WO2017149658A1 - 超音波測定装置及び超音波測定方法 - Google Patents

超音波測定装置及び超音波測定方法 Download PDF

Info

Publication number
WO2017149658A1
WO2017149658A1 PCT/JP2016/056262 JP2016056262W WO2017149658A1 WO 2017149658 A1 WO2017149658 A1 WO 2017149658A1 JP 2016056262 W JP2016056262 W JP 2016056262W WO 2017149658 A1 WO2017149658 A1 WO 2017149658A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
mode
ultrasonic measurement
waveform
waveform portion
Prior art date
Application number
PCT/JP2016/056262
Other languages
English (en)
French (fr)
Inventor
友則 木村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016545949A priority Critical patent/JP6109431B1/ja
Priority to PCT/JP2016/056262 priority patent/WO2017149658A1/ja
Priority to US16/079,964 priority patent/US11193912B2/en
Priority to EP17759517.0A priority patent/EP3407060B1/en
Priority to PCT/JP2017/003394 priority patent/WO2017150046A1/ja
Publication of WO2017149658A1 publication Critical patent/WO2017149658A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to an ultrasonic measurement technique for nondestructively measuring the property or state (hereinafter also referred to as “property”) of a specimen using ultrasonic waves, and in particular, the ultrasonic wave is a plate wave having a plurality of propagation modes.
  • the present invention relates to an ultrasonic measurement technique for nondestructively inspecting the properties of a test body having a structure that propagates as.
  • a method called a percussion method for diagnosing the internal properties of such a specimen.
  • the hitting method is to determine the internal properties of a test piece by listening to a hitting sound generated when a human strikes the test piece with a hammer, for example.
  • the sound hitting method depends on the human hearing ability and judgment ability, the judgment accuracy is limited. Therefore, in order to non-destructively examine the internal properties of a specimen having a multilayer structure, an ultrasonic wave called a plate wave that propagates along the longitudinal direction of the specimen may be used.
  • Patent Document 1 International Publication No. 2014/030615 discloses an interface inspection method for inspecting an interface state of a composite structure using ultrasonic waves including a plate wave propagating through the composite structure. Yes.
  • the amplitude in the frequency band is obtained by performing frequency analysis such as FFT (Fast Fourier Transform) or signal processing using a bandpass filter on the received signal waveform of the ultrasonic wave that has propagated through the composite structure. get.
  • the state of the interface of a composite structure is determined by determining whether the said amplitude is less than a threshold value.
  • a lamb wave which is a kind of plate wave, has a plurality of propagation modes including a 0th-order, first-order, second-order,... Symmetric mode and a 0th-order, first-order, second-order,.
  • the state of the interface is determined by determining whether the amplitude in the frequency band is less than a threshold value.
  • frequency components of a plurality of propagation modes are mixed in the amplitude, there is a problem that it is difficult to determine with high accuracy.
  • an object of the present invention is to provide an ultrasonic measurement apparatus and an ultrasonic measurement method capable of determining the properties of a specimen with high accuracy in consideration of a plurality of ultrasonic propagation modes.
  • An ultrasonic measurement apparatus includes a pair of boundary surfaces extending in a longitudinal direction of the ultrasonic measurement device, and the ultrasonic waves incident between the pair of boundary surfaces are used as plate waves of a plurality of propagation modes.
  • An ultrasonic measurement apparatus for determining the properties of a specimen to be propagated along a boundary surface of the received signal, the received signal indicating the time domain waveform of the detection signal received by detecting the plate wave And detecting the signal intensity of the first waveform portion corresponding to the first propagation mode that is one of the plurality of propagation modes of the time domain waveform, based on the received signal, An intensity detector that detects a signal intensity of a second waveform portion corresponding to a second propagation mode that is another one of the plurality of propagation modes in the time domain waveform; The signal strength and the second waveform portion. Comparing the said signal strength to each other, characterized by comprising a determination unit for determining characteristics of the test body based on the comparison result.
  • An ultrasonic measurement method includes a pair of boundary surfaces extending in a longitudinal direction of the ultrasonic measurement method, and the ultrasonic waves incident between the pair of boundary surfaces are used as plate waves of a plurality of propagation modes.
  • An ultrasonic measurement method executed in an ultrasonic measurement apparatus for determining the properties of a specimen to be propagated along a pair of boundary surfaces wherein a detection signal obtained by detecting the plate wave is received and detected Outputting a received signal indicating a time domain waveform of a signal; and a first waveform portion corresponding to a first propagation mode which is one of the plurality of propagation modes of the time domain waveform based on the received signal And detecting the signal strength of the second waveform portion corresponding to the second propagation mode which is another one of the plurality of propagation modes of the time domain waveform based on the received signal. Step to detect And comparing the signal strength of the first waveform portion and the signal strength of the second waveform portion with each other, and determining the properties of the specimen based on the comparison result.
  • the signal strength of the first waveform portion corresponding to the first propagation mode and the signal strength of the second waveform portion corresponding to the second propagation mode are compared with each other. Based on this, the properties of the specimen are determined. Thereby, the property of the test body can be determined with high accuracy.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic measurement system according to a first embodiment of the present invention. It is a graph which shows the example of the dispersion characteristic of the phase velocity of a plate wave. It is a graph which shows the example of the dispersion characteristic of the group velocity of a plate wave. It is a figure for demonstrating the structure of the test body used by simulation, the probe for transmission, and the probe for reception. 5A and 5B are graphs showing the response characteristics of the probe used in the simulation. 6A to 6F are diagrams showing the results of simulation executed when the interlayer portion is an air layer. FIG. 7A is an enlarged view showing the sound fields of the S0 mode and the A0 mode shown in FIG. 6D, and FIG.
  • FIG. 7B is a view showing a displacement distribution generated by the sound fields of the S0 mode and the A0 mode. It is a graph which shows an example of the time domain waveform obtained by detecting the plate wave of S0 mode and A0 mode.
  • FIG. 9A to FIG. 9C are diagrams showing simulation results executed when the interlayer portion is submerged.
  • FIG. 10A to FIG. 10C are diagrams showing simulation results executed when the interlayer portion is submerged.
  • FIG. 11A is an enlarged view of the sound fields of the S0 mode and the A0 mode shown in FIG. 10A
  • FIG. 11B is a view showing the displacement distribution generated by the sound fields of the S0 mode and the A0 mode.
  • FIG. 11A and FIG. 11B It is a graph which shows the time domain waveform obtained by detecting the plate wave of A0 mode and S0 mode shown to FIG. 11A and FIG. 11B. It is a figure which shows the 1st and 2nd gate time set with respect to the received signal waveform of FIG. It is a figure which shows the 1st and 2nd gate time set with respect to the received signal waveform of FIG. It is a graph which shows the time domain waveform of a detection signal in case an interlayer part is an air layer. It is a graph which shows the time domain waveform of a detection signal when an interlayer part is flooded. 4 is a flowchart illustrating an example of a procedure of ultrasonic measurement processing according to the first embodiment. 2 is a diagram illustrating a hardware configuration example of the ultrasonic measurement apparatus according to Embodiment 1. FIG.
  • FIG. 1 is a block diagram showing a schematic configuration of an ultrasonic measurement system according to Embodiment 1 of the present invention.
  • This ultrasonic measurement system generates a plurality of propagation mode plate waves UW inside a test body 100 having a multilayer structure, and based on the time domain waveform of a detection signal obtained by detecting the plate waves UW. It is comprised so that the property of the body 100 may be determined.
  • FIG. 1 shows a schematic cross section of the test body 100.
  • the ultrasonic measurement system includes a transmission probe 21 that makes ultrasonic waves enter the inside of the test body 100 and a plurality of propagation modes (multimode) that propagate inside the test body 100.
  • a receiving probe 31 that detects a plate wave UW and outputs a detection signal
  • an ultrasonic measurement device 1 that determines the properties of the test body 100 based on a time-domain waveform of the detection signal
  • a display unit 40 and the like It has.
  • the display part 40 should just be comprised with display apparatuses, such as a liquid crystal display or an organic EL display.
  • the test body 100 used in the present embodiment includes a first member 101 made of an upper solid layer extending in the longitudinal direction of the test body 100 and a second member made of a lower solid layer extending in the longitudinal direction.
  • 103 is a multilayer structure.
  • An interlayer portion 102 between the first member 101 and the second member 103 forms an interface between the first member 101 and the second member 103.
  • the interlayer portion 102 forms an acoustic boundary surface that reflects ultrasonic waves.
  • the lower surface of the second member 103 also forms an acoustic boundary surface that reflects ultrasonic waves. Therefore, the ultrasonic wave incident on the inside of the second member 103 propagates along the longitudinal direction of the test body 100 along these boundary surfaces.
  • the wavelength of the ultrasonic wave is adjusted to be approximately the same as the thickness of the second member 103 or a fraction of the thickness (in other words, the thickness of the second member 103 is About the same as or several times the wavelength of the sound wave). For this reason, the ultrasonic wave incident inside the second member 103 propagates as a multimode plate wave UW. In the present embodiment, it is assumed that a Lamb wave is generated as the plate wave UW.
  • test body 100 shown in FIG. 1 is an example, and is not limited to this.
  • test body 100 having a two-layer structure is used, but a test body having a three-layer structure may be used instead.
  • a coating film may be formed on the surface 103 s of the second member 103.
  • the transmitting probe 21 and the receiving probe 31 are oblique probes provided on the surface 103 s of the second member 103.
  • the transmission probe 21 includes a vibrator 21t that generates an ultrasonic wave according to the excitation signal supplied from the ultrasonic measurement apparatus 1, and the ultrasonic wave incident on the surface 103s of the second member 103 from an oblique direction. And a wedge 21b.
  • the ultrasonic wave enters the second member 103 through a contact medium (not shown) such as water, oil, or glycerin.
  • the contact medium is a viscous body for efficiently penetrating ultrasonic waves from the wedge 21b into the second member 103.
  • the receiving probe 31 includes a wedge 31b that receives the plate wave UW propagated inside the second member 103 via a contact medium (not shown) such as water, oil, or glycerin, and the plate wave.
  • a receiving transducer 31t that converts UW into an electrical detection signal. This detection signal is supplied to the ultrasonic measurement apparatus 1.
  • the vibrators 21t and 31t may be configured using a known piezoelectric vibrator.
  • the symmetric mode includes a multi-order symmetric mode such as an S0 mode which is a zero-order symmetric mode (basic symmetric mode), an S1 mode which is a first symmetric mode, an S2 mode which is a second symmetric mode, and so on.
  • the asymmetric mode has a multi-order asymmetric mode such as an A0 mode that is a zero-order asymmetric mode (basic asymmetric mode), an A1 mode that is a first-order asymmetric mode, an A2 mode that is a second-order asymmetric mode, and so on.
  • a multi-order asymmetric mode such as an A0 mode that is a zero-order asymmetric mode (basic asymmetric mode), an A1 mode that is a first-order asymmetric mode, an A2 mode that is a second-order asymmetric mode, and so on.
