸化炭素濃度、室内気流速度等のデータを測定して、統合制御装置(統合コントロールユニット)に送る。その情報によって、上述した3要素を制御して、室内の気流、温度、湿度、水素ガス濃度、酸素ガス濃度、二酸化炭素濃度、機能性エアロゾルの種類と量が制御することを特徴とする。
 本発明の好ましい形態では、密閉室(生存可能な密閉空間)には、水素ガス濃度の早期調整のため、部屋内部に充満する気体(ガス)を効率的に換気する容積置換式のエアバッグが設けられていることを特徴とする。通常、エアコンディショナーの送風能力でガス濃度の局所偏りを防ぎ、該当するガスを注入しながら攪拌混合し注入した分量だけ換気して圧力バランスを一定にしていた。しかしながら、広い空間のガスを入れ換えるには、目標とするガスの注入と攪拌混合、換気(掃気)を繰り返すと言うロスが生じていた。そこで凡そ部屋の大きさまで拡大(膨張)可能な帯電防止仕様のエアバッグを部屋の天井部分等に設備し、人間が入室しない時点で、加圧空気を用いて膨張展開し、目標成分の混合ガスの注入と同時に、この混合ガスの注入と同じ速度で(ガス流量で)エアバッグの空気を排気する事で、短時間で無駄が無く、混合ガスの入換えを可能とした。このように、部屋内部に充満する気体(ガス)を効率的に換気する容積置換式のエアバッグを備えたことを第3の特徴とする。
 本発明の好ましい形態では、機能性エアロゾルの供給手段として、高電圧を用いずに生成可能なマイクロバブル・ナノバブルの生成装置を用いて加温加湿器内に同装置を設置することを特徴とする。又は、別途マイクロバブル・ナノバブル含有の水・湯を生成してネブライザー等にて使用する。なお、マイクロ・ナノバブルと通常のミリサイズ、センチサイズの泡の液体中の上昇速度が図15と図16に示されているので、加温加湿器に装着する場合の気体通過能力設計の参考とする。
 又、この他、表2に示すエアロゾル素材をネブライザー等で個別に利用することが出来る。これにより高濃度水素混合ガスの吸引と同時に機能性エアロゾルも吸引可能なシステムを構築することを第4の特徴とする。
 本発明の好ましい形態では、水素ガス及び酸素ガスの供給手段の自由度の向上である。水素ガスの供給手段としては、先ず患者個人用の装置に関して高圧水素ボンベ、水素吸蔵合金キャニスター、水素発生剤(水又は湯と共に使用される水素発泡剤で数種類)、水の電気分解装置(隔膜式で水素ガスと酸素ガスが生成)等を採用することができる。また、酸素ガスの供給手段としては、病院等では各病室まで酸素の供給ラインが装備されていることが多いが、吸入用の酸素ボンベの利用も可能である。又、水の電気分解でも酸素を生成されるが、水素:酸素が2:1の比で発生する為、使用によっては水素ガスが余分に発生するので、水素空気燃料電池を使用して、この余分に発生する水素ガスを発電に使用して生成物として水を得ることが可能である。この為、酸素ガス水素ガスの双方が入手困難な環境でも便利なシステムを提供することを第5の特徴とする。
 本発明の好ましい形態では、前記密閉室は、JIS T7321及び「高気圧酸素治療の安全基準」に準じた規格で構成する耐圧容器で形成されており、前記耐圧容器内は加圧可能に構成されていることを特徴とする。
 本発明は、呼吸器側の乾燥を防ぐと共に、爆轟・爆発の発生を抑制することができる湿式高濃度水素混合ガス呼吸システムを提供することができる。
 また、本発明は、鼻腔のみに前記加湿水素ガスを独占的に供給する呼吸方法を採用することにより、比較的少量の水素ガスの使用量で、医学的に有効な効果を得ることができる。
 また、本発明は、密閉室を備えることにより、装着が煩わしいマスク等を使用せず、供給対象に水素ガスの供給を行うことができる。更に高気圧酸素水素治療装置の導入により、レベルの高い疾病治療に用いることが可能となる。
 表2は、特許文献1に記載の高濃度水素混合ガス呼吸システムと本願発明に係る湿式高濃度水素混合ガス呼吸システムを比較して示している。高電圧を用いる静電霧化式加湿器は、機能性エアロゾルの供給手段として高い性能を発揮するが(パナソニック製のナノイー等)可燃混合気である高濃度水素混合ガスのガス中では使用できない。使用できるのは酸素ガス中及び水素ガス中の使用である。混合状態になると不可である。本願発明に係る湿式高濃度水素混合ガス呼吸システムでは、図28に示すようなマイクロ・ナノバブル発生装置を加温加湿器等装置中に組み込まれている。このように可燃混合気のガス経路中にマイクロ・ナノバブル発生装置を設けており、高濃度の加湿水素混合ガスの呼吸と同時に利用でき、これにより機能性エアロゾルの使用時期制限がなくなり、非常に使い勝手が良くなった。又更に機能性エアロゾルの選択できる種類を増やすことによって、広範な病態の対応策が向上した。表2より今回追加したエアロゾルの一例を説明すると、Pt(白金ナノコロイド)である。白金電極を用いて水蒸気中で5000V程度の電圧を掛けると生成されるとの報告があるが、白金ナノコロイド溶液として国内メーカー数社から販売されており、単独でも医学的な効力を高めるとされている。但し金属として白金又は白金コートされた部品を高濃度水素混合ガスの通過系路上で使用すると触媒作用によりガスに着火する事が報告されている。他の素材も様々な特徴、優位点を有する。
Figure JPOXMLDOC01-appb-T000002
本発明の実施形態1に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態2に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態3に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態4に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態5に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態1~5に係る湿式高濃度水素混合ガス呼吸システムにおいて使用する密閉型鼻口マスクの概略図である。 本発明の実施形態1~5に係る湿式高濃度水素混合ガス呼吸システムにおいて使用する密閉型鼻口マスクの制作例を示す概略図である。 本発明の実施形態6に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態6に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態7に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態8に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 本発明の実施形態9に係る湿式高濃度水素混合ガス呼吸システムを示す概略図である。 鼻腔への湿式水素ガス注入と口呼吸の説明図 人体の呼吸器の気管支樹概要図で、湿式高濃度水素混合ガスによる爆発火炎による耐久性の説明図 水中のミリサイズの泡、センチサイズ泡の球相当径と上昇速度を関係の説明図 蒸留水中のマイクロバブルの上昇速度と気泡径の関係説明図 大阪府立産業技術総合研究所のTechnical Sheet で和紙を用いた(散乱時間)τと絶対湿度の関係図 大阪府立産業技術総合研究所のTechnical Sheet で和紙を用いた電気抵抗と相対湿度の関係図 産業安全研究所研究報告 JUNE 1969 RR-18-1 水素の爆発危険性についての研究 水素-空気系爆発限界図 産業安全研究所研究報告 JUNE 1969 RR-18-1 水素の爆発危険性についての研究 水素-酸素系爆発限界図 産業安全研究所研究報告 JUNE 1969 RR-18-1 水素の爆発危険性についての研究 水素-空気系および水素-酸素系の爆発上限界図 公益社団法人産業安全技術樹協会 発行 8L容器における水素の火炎逸走限界測定値の図 日本原子力学会誌、Vol.41,No.11(1999) による高温下における水素の高速燃焼特性 セルサイズ試験データ 図 日本原子力学会誌、Vol.41,No.11(1999) による高温下における水素の高速燃焼特性 セルサイズと水蒸気濃度の関係図 水素エネルギーシステム Vol.22 No.2(1997) 水素の爆発と安全性の2H+O混合気の発火限界図 水素エネルギーシステム Vol.22 No.2(1997) 水素-空気混合気の爆発限界に及ぼす圧力の影響図 飽和水蒸気中の水素-酸素混合気の燃焼特性のイメージ図 マイクロ・ナノバブル発生手段を供えた多機能加温加湿器の説明図
 以下、本発明を図面に示した好ましい実施形態1~10について詳細に説明する。本発明の技術的範囲は、添付図面に示した実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、適宜変更が可能である。
<実施形態1>
 本発明の実施形態1に係る湿式高濃度水素混合ガス呼吸システムは、図1に示すように、人等の供給対象Hに水素ガス(H)を供給する水素ガス供給流路1(ガス供給流路の一例)を備えている。この水素ガス供給流路1は、水素ガスを発生させる水素ガス発生手段11(ガス供給手段の一例)と、水素ガスの温度及び湿度を調整する加温加湿器12(湿度湿度調整手段の一例)と、鼻腔に水素ガスを供給する密閉型鼻マスク13(鼻給気部の一例)又は鼻腔及び眼球に水素ガスを供給する密閉型目鼻マスク16(目鼻給気部の一例)と、機能性エアロゾルを導入するネブライザー14と、余分な水滴を除去するウォータートラップ15と、を有している。
 水素ガス発生手段11は、水素ガス供給流路1の始点に設けられており、水素ガス発泡剤や電気分解による水素ガス生成装置等が採用される。また、水素ガス発生手段11の代わりに、水素吸蔵合金ボンベや水素ガスライン等の水素ガスを供給する手段を採用してもよい。
 加温加湿器12は、水素ガス供給流路1の途中に設けられており、水素ガスの温度及び湿度を調整することができるよう構成されている。ここで加温加湿器12による温度の設定範囲としては、水素ガスが密閉型鼻マスク13(又は密閉型目鼻マスク16)に到達する地点で20~40℃となるように設定することが望ましい。また、加温加湿器12による湿度の好ましい設定範囲は相対湿度60~100%であり、より好ましい設定範囲は相対湿度90~100%であり、さらに好ましくは飽和水蒸気量である相対湿度100%に設定することが望ましい。
 なお、この設定条件の最大値は、呼吸器の生理的条件に基づいて求められており、人間の肺内ガスの条件(温度37℃、相対湿度100%、絶対湿度44mg/L)を参考に設定されている。
 また、この設定条件の最小値は、水素混合ガス中に静電気を発生させない最低限の温度湿度条件に基づいて求められている。通常、水素ガスを含む可燃性ガスにおいては、相対湿度60%以上の条件で扱うことが推奨されている。このことに加え、湿度が高くなると、物質(気体等)の電気抵抗が小さくなり、静電気は発生し難くなることが知られている(非特許文献1参照)。
 非特許文献1に掲載された図17によれば、静電気が解消する散乱時間τは、絶対湿度が高くなるにしたがい指数関数的に減少し、帯電し難くなっていることが分かる。そこで発明者は、図17において、静電気が発生し難く、人体に影響がでない条件として、温度20℃、絶対湿度10mg/L(相対湿度60%:表3及び表4参照)を最低限の温度及び湿度条件であると見積もった。なお、表3は0℃から46℃の範囲の温度と飽和水蒸気量の関係を示し、表4は0℃から100℃の範囲の温度と飽和水蒸気量の関係を示している。
 また、非特許文献1に掲載された図18によれば、電気抵抗は相対湿度が高くなるにしたがい指数関数的に減少していることが分かる。そのため、相対湿度が高い値である程、爆発及び爆轟が発生する原因となる静電気は発生し難くなることがわかる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 密閉型鼻マスク13は、水素ガス供給流路1の終点に設けられており、鼻腔のみを覆うように構成されている。そのため、この密閉型鼻マスク13は、常時鼻腔にガス濃度100%の水素ガスを供給して、鼻腔内部の空間を水素ガス濃度の高い状態を保つことができる。密閉型鼻マスク13はバンド等で頭の後から固定させることも出来るが、手で把握して鼻部に密着させておくだけでも良い。なお、鼻部のみを覆う場合には、本システムの利用中であっても喉の渇きに対して、飲料水ボトルWから随時水を飲むことが可能である。
 また、この密閉型鼻マスク13のかわりに、眼球に水素ガスを供給する眼球給気部を有する水中眼鏡タイプの密閉型目鼻マスク16を使用しても良い。この密閉型目鼻マスク16を使用する場合には、水素ガスを眼球に接触作用させることができる。
 さらに、この密閉型鼻マスク13の下部に口腔を覆う人口鼻フィルターを設けた鼻口マスク13aを用いても良い。この人口鼻フィルターによって、供給対象の排出する呼気中の水蒸気がトラップされるため、口腔周辺の湿気を高く保つことができる。
 なお、図示はしていないが、これらのマスクに圧力スイッチを付け、水素ガス発生手段11における水素ガスの供給量をコントロール可能なよう構成しても良い。このように構成する場合には、システム使用中に密閉型鼻マスク13を外すことで休憩することができ、装着することで再び加湿水素ガスの吸引を継続することができる。
 ネブライザー14は、水素ガス供給流路1の途中に設けられており、必要に応じて水素ガス中に機能性エアロゾルを導入することができる。この機能性エアロゾルとしては、例えば、ヒドロキシルラジカル(・OH)を含む微粒子や、次亜塩素酸を含む微粒子、Pt(白金ナノコロイド)溶液等を採用することができる。また、この機能性エアロゾルは、加温加湿器12において導入するように構成しても良く、加温加湿器12とネブライザー14とで異なる機能性エアロゾルを導入するように構成しても良い。なお、機能性エアロゾルを使用しないという選択も可能である。
 また、機能性エアロゾルが加えられた水素ガスは、密閉型鼻マスク13(又は密閉型目鼻マスク16)より毎分100~500mLが鼻腔に供給される(安静時呼吸量を毎分5Lとした場合)。水素ガスの供給量は水素ガス発生手段11の水素ガス発生量で決まり、利用者が強く鼻腔から吸い込んでも水素ガス発生手段11の発生量以上には供給されない。なお、水素ガスの供給量は、口腔からの毎分当りの全呼吸量の10%以内に設定されることが望ましい。
 次に、実施形態1に係る湿式高濃度水素混合ガス呼吸システムの使用方法について、図13を参照して詳細に説明する。
 まず、密閉型鼻マスク13(又は密閉型目鼻マスク16)から供給された濃度100%の水素ガスは、おおよそ50mLとされる鼻腔に高濃度で充満する。そのため、毎分100~500mL程度の極めて少ない水素ガス供給量であっても、鼻腔上部の嗅部H1周辺を濃度50%以上の水素ガスで満たすことができる。この嗅部H1周辺に供給された水素ガスは、嗅部H1より血液脳関門を経ずして、一部が直接脳神経細胞に到達する。
 一方、口腔では通常の呼吸が行われ、吸引した空気が咽頭で鼻腔に供給された水素ガスと合流して肺まで搬送される。この時、肺内の水素ガス濃度は最大10%程度であると考えられる。
 本発明に係る湿式高濃度水素混合ガス呼吸システムを使用する際の室内の湿度は、相対湿度で60%以上確保することが望ましい。また、この室内には、室内の温度・湿度・水素濃度等のセンサーを設置し、室内の気流を発生させる送風機等を設け、さらに安全のため、人体のセンサーとして最低限パルスオキシメータを装着することが望ましい。
 また、水素ガスの爆発事故を防止するため、部屋の広さ一平米当たり、床から天井までの高さを掛けた体積を求め、水素ガスの総使用量が利用する実体積の1%以内を安全圏内としている。なお、安全性を確保するためには、口腔から排出する呼気の半径1.5m程の範囲は静電気等の発生原因を排除する必要がある。
 この実施形態1に係る湿式高濃度水素混合ガス呼吸システムは、簡易な構成で実施することが可能であるため、周囲の環境が整っていれば、最も経済的に使用できる実施形態である。この湿式高濃度水素混合ガス呼吸システムは、使用時間は60分以内で使用することが望ましく(標準時間=40分)、最大水素ガス使用量は60分で30Lである。
 本実施形態によれば、密閉型鼻マスク13(又は密閉型目鼻マスク16)を用いて、鼻腔に爆発上限界を超える濃度の水素ガスを供給する構成としたことにより、効率良く脳神経系中に水素分子を供給することができる。すなわち、鼻腔上部の嗅部H1周辺を濃度50%以上の水素ガスで充満させることにより、嗅部H1を介して水素分子を脳に供給することができる。このように血液脳関門を経ずに、水素分子を脳に供給することができ、効率よく脳神経系中に生じた活性酸素を減少させることができる。これにより、嗅部H1に近い海馬の酸化ストレスを低減させることができるため、アルツハイマー病等の脳神経系に由来する諸疾患の治療及び予防に有効な手段として期待できる。
 また、本実施形態によれば、鼻腔に水素ガスを供給する構成としたことにより、少ない水素ガスの使用量で医学的に有効な効果を得ることができる。すなわち、鼻腔の体積は約50mLであるため、水素ガスの供給量が少量であっても、鼻腔内部の空間を水素ガス濃度の高い状態を保つことができる。
 また、本実施形態によれば、水素混合ガスの相対湿度を60~100%の範囲に調整することにより、静電気の発生を抑制して、爆轟・爆発の発生を防ぐことができる。
<実施形態2>
 以下、本発明の実施形態2に係る湿式高濃度水素混合ガス呼吸システムについて、図2を参照して詳細に説明する。この実施形態2に係る湿式高濃度水素混合ガス呼吸システムは、先の実施形態1に係る湿式高濃度水素混合ガス呼吸システムの構成に加えて、呼気排出流路2及び空気供給流路3を備えることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態2に係る湿式高濃度水素混合ガス呼吸システムは、図2に示すように、人等の供給対象Hに水素ガスHを供給する水素ガス供給流路1と、供給対象Hの呼気Eを排出する呼気排出流路2と、供給対象Hに酸素及び/又は空気Aを供給する空気供給流路3と、を備えている。
 呼気排出流路2は、呼気Eの湿度を上昇させる加湿器21と、この呼気Eを大気中に発散させる攪拌放出器22(水素濃度低下手段の一例)と、口腔H3から呼気Eを受容する密閉型口マスク23(呼気受容手段の一例)と、空気供給流路3と合流する合流部24と、を有している。呼気排出流路2中の呼気Eは、攪拌放出器22により、水素ガス濃度を薄めて室内に放出される。加湿器21は、呼気Eを飽和状態まで加湿することにより、呼気Eをミスト状にして視認可能とすることが望ましい。これにより、水素ガスを含む呼気Eの拡散範囲を大まかに確認することができる。なお、この加湿器21を設けずに構成することも当然に可能である。
 空気供給流路3は、気体(空気A)を送気するためのポンプPと、空気Aの温度及び湿度を調節する加温加湿器31と、機能性エアロゾルを導入するネブライザー32と、空気Aを口腔H3から吸引する密閉型口マスク33(空気給気部の一例)と、を有しており、合流部24を介して呼気排出流路2と接続されている。そのため、口腔H3での呼吸(酸素の吸引及び排出)は密閉型口マスク23、33を経由して行なわれる。