  • the propagation medium in which the S0 mode is generated is displaced so as to swell in a symmetric manner in a direction perpendicular to the propagation direction of the plate wave or to shrink in a symmetric manner in the perpendicular direction.
  • the plate wave velocity dispersion characteristic means that the plate wave velocity (phase velocity and group velocity) depends on the product of the propagation medium thickness and the plate wave frequency.
  • 2 and 3 are graphs showing an example of velocity dispersion of a plate wave propagating through the inside of a steel plate having a thickness of 6 mm as the second member 103.
  • FIG. 2 is a graph showing the phase velocity dispersion of a plate wave.
  • the horizontal axis indicates the frequency (unit: MHz), and the vertical axis indicates the phase velocity (unit: m / s).
  • FIG. 3 is a graph showing the group velocity dispersion of a plate wave. In the graph of FIG.
  • the horizontal axis indicates the frequency (unit: MHz), and the vertical axis indicates the group velocity (unit: m / s).
  • symbols PS0 and GS0 indicate S0 mode dispersion curves
  • symbols PS1 and GS1 indicate S1 mode dispersion curves
  • symbols PA0 and GA0 indicate A0 mode dispersion curves
  • PA1 and GA1 indicate the dispersion curves of the A1 mode, respectively. From the graph of FIG. 2, it can be seen that the A0 mode and the S0 mode can be excited when the frequency is about 0.4 MHz. In addition, according to the graph of FIG. 3, it can be seen that when the frequency is about 0.4 MHz, the A0 mode propagates faster than the S0 mode.
  • FIG. 4 is a diagram for explaining the respective configurations of the test body 100, the transmission probe 21, and the reception probe 31 used in this simulation.
  • longitudinal wave sound velocity 4200 m / s, shear wave sound velocity 200 m / s, and density 2300 kg / m 3 were selected.
  • Interlayer portion 102 has a thickness ⁇ of 0.2 mm.
  • the distance L0 between the transmitting probe 21 and the receiving probe 31 is set such that the left end portion of the transmitting transducer 21t and the right end portion of the receiving transducer 31t. It is the distance between the parts.
  • the interval L0 was set to 200 mm.
  • the vibrators 21t and 31t are arranged so as to be geometrically symmetrical.
  • the dimension L1 of the vibrator 21t is 20 mm, and the dimension L1 of the vibrator 31t is also 20 mm.
  • the vibrator 21t radiates longitudinal ultrasonic waves.
  • the incident angle of the longitudinal wave on the surface 103s of the second member 103 (the angle formed between the normal line of the surface 103s and the propagation direction of the longitudinal wave) is 46 °.
  • the speed of sound in the wedges 21b and 31b is 2360 m / s.
  • FIGS. 5A and 5B are graphs showing common response characteristics of the transmission probe 21 and the reception probe 31 used in this simulation.
  • FIG. 5A is a graph showing time domain response characteristics. In this graph, the horizontal axis represents time (unit: ⁇ sec), and the vertical axis represents relative amplitude on a linear scale.
  • FIG. 5B is a graph showing frequency domain response characteristics. In this graph, the horizontal axis indicates the ultrasonic frequency (unit: MHz), and the vertical axis indicates the relative amplitude on a linear scale. As shown in FIG. 5B, the center frequency of the ultrasonic wave used in the simulation is about 0.4 MHz.
  • FIGS. 6A to 6F are diagrams showing the results of a simulation executed under the above conditions when the interlayer portion 102 is an air layer.
  • the second member 103 is acoustically completely separated from the first member 101.
  • FIG. 6A shows a simulation result of the sound field when 10 ⁇ sec has elapsed from the start of ultrasonic radiation.
  • 6B shows the simulation result of the sound field when 20 ⁇ s has elapsed
  • FIG. 6C shows the simulation result of the sound field when 30 ⁇ s have elapsed
  • FIG. 6D shows the simulation result of the sound field when 40 ⁇ s have elapsed.
  • FIG. 6F is a diagram showing the simulation result of the sound field when 50 ⁇ sec has elapsed
  • the magnitude of the ultrasonic amplitude is displayed in shades.
  • the sound field labeled S0 represents the S0 mode plate wave
  • the sound field labeled A0 represents the A0 mode plate wave.
  • the display of the first member 101 is omitted.
  • the S0 mode plate wave and the A0 mode plate wave propagate with time.
  • the A0 mode plate wave with a frequency of 0.4 MHz propagates faster than the S0 mode plate wave with a frequency of 0.4 MHz. Therefore, it is estimated that the receiving probe 31 receives the plate wave in the S0 mode after receiving the plate wave in the A0 mode.
  • FIG. 7A is an enlarged view showing the sound field of the S0 mode and the A0 mode shown in FIG. 6D.
  • FIG. 7B is a figure which shows the displacement distribution of the steel plate (2nd member 103) produced by the sound field of these S0 mode and A0 mode.
  • the propagation medium in which the S0 mode is generated in the steel plate is displaced so as to expand or contract in a symmetric manner in a direction perpendicular to the propagation direction of the plate wave (the vertical direction in the drawing). is doing.
  • the propagation medium in which the A0 mode is generated in the steel plate is displaced in an asymmetric shape in the vertical direction (vertical direction in the drawing).
  • FIG. 8 is a graph showing time domain waveforms obtained by detecting the plate wave in the S0 mode and the A0 mode.
  • the horizontal axis represents elapsed time (unit: ⁇ sec), and the vertical axis represents amplitude (unit: arbitrary unit).
  • the waveform portion indicated by reference sign A0 represents the detection result of the plate wave in the A0 mode
  • the waveform portion indicated by reference sign S0 represents the detection result of the plate wave in the S0 mode.
  • the magnitude of the amplitude of the waveform portion of the A0 mode and the magnitude of the amplitude of the waveform portion of the S0 mode are substantially the same.
  • the magnitude of the amplitude of the waveform portion can be represented by, for example, the maximum value among the absolute values of the amplitude of the waveform portion.
  • FIG. 9A to FIG. 9C and FIG. 10A to FIG. 10C are diagrams showing simulation results executed under the above conditions when the interlayer portion 102 is submerged.
  • FIG. 9A shows the simulation result of the sound field when 10 ⁇ sec has elapsed from the start of ultrasonic radiation
  • FIG. 9B shows the simulation result of the sound field when 20 ⁇ sec has elapsed
  • FIG. 9C shows the simulation of the sound field when 30 ⁇ sec has elapsed.
  • FIG. 9A shows the simulation result of the sound field when 10 ⁇ sec has elapsed from the start of ultrasonic radiation
  • FIG. 9B shows the simulation result of the sound field when 20 ⁇ sec has elapsed
  • FIG. 9C shows the simulation of the sound field when 30 ⁇ sec has elapsed.
  • FIG. 10A shows the simulation result of the sound field when 40 ⁇ sec elapses
  • FIG. 10B shows the simulation result of the sound field when 50 ⁇ sec elapses
  • FIG. 10C shows the simulation result of the sound field when 60 ⁇ sec elapses.
  • FIG. 9A to FIG. 9C and FIG. 10A to FIG. 10C the magnitude of the amplitude of the ultrasonic wave is displayed in shades.
  • the sound field labeled S0 represents the S0 mode plate wave
  • the sound field labeled A0 represents the A0 mode plate wave.
  • the S0 mode plate wave and the A0 mode plate wave propagate with time. Since water has entered the interlayer portion 102, it can be seen that the acoustic energy of ultrasonic waves leaks from the second member 103 to the first member 101 via the interlayer portion 102. However, the acoustic energy leakage differs between the A0 mode and the S0 mode. That is, since the leakage amount of the acoustic energy in the S0 mode is larger than the leakage amount of the acoustic energy in the A0 mode, the plate wave in the S0 mode is rapidly attenuated over time.
  • the leakage amount of acoustic energy in the A0 mode is relatively small. Therefore, as compared with the S0 mode, the amplitude of the A0 mode is not so small in the process of propagating from the transmitting probe 21 to the receiving probe 31.
  • FIG. 11A is an enlarged view showing the sound field of the S0 mode and the A0 mode shown in FIG. 10A.
  • FIG. 11B is a figure which shows the displacement distribution of the 1st member 101 and the 2nd member 103 which arose by the sound field of these S0 mode and A0 mode.
  • the amplitude of the S0 mode is very small compared to the amplitude of the A0 mode.
  • FIG. 12 is a graph showing time-domain waveforms obtained by detecting the A0 mode and S0 mode plate waves shown in FIGS. 11A and 11B.
  • the horizontal axis represents elapsed time (unit: ⁇ sec)
  • the vertical axis represents amplitude (unit: arbitrary unit).
  • the waveform portion indicated by reference sign A0 represents the detection result of the plate wave in the A0 mode
  • the waveform portion indicated by reference sign S0 represents the detection result of the plate wave in the S0 mode.
  • the amplitude of the waveform portion of the A0 mode is clearly larger than the amplitude of the waveform portion of the S0 mode.
  • the interlayer portion 102 is an air layer (FIG. 8)
  • the amount of decrease in the amplitude of the waveform portion in the S0 mode is less than the amount of decrease in the amplitude of the waveform portion in the A0 mode. Is big.
  • the interlayer portion 102 is an air layer or the interlayer portion 102 is submerged. If qualitative discrimination is performed, the operator can perform the discrimination only by looking at the signal waveform as shown in FIG.
  • the present invention has been completed by paying attention to the above-mentioned findings and further studies.
  • the ultrasonic measurement apparatus 1 according to the first embodiment of the present invention will be described.
  • the ultrasonic measurement apparatus 1 supplies a signal processing unit 10 that executes various processes necessary for ultrasonic measurement, and an excitation signal for radiating ultrasonic waves to a transmission probe 21.
  • An interface unit (display I / F unit) 17 is provided.
  • the signal processing unit 10 includes an ultrasonic control unit 11, an intensity detection unit 12, a determination unit 13, and an output control unit 14.
  • the ultrasonic control unit 11 supplies a command signal for exciting the transducer 21 t included in the transmission probe 21 to the transmission unit 20.
  • the transmission unit 20 generates a high-frequency excitation signal using this command signal as a trigger, amplifies the excitation signal, and supplies the amplified signal to the transmission probe 21.
  • the vibrator 21t generates an ultrasonic wave according to the excitation signal.
  • the ultrasonic wave enters the second member 103 from the oblique direction through the wedge 21b.
  • the second member 103 converts the incident ultrasonic waves into plate waves UW of a plurality of propagation modes, and propagates the plate waves UW to the receiving probe 31.
  • the transducer 31t of the reception probe 31 converts the plate wave UW propagated through the contact medium (not shown) and the wedge 31b into a detection signal and supplies the detection signal to the reception unit 30.
  • the receiving unit 30 receives a detection signal from the receiving probe 31 and outputs a reception signal indicating a time domain waveform of the detection signal, that is, a reception signal waveform.
  • the memory 16 stores the data of the received signal.
  • the intensity detector 12 reads the received signal from the memory 16, detects the signal intensity I 1 of the waveform portion corresponding to the first propagation mode in the received signal waveform indicated by the received signal, and the received signal waveform out to detect the signal intensity I 2 of the waveform portions corresponding to the different second mode of propagation from the first propagation mode.
  • the signal strengths I 1 and I 2 the magnitude of the amplitude (for example, the maximum value among the absolute values of the amplitude) or energy may be detected.
  • the intensity detector 12 switches from the received signal to the first propagation mode within a time window (hereinafter referred to as “first gate time”) set based on the velocity dispersion of the first propagation mode.
  • first gate time a time window
  • second gate time the second propagation from the received signal within the time window
  • 13 and 14 are diagrams illustrating examples of the first gate time Gate1 and the second gate time Gate2.
  • 13 shows the first and second gate times Gate1 and Gate2 set for the received signal waveform of FIG. 8
  • FIG. 14 shows the first and second gate times set for the received signal waveform of FIG. Gate times Gate1 and Gate2 are shown.
  • the determination unit 13 shown in FIG. 1 compares the signal intensities I 1 and I 2 detected by the intensity detection unit 12 and, based on the comparison result, the property of the propagation medium through which the multimode plate wave UW propagates. Can be determined. Specifically, the determination unit 13 can determine the property of the propagation medium based on the signal intensity ratio I 2 / I 1 .
  • the signal intensity ratio I 2 / I 1 may be either an amplitude ratio or an energy ratio.