 空気Aは、ポンプPにより外部から加温加湿器31内に送気され、温度及び湿度を調節された後に、ネブライザー32を経由して密閉型口マスク33に供給される。合流部24は呼気Eと吸気(空気A)の合流箇所であり、呼気Eは呼気排出流路2中に設けられた加湿器21で加湿され、攪拌放出器22で水素ガス濃度を薄められて外部に放出される。なお、ポンプPの空気供給量は、最低必要量は毎分5Lであるが流路の結露防止と呼気Eの水素濃度を低下させるために、通常最低必要量の2倍程度の量で運用することが望ましい。
 また、密閉型口マスク33に代って、図6に示すような密閉型鼻口マスク17(鼻口給気部の一例)を用いても良い。密閉型鼻口マスク17には、水素ガス供給流路1と空気供給流路3が接続されており、密閉型鼻口マスク17内で水素ガスは鼻腔へ、空気は口腔へ供給されるが、57の鼻口の隔壁部を開くと、水素ガス空気が混ざり、鼻腔と口腔に同程度の水素ガス濃度を有する水素混合ガスが供給可能に構成されている。
 このように、水素混合ガスを供給する場合には、温度及び湿度を水素混合ガスが爆轟・爆発が発生し難い条件に設定することが重要である。
 次に、爆轟・爆発が発生し難い温度条件及び湿度条件について詳細に説明する。
 一般に、爆轟波が発生した場合には、規則的な魚のうろこ状の火焔の軌跡が観察される。この軌跡の三重干渉点間の距離を一般にセルサイズと呼ぶ。セルサイズは対象とする可燃性混合気の組成・温度・圧力により決まる特性値であり、セルサイズが小さいほど爆轟の程度が激しくなることが知られている。
 ここで、非特許文献2に掲載された図23には、高温下における水素の高速燃焼特性のセルサイズ試験データが示されている。この図23によれば、水素ガス濃度30%の時にセルサイズが最小となり、水素ガス濃度30%以下でも以上でも、セルサイズが大きくなる傾向であることが分かる。
 また、非特許文献2に掲載された図24には、高温下における水素の高速燃焼特性のセルサイズと水蒸気濃度の関係が示されている。この図24によれば、相対湿度が高くなるほど、火焔のセルサイズが大きくなる傾向であることが分かる。
 以上の傾向を鑑み、相対湿度が高い程爆轟の程度が抑制されると推定される。
 また、非特許文献3に掲載された空気中における水素の爆発限界を表5に示す。この表5によれば、水蒸気の含有量が飽和状態における開放管での爆発下限界が、下方伝ぱ方向で8~10%であることが推定される。
Figure JPOXMLDOC01-appb-T000005
 次に、水素混合ガスの爆発範囲と爆轟範囲の特性についてまとめたものを表6に示す。この表6は、本発明者が前回出願した特許文献1の表1の内容に、飽和状態である水素ガスの特性を推定して追加したものである。
Figure JPOXMLDOC01-appb-T000006
 この表6に示したように、水素空気混合気(乾燥)と水素酸素混合気(乾燥)の18.3%~59%範囲は爆轟が発生してしまうのに対し、水素酸素混合気(飽和水蒸気)の18.3%~59%範囲は爆轟が抑制されるものと推定される。
 図27は、水素酸素混合気(乾燥)と水素酸素混合気(飽和水蒸気)の燃焼特性を比較した概念図である。
 次に、もし口腔内で火炎が生じても、安全性が確保されていることについて説明する。
 非特許文献4に掲載された図22には、8L容器における水素の火焔逸走限界測定値が示されている。この図22によれば、いずれの水素ガス濃度であっても、0.20mm以下の流路であれば、火焔が消炎することがわかる。ここで、人体の肺は、図14に示すように、構造自体がデトネーションフレームアレスター様に構成されている。そのため、肺の終末細気管支からは火炎逸走限界以下の寸法であるために火炎が生じた際にも、自然に消炎され防御される。
 また、表7に水素混合ガスの爆発燃焼時(爆縮時)の体積変動の仮想値(完全燃焼したと仮定して)を示す。すなわち、水素と酸素が反応して水となる場合には、体積が収縮する。この時、呼吸器内の圧力が急激に低下してしまうため、人体に悪影響を及ぼす可能性が有る。
そのため、この表7の値を参考にして、縮小率の低い水素酸素濃度を採用して、人体に悪影響を及ぼすリスクを低減させることができる。
Figure JPOXMLDOC01-appb-T000007
 本実施形態によれば、呼気排出流路2を備えることにより、水素ガスを含む呼気Eを安全に排出することができる。先の実施形態1に係る湿式高濃度水素混合ガス呼吸システムにおいては、水素ガスを含む呼気Eを口腔H3から直接排出していたため、半径1.5m程度は静電気等の発生原因を排除する等の安全対策をとる必要があった。一方、本実施形態においては、水素ガスを含む呼気Eを呼気排出流路2により、安全な位置まで移動させて排出することができる。また、攪拌放出器22で水素ガス濃度を薄めることにより、安全に呼気Eを排出することができる。
 また、本実施形態によれば、空気供給流路3の途中に加温加湿器31を設けることにより、呼吸器に供給される空気を加湿することができる。そのため、長時間本システムを使用する場合であっても、呼吸器側の乾燥を防いで呼吸器系の気道内粘液層を正常な状態に保ち、呼吸器気道粘膜を粘液層で保護することができる。また、呼吸器気道粘膜を粘液層で保護されていることにより、予期せぬ事故が発生した場合にも、呼吸器内の粘膜を守ることができる。
 また、本実施形態によれば、水素ガス供給流路1と呼気排出流路2の途中に加温加湿器12、21を設けることにより、水素混合ガスを爆轟状態の発生しない温度・湿度に調整することができる。すなわち、密閉型鼻口マスク17を用いて口腔及び鼻腔に水素混合ガスを供給する場合には、吸引する水素混合ガスの相対湿度を60~100%の範囲に、温度を20~40℃の範囲に調整することにより、水素ガスの着火を抑制すると共に、爆轟の発生を防ぐことができる。
<実施形態3>
 以下、本発明の実施形態3に係る湿式高濃度水素混合ガス呼吸システムについて、図3を参照して詳細に説明する。この実施形態3に係る湿式高濃度水素混合ガス呼吸システムは、先の実施形態2に係る湿式高濃度水素混合ガス呼吸システムの構成に加えて、呼気排出流路2の下流側が空気供給流路3の上流側に接続されていることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態3に係る湿式高濃度水素混合ガス呼吸システムは、図3に示すように、人等の供給対象Hに水素ガスを供給する水素ガス供給流路1と、供給対象Hの呼気Eを排出する呼気排出流路2と、供給対象Hに酸素及び/又は空気Aを供給する空気供給流路3と、を備えている。
 呼気排出流路2の途中にはガス流量分配装置43が設けられ流路が二手に分かれている。一方の流路は、呼気Eを外部に放出する攪拌放出器22に接続されており、外部に呼気を排出するように構成されている。もう一方の流路は、空気供給流路3の上流に配置された加温加湿器31接続され、呼気E内に含まれる水素ガスHが再度供給対象Hに供給されるよう構成されている。また、ガス流量分配装置43と加温加湿器31の間には、呼気Eの二酸化炭素濃度を低下させる二酸化炭素濃度低下手段41が設けられている。さらに、加温加湿器31には、供給対象Hが消費した酸素ガスを補うための酸素供給手段42が設けられている。
 二酸化炭素濃度低下手段41としては、塩化リチウムやコンパウンドA等の二酸化炭素吸収剤等が採用されており、呼気E中の二酸化炭素を吸収するように構成されている。さらに、酸素供給手段42によって消費した酸素を添加することにより、21%の酸素濃度を確保し、再び空気供給流路3より密閉型口マスク33から吸引可能なよう構成されている。
 酸素供給手段42は、通常病院の各病室まで酸素の供給ラインや酸素ボンベを利用することができ、この他にも、供給対象Hに供給可能な酸素ガスを供給することができる手段であれば当然に採用することができる。なお、水素ガスの供給は水素ガス発生手段11からの供給のみでよく、口腔からは加湿された水素混合ガス、空気又は酸素を添加した空気及び循環した水素ガスを摂取する。
 また、呼気排出流路2にガス流量分配装置43設け、呼気排出流路2中の呼気Eを攪拌放出器22から外部に放出可能なよう構成されている。このガス流量分配装置43及び攪拌放出器22は、本システムの使用開始時において供給対象Hの肺に残留していた窒素等を排出して、流路中の水素ガス濃度を高めるために用いられる。さらに、この攪拌放出器22の周辺には、水素混合ガスを熱分解する44を設けても良い。
 加えて、水素ガス供給流路1には、水素ガスの湿度、温度、圧力及び流量を監視するセンサー18や、水素ガスの供給量を調節可能なコントロールポンプCPを設けても良い。
 さらに空気供給流路3に、空気Aの温度・湿度・流量・圧力・水素ガス濃度・酸素ガス濃度・二酸化炭素ガス濃度を監視するセンサー34を設けても良い。これらのセンサー18、34で取得された情報を基に、水素ガス供給流路1から供給する水素ガスの供給量や42の酸素量、攪拌放出器22での呼気の排出量等を決定することができる。
 本実施形態によれば、呼気排出流路2の下流が空気供給流路3の上流に接続され、循環経路を形成することにより、水素ガスの消費量を削減することができる。すなわち、呼気に含まれる水素ガスを、再び供給対象Hに供給することにより、水素ガスの使用量を削減することができる。尚、呼気排出流路2及び空気供給流路3が形成する循環流路では、この流路内に親水性のコーティングがされていることが望ましい。このように循環流路内に親水性のコーティングを施すことにより、混合ガス流路内に水分の膜が形成され、静電気の発生を防ぐことができる。
<実施形態4>
 以下、本発明の実施形態4に係る湿式高濃度水素混合ガス呼吸システムについて、図4を参照して詳細に説明する。この実施形態4に係る湿式高濃度水素混合ガス呼吸システムは、先の実施形態3に係る湿式高濃度水素混合ガス呼吸システムの、水素ガス供給流路1と空気供給流路3とを一本化した水素混合ガス供給流路5(ガス供給流路の一例)を備えることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態4に係る湿式高濃度水素混合ガス呼吸システムは、図4に示すように、人等の供給対象Hに加湿水素混合ガスを供給する加湿水素混合ガス供給流路5(ガス供給流路の一例)と、呼吸器から出る呼気Eを排出する呼気排出流路2と、を備えている。
 水素混合ガス供給流路5は、水素ガス及び酸素ガスを供給可能な供給ライン51と、水素混合ガスの温度及び湿度を調節する加温加湿器52と、外気を供給するフィルター53と、顔面に加湿水素混合ガスを供給する密閉型面マスク54と、を有している。
 密閉型面マスク54には、デトネーションフレームアレスター55等の消炎手段と、衝撃圧を緩和するリザーバー56等の衝撃圧緩衝手段と、が設けられている。なお、密閉型面マスク54のかわりに、鼻と口を覆うように形成した密閉型鼻口マスク17bを用いても良い。
 デトネーションフレームアレスター55は、仮に、水素ガス供給流路1や呼気排出流路2、空気供給流路3において爆発や爆轟が発生した際にも、火炎が呼吸器に入らないように構成されている。また、このデトネーションフレームアレスター55は電気加熱による温度制御がなされて飽和水蒸気の通過時に結露が生じさせない様に構成しても良い。
 リザーバー56は、爆轟時に発生する衝撃圧が呼吸器に到達しないように設けられている。
 本実施形態によれば、水素ガス供給流路1と空気供給流路3とを一本化した水素混合ガス供給流路5を備えることにより、流路中に設ける加温加湿器を一つにすることができる。そのため、システムの構成を簡素化して、製造費用等を削減することができる。
<実施形態5>
 以下、本発明の実施形態5に係る湿式高濃度水素混合ガス呼吸システムについて、図5を参照して詳細に説明する。この実施形態5に係る湿式高濃度水素混合ガス呼吸システムは、先の実施形態3に係る湿式高濃度水素混合ガス呼吸システムの構成に加えて、水素ガスを燃料に発電する発電ユニット6を有していることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態5に係る湿式高濃度水素混合ガス呼吸システムにおいては、水素ガス発生手段11が電気分解型水素酸素供給装置であり、水を電気分解することにより酸素ガスOと水素ガスHを得ている。そして、酸素ガスOはポンプPにより空気供給流路3に供給され、水素ガスHは水素ガス供給流路1に供給されている。なお、呼気排出流路2は、呼気EのH/O/CO濃度を監視するセンサー27を設け、呼気Eの成分を取得するように構成してもよい。
 発電ユニット6は、水素ガス供給流路1の水素酸素ガス発生手段11aと12加温加湿器の間に設置され、水素ガスHを燃料に発電可能な発電手段61と、この発電手段61で得られた電力を蓄電する蓄電手段62と、を有している。
 本実施形態では、先の実施形態3と同様に、呼気E中に含まれる水素ガスが再び空気供給流路3から供給対象Hに供給される。この空気供給流路3から呼吸器に供給される水素ガス濃度が目標値に達すると、水素ガス供給流路1から供給する水素ガスの必要量が減少する。しかしながら、酸素は供給し続ける必要があるため、余剰に発生した水素ガスを安全に処理する必要がある。
 そこで、水素酸素ガス発生手段11aで発生した水素ガスの余剰分を、ガス流量分配装置43を介して発電手段61に導き発電させることにより、水素ガスを安全に処理しつつ、有効に活用することができる。この発電手段61で得られた電力は、蓄電手段62に送電され、発電時に得られる水は加温加湿器等の水として再利用することができる。
 また、電気分解型水素酸素供給装置の水素ガスの供給量は、最大毎分1000mL程度の能力を有しているため、呼気Eを外部に放出させて運転させた場合でも約20%の吸気水素濃度を保つことができる。この場合であっても、加温加湿器31に酸素ガスが供給されて、空気Aに添加されて酸素富化状態での吸引を行なう事が可能である。また呼気Eの二酸化炭素を二酸化炭素吸収手段22に、吸収させて循環呼吸運転を行なわせることによって、供給対象Hに供給する水素ガス濃度を80%近くに高めることが可能である。
 なお、水素ガス供給流路1の終点には密閉型鼻口マスク17が設けられている。
 密閉型鼻口マスク17は、図6に示すように、デトネーションフレームアレスター55等の消炎手段と、衝撃圧を緩和するリザーバー56等の衝撃圧緩衝手段と、口と鼻の流路を隔てる鼻口隔壁開閉弁57と、を備えても良い。
 この鼻口隔壁開閉弁57には、開閉式のスライド弁(内部開閉式スライドゲート)が設けられており、口と鼻の流路を開閉することで、口呼吸と鼻呼吸とを選択することが可能なよう構成されている。
 すなわち、この密閉型鼻口マスク17は、鼻腔に前記水素ガスを供給する鼻流路と、口腔に空気を供給する口流路と、を有し、前記鼻流路と前記口流路の間には、前記鼻流路と前記口流路を連通及び隔絶可能な開閉弁が設けられている。
 この密閉型鼻口マスク17は手で把握して口鼻部に密着させて使用することが可能であり、手の把握を止めると圧力検知により湿式高濃度水素混合ガス呼吸システムが停止するよう構成してもよい。なお、バンド等で顔面に固定保持することも当然に可能である。
 また、個性の有る顔輪郭の人に対しては、図7に示すように、顔面形状のスキャニング装置7と3Dプリンターによって、その人の輪郭に合った密閉型鼻口マスク17を作成してもよい。
 本実施形態によれば、水素ガスを燃料に発電する発電ユニット6を備えることにより、水素酸素ガス発生手段11aで必要以上に発生した水素ガスを安全に処理して、有効に活用することができる。
<実施形態6>
 以下、本発明の実施形態6に係る湿式高濃度水素混合ガス呼吸システムについて、図8を参照して詳細に説明する。この実施形態6に係る湿式高濃度水素混合ガス呼吸システムは、密閉室8と空調設備9をさらに備えることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態6に係る湿式高濃度水素混合ガス呼吸システムは、図8に示すように、加湿された水素混合ガスを充満可能な密閉室8と、この密閉室8の空調を管理する空調設備9と、を備えている。
 密閉室8は、利用者が密閉室8内に入室するための入出用ゲート81と、密閉室8内を密閉するための内部ゲート82と、密閉室8内の温度・湿度・圧力・H/O/CO濃度等の空調情報を取得するセンサー83と、供給対象Hの呼気E中に含まれる二酸化炭素を吸収する二酸化炭素吸収手段84と、を有している。
 また、この密閉室8は、密閉室8の外部から内部の様子が把握できるよう、透明な断熱の窓が適所に設けられていることが望ましい。加えて、密閉室8の壁や天井、床は、密閉室8内の温度を保てるよう、加熱手段を設けるか断熱保温構造であることが望ましい。
 この密閉室8内の二酸化炭素濃度は二酸化炭素吸収手段84により、一定の数値以内になるよう管理されることが望ましい。
 空調設備9は、エアコンディショナー91と、このエアコンディショナー91を制御する制御ユニット92と、エアコンディショナー91に電力を供給する発電ユニット93と、エアコンディショナー91及び発電ユニット93に水素ガスを供給する水素ガスボンベ94(水素ガス供給手段の一例)と、を有している。
 エアコンディショナー91には、室内機91aと、室外機91bと、熱交換器91cと、が設けられている。このエアコンディショナー91には、利用者に個別に水素ガスを供給する水素ガス供給チューブ1aと、密閉室8内の気体を排出する室内気排出流路2bと、密閉室8内に外気を供給する外気供給流路3cと、が接続されている。
 制御ユニット92は、密閉室8内に設けられたセンサーの情報を受け付けて、利用者の好ましい空調の制御を行う。密閉室8内の水素ガス濃度は、水素ガス供給流路1を通じて供給される水素ガス量で調節を行い、最大で20%を想定している。また、密閉室8内の温度及び湿度は、エアコンディショナー91の機能によって制御され、その際の制御条件は、相対湿度100%・温度37℃であることが望ましい。
 なお、密閉室8内の圧力は常圧を基本とし、密閉室8内の空気は呼気排出流路2と空気供給流路3を適宜作動させることで換気と圧力調整がなされる。加えて、密閉室8の壁面に結露が生じないよう、壁面温度と内部の気流の方向及び強さを、制御ユニット92によって制御することができる。
 発電ユニット93は、水素ガスHを燃料に発電可能な発電手段93aと、この発電手段93aで得られた電気を蓄電する蓄電手段93bと、この発電手段93aから排出される水を貯める水収納部93cと、を有している。
 発電手段93aは、空気-水素燃料電池であり、水素ガスボンベ94から供給される水素ガスHを燃料にして、電力と水を得ることができる。得られた電力は蓄電手段93bに蓄電され、得られた水は水収納部93cに貯められる。この電力はエアコンディショナー91等の湿式高濃度水素混合ガス呼吸システムの電力により動作する各装置に送電されて利用される。水はエアコンディショナー91に送られ、密閉室8内の空気を加湿するために利用される。
 水素ガスボンベ94は、非常用水素ガス排出弁95と、非常用水素ガス排出流路96と、を有し、何らかの災害に被災して危険が迫った場合に、水素ガスを投棄する手段が設けられている。この非常用水素ガス排出弁95と非常用水素ガス排出流路96についても、制御ユニット92により制御がなされている。