  • the determination unit 13 determines the amplitude ratio A 2 / A 1. As a result, a value of about 1.00 can be calculated, or a value of about 5.10 can be calculated as the energy ratio E 2 / E 1 .
  • the amplitude ratio A 2 / A 1 is the amplitude of the waveform portion sampled in the second gate time Gate 2 with respect to the amplitude magnitude A 1 of the waveform portion sampled in the first gate time Gate 1. it is the ratio of the magnitude a 2.
  • the energy ratio E 2 / E 1 is a ratio of the energy E 2 of the waveform portion sampled in the second gate time Gate 2 to the energy E 1 of the waveform portion sampled in the first gate time Gate 1. is there.
  • the determination unit 13 sets the amplitude ratio A 2 / A 1 to about 0.21. Or an energy ratio E 2 / E 1 of about 0.56 can be calculated.
  • the determination unit 13 can calculate the following amplitude ratio A 2 / A 1 or energy ratio E 2 / E 1 .
  • the determination unit 13 can determine the property of the interlayer portion 102 by comparing the value of the amplitude ratio A 2 / A 1 or the energy ratio E 2 / E 1 with a preset threshold value or a plurality of threshold values. For example, when the threshold value for amplitude ratio comparison is set to 0.5, the determination unit 13 determines that the interlayer portion 102 is an air layer when the amplitude ratio A 2 / A 1 exceeds the threshold value 0.5. When the amplitude ratio A 2 / A 1 is less than the threshold value 0.5, it can be determined that the interlayer portion 102 is submerged.
  • the determination unit 13 determines that the interlayer portion 102 is air when the energy ratio E 2 / E 1 exceeds the threshold value 1.0.
  • the energy ratio E 2 / E 1 is less than the threshold value 1.0, it can be determined that the interlayer portion 102 is submerged.
  • one threshold value is used as described above, it is possible to discriminate between two types of properties: properties when the interlayer portion 102 is an air layer and properties when the interlayer portion 102 is submerged.
  • the present invention is not limited to this. If a plurality of threshold values are used, it is possible to distinguish three or more types of properties.
  • FIGS. 15 and 16 are graphs showing time-domain waveforms obtained by detecting plate waves in the S0 mode and the A0 mode in this experiment.
  • FIG. 15 is a graph showing a time domain waveform when the interlayer portion 102 is an air layer
  • FIG. 16 is a graph showing a time domain waveform when the interlayer portion 102 is submerged.
  • the horizontal axis represents elapsed time (unit: ⁇ sec)
  • the vertical axis represents amplitude (unit: arbitrary unit).
  • the waveform portion indicated by reference sign A0 represents the detection result of the plate wave in the A0 mode
  • the waveform portion indicated by reference sign S0 represents the detection result of the plate wave in the S0 mode.
  • the A0 mode signal and the S0 mode signal were received.
  • the amplitude of the waveform portion in the A0 mode is relatively large as compared with the simulation result of FIG. This is probably because the longitudinal wave sound speed of the wedge 21b is slightly deviated from the design value (2360 m / s).
  • the following amplitude ratio A 2 / A 1 and energy ratio E 2 / E 1 were calculated.
  • the determination unit 13 of the present embodiment determines the property of the interlayer portion 102 by comparing the value of the amplitude ratio A 2 / A 1 or the energy ratio E 2 / E 1 with a threshold value. be able to. That is, when the threshold value for amplitude ratio comparison is set to 0.5, the determination unit 13 determines that the interlayer portion 102 is an air layer when the amplitude ratio A 2 / A 1 exceeds the threshold value 0.5. When the amplitude ratio A 2 / A 1 is less than the threshold value 0.5, it can be determined that the interlayer portion 102 is submerged.
  • the determination unit 13 determines that the interlayer portion 102 is an air layer when the energy ratio E 2 / E 1 exceeds the threshold 1.0. When the energy ratio E 2 / E 1 is less than the threshold value 1.0, it can be determined that the interlayer portion 102 is submerged.
  • the output control unit 14 may control the display I / F unit 17 to display the received signal waveform on the display unit 40.
  • the display I / F unit 17 reads the received signal data from the memory 16 in response to a command from the output control unit 14 and causes the display unit 40 to display an image representing the received signal waveform indicated by the received signal.
  • the display I / F unit 17 may display the AC waveform as shown in FIG. 15 or FIG. 16 on the display unit 40, or the display unit 40 may display the DC waveform folded back at 0V. It may be displayed.
  • the signal intensity ratio I 2 / I 1 (amplitude ratio A 2 / A 1 or energy ratio E 2 / E 1 ) was calculated using a set of A0 mode and S0 mode. It is not limited to this.
  • the signal intensity ratio I 2 / I 1 may be calculated using a set of A1 mode and S1 mode, a set of A2 mode and S2 mode, or a set of A1 mode and S0 mode.
  • the number of propagation modes used for the determination is not limited to two, and the property of the specimen 100 may be determined using three or more propagation modes.
  • the intensity detection unit 12 selects M waveform parts corresponding to M propagation modes (for example, A0 mode, S0 mode, and S1 mode) within M gate times (M is an integer of 3 or more). sampled signals of these corrugations intensity I 1, I 2, ..., may calculate the I M.
  • the determination unit 13 can determine the property of the propagation medium in which the multimode plate wave UW propagates based on the ratio of each of the M signal intensities I 1 , I 2 ,. .
  • the determination unit 13 uses one of the M signal intensities I 1 , I 2 ,..., I M as a reference value, and the signal intensities I 1 , I 2 ,. based on the respective ratios of I M, it is possible to determine the properties of the propagation medium.
  • FIG. 17 is a flowchart illustrating an example of a procedure of ultrasonic measurement processing according to the present embodiment.
  • the transmission unit 20 supplies an excitation signal to the transmission probe 21 in accordance with a command signal from the ultrasonic control unit 11, thereby causing the ultrasonic wave to enter the inside of the test body 100 ( Step ST11).
  • a multimode plate wave UW is generated inside the second member 103.
  • the receiving unit 30 receives the detection signal from the receiving probe 31 and stores it in the memory 16 (step ST12). Thereafter, the output control unit 14 controls the display I / F unit 17 to display the received signal waveform indicated by the received signal on the display unit 40 (step ST13).
  • the intensity detector 12 reads the received signal from the memory 16 (step ST14), and based on the received signal, the signal intensity of the asymmetric mode (for example, A0 mode), that is, the waveform portion corresponding to the asymmetric mode. calculating a signal strength I 1 (step ST15). Subsequently, the intensity detecting unit 12 based on the received signal, symmetric mode (e.g., S0 mode) signal strength, i.e., calculates the signal strength I 2 waveform portion corresponding to the symmetric mode (step ST16).
  • symmetric mode e.g., S0 mode
  • the determination unit 13 compares the signal intensity I 2 of the asymmetric mode signal intensity I 1 and the symmetric mode (step ST17), and determines the internal properties of the test object 100 based on the comparison result (step ST18 ).
  • the determination unit 13 can determine the internal property of the specimen 100 based on the ratio of the signal intensity I 2 of the symmetric mode to the signal intensity I 1 of the asymmetric mode.
  • the determination unit 13 may determine the internal properties of the specimen 100 based on the ratio of the signal intensity I 1 of the asymmetric mode to the signal intensity I 2 of the symmetric mode.
  • the output control part 14 controls the display I / F part 17, and displays the determination result by the determination part 13 on the display part 40 (step ST19).
  • the image indicating the determination result may be displayed in parallel with the image of the received signal waveform displayed in step ST13 in one screen of the display unit 40, or the image of the received signal waveform. It may be displayed superimposed.
  • the hardware configuration of the ultrasonic measurement apparatus 1 can be realized by using, for example, a computer with a CPU (Central Processing Unit) such as a personal computer or a workstation.
  • the hardware configuration of the ultrasonic measurement apparatus 1 is an LSI (Large-Scale Gate Array) such as DSP (Digital Signal Processor), ASIC (Application-Specific-Integrated-Circuit), or FPGA (Field-Programmable Gate Array). May be.
  • FIG. 18 is a block diagram schematically showing a hardware configuration example of the ultrasonic measurement apparatus 1.
  • the ultrasonic measurement device 1 includes a transmission unit 20, a reception unit 30, and an information processing unit 50.
  • the information processing unit 50 includes a processor 51 including a CPU, a ROM (Read Only Memory) 52, a RAM (Random Access Memory) 53, a recording medium 54, a transmission / reception interface circuit (transmission / reception I / F circuit) 55, and a display interface circuit (display I). / F circuit) 56.
  • a processor 51 including a CPU, a ROM (Read Only Memory) 52, a RAM (Random Access Memory) 53, a recording medium 54, a transmission / reception interface circuit (transmission / reception I / F circuit) 55, and a display interface circuit (display I). / F circuit) 56.
  • the processor 51, ROM 52, RAM 53, recording medium 54, transmission / reception I / F circuit 55, and display I / F circuit 56 are connected to each other via a signal path 57 such as a bus circuit.
  • the signal processing unit 10, the memory 16, and the display I / F unit 17 of the present embodiment can be realized by the information processing unit 50.
  • the processor 51 can realize the function of the signal processing unit 10 by executing the ultrasonic measurement computer program read from the ROM 52 using the RAM 53 as a working memory.
  • the recording medium 54 is configured by using, for example, a volatile memory such as SDRAM (Synchronous DRAM), HDD (Hard Disk Drive) or SSD (Solid State Drive).
  • the recording medium 54 implements the memory 16 of the present embodiment.
  • the display I / F circuit 56 corresponds to the display I / F unit 17 of the present embodiment.
  • the transmission / reception I / F circuit 55 is a circuit used for signal transmission between the signal processing unit 10 and the transmission unit 20 and signal transmission between the memory 16 and the reception unit 30.
  • the transmission unit 20 includes a signal generator 22 that generates a high-frequency excitation signal triggered by a command signal supplied from the information processing unit 50, and an amplifier 23 that amplifies the excitation signal and outputs the amplified excitation signal to the transmission probe 21.
  • the receiving unit 30 includes an amplifier 32 that amplifies the detection signal input from the reception probe 31, and an A / D converter that A / D converts the amplified detection signal and outputs a digital reception signal. 33.
  • the information processing unit 50 has an analog circuit that detects the signal strengths I 1 and I 2 based on the detection signal, or an analog circuit that detects the signal strength ratio I 2 / I 1 based on the detection signal. If it is, the A / D converter 33 is unnecessary.
  • the ultrasonic measurement apparatus 1 includes the signal intensity of the waveform portion corresponding to the first propagation mode among the plurality of propagation modes of the plate wave UW and the plurality of propagation modes.
  • the signal strengths of the waveform portions corresponding to the second propagation mode are compared with each other, and the property of the ultrasonic propagation medium of the test body 100 can be determined with high accuracy based on the comparison result.
  • the ultrasonic measurement apparatus and the ultrasonic measurement method according to the present invention can detect the multimode plate wave propagating through the inside of the test body and can measure the properties of the test body in a nondestructive manner. It is suitable to be used for nondestructive testing for examining the presence / absence, location, size, shape, distribution, etc.
  • 1 ultrasonic measurement device 10 signal processing unit, 11 ultrasonic control unit, 12 intensity detection unit, 13 determination unit, 14 output control unit, 16 memory, 17 display interface unit (display I / F unit), 20 transmission unit, 21 transmitting probe, 31 receiving probe, 21t, 31t transducer, 21b, 31b wedge, 22 signal generator, 23, 32 amplifier, 30 receiving unit, 33 A / D converter, 40 display unit, 50 information processing unit, 51 processor, 52 ROM (Read Only Memory), 53 RAM (Random Access Memory), 54 recording medium, 55 transmission / reception interface circuit (transmission / reception I / F circuit), 56 display interface circuit (display I / F circuit) ), 57 signal path, 100 specimen, 101 first member, 1 2 interlayer portion, 103 a second member, 103s surface, UW plate wave.

Abstract

超音波測定装置(1)は、入射された超音波を複数の伝搬モードの板波(UW)として伝搬させる試験体(100)の性状を判定する。超音波測定装置(1)は、試験体(100)を伝搬する板波(UW)を検出して得られた検出信号を受信して当該検出信号の時間領域波形を示す受信信号を出力する受信部(30)と、第1の伝搬モードに対応する波形部分の信号強度を検出するとともに第2の伝搬モードに対応する波形部分の信号強度を検出する強度検出部(12)と、それら信号強度を互いに比較し、その比較結果に基づいて試験体(100)の性状を判定する判定部(13)とを備える。

Description

超音波測定装置及び超音波測定方法
 本発明は、超音波を用いて試験体の性質または状態(以下「性状」ともいう。)を非破壊で測定するための超音波測定技術に関し、特に、超音波を複数の伝搬モードの板波として伝搬させる構造を有する試験体の性状を非破壊で検査するための超音波測定技術に関する。
 多層構造を有する試験体の場合、この試験体を破壊せずに、その試験体の内部における層と層との間の性状を目視で診断することは難しい。従来より、そのような試験体の内部の性状を診断するために打音法と呼ばれる方法が知られている。打音法は、人間が、たとえば、ハンマーで試験体を叩いた際に発生する打撃音を聴くことによりその試験体の内部の性状を判定するものである。しかしながら、打音法は人間の聴力及び判断力に依存するので、その判定精度には限界がある。そこで、多層構造を有する試験体の内部の性状を非破壊で調べるために、その試験体の長手方向に沿って伝搬する板波(plate wave)と呼ばれる超音波が使用されることがある。
 たとえば、特許文献1(国際公開第2014/030615号)には、複合構造体を伝搬する板波を含む超音波を用いて当該複合構造体の界面の状態を検査する界面検査方法が開示されている。この界面検査方法は、当該複合構造体を伝搬した超音波の受信信号波形に対して、FFT(高速フーリエ変換)などの周波数解析またはバンドパスフィルタによる信号処理を実行することにより周波数帯域における振幅を取得する。そして、当該振幅が閾値未満か否かを判定することにより、複合構造体の界面の状態が判定される。
国際公開第2014/030615号(たとえば、図3及び段落0026~0029)
 しかしながら、その超音波の受信信号波形には、複数の伝搬モードの波形が混在しているおそれがあるので、特許文献1の界面検査方法では、複合構造体における界面の状態の正確な判定が難しい。たとえば、板波の一種であるラム波には、0次,1次,2次,…の対称モードと、0次,1次,2次,…の非対称モードという複数の伝搬モードが存在する。前述の通り、特許文献1の界面検査方法では、周波数帯域における振幅が閾値未満か否かを判定することにより界面の状態が判定される。しかしながら、その振幅には、複数の伝搬モードの周波数成分が混在しているおそれがあるので、高精度な判定が難しいという課題がある。
 上記に鑑みて本発明の目的は、超音波の複数の伝搬モードを考慮して試験体の性状を高い精度で判定することができる超音波測定装置及び超音波測定方法を提供することである。
 本発明の一態様による超音波測定装置は、自己の長手方向に延びる一対の境界面を有し、前記一対の境界面の間に入射された超音波を複数の伝搬モードの板波として前記一対の境界面に沿って伝搬させる試験体の性状を判定する超音波測定装置であって、前記板波を検出して得られた検出信号を受信して当該検出信号の時間領域波形を示す受信信号を出力する受信部と、前記受信信号に基づき、前記時間領域波形のうち前記複数の伝搬モードの1つである第1の伝搬モードに対応する第1の波形部分の信号強度を検出するとともに、前記時間領域波形のうち前記複数の伝搬モードの他の1つである第2の伝搬モードに対応する第2の波形部分の信号強度を検出する強度検出部と、前記第1の波形部分の当該信号強度と前記第2の波形部分の当該信号強度とを互いに比較し、その比較結果に基づいて前記試験体の性状を判定する判定部とを備えることを特徴とする。
 本発明の他の態様による超音波測定方法は、自己の長手方向に延びる一対の境界面を有し、前記一対の境界面の間に入射された超音波を複数の伝搬モードの板波として前記一対の境界面に沿って伝搬させる試験体の性状を判定する超音波測定装置において実行される超音波測定方法であって、前記板波を検出して得られた検出信号を受信して当該検出信号の時間領域波形を示す受信信号を出力するステップと、前記受信信号に基づき、前記時間領域波形のうち前記複数の伝搬モードの1つである第1の伝搬モードに対応する第1の波形部分の信号強度を検出するステップと、前記受信信号に基づき、前記時間領域波形のうち前記複数の伝搬モードの他の1つである第2の伝搬モードに対応する第2の波形部分の信号強度を検出するステップと、前記第1の波形部分の当該信号強度と前記第2の波形部分の当該信号強度とを互いに比較するステップと、その比較結果に基づいて前記試験体の性状を判定するステップとを備えることを特徴とする。
 本発明によれば、第1の伝搬モードに対応する第1の波形部分の信号強度と、第2の伝搬モードに対応する第2の波形部分の信号強度とが互いに比較され、その比較結果に基づいて試験体の性状が判定される。これにより、試験体の性状を高い精度で判定することができる。
本発明に係る実施の形態1である超音波測定システムの概略構成を示すブロック図である。 板波の位相速度の分散特性の例を示すグラフである。 板波の群速度の分散特性の例を示すグラフである。 シミュレーションで使用された試験体、送信用探触子及び受信用探触子の構成を説明するための図である。 図5A及び図5Bは、シミュレーションで使用された探触子の応答特性を示すグラフである。 図6A~図6Fは、層間部分が空気層である場合に実行されたシミュレーションの結果を示す図である。 図7Aは、図6Dに示したS0モード及びA0モードの音場を拡大して示す図であり、図7Bは、それらS0モード及びA0モードの音場により生じた変位分布を示す図である。 S0モード及びA0モードの板波を検出して得られた時間領域波形の一例を示すグラフである。 図9A~図9Cは、層間部分が浸水している場合に実行されたシミュレーション結果を示す図である。 図10A~図10Cは、層間部分が浸水している場合に実行されたシミュレーション結果を示す図である。 図11Aは、図10Aに示したS0モード及びA0モードの音場を拡大して示す図であり、図11Bは、それらS0モード及びA0モードの音場により生じた変位分布を示す図である。 図11A及び図11Bに示したA0モード及びS0モードの板波を検出して得られた時間領域波形を示すグラフである。 図8の受信信号波形に対して設定された第1及び第2のゲート時間を示す図である。 図12の受信信号波形に対して設定された第1及び第2のゲート時間を示す図である。 層間部分が空気層である場合の検出信号の時間領域波形を示すグラフである。 層間部分が浸水している場合の検出信号の時間領域波形を示すグラフである。 実施の形態1に係る超音波測定処理の手順の一例を示すフローチャートである。 実施の形態1の超音波測定装置のハードウェア構成例を示す図である。
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。
実施の形態1.
 図1は、本発明に係る実施の形態1である超音波測定システムの概略構成を示すブロック図である。この超音波測定システムは、多層構造を有する試験体100の内部に複数の伝搬モードの板波UWを発生させ、その板波UWを検出して得られる検出信号の時間領域波形を基に当該試験体100の性状を判定するように構成されている。図1には試験体100の概略断面が示されている。
 この超音波測定システムは、図1に示されるように、試験体100の内部に超音波を入射させる送信用探触子21と、試験体100の内部を伝搬する複数の伝搬モード(マルチモード)の板波UWを検出して検出信号を出力する受信用探触子31と、その検出信号の時間領域波形を基に試験体100の性状を判定する超音波測定装置1と、表示部40とを備えている。表示部40は、液晶ディスプレイまたは有機ELディスプレイなどの表示装置で構成されていればよい。
 本実施の形態で使用される試験体100は、当該試験体100の長手方向に延在する上部固体層からなる第1部材101と、その長手方向に延在する下部固体層からなる第2部材103とが積層された多層構造物である。第1部材101と第2部材103との間の層間部分102は、当該第1部材101と第2部材103との間の界面を形成している。また、層間部分102は、超音波を反射させる音響的な境界面を形成する。第2部材103の下面も、超音波を反射させる音響的な境界面を形成する。よって、第2部材103の内部に入射された超音波は、それら境界面に沿って試験体100の長手方向に沿って伝搬する。更に、その超音波の波長は、第2部材103の厚さと同程度またはその厚さの数分の1となるように調整されている(言い換えれば、第2部材103の厚さは、その超音波の波長と同程度またはその波長の数倍である)。このため、第2部材103の内部に入射された超音波はマルチモードの板波UWとして伝搬する。本実施の形態では、板波UWとしてラム(Lamb)波が発生するものとする。
 なお、図1に示した試験体100の構造は一例であり、これに限定されるものではない。たとえば、本実施の形態では、2層構造の試験体100が使用されているが、この代わりに3層構造の試験体が使用されてもよい。また、第2部材103の表面103sに塗布膜が形成されてもよい。
 送信用探触子21及び受信用探触子31は、第2部材103の表面103sに設けられている斜角探触子である。送信用探触子21は、超音波測定装置1から供給された励振信号に応じて超音波を発生する振動子21tと、その超音波を第2部材103の表面103sに対して斜め方向から入射させるくさび21bとを有する。その超音波は、水、油またはグリセリンなどの接触媒質(図示せず)を介して第2部材103の内部に入射する。ここで、接触媒質とは、超音波をくさび21bから第2部材103の内部に効率良く浸透させるための粘性体である。一方、受信用探触子31は、第2部材103の内部を伝搬した板波UWを、水、油またはグリセリンなどの接触媒質(図示せず)を介して受信するくさび31bと、当該板波UWを電気的な検出信号に変換する受信用の振動子31tとを有する。この検出信号は、超音波測定装置1に供給される。振動子21t,31tは、公知の圧電振動子を用いて構成されればよい。
 板波には、速度の分散特性を伴う多数の伝搬モードが存在することが知られている。具体的には、伝搬媒質が厚さ方向に対称に変位する対称モード(symmetric mode)と、伝搬媒質が厚さ方向に非対称に変位する非対称モード(anti-symmetric mode)と呼ばれる伝搬モードが存在し得る。更に、対称モードには、0次の対称モード(基本対称モード)であるS0モード、1次の対称モードであるS1モード、2次の対称モードであるS2モード、…といった複数次数の対称モードが存在し、非対称モードにも、0次の非対称モード(基本非対称モード)であるA0モード、1次の非対称モードであるA1モード、2次の非対称モードであるA2モード、…といった複数次数の非対称モードが存在し得る。たとえば、S0モードが発生する伝搬媒質は、板波の伝搬方向に対して垂直な方向に対称の形で膨らむように、またはその垂直な方向に対称な形で縮むように変位する。
 また、板波の速度分散特性とは、板波の速度(位相速度及び群速度)が、伝搬媒質の厚さと当該板波の周波数との積に依存することをいう。図2及び図3は、第2部材103として厚さ6mmの鋼板が使用された場合にこの鋼板の内部を伝搬する板波の速度分散性の例を示すグラフである。図2は、板波の位相速度分散性を示すグラフである。図2のグラフにおいて、横軸は周波数(単位:MHz)を示し、縦軸は位相速度(単位:m/s)を示している。一方、図3は、板波の群速度分散性を示すグラフである。図3のグラフにおいて、横軸は周波数(単位:MHz)を示し、縦軸は群速度(単位:m/s)を示している。図2及び図3のグラフにおいて、符号PS0,GS0はS0モードの分散曲線を、符号PS1,GS1はS1モードの分散曲線をそれぞれ示しており、符号PA0,GA0はA0モードの分散曲線を、符号PA1,GA1はA1モードの分散曲線をそれぞれ示している。図2のグラフによれば、周波数0.4MHz程度の場合には、A0モードとS0モードとが励起可能であることが分かる。また、図3のグラフによれば、周波数0.4MHz程度の場合には、A0モードの方がS0モードよりも速く伝搬することが分かる。
 次に、上記伝搬モードの特性の詳細を調べるために計算機を用いて行われたシミュレーションについて説明する。