 この密閉室8内には複数の供給対象Hが入室可能であり、エアコンディショナー91から延びる水素ガス供給流路1により、供給対象Hに水素ガスが供給される。この水素ガス供給流路1には、図9に示すように複数のポンプPが設けられており、このポンプPに鼻腔注入用ガスチューブGCを接続することにより、ポンプPから加湿水素ガスが供給される。この加湿水素ガスの注入量は、制御ユニット92により過剰に供給されないよう制御されている。
 次に、本実施形態に係る湿式高濃度水素混合ガス呼吸システムのメカニズムと使用方法について説明する。
 先ず、エアコンディショナー91の室内機91aは、2つの機能を有している。1つ目の機能は通常のエアコンディショナーと同等の機能であり、室内の温度や室内の気流等を制御する機能である。2つ目の機能は、付加機能であり、水素ガス供給部、酸素ガス供給部、加湿部、機能性エアロゾル供給部、換気部を有している。この付加機能は、例えば、個別のガス放出口を室内機91aの下半分に横一列に近い配列でされている。
 ここで使用される機器は全て摩擦等で静電気を発生させない安全防爆仕様であることが望ましい。この室内機91aの2つの機能は制御ユニット92によって制御される。水素ガスと酸素ガスの室内への放出は、別々のタイミングで、ガスの連続放出ではなく、パーシャル放出を行なう。例えば、50L加湿水素ガスを室内に放出する場合、1~2Lをパルス状(間欠的に)噴気して、これを25回から50回繰り返す。すなわち、噴気と次の噴気との間にはタイムラグがある。
 密閉室8内に、この加湿水素ガスを噴気放出している間、室内機91aは連動して気流を発生させて、この噴気の加湿水素ガスを室内に分散させることができる。加湿酸素ガスも同様に室内に分散させる。酸素ガス供給部と水素ガス供給部は最も離れた位置に配置されている。水素ガスも酸素ガスも放出前に加湿されており(混合以前に加湿されている)酸素ガスと水素ガスの放出は同時には行なわない。また、水素ガスに適当な臭気(アロマテラピー等)を付け、水素ガスの分散がわかるように構成しても良い。
 機能性エアロゾル供給部と加湿部は、水素ガス及び酸素ガスの室内放出とは、別個に運転される。また、機能性エアロゾル供給部と加湿部は、それぞれ個別の放出口を有しており、それぞれ一定時間の連続運転を行う。室外に水素ガスユニットを有する等、危険性が危惧される箇所には、水素ガスの燃焼検知の紫外線センサーが設備されて、目に見えない水素ガスの燃焼を監視することができる。密閉室8の利用に際して、供給対象Hである患者が入室してから、目標値を設定して運転する事は出来ないので、予め、目標値を決めて、患者が入室する以前に、部屋の状態を作り出し準備する。
 温度、湿度、酸素濃度、水素濃度、エアロゾルの種類と噴霧量等をどのくらいの値に設定するかは、医学的な課題で専門医が決定する。最初に部屋の雰囲気状態を設定する時に便利なのが、後述する容積置換用のエアバッグ85の利用である(実施形態8参照)。このエアバッグシステムは最初の設定時だけでなく、患者が全部退出して、新たな環境設定が求められる場合も利用できる。又、部屋のメンテナンス時にも活用できる。尚、患者の入室には、専用の着衣を着けるのが標準である。入室時間は,医療関係者(専門医等)決定事項であるが、大体60分程度を想定している。部屋には患者の他に医師、看護士等が随時同席して、患者のケアにあたることも想定している。途中で退席したい患者や、病状の急変等では、随時退室が可能である。換気部は、部屋に充満するガス構成を変更する場合や、水素ガス等を噴気する場合等に部屋の圧力を一定に保つよう利用される。
 制御ユニット92は、これらを連動して部屋の雰囲気の状態を制御する為の高性能の制御部を備えていることが望ましい。密閉室8の大きさと容積等のデータは制御部に登録され、又は制御部の距離センサーによって計算され、各要素をどの程度動かすか、を決定する。入室者に関しても熱感知センサー等にて、入室者の人数、推定消費酸素量等が計算されて、酸素ガスの供給量の制御や、二酸化炭素除去装置の運転制御等を決定する。又同二酸化炭素除去装置は吸収剤の色の変化によって、残余の使用可能量が分かるようになっている(ガスセンサーでも把握することが可能。)。
 密閉室8は多人数用だけでなく、1~2用の小型のものを使用することができる。小規模のものは、患者用だけでなく、医療従事者の放射線被爆による(X線検査やCT検査、患者の放射線治療時)その後に生じる、晩期放射線障害の対策にも期待される。この密閉室8は、水素ガス濃度によっては、簡易密閉型のテントを使用することができる。その時の水素ガス濃度は8%程度を想定している。これは、例えば、原発事故等で避難が出来ないで、地区の学校の講堂等に避難した人をガンマー線障害(放射線障害)から可能な限り防護する為に、講堂等の大きな建物の中に簡易密閉型テントを設置して使用する等が可能である。これは車両等に簡易密閉空間を設定して、湿式高濃度水素混合ガス呼吸システムを構築することも可能である(バス、トラック等の改造、又は簡易密閉空間の構築)。この時の推定水素ガス濃度は8%迄である。
 密閉室8は、様々な使用形態が想定されている。内部に設置する水素ガス又は水素混合ガスの水素ガス供給チューブ1aを活かして、室内には水素混合ガスを放出させず、水素ガス又は水素混合ガスの水素ガス供給チューブ1aで患者に高濃度の加湿水素を吸入させ、呼気を室内にそのまま放出する、或は湿式酸素20%湿式水素80%の混合ガスを水素ガス又は水素混合ガスの水素ガス供給チューブ1aから吸引することも可能である。このように多くのレパートリーが想定される。
 本実施形態によれば、加湿された水素混合ガスを充満可能な密閉室8と、この密閉室8の空調を管理する空調設備9と、を備えることにより、加湿環境下でマスク等の着用する必要が無い。そのため、医療用マスクの装着を好まない人や適さない人対しても、煩わしい手間を掛けずに水素ガスを吸引することができる。
 また、本実施形態によれば、複数の供給対象Hが同時に高濃度の水素ガスの吸引を行なうことができる。
<実施形態7>
 以下、本発明の実施形態7に係る湿式高濃度水素混合ガス呼吸システムについて、図10を参照して詳細に説明する。この実施形態7に係る湿式高濃度水素混合ガス呼吸システムは、先の実施形態6に係る湿式高濃度水素混合ガス呼吸システムとは異なり、水素ガス発生手段97を有していることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態7に係る湿式高濃度水素混合ガス呼吸システムの空調設備9は、エアコンディショナー91と、このエアコンディショナー91を制御する制御ユニット92と、エアコンディショナー91に水素ガスを供給する水素ガス発生手段97と、この湿式高濃度水素混合ガス呼吸システムに電力を供給する電力供給手段98と、を有している。
 水素ガス発生手段97は、電力で水を電気分解することにより水素ガスと酸素ガスを得る可逆型燃料電池97aと、この可逆型燃料電池97aに供給する電力を貯めておく蓄電手段97bと、可逆型燃料電池97aに供給する水を貯めておく水タンク97cと、を有している。図9においては、水素ガス発生手段97は、密閉室8の外に配置されている様子を示しているが、密閉室8内に配置しても良い。
 本発明の実施形態7に係る湿式高濃度水素混合ガス呼吸システムは外部電力を利用するタイプであり、電力供給手段98から供給される電力を用い、可逆型燃料電池97aによって水を電気分解することによって水素ガスと酸素ガスを得る。一方で、余剰の水素ガスが生じた場合にせ、水素ガスを空気中の酸素と反応させて発電して水を得ることも可能である。生じた電力と水は蓄電池で利用され、水は水タンク97cに送られ再利用される。
<実施形態8>
 以下、本発明の実施形態8に係る湿式高濃度水素混合ガス呼吸システムについて、図11を参照して詳細に説明する。この実施形態8に係る湿式高濃度水素混合ガス呼吸システムは、先の実施形態6に係る湿式高濃度水素混合ガス呼吸システムの構成に加えて、ガス置換用エアバッグ85を備えることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態8に係る湿式高濃度水素混合ガス呼吸システムの密閉室8は、ガス置換用エアバッグ85を有している。ガス置換用エアバッグ85は、静電気の発生しない材料により形成され、空気ライン85aから外部の空気を導入・排出することにより膨張及び収縮させることができる。また、密閉室8内には、ガス置換用エアバッグ85の収納部85bが設けられ、収縮状態のガス置換用エアバッグ85を収納することがよう構成されている。なお、本実施形態のエアコンディショナー91は、水素ガスがガスボンベ94から、電力が電力供給手段98から、水が水収納部99から、それぞれ供給されている。
 このガス置換用エアバッグ85は、密閉室8内のガスの入換えを行う際に用いられる。まず、空気を注入してガス置換用エアバッグ85の体積を拡張させることにより、密閉室8内に存在する空気は、呼気排出流路2を通って密閉室8外に排出される。この時、密閉室8内部の圧力変動は殆ど無い。次に、拡張させたガス置換用エアバッグ85の内部の空気をポンプで排出し、この排出速度と同様の速度で、エアコンディショナー91から加湿水素混合ガスを密閉室8内に供給する。この間も密閉室8内の圧力変動は殆ど生じない。この一連の操作は制御ユニット92によって制御される。