 先ず、図4、図5A及び図5Bを参照しつつ、このシミュレーションの条件について説明する。図4は、このシミュレーションで使用された試験体100、送信用探触子21及び受信用探触子31のそれぞれの構成を説明するための図である。このシミュレーションでは、板波UWを伝搬させる第2部材103としては、厚さDt=6mmの鋼板が選択された。第1部材101の材料定数としては、縦波音速4200m/s、横波音速200m/s、及び密度2300kg/mが選択された。層間部分102は、0.2mmの厚さδを有する。
 また、送信用探触子21と受信用探触子31との間の間隔L0は、図4に示されるように送信用の振動子21tの左側端部と受信用の振動子31tの右側端部との間の距離である。間隔L0は200mmに設定された。振動子21t,31tは、幾何学的に左右対称となるように配置されている。振動子21tの寸法L1は20mmであり、振動子31tの寸法L1も20mmである。振動子21tは縦波の超音波を放射する。第2部材103の表面103sへの当該縦波の入射角(表面103sの法線と当該縦波の伝搬方向とのなす角度)は46°である。また、くさび21b,31bにおける音速は2360m/sである。
 図5A及び図5Bは、このシミュレーションで使用された送信用探触子21及び受信用探触子31の共通の応答特性を示すグラフである。図5Aは、時間領域応答特性を示すグラフである。このグラフにおいて、横軸は時間(単位:μ秒)を示し、縦軸は相対振幅を線形スケールで示している。また、図5Bは、周波数領域応答特性を示すグラフである。このグラフにおいて、横軸は超音波の周波数(単位:MHz)を示し、縦軸は相対振幅を線形スケールで示している。図5Bに示されるように、シミュレーションで使用された超音波の中心周波数は約0.4MHzである。
 図6A~図6Fは、層間部分102が空気層である場合に上記条件下で実行されたシミュレーションの結果を示す図である。この場合、第2部材103は、第1部材101とは音響的に完全に分離している。図6Aは、超音波放射開始から10μ秒経過時の音場のシミュレーション結果を示している。図6Bは、20μ秒経過時の音場のシミュレーション結果を、図6Cは、30μ秒経過時の音場のシミュレーション結果を、図6Dは、40μ秒経過時の音場のシミュレーション結果を、図6Eは、50μ秒経過時の音場のシミュレーション結果を、図6Fは、60μ秒経過時の音場のシミュレーション結果をそれぞれ示す図である。図6A~図6Fでは、超音波の振幅の大きさが濃淡で表示されている。図6Dを参照すると、符号S0が付された音場がS0モードの板波を表し、符号A0が付された音場がA0モードの板波を表している。なお、図6A~図6Fでは、第1部材101には超音波は伝搬しないので、第1部材101の表示は省略されている。
 図6A~図6Fに示されるように、時間の経過とともにS0モードの板波とA0モードの板波とが伝搬してゆく様子が分かる。図3の群速度の分散曲線GS0,GA0によれば、周波数0.4MHzのA0モードの板波の方が、周波数0.4MHzのS0モードの板波よりも速く伝搬する。よって、受信用探触子31は、A0モードの板波を受信した後に、S0モードの板波を受信することが推定される。
 図7Aは、図6Dに示したS0モード及びA0モードの音場を拡大して示す図である。また、図7Bは、それらS0モード及びA0モードの音場により生じた鋼板(第2部材103)の変位分布を示す図である。図7Bに示されるように、鋼板のうちS0モードが生じている伝搬媒質は、板波の伝搬方向に対して垂直な方向(図面の縦方向)に対称な形で膨らむようにまたは縮むように変位している。一方、鋼板のうちA0モードが生じている伝搬媒質は、その垂直な方向(図面の縦方向)に非対称な形で変位していることが分かる。
 図8は、上記S0モード及びA0モードの板波を検出して得られた時間領域波形を示すグラフである。図8のグラフにおいて、横軸は経過時間(単位:μ秒)を示し、縦軸は振幅(単位:任意単位)を示している。また、符号A0で示される波形部分は、A0モードの板波の検出結果を表し、符号S0で示される波形部分は、S0モードの板波の検出結果を表している。このグラフによれば、A0モードの波形部分の振幅の大きさと、S0モードの波形部分の振幅の大きさとは、ほぼ同じである。ここで、波形部分の振幅の大きさは、たとえば、当該波形部分の振幅の絶対値のうちの最大値で表すことができる。
 上記したシミュレーション結果は、層間部分102が空気層である場合、すなわち、第2部材103が第1部材101と音響的に完全に分離している場合のシミュレーション結果である。次に、層間部分102が浸水している場合に上記条件下で実行されたシミュレーションについて説明する。図9A~図9C及び図10A~図10Cは、層間部分102が浸水している場合に上記条件下で実行されたシミュレーション結果を示す図である。図9Aは、超音波放射開始から10μ秒経過時の音場のシミュレーション結果を、図9Bは、20μ秒経過時の音場のシミュレーション結果を、図9Cは、30μ秒経過時の音場のシミュレーション結果を、図10Aは、40μ秒経過時の音場のシミュレーション結果を、図10Bは、50μ秒経過時の音場のシミュレーション結果を、図10Cは、60μ秒経過時の音場のシミュレーション結果をそれぞれ示す図である。図9A~図9C及び図10A~図10Cでは、超音波の振幅の大きさが濃淡で表示されている。図10Aを参照すると、符号S0が付された音場がS0モードの板波を表し、符号A0が付された音場がA0モードの板波を表している。
 図9A~図9C及び図10A~図10Cに示されるように、時間の経過とともにS0モードの板波とA0モードの板波とが伝搬している。層間部分102に水が侵入しているため、第2部材103から第1部材101へ層間部分102を介して超音波の音響エネルギーが漏洩してゆく様子が分かる。ただし、A0モードとS0モードとでは、その音響エネルギーの漏洩の様子が異なる。すなわち、S0モードの音響エネルギーの漏洩量の方が、A0モードの音響エネルギーの漏洩量よりも大きいので、時間の経過とともにS0モードの板波が急激に減衰している。一方、A0モードの音響エネルギーの漏洩量は比較的少ない。したがって、S0モードと比較すると、送信用探触子21から受信用探触子31に伝搬する過程でA0モードの振幅はそれ程小さくならない。
 図11Aは、図10Aに示したS0モード及びA0モードの音場を拡大して示す図である。また、図11Bは、それらS0モード及びA0モードの音場により生じた第1部材101及び第2部材103の変位分布を示す図である。図11A及び図11Bから分かるように、A0モードの振幅と比較してS0モードの振幅は非常に小さい。
 図12は、図11A及び図11Bに示したA0モード及びS0モードの板波を検出して得られた時間領域波形を示すグラフである。図12のグラフにおいて、横軸は経過時間(単位:μ秒)を示し、縦軸は振幅(単位:任意単位)を示している。また、符号A0で示される波形部分は、A0モードの板波の検出結果を表し、符号S0で示される波形部分は、S0モードの板波の検出結果を表している。このグラフによれば、A0モードの波形部分の振幅の大きさは、S0モードの波形部分の振幅の大きさよりも明らかに大きい。また、層間部分102が空気層である場合(図8)と比べると、A0モードの波形部分の振幅の大きさの低下量よりも、S0モードの波形部分の振幅の大きさの低下量の方が大きい。
 以上に説明した知見を利用すれば、層間部分102が空気層であるのか、あるいは、層間部分102が浸水しているのかを判別することができる。定性的な判別を行うのであれば、作業者は、図12に示すような信号波形を見るだけでその判別を行うことが可能である。
 本発明は、上記した知見に着目し、更に検討を加えて完成されたものである。以下、本発明に係る実施の形態1の超音波測定装置1について説明する。
 図1に示されているように超音波測定装置1は、超音波測定に必要な各種処理を実行する信号処理部10と、超音波を放射させる励振信号を送信用探触子21に供給する送信部20と、受信用探触子31で検出された検出信号を受信して受信信号を出力する受信部30と、その受信信号を蓄積するメモリ16と、表示部40に画像を表示させる表示インタフェース部(表示I/F部)17とを備えている。信号処理部10は、超音波制御部11、強度検出部12、判定部13及び出力制御部14を有する。
 超音波制御部11は、送信用探触子21に含まれる振動子21tを励振するための指令信号を送信部20に供給する。送信部20は、この指令信号をトリガとして高周波の励振信号を発生し、この励振信号を増幅して送信用探触子21に供給する。振動子21tは、その励振信号に応じて超音波を発生する。当該超音波は、くさび21bを通じて第2部材103の内部に斜め方向から入射される。第2部材103は、その入射された超音波を複数の伝搬モードの板波UWに変換し、この板波UWを受信用探触子31まで伝搬させる。そして、受信用探触子31の振動子31tは、接触媒質(図示せず)及びくさび31bを介して伝搬した板波UWを検出信号に変換して受信部30に供給する。
 受信部30は、受信用探触子31から検出信号を受信して、その検出信号の時間領域波形すなわち受信信号波形を示す受信信号を出力する。メモリ16はその受信信号のデータを蓄積する。
 強度検出部12は、メモリ16から受信信号を読み出し、その受信信号で示される受信信号波形のうち第1の伝搬モードに対応する波形部分の信号強度Iを検出するとともに、その受信信号波形のうち第1の伝搬モードとは異なる第2の伝搬モードに対応する波形部分の信号強度Iを検出する。信号強度I,Iとしては、振幅の大きさ(たとえば、振幅の絶対値のうちの最大値)もしくはエネルギーを検出すればよい。
 たとえば、上記シミュレーションの場合、図8及び図12に示したように、伝搬モードの速度分散特性の違いにより、A0モードの板波とS0モードの板波とは異なる時間帯に受信される。このため、強度検出部12は、第1の伝搬モードの速度分散性を基に設定された時間窓(以下「第1のゲート時間」という。)内に、受信信号から第1の伝搬モードに対応する波形部分をサンプリングすることができ、第2の伝搬モードの速度分散性を基に設定された時間窓(以下「第2のゲート時間」という。)内に、受信信号から第2の伝搬ゲートに対応する波形部分をサンプリングすることができる。図13及び図14は、第1のゲート時間Gate1及び第2のゲート時間Gate2の例を示す図である。図13は、図8の受信信号波形に対して設定された第1及び第2のゲート時間Gate1,Gate2を、図14は、図12の受信信号波形に対して設定された第1及び第2のゲート時間Gate1,Gate2をそれぞれ示している。
 図1に示される判定部13は、強度検出部12で検出された信号強度I,Iを互いに比較し、その比較結果に基づいて、マルチモードの板波UWが伝搬する伝搬媒質の性状を判定することができる。具体的には、判定部13は、信号強度比I/Iに基づいて伝搬媒質の性状を判定することが可能である。信号強度比I/Iは、振幅比またはエネルギー比のいずれでもよい。
 たとえば、上記シミュレーションの場合、図13に示した受信信号波形(層間部分102が空気層である場合に得られる検出信号の時間領域波形)については、判定部13は、振幅比A/Aとして約1.00の値を算出可能であり、あるいは、エネルギー比E/Eとして約5.10の値を算出可能である。ここで、振幅比A/Aは、第1のゲート時間Gate1内にサンプリングされた波形部分の振幅の大きさAに対する、第2のゲート時間Gate2内にサンプリングされた波形部分の振幅の大きさAの比率である。また、エネルギー比E/Eは、第1のゲート時間Gate1内にサンプリングされた波形部分のエネルギーEに対する、第2のゲート時間Gate2内にサンプリングされた波形部分のエネルギーEの比率である。一方、図14に示した受信信号波形(層間部分102が浸水している場合に得られる検出信号の時間領域波形)については、判定部13は、振幅比A/Aとして約0.21の値を算出可能であり、あるいは、エネルギー比E/Eとして約0.56の値を算出可能である。
 したがって、上記シミュレーションの場合、判定部13は、以下の振幅比A/Aまたはエネルギー比E/Eを算出することができる。
・層間部分102が空気層である場合:A/A=1.00(E/E=5.10)
・層間部分102が浸水している場合:A/A=0.22(E/E=0.56)
 判定部13は、振幅比A/Aまたはエネルギー比E/Eの値を予め設定された単数または複数の閾値と比較して層間部分102の性状を判定することができる。たとえば、振幅比比較用の閾値が0.5と設定された場合、判定部13は、振幅比A/Aが閾値0.5を超えたときは、層間部分102が空気層であると判定することができ、振幅比A/Aが閾値0.5未満のときは、層間部分102が浸水していると判定することができる。あるいは、たとえば、エネルギー比比較用の閾値が1.0と設定された場合には、判定部13は、エネルギー比E/Eが閾値1.0を超えたときに、層間部分102が空気層であると判定することができ、エネルギー比E/Eが閾値1.0未満のときは、層間部分102が浸水していると判定することができる。
 なお、前述のように1つの閾値を使用すれば、層間部分102が空気層である場合の性状と、層間部分102が浸水している場合の性状という2種類の性状を判別することができるが、これに限定されるものではない。複数の閾値を使用すれば、3種類以上の性状を判別することが可能である。
 次に、上記シミュレーションで得られた知見の妥当性を検証するために行われた実験について説明する。この実験では、第2部材103として厚さDt=6mmの鋼板が使用された。また、第1部材101としてはモルタルが使用された。更に、スペーサを用いて第1部材101と第2部材103との間に厚さ0.2mmの空隙(空気層)が設けられた。この空隙は、層間部分102を構成する。送信用探触子21及び受信用探触子31としては、縦波音速2360m/sと入射角46°とを実現する斜角探触子が2個試作された。これら斜角探触子の応答特性は、図5A及び図5Bに示した応答特性と殆ど同じであった。他の実験条件は、上記シミュレーションの条件と同様である。
 図15及び図16は、この実験においてS0モード及びA0モードの板波を検出して得られた時間領域波形を示すグラフである。図15は、層間部分102が空気層である場合の時間領域波形を示すグラフであり、図16は、層間部分102が浸水している場合の時間領域波形を示すグラフである。図15及び図16のグラフにおいて、横軸は経過時間(単位:μ秒)を示し、縦軸は振幅(単位:任意単位)を示している。また、符号A0で示される波形部分は、A0モードの板波の検出結果を表し、符号S0で示される波形部分は、S0モードの板波の検出結果を表している。
 図15及び図16を参照すると、上記シミュレーション結果(図13及び図14)と同様に、A0モードの信号とS0モードの信号とが受信された。図15を参照すると、図13のシミュレーション結果と比較して、A0モードの波形部分の振幅が比較的大きい。この原因は、くさび21bの縦波音速が設計値(2360m/s)から少しずれていたためと考えられる。この実験では、以下の振幅比A/A及びエネルギー比E/Eが算出された。
・層間部分102が空気層である場合:A/A=0.60(E/E=2.30)
・層間部分102が浸水している場合:A/A=0.31(E/E=0.39)
 したがって、この実験に対しても、本実施の形態の判定部13は、振幅比A/Aまたはエネルギー比E/Eの値を閾値と比較して層間部分102の性状を判定することができる。すなわち、振幅比比較用の閾値が0.5と設定された場合、判定部13は、振幅比A/Aが閾値0.5を超えたときは、層間部分102が空気層であると判定することができ、振幅比A/Aが閾値0.5未満のときは、層間部分102が浸水していると判定することができる。あるいは、エネルギー比比較用の閾値が1.0と設定された場合には、判定部13は、エネルギー比E/Eが閾値1.0を超えたときに、層間部分102が空気層であると判定することができ、エネルギー比E/Eが閾値1.0未満のときは、層間部分102が浸水していると判定することができる。
 図1に示される出力制御部14は、表示I/F部17を制御して、判定部13による判定結果を表示部40に表示させることができる。すなわち、表示I/F部17は、出力制御部14からその判定結果を示すデータを受けると、その判定結果を表す画像(たとえば、メッセージ画像)を生成し、この画像を表示部40に表示させることができる。これにより、作業者は、その判定結果を認識することが可能となる。また、出力制御部14は、表示I/F部17を制御して、受信信号波形を表示部40に表示させてもよい。すなわち、表示I/F部17は、出力制御部14からの指令に応じて、メモリ16から受信信号のデータを読み出し、その受信信号で示される受信信号波形を表す画像を表示部40に表示させることができる。ここで、表示I/F部17は、図15または図16に示したようなAC波形を表示部40に表示させてもよいし、あるいは、0Vで折り返し表示されるDC波形を表示部40に表示させてもよい。
 なお、上記したシミュレーション及び実験では、A0モード及びS0モードの組を用いて信号強度比I/I(振幅比A/Aまたはエネルギー比E/E)が算出されたが、これに限定されるものではない。たとえば、A1モード及びS1モードの組、A2モード及びS2モードの組、またはA1モード及びS0モードの組を用いて信号強度比I/Iが算出されてもよい。
 また、判定に使用される伝搬モードの数は2つに限定されるものではなく、3つ以上の伝搬モードを用いて試験体100の性状が判定されてもよい。たとえば、強度検出部12は、M個(Mは3以上の整数)のゲート時間内にそれぞれM個の伝搬モード(たとえば、A0モード、S0モード及びS1モード)に対応するM個の波形部分をサンプリングし、これら波形部分の信号強度I,I,…,Iを算出してもよい。この場合、判定部13は、M個の信号強度I,I,…,Iのそれぞれの比率に基づいて、マルチモードの板波UWが伝搬する伝搬媒質の性状を判定することができる。たとえば、判定部13は、M個の信号強度I,I,…,Iのうちの1つの信号強度を基準値として使用し、この基準値に対する信号強度I,I,…,Iのそれぞれの比率に基づいて、伝搬媒質の性状を判定することができる。
 次に、図17を参照しつつ、本実施の形態に係る超音波測定処理の手順について簡単に説明する。図17は、本実施の形態に係る超音波測定処理の手順の一例を示すフローチャートである。
 図17を参照すると、送信部20は、超音波制御部11からの指令信号に応じて励振信号を送信用探触子21に供給することにより、試験体100の内部に超音波を入射させる(ステップST11)。この結果、第2部材103の内部にマルチモードの板波UWが発生する。受信部30は、受信用探触子31から検出信号を受信してメモリ16に格納する(ステップST12)。その後、出力制御部14は、表示I/F部17を制御して、受信信号で示される受信信号波形を表示部40に表示させる(ステップST13)。
 次に、強度検出部12は、メモリ16から受信信号を読み出し(ステップST14)、その受信信号に基づいて、非対称モード(たとえば、A0モード)の信号強度、すなわち、非対称モードに対応する波形部分の信号強度Iを算出する(ステップST15)。続いて、強度検出部12は、その受信信号に基づいて、対称モード(たとえば、S0モード)の信号強度、すなわち、対称モードに対応する波形部分の信号強度Iを算出する(ステップST16)。
 その後、判定部13は、非対称モードの信号強度Iと対称モードの信号強度Iとを比較し(ステップST17)、その比較結果に基づいて試験体100の内部の性状を判定する(ステップST18)。ここでは、上述の通り、判定部13は、非対称モードの信号強度Iに対する対称モードの信号強度Iの比率に基づいて、試験体100の内部の性状を判定することができる。なお、判定部13は、対称モードの信号強度Iに対する非対称モードの信号強度Iの比率に基づいて、試験体100の内部の性状を判定してもよい。
 そして、出力制御部14は、表示I/F部17を制御して、判定部13による判定結果を表示部40に表示させる(ステップST19)。このとき、その判定結果を示す画像は、表示部40の1画面内に、ステップST13で表示された受信信号波形の画像と並列に表示されてもよいし、あるいは、その受信信号波形の画像と重畳して表示されてもよい。これにより、作業者は、その判定結果とその受信信号波形とを同時に確認することができるため、試験体100の性状を正確に把握することができる。以上で超音波測定処理は終了する。
 上記超音波測定装置1のハードウェア構成は、たとえば、パーソナルコンピュータまたはワークステーションなどのCPU(Central Processing Unit)内蔵のコンピュータを用いて実現可能である。あるいは、上記超音波測定装置1のハードウェア構成は、DSP(Digital Signal Processor)、ASIC(Application  Specific  Integrated  Circuit)またはFPGA(Field-Programmable Gate Array)などのLSI(Large Scale Integrated circuit)を用いて実現されてもよい。
 図18は、超音波測定装置1のハードウェア構成例を概略的に示すブロック図である。図18の例では、超音波測定装置1は、送信部20、受信部30及び情報処理部50を備えている。情報処理部50は、CPUを含むプロセッサ51、ROM(Read Only Memory)52、RAM(Random Access Memory)53、記録媒体54、送受信インタフェース回路(送受信I/F回路)55及び表示インタフェース回路(表示I/F回路)56を有している。プロセッサ51、ROM52、RAM53、記録媒体54、送受信I/F回路55及び表示I/F回路56は、バス回路などの信号路57を介して相互に接続されている。本実施の形態の信号処理部10、メモリ16及び表示I/F部17は、この情報処理部50によって実現することが可能である。
 プロセッサ51は、RAM53を作業用メモリとして使用して、ROM52から読み出された超音波測定用コンピュータ・プログラムを実行することにより、信号処理部10の機能を実現することができる。記録媒体54は、たとえば、SDRAM(Synchronous DRAM)などの揮発性メモリ、またはHDD(ハードディスクドライブ)もしくはSSD(ソリッドステートドライブ)を用いて構成される。この記録媒体54によって本実施の形態のメモリ16が実現される。また、表示I/F回路56は、本実施の形態の表示I/F部17に相当する。送受信I/F回路55は、信号処理部10と送信部20との間の信号伝達、並びに、メモリ16と受信部30との間の信号伝達に使用される回路である。
 送信部20は、情報処理部50から供給された指令信号をトリガとして高周波の励振信号を発生する信号発生器22と、当該励振信号を増幅して送信用探触子21に出力する増幅器23とを有する。一方、受信部30は、受信用探触子31から入力された検出信号を増幅する増幅器32と、当該増幅された検出信号をA/D変換してディジタル受信信号を出力するA/D変換器33とを有している。なお、仮に、情報処理部50が、検出信号に基づいて信号強度I,Iを検出するアナログ回路、あるいは、検出信号に基づいて信号強度比I/Iを検出するアナログ回路を有しているのであれば、A/D変換器33は不要である。
 以上説明したように本実施の形態の超音波測定装置1は、板波UWの複数の伝搬モードのうちの第1の伝搬モードに対応する波形部分の信号強度と、当該複数の伝搬モードのうちの第2の伝搬モードに対応する波形部分の信号強度とを互いに比較し、その比較結果に基づいて試験体100の超音波伝搬媒質の性状を高い精度で判定することができる。特に、目視検査及び打音法では困難であった、試験体100の内部における層間部分102の性状判定を高い精度で行うことが可能である。
 以上、図面を参照して本発明に係る実施の形態について述べたが、この実施の形態は本発明の例示であり、この実施の形態以外の様々な形態を採用することもできる。
 なお、本発明の範囲内において、上記実施の形態の構成要素の自由な組み合わせ、上記実施の形態の任意の構成要素の変形、または上記実施の形態の任意の構成要素の省略が可能である。
 本発明に係る超音波測定装置及び超音波測定方法は、試験体の内部を伝搬するマルチモードの板波を検出して当該試験体の性状を非破壊で測定することができるので、その試験体における異常部位の有無、存在位置、大きさ、形状または分布などを調べる非破壊試験(nondestructive testing)に使用されることに適している。
 1 超音波測定装置、10 信号処理部、11 超音波制御部、12 強度検出部、13 判定部、14 出力制御部、16 メモリ、17 表示インタフェース部(表示I/F部)、20 送信部、21 送信用探触子、31 受信用探触子、21t,31t 振動子、21b,31b くさび、22 信号発生器、23,32 増幅器、30 受信部、33 A/D変換器、40 表示部、50 情報処理部、51 プロセッサ、52 ROM(Read Only Memory)、53 RAM(Random Access Memory)、54 記録媒体、55 送受信インタフェース回路(送受信I/F回路)、56 表示インタフェース回路(表示I/F回路)、57 信号路、100 試験体、101 第1部材、102 層間部分、103 第2部材、103s 表面、UW 板波。