 本実施形態によれば、ガス置換用エアバッグ85を備えることにより、密閉室8内に充満する気体(ガス)を効率的に換気することができる。このガス置換用エアバッグ85を用いずに換気する場合には、密閉室8内に充満する古い気体を排出しながら新しい気体を導入する必要があり、古い気体と新しい気体が混ざり合ってしまうため、水素ガス濃度を高めることが難しかった。しかしながら、ガス置換用エアバッグ85を用いることにより、古い気体を排出した後に、新しい気体のみを導入することができるため、最小限の水素ガス使用量で密閉室8内を水素ガス濃度の高い空気で満たすことができる。
<実施形態9>
 以下、本発明の実施形態9に係る湿式高濃度水素混合ガス呼吸システムについて、図12を参照して詳細に説明する。この実施形態9に係る湿式高濃度水素混合ガス呼吸システムにおいては、密閉室8が耐圧容器86を備えることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態9に係る湿式高濃度水素混合ガス呼吸システムは、密閉室8として耐圧容器86を採用いている。図12に示すように、供給対象Hが耐圧容器86内に入り、水素ガス・酸素ガス・空気等を加圧して導入することにより、利用者に水素ガス及び酸素ガスを高圧環境下で供給することができる。
 まず、水素混合ガスを加圧することによって、爆発限界の範囲が大きく変動することがないと推測できる。
 非特許文献5に掲載された図19には、水素-空気系爆発限界の範囲が示されている。この図19によれば、水素-空気系ガスを加圧した場合であっても、爆発限界の範囲は大幅に変化していないことが分かる。
 非特許文献5に掲載された図20には、水素-酸素系爆発限界の範囲が示されている。この図20によれば、水素-酸素系ガスを加圧した場合であっても、爆発限界の範囲は大幅に変化していないことが分かる。
 非特許文献5に掲載された図21には、水素-空気系及び水素-酸素系の爆発限界の範囲が示されている。この図21によれば、水素-空気系と水素-酸素系で爆発限界の範囲の傾向は変わらないことが分かる。
 さらに、非特許文献6に掲載された図26には、水素-空気混合気の爆発限界に及ぼす圧力の影響が示されている。この図26によれば、水素-空気系混合気を高圧環境下(1~220atm)においた場合でも、爆発限界の範囲が大きく変動することはないことがわかる。
 以上の図19乃至図21及び図26によれば、水素混合ガスを加圧した場合でも、爆発限界の範囲が大きく変動することはないと判断した。
 次に、水素ガスの摂取手段と血中溶存量の簡易計算推定値についてまとめたものを表8に示す。この表8は、本発明者が前回出願した特許文献1の表2の内容に加えて、加圧時の水素ガスの血中溶存量を計算により推定したものである。なお、計算方法は特許文献1で示した式(特許文献1の図10等参照)を採用している。
Figure JPOXMLDOC01-appb-T000008
 この表8に示したように、水素混合ガスを加圧して供給対象に供給することにより血中溶存量が増加ものと推定している。
 この湿式高濃度水素混合ガス呼吸システムの適用先としては、がん治療が想定されている。まず、人体には体重60kgで平均4g程度の鉄イオンが存在しており、癌細胞には鉄が特異的に多い。そのため、人体を高圧酸素環境下に置き活性酸素を発生しやすい状況にする事で、癌細胞中の鉄イオンに活性酸素を発生させ(フェントン反応)フェロトーシス(Ferroptosis)を誘導することにより、がん治療を試みることができる。この時、通常細胞も別に発生する活性酸素の攻撃を受けるため、それを防御するために水素ガスを適量添加している。各パラメータは動物実験や治験を通じて決められる。
 この耐圧容器86を用いた加圧治療室(高気圧酸素水素治療装置)については、医療器具装置として、関連規格のJIS T 7321及び「高気圧酸素治療の安全基準」の基準に準じたものが使用される。この基準としては、利用圧力と利用時間が決められており、一人用の第1種装置(図12)と複数人数用の第2種装置がある。第1種装置の基準は、常用治療圧力が2ATA(いかなる場合も2.8ATA以内)であり、治療時間60分である。第2種装置の基準は、治療圧力が2ATA以上3ATA以下であり、いかなる場合も3ATAを超えず、治療時間は60分以上90分以内である。
 この高気圧酸素水素治療装置で用いる治療ガスの成分比率は専門医の専権事項である。又、呼吸方式は、高気圧酸素水素治療装置の中で、マスク等を着用して、マスク等を通じて高気圧酸素水素ガスを呼吸する方法があるが、容器内は高気圧空気で満たし呼吸しても良い。
<実施形態10>
 以下、本発明の実施形態10に係る湿式高濃度水素混合ガス呼吸システムについて、図13を参照して詳細に説明する。この実施形態10に係る湿式高濃度水素混合ガス呼吸システムは、マイクロ・ナノバブル発生装置10をさらに備えることを特徴とする。なお、同実施形態において、先の実施形態と基本的に同一の構成要素については、同一の符号を付してその説明を簡略化する。
 本発明の実施形態10に係る湿式高濃度水素混合ガス呼吸システムは、機能性エアロゾルの供給手段としてマイクロ・ナノバブル発生装置10をさらに備えている。このマイクロ・ナノバブル発生装置10は、液体Wを入れる容器本体10aと、電源PWに接続されたマイクロバブル発生手段10bと、電源PWに接続された加熱手段10cと、ガス供給路10dと、ガス排出路10eと、を備えている。
 マイクロ・ナノバブル発生装置10は、バブル式の加温加湿器内部に設けても良い。このマイクロ・ナノバブル発生装置10は、液中にナノバブルを大量に発生させて、呼吸に使う水素ガス、酸素ガス、空気等と共に、ナノバブル入りの水蒸気を捕集する。図28は多孔質電極ユニットを用いたもので、酸素と水素のナノバブルを発生させる。この他、マイクロ・ナノバブルの発生手段は幾らかあるが、コンパクトに装備できるものを選択しなくてはならない。日本の東レも微細構造膜を用い、水中に配した該膜にガスを注入して発生させるものを作り出している。図28のガスの液中の上昇速度等は、図15と図16のデータを参考にしてシステムの概略設計をする。又図28の水又は湯は機能水と呼ばれる状態になっており、通常その酸化還元電位はマイナス50mVからマイナス200mVの状態になっている。又機能性エアロゾルは表面張力の小さい、人の呼吸器に負担の少ないものである。
 本実施形態によれば、機能性エアロゾルの供給手段として、高電圧を用いずに生成可能なマイクロバブル・ナノバブルの生成装置を用いている。このマイクロバブル・ナノバブルの生成装置は、加温加湿器内に設置して使用する。又は、別途マイクロバブル・ナノバブル含有の水又は湯を生成してネブライザー等にて使用する。これにより高濃度水素混合ガスの吸引と同時に機能性エアロゾルも吸引可能なシステムを構築することができる。
 高濃度の水素混合ガスを、加温加湿器等を用いて爆轟状態の発生しない温度・湿度に調整することにより、呼吸器気道粘膜を保護する粘液を正常に保つことができる。また、呼吸マスクにデトネーションフレームアレスターと衝撃圧緩衝部分を設け、複合的安全システムを構築した。また、鼻腔と口腔に別々にガスを送り込む、密閉型マスクを開発して、鼻腔に水素ガスを注入可能とした。また、部屋全体を治療室として呼吸マスクの着用なしに加湿高濃度水素混合ガスの吸引も可能とし、システムとしての適応性が広く拡大した。特に加湿水素ガス鼻腔注入方式は、急性期の脳梗塞の治療から認知症の治療に至るまで、脳神経疾患の治療に極めて有望である。これにより具体的に未踏分野に足を踏み入れる事が可能となり、本来の水素ガスが持つ様々な医学的効果、効用に関して、広範な実験、治験、実用が行なわれる。更に部屋全体を治療室として加湿高濃度水素混合ガスを安全に充満させる方法は、核シェルターから原子力発電所周辺の避難施設、車両、船舶、航空機、病院の治療室と広範に適用可能である。更に高気圧酸素水素治療装置への適応は、フェロトーシス(Ferroptosis)の誘導によるがん治療の道を切り開く一つの手段に成り得る。又、人工呼吸器或は人工心肺システムに適応され、治療効果の向上が期待される。
 1 水素ガス供給流路
 11 水素ガス発生手段
 11a 水素酸素ガス発生手段(水電気分解装置)
 12 加温加湿器
 13 密閉型鼻マスク
 14 ネブライザー
 15 ウォータートラップ
 16 密閉型目鼻マスク
 17 密閉型鼻口マスク(口鼻隔壁有り) 
 17b 密閉型鼻口マスク(口鼻隔壁なし)
 2 呼気排出流路
 2b 室内気排出流路
 21 加湿器
 22 攪拌放出器
 23 密閉型口マスク
 3 空気供給流路
 3c 外気供給流路
 31 加温加湿器
 32 ネブライザー
 33 密閉型口マスク
 33a 密閉型鼻口マスク
 41 二酸化炭素濃度低下手段
 42 酸素供給手段
 43 ガス流量分配装置
 44 熱分解装置
 5 水素混合ガス供給流路
 51 供給ライン
 52 加温加湿器(機能性エアロゾル発生機能付与)
 53 フィルター
 54 面マスク
 55 デトネーションフレームアレスター
 56 リザーバー
 57 鼻口隔壁開閉弁
 6 発電ユニット
 61 発電手段(空気水素型燃料電池)
 62 蓄電手段
 7 スキャニング装置
 8 密閉室
 81 入出用ゲート
 82 内部ゲート
 83 センサー
 84 二酸化炭素吸収手段
 85 ガス置換用エアバッグ
 86 耐圧容器
 9 空調設備
 91 エアコンディショナー
 92 制御ユニット
 93 発電ユニット
 94 水素ガスボンベ
 95 非常用水素ガス排出弁
 96 非常用水素ガス排出流路
 97 水素ガス発生手段
 98 電力供給手段
 99 水収納部
 10 マイクロ・ナノバブル発生装置
 H 供給対象
 GC 鼻腔注入用ガスチューブ
 P ポンプ