Claims (14)

  1.  自己の長手方向に延びる一対の境界面を有し、前記一対の境界面の間に入射された超音波を複数の伝搬モードの板波として前記一対の境界面に沿って伝搬させる試験体の性状を判定する超音波測定装置であって、
     前記板波を検出して得られた検出信号を受信して当該検出信号の時間領域波形を示す受信信号を出力する受信部と、
     前記受信信号に基づき、前記時間領域波形のうち前記複数の伝搬モードの1つである第1の伝搬モードに対応する第1の波形部分の信号強度を検出するとともに、前記時間領域波形のうち前記複数の伝搬モードの他の1つである第2の伝搬モードに対応する第2の波形部分の信号強度を検出する強度検出部と、
     前記第1の波形部分の当該信号強度と前記第2の波形部分の当該信号強度とを互いに比較し、その比較結果に基づいて前記試験体の性状を判定する判定部と
    を備えることを特徴とする超音波測定装置。
  2.  請求項1記載の超音波測定装置であって、前記強度検出部は、前記第1の伝搬モードの速度分散性を基に設定された第1のゲート時間内に前記受信信号から前記第1の波形部分をサンプリングするとともに、前記第2の伝搬モードの速度分散性を基に設定された第2のゲート時間内に前記受信信号から前記第2の波形部分をサンプリングすることを特徴とする超音波測定装置。
  3.  請求項2記載の超音波測定装置であって、前記第1の伝搬モードが非対称モードであり、前記第2の伝搬モードが対称モードであることを特徴とする超音波測定装置。
  4.  請求項1記載の超音波測定装置であって、
     前記一対の境界面のうちの一方は、前記試験体の表面であり、
     前記一対の境界面のうちの他方は、前記試験体を構成する2つの層の間の境界部分に存在し、
     前記判定部は、前記比較結果に基づいて前記境界部分の性状を判定することを特徴とする超音波測定装置。
  5.  請求項1記載の超音波測定装置であって、前記判定部は、前記第1の波形部分の当該信号強度と前記第2の波形部分の当該信号強度との比率を前記比較結果として算出することを特徴とする超音波測定装置。
  6.  請求項1記載の超音波測定装置であって、前記第1の波形部分の当該信号強度及び前記第2の波形部分の当該信号強度は、振幅またはエネルギーのいずれか一方であることを特徴とする超音波測定装置。
  7.  請求項1記載の超音波測定装置であって、前記時間領域波形及び前記判定部による判定結果のうちの少なくとも一方を表示部に表示させる出力制御部を更に備えることを特徴とする超音波測定装置。
  8.  請求項1記載の超音波測定装置であって、前記試験体の表面に設けられた送信用探触子に励振信号を供給することにより当該送信用探触子に前記超音波を発生させる送信部を更に備え、
     前記受信部は、前記試験体の表面に設けられた受信用探触子から前記検出信号を受信することを特徴とする超音波測定装置。
  9.  自己の長手方向に延びる一対の境界面を有し、前記一対の境界面の間に入射された超音波を複数の伝搬モードの板波として前記一対の境界面に沿って伝搬させる試験体の性状を判定する超音波測定装置において実行される超音波測定方法であって、
     前記板波を検出して得られた検出信号を受信して当該検出信号の時間領域波形を示す受信信号を出力するステップと、
     前記受信信号に基づき、前記時間領域波形のうち前記複数の伝搬モードの1つである第1の伝搬モードに対応する第1の波形部分の信号強度を検出するステップと、
     前記受信信号に基づき、前記時間領域波形のうち前記複数の伝搬モードの他の1つである第2の伝搬モードに対応する第2の波形部分の信号強度を検出するステップと、
     前記第1の波形部分の当該信号強度と前記第2の波形部分の当該信号強度とを互いに比較するステップと、
     その比較結果に基づいて前記試験体の性状を判定するステップと
    を備えることを特徴とする超音波測定方法。
  10.  請求項9記載の超音波測定方法であって、
     前記受信信号から前記第1の波形部分をサンプリングするステップと、
     前記受信信号から前記第2の波形部分をサンプリングするステップと
    を更に備え、
     前記第1の波形部分は、前記第1の伝搬モードの速度分散性を基に設定された第1のゲート時間内に前記受信信号からサンプリングされ、且つ、前記第2の波形部分は、前記第2の伝搬モードの速度分散性を基に設定された第2のゲート時間内に前記受信信号からサンプリングされることを特徴とする超音波測定方法。
  11.  請求項10記載の超音波測定方法であって、前記第1の伝搬モードが非対称モードであり、前記第2の伝搬モードが対称モードであることを特徴とする超音波測定方法。
  12.  請求項9記載の超音波測定方法であって、
     前記一対の境界面のうちの一方は、前記試験体の表面であり、
     前記一対の境界面のうちの他方は、前記試験体を構成する2つの層の間の境界部分であり、
     前記境界部分の性状が前記試験体の性状として判定されることを特徴とする超音波測定方法。
  13.  請求項9記載の超音波測定方法であって、前記比較結果は、前記第1の波形部分の当該信号強度と前記第2の波形部分の当該信号強度との比率であることを特徴とする超音波測定方法。
  14.  請求項9記載の超音波測定方法であって、前記第1の波形部分の当該信号強度及び前記第2の波形部分の当該信号強度は、振幅またはエネルギーのいずれか一方であることを特徴とする超音波測定方法。
PCT/JP2016/056262 2016-03-01 2016-03-01 超音波測定装置及び超音波測定方法 WO2017149658A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016545949A JP6109431B1 (ja) 2016-03-01 2016-03-01 超音波測定装置及び超音波測定方法
PCT/JP2016/056262 WO2017149658A1 (ja) 2016-03-01 2016-03-01 超音波測定装置及び超音波測定方法
US16/079,964 US11193912B2 (en) 2016-03-01 2017-01-31 Ultrasonic measurement apparatus and ultrasonic measurement method
EP17759517.0A EP3407060B1 (en) 2016-03-01 2017-01-31 Ultrasonic measurement system and ultrasonic measurement method
PCT/JP2017/003394 WO2017150046A1 (ja) 2016-03-01 2017-01-31 超音波測定装置及び超音波測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/056262 WO2017149658A1 (ja) 2016-03-01 2016-03-01 超音波測定装置及び超音波測定方法