 

Claims (17)

  1.  人や動物等の供給対象に少なくとも水素を含むガスを供給するガス供給流路を備え、
     前記ガス供給流路は、
     前記ガスを供給するガス供給手段と、
     前記ガスの温度及び湿度を調整する温度湿度調整手段と、
     前記供給対象に前記ガスを供給するガス給気部と、を有し、
     前記ガスに含まれる水素は、4.0%(Vol%)を超える濃度で前記供給対象に供給されることを特徴とする、湿式高濃度水素混合ガス呼吸システム。
  2.  前記ガスの相対湿度は、60~100%の範囲であり、
     前記ガスの温度は、20~40度の範囲であることを特徴とする、
    請求項1の湿式高濃度水素混合ガス呼吸システム。
  3.  前記ガスの適応環境圧力は、3気圧以下に設定されていることを特徴とする請求項1又は請求項2に記載の湿式高濃度水素混合ガス呼吸システム。
  4.  前記ガス給気部は、前記供給対象の鼻腔に独占的に前記ガスを供給する鼻給気部であることを特徴とする、請求項1~3の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  5.  前記ガス給気部は、前記供給対象の眼球と鼻腔に前記ガスを供給する目鼻給気部であることを特徴とする、請求項1~3の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  6.  前記ガス給気部は、前記供給対象の鼻腔と口腔にガスを供給する鼻口給気部であり、
     この鼻口給気部は、
     前記鼻腔に前記ガスを供給する鼻流路と、
     前記口腔に呼吸用の空気等を供給する口流路と、を有し、
     前記鼻流路と前記口流路の間には、前記鼻流路と前記口流路を連通及び隔絶可能な開閉弁が設けられていることを特徴とする、請求項1~3の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  7.  前記ガス給気部は、
     防爆火炎遮断用のデトネーションフレームアレスター又はフレームアレスターと、
     衝撃圧緩衝手段と、を有することを特徴とする、請求項4~6の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  8.  前記供給対象の呼気を排出する呼気排出流路をさらに備え、
     前記呼気排出流路は、
     前記供給対象から前記呼気を受容する呼気受容手段と、
     前記呼気中の水素ガス濃度を低下させる水素濃度低下手段と、
     を有していることを特徴とする、請求項1~7の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  9.  前記供給対象に酸素及び/又は空気を供給する空気供給流路をさらに備え、
     前記空気供給流路は、
     前記酸素及び/又は空気を供給する空気供給手段と、
     前記酸素及び/又は空気の湿度を調整する湿度調整手段と、
     前記供給対象に前記酸素及び/又は空気を供給する空気給気部と、
     を有していることを特徴とする、請求項8に記載の湿式高濃度水素混合ガス呼吸システム。
  10.  前記呼気排出流路の下流側が、前記空気供給流路の上流側に接続され、
     前記呼気排出流路と前記空気供給流路の間には、前記呼気の二酸化炭素濃度を低下させる二酸化炭素濃度低下手段が設けられており、
     前記空気供給流路の上流には、酸素供給手段が設けられていることを特徴とする、請求項9に記載の湿式高濃度水素混合ガス呼吸システム。
  11.  前記ガス供給手段及び前記空気供給手段は電気分解型水素酸素供給装置であり、
     前記電気分解型水素酸素供給装置は、
     前記ガス供給流路に水素を供給し、
     前記空気供給流路に酸素を供給していることを特徴とする、請求項9または請求項10に記載の湿式高濃度水素混合ガス呼吸システム。
  12.  前記電気分解型水素酸素供給装置で生じる余剰水素ガスを燃料に発電する燃料電池ユニットをさらに備えることを特徴とする、請求項11に記載の湿式高濃度水素混合ガス呼吸システム。
  13.  前記供給対象が入室可能な密閉室と、この密閉室に設けられ密閉室内の温度及び湿度及び室内気流を制御し空調管理を行う安全防爆型の空調設備と、密閉室内に水素ガス及び酸素ガス及び加湿を行なう安全防爆型の付加手段と、をさらに備え、
     前記付加手段は室内の換気手段として室内の気体を排出する室内気排出流路と外気を室内に供給する外気供給流路を有し、前記空調設備と前記付加手段を運転させて、前記密閉室内に加湿水素混合ガスを充満させることによって、人や動物等の供給対象に加湿水素混合ガスを呼吸させることを特徴とする、請求項1~2の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  14.  前記密閉室内で供給対象に個別に加湿水素ガスを供給する供給流路を有し、前記供給流路を通じて、供給対象の鼻腔に前記加湿水素ガスを供給する鼻給気部を供え、前記密閉室内において供給対象が個別に鼻給気部を通じて加湿水素ガスの鼻腔注入が可能なことを特徴とする、請求項13に記載の湿式高濃度水素混合ガス呼吸システム。
  15.  前記密閉室の内部に加圧加湿空気の注入で、最大限密閉室の容積近く迄、膨張可能な帯電防止加工をされたエアバッグが設けられ、エアバッグ内部の加湿空気の排出で収納状態迄コンパクトに収縮可能となり、前記エアバッグを拡張及び収縮させるタイミングに連動させて、前記付加手段を運転させ、前記密閉室内に充満するガスの少なくとも大部分を一度に換気することが可能なことを特徴とする、請求項13又は請求項14に記載の湿式高濃度水素混合ガス呼吸システム。
  16.  前記密閉室内の相対湿度は、60~100%の範囲であり、
     前記密閉室内の温度は、少なくとも20~40度の範囲であることを特徴とする、請求項13~15の何れかに記載の湿式高濃度水素混合ガス呼吸システム。
  17.  前記温度湿度調整手段には、マイクロ・ナノバブル供給手段が設けられていることを特徴とする、請求項1~16の何れかに記載の湿式高濃度水素混合ガス呼吸システム。

     
PCT/JP2016/056317 2016-03-01 2016-03-01 湿式高濃度水素混合ガス呼吸システム WO2017149684A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016530025A JP6029044B1 (ja) 2016-03-01 2016-03-01 湿式高濃度水素混合ガス呼吸システム
PCT/JP2016/056317 WO2017149684A1 (ja) 2016-03-01 2016-03-01 湿式高濃度水素混合ガス呼吸システム
TW106106661A TWI648074B (zh) 2016-03-01 2017-03-01 Wet high concentration hydrogen mixed gas respiratory system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056317 WO2017149684A1 (ja) 2016-03-01 2016-03-01 湿式高濃度水素混合ガス呼吸システム

Publications (1)

Publication Number Publication Date
WO2017149684A1 true WO2017149684A1 (ja) 2017-09-08

Family

ID=57358723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056317 WO2017149684A1 (ja) 2016-03-01 2016-03-01 湿式高濃度水素混合ガス呼吸システム

Country Status (3)

Country Link
JP (1) JP6029044B1 (ja)
TW (1) TWI648074B (ja)
WO (1) WO2017149684A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109394455A (zh) * 2018-12-10 2019-03-01 云南德林海医疗投资有限公司 氢氧舱
CN109731202A (zh) * 2019-02-02 2019-05-10 张建国 可对排出氢气进行回流的电解水制氢制氧呼吸装置
CN110742759A (zh) * 2019-09-30 2020-02-04 深圳市量子氢生物技术有限公司 氢气理疗舱
CN111717889A (zh) * 2020-06-29 2020-09-29 武汉宝盈普济科技有限公司 便携式制氢装置及使用便携式制氢装置生成氢气的方法
CN112336953A (zh) * 2019-08-06 2021-02-09 林信涌 正压呼吸设备
CN112370238A (zh) * 2020-11-30 2021-02-19 杭州粟源科技有限公司 近视防控眼罩及其氢护仪
WO2021234435A1 (en) * 2020-05-21 2021-11-25 Cid S.P.A. Treatment of lung diseases
JP7057553B1 (ja) * 2020-12-16 2022-04-20 有子 三輪 酸化還元電位測定システム,酸化還元電位制御システム、環境管理システム、エアコンディショナー、空気清浄機、酸化還元電位測定方法、酸化還元電位制御方法、環境管理方法、エアコンディショニング方法、および空気清浄方法
WO2022172942A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 放出装置
WO2022172924A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 放出装置
WO2022201370A1 (ja) * 2021-03-24 2022-09-29 MiZ株式会社 ガス供給装置及びガス供給方法
CN116077789A (zh) * 2023-04-07 2023-05-09 深圳尤尼智康医疗科技有限公司 一种兼有吸氢或氧及鼻脑途径给药的脑疾病综合干预系统
CN117784863A (zh) * 2024-02-27 2024-03-29 中山清匠电器科技有限公司 一种用于制氧机的环境检测及运行状态调整系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105133A1 (ja) * 2016-12-08 2018-06-14 杉山 修 水素流体閉サイクル装置
CN106591872B (zh) * 2017-01-25 2024-07-26 中国人民解放军第二军医大学 氢氧混合气体制备装置及方法
CN108096676B (zh) * 2018-01-31 2023-09-29 重庆医科大学 一种气囊管理型呼吸机
TWI683631B (zh) * 2019-06-18 2020-02-01 林明賢 氫氧氣呼吸罩
TWI703995B (zh) * 2019-07-19 2020-09-11 台灣基督長老教會馬偕醫療財團法人馬偕紀念醫院 可攜式呼吸器及提供振盪氣流的方法
CN115083092B (zh) * 2022-07-07 2023-08-29 浙江中辰城市应急服务管理有限公司 一种环境自适应的火灾警示终端
KR102617793B1 (ko) 2022-12-27 2023-12-27 주식회사 휴라이트 수소 발생 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013269A (ja) * 2001-07-03 2003-01-15 Norio Kihara 酸素供給装置および酸素供給方法
WO2008013163A1 (fr) * 2006-07-25 2008-01-31 Wataru Murota Système d'alimentation en hydrogène, et structure de construction et structure de capsule dotées de celui-ci
WO2013183448A1 (ja) * 2012-06-04 2013-12-12 ミズ株式会社 生体用高濃度水素ガス供給装置
WO2015029838A1 (ja) * 2013-09-01 2015-03-05 Kawamura Takao 高濃度水素混合ガス呼吸システム
JP2016000081A (ja) * 2014-06-11 2016-01-07 日本光電工業株式会社 水素治療装置及び水素治療方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2864689T3 (es) * 2002-09-17 2021-10-14 Fisher & Paykel Healthcare Ltd Aparato para el suministro de gases humidificados
US9802022B2 (en) * 2008-03-06 2017-10-31 Resmed Limited Humidification of respiratory gases
US9393379B2 (en) * 2010-04-27 2016-07-19 Fisher & Paykel Healthcare Limited Water out alarm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013269A (ja) * 2001-07-03 2003-01-15 Norio Kihara 酸素供給装置および酸素供給方法
WO2008013163A1 (fr) * 2006-07-25 2008-01-31 Wataru Murota Système d'alimentation en hydrogène, et structure de construction et structure de capsule dotées de celui-ci
WO2013183448A1 (ja) * 2012-06-04 2013-12-12 ミズ株式会社 生体用高濃度水素ガス供給装置
WO2015029838A1 (ja) * 2013-09-01 2015-03-05 Kawamura Takao 高濃度水素混合ガス呼吸システム
JP2016000081A (ja) * 2014-06-11 2016-01-07 日本光電工業株式会社 水素治療装置及び水素治療方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109394455A (zh) * 2018-12-10 2019-03-01 云南德林海医疗投资有限公司 氢氧舱
CN109731202A (zh) * 2019-02-02 2019-05-10 张建国 可对排出氢气进行回流的电解水制氢制氧呼吸装置
CN112336953A (zh) * 2019-08-06 2021-02-09 林信涌 正压呼吸设备
JP2022542981A (ja) * 2019-08-06 2022-10-07 リン,シン-ユン 陽圧呼吸装置
CN110742759A (zh) * 2019-09-30 2020-02-04 深圳市量子氢生物技术有限公司 氢气理疗舱
WO2021234435A1 (en) * 2020-05-21 2021-11-25 Cid S.P.A. Treatment of lung diseases
CN111717889A (zh) * 2020-06-29 2020-09-29 武汉宝盈普济科技有限公司 便携式制氢装置及使用便携式制氢装置生成氢气的方法
CN112370238A (zh) * 2020-11-30 2021-02-19 杭州粟源科技有限公司 近视防控眼罩及其氢护仪
JP7057553B1 (ja) * 2020-12-16 2022-04-20 有子 三輪 酸化還元電位測定システム,酸化還元電位制御システム、環境管理システム、エアコンディショナー、空気清浄機、酸化還元電位測定方法、酸化還元電位制御方法、環境管理方法、エアコンディショニング方法、および空気清浄方法
WO2022130532A1 (ja) * 2020-12-16 2022-06-23 有子 三輪 酸化還元電位測定システム,酸化還元電位制御システム、環境管理システム、エアコンディショナー、空気清浄機、酸化還元電位測定方法、酸化還元電位制御方法、環境管理方法、エアコンディショニング方法、および空気清浄方法
WO2022172924A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 放出装置
JP2022123860A (ja) * 2021-02-12 2022-08-24 ダイキン工業株式会社 放出装置
JP2022123277A (ja) * 2021-02-12 2022-08-24 ダイキン工業株式会社 放出装置
WO2022172942A1 (ja) * 2021-02-12 2022-08-18 ダイキン工業株式会社 放出装置
JP7208546B2 (ja) 2021-02-12 2023-01-19 ダイキン工業株式会社 放出装置
JP7227545B2 (ja) 2021-02-12 2023-02-22 ダイキン工業株式会社 放出装置
WO2022201370A1 (ja) * 2021-03-24 2022-09-29 MiZ株式会社 ガス供給装置及びガス供給方法
JP7195028B1 (ja) * 2021-03-24 2022-12-23 MiZ株式会社 人工呼吸器
US20240009419A1 (en) * 2021-03-24 2024-01-11 Miz Company Limited Gas supply apparatus and gas supply method
CN116077789A (zh) * 2023-04-07 2023-05-09 深圳尤尼智康医疗科技有限公司 一种兼有吸氢或氧及鼻脑途径给药的脑疾病综合干预系统
CN117784863A (zh) * 2024-02-27 2024-03-29 中山清匠电器科技有限公司 一种用于制氧机的环境检测及运行状态调整系统
CN117784863B (zh) * 2024-02-27 2024-05-17 中山清匠电器科技有限公司 一种用于制氧机的环境检测及运行状态调整系统

Also Published As

Publication number Publication date
JPWO2017149684A1 (ja) 2018-03-08
JP6029044B1 (ja) 2016-11-24
TWI648074B (zh) 2019-01-21
TW201735965A (zh) 2017-10-16

Similar Documents

Publication Publication Date Title
JP6029044B1 (ja) 湿式高濃度水素混合ガス呼吸システム
JP5612743B1 (ja) 高濃度水素混合ガス呼吸システム
WO2021147258A1 (zh) 智能穿戴装备及其使用方法
TWM492749U (zh) 防爆式保健氣體產生器
JP6976291B2 (ja) ガス発生器
JP2016019747A (ja) 緊急呼吸装置
ES2651342T3 (es) Dispositivo y procedimiento de administración de un agente terapéutico
CN109864865B (zh) 一种能充入氢气的增压舱结构
EP2890462A1 (en) Valve arrangement and a rebreathing system comprising said valve arrangement
CN111053981A (zh) 一种自生氧式呼吸器
SE542751C2 (en) Portable rebreathing system with staged addition of oxygen enrichment
KR20080002753U (ko) 복실형 고압산소요법챔버
CN109045426A (zh) 用于雾化治疗的雾化吸入器以及医疗装置
CN112336953A (zh) 正压呼吸设备
US20170106161A1 (en) Breathing mask and gas providing device
JP2017046929A (ja) 水素含有ガス吸入装置及び水素含有ガス吸入装置の動作方法
KR100794801B1 (ko) 휴대용 산소호흡기
KR200431561Y1 (ko) 산소호흡기용 후드
KR20100090473A (ko) 긴급 피난용 마스크의 산소발생장치
CN214129816U (zh) 一种生物医学器械
KR20080002825U (ko) 단실형 고압산소요법챔버
CN211962829U (zh) 一种自生氧式呼吸器
CN211272971U (zh) 一种果味麻醉加湿过滤呼吸废气装置
CN215938820U (zh) 一种化学氧消防自救呼吸器
JP7466584B2 (ja) 水素酸素混合ガス吸入装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016530025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892528

Country of ref document: EP

Kind code of ref document: A1