Publications (1)

Publication Number Publication Date
WO2017149658A1 true WO2017149658A1 (ja) 2017-09-08

Family

ID=58666418

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/056262 WO2017149658A1 (ja) 2016-03-01 2016-03-01 超音波測定装置及び超音波測定方法
PCT/JP2017/003394 WO2017150046A1 (ja) 2016-03-01 2017-01-31 超音波測定装置及び超音波測定方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003394 WO2017150046A1 (ja) 2016-03-01 2017-01-31 超音波測定装置及び超音波測定方法

Country Status (4)

Country Link
US (1) US11193912B2 (ja)
EP (1) EP3407060B1 (ja)
JP (1) JP6109431B1 (ja)
WO (2) WO2017149658A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038119A (ja) * 2018-09-04 2020-03-12 三菱電機株式会社 超音波測定装置及び超音波測定方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20190133A1 (en) * 2019-01-31 2020-08-03 Halfwave As Fremgangsmåte for inspeksjon av rør
JP7236893B2 (ja) * 2019-03-20 2023-03-10 三菱電機株式会社 液体検知方法および液体検知装置
CN113607818B (zh) * 2021-08-04 2024-02-27 中北大学 一种多界面粘接质量超声检测装置及方法
JP2023027477A (ja) * 2021-08-17 2023-03-02 株式会社東芝 検査装置、処理装置及び検査方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367164A (ja) * 1989-08-04 1991-03-22 Nkk Corp 超音波探傷方法
JPH07191000A (ja) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd 超音波検査方法、超音波探触子および超音波顕微鏡
JP2001013118A (ja) * 1999-06-30 2001-01-19 Sumitomo Metal Ind Ltd 電磁超音波探触子
JP2003057213A (ja) * 2001-08-17 2003-02-26 Mitsubishi Electric Corp 超音波探傷装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524198B1 (ja) * 1970-11-07 1977-02-02
JPS524198A (en) 1975-05-27 1977-01-13 Nippon Signal Co Ltd:The Traffic signal control apparatus
JPS6284752U (ja) * 1985-11-15 1987-05-29
US5629485A (en) * 1994-12-13 1997-05-13 The B.F. Goodrich Company Contaminant detection sytem
US5804727A (en) * 1995-09-01 1998-09-08 Sandia Corporation Measurement of physical characteristics of materials by ultrasonic methods
US6393384B1 (en) * 1998-04-10 2002-05-21 Textron Systems Corporation Apparatus and method for remote ultrasonic determination of thin material properties using signal correlation
US6945114B2 (en) 2002-11-25 2005-09-20 The Johns Hopkins University Laser-air, hybrid, ultrasonic testing of railroad tracks
JP4120969B2 (ja) * 2005-07-04 2008-07-16 独立行政法人 宇宙航空研究開発機構 超音波試験方法及びこれを用いた超音波試験装置
EP2157426B1 (en) 2005-07-07 2012-09-19 Kabushiki Kaisha Toshiba Laser-based apparatus for ultrasonic detection
JP4673686B2 (ja) 2005-07-07 2011-04-20 株式会社東芝 表面検査方法およびその表面検査装置
WO2007068979A1 (en) * 2005-12-16 2007-06-21 Bae Systems Plc Detection of defects in welded structures
WO2008005311A2 (en) * 2006-06-30 2008-01-10 Carnegie Mellon University Methods, apparatuses, and systems for damage detection
JP4630992B2 (ja) * 2006-12-27 2011-02-09 独立行政法人 宇宙航空研究開発機構 超音波検査方法及びこれに用いる超音波検査装置
US7930128B2 (en) * 2007-04-16 2011-04-19 Acellent Technologies, Inc. Robust damage detection
US8090131B2 (en) * 2007-07-11 2012-01-03 Elster NV/SA Steerable acoustic waveguide
RU2485388C2 (ru) * 2008-01-11 2013-06-20 ПиАйАй Лимитед Устройство и блок датчиков для контроля трубопровода с использованием ультразвуковых волн двух разных типов
US20110029287A1 (en) * 2009-07-31 2011-02-03 Carnegie Mellon University Self-Diagnosing Transducers and Systems and Methods Therefor
JP5237923B2 (ja) * 2009-12-04 2013-07-17 株式会社豊田中央研究所 密着性評価装置及び方法
JP5629481B2 (ja) * 2010-03-16 2014-11-19 富士重工業株式会社 損傷診断システム
JP2012037307A (ja) 2010-08-05 2012-02-23 Toyota Central R&D Labs Inc 超音波検査システム
US8499632B1 (en) * 2010-08-23 2013-08-06 The Boeing Company Characterizing anomalies in a laminate structure
US8707787B1 (en) * 2011-03-04 2014-04-29 The Boeing Company Time delay based health monitoring system using a sensor network
US9201046B2 (en) * 2011-08-30 2015-12-01 Georgia Tech Research Corporation Weld analysis using laser generated narrowband Lamb waves
JP5909285B2 (ja) 2012-08-21 2016-04-26 株式会社Ihi 複合構造体の界面検査方法及び装置
US9689671B2 (en) * 2013-01-30 2017-06-27 University Of Cincinnati Measuring wall thickness loss for a structure
WO2015119498A1 (en) * 2014-02-05 2015-08-13 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno System and method for crack monitoring
US10473624B2 (en) * 2014-10-15 2019-11-12 Fbs, Inc. Shear wave sensors for acoustic emission and hybrid guided wave testing
WO2016062897A1 (en) * 2014-10-24 2016-04-28 Renishaw Plc Acoustic apparatus and method for inspection of an object
US20160209539A1 (en) * 2014-11-14 2016-07-21 Schlumberger Technology Corporation Method for Separating Multi-Modal Acoustic Measurements for Evaluating Multilayer Structures
FR3060121B1 (fr) * 2016-12-09 2019-05-17 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et dispositif de controle d'un collage entre deux substrats
US11378708B2 (en) * 2017-12-22 2022-07-05 Baker Hughes, A Ge Company, Llc Downhole fluid density and viscosity sensor based on ultrasonic plate waves
EP3762714A2 (en) * 2018-03-06 2021-01-13 Metis Design Corporation Damage detection system and method for detecting damage in fastened structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367164A (ja) * 1989-08-04 1991-03-22 Nkk Corp 超音波探傷方法
JPH07191000A (ja) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd 超音波検査方法、超音波探触子および超音波顕微鏡
JP2001013118A (ja) * 1999-06-30 2001-01-19 Sumitomo Metal Ind Ltd 電磁超音波探触子
JP2003057213A (ja) * 2001-08-17 2003-02-26 Mitsubishi Electric Corp 超音波探傷装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038119A (ja) * 2018-09-04 2020-03-12 三菱電機株式会社 超音波測定装置及び超音波測定方法
JP7199182B2 (ja) 2018-09-04 2023-01-05 三菱電機株式会社 超音波測定装置及び超音波測定方法

Also Published As

Publication number Publication date
US20200141906A1 (en) 2020-05-07
EP3407060B1 (en) 2023-10-18
EP3407060A1 (en) 2018-11-28
US11193912B2 (en) 2021-12-07
EP3407060A4 (en) 2019-01-09
JP6109431B1 (ja) 2017-04-05
JPWO2017149658A1 (ja) 2018-03-08
WO2017150046A1 (ja) 2017-09-08

Similar Documents

Publication Publication Date Title
JP6109431B1 (ja) 超音波測定装置及び超音波測定方法
Masserey et al. High-frequency guided ultrasonic waves for hidden defect detection in multi-layered aircraft structures
Cho et al. Nonlinear guided wave technique for localized damage detection in plates with surface-bonded sensors to receive Lamb waves generated by shear-horizontal wave mixing
WO2020233359A1 (zh) 一种用于金属薄板中应力分布测量的非线性Lamb波混频方法
Terrien et al. A combined finite element and modal decomposition method to study the interaction of Lamb modes with micro-defects
JP5166724B2 (ja) 超音波検査システム及び方法
Kundu et al. Fundamentals of nonlinear acoustical techniques and sideband peak count
Dhayalan et al. A hybrid finite element model for simulation of electromagnetic acoustic transducer (EMAT) based plate waves
Ryles et al. Comparative study of nonlinear acoustic and Lamb wave techniques for fatigue crack detection in metallic structures
CN101949894B (zh) 一种双频超声检测界面接触强度的方法
US9488623B2 (en) Guided wave mode sweep technique for optimal mode and frequency excitation
CN104407054A (zh) 基于兰姆波共线混叠的超声微损伤定位检测方法及装置
WO2015159378A1 (ja) 超音波検査装置及び超音波検査方法
JP5311766B2 (ja) 境界面検査装置及び境界面検査方法
Fierro et al. Nonlinear imaging (NIM) of flaws in a complex composite stiffened panel using a constructive nonlinear array (CNA) technique
Medina et al. Elastic constants of a plate from impact-echo resonance and Rayleigh wave velocity
Ostachowicz et al. Damage detection using laser vibrometry
Terrien et al. Numerical predictions and experiments for optimizing hidden corrosion detection in aircraft structures using Lamb modes
Wang et al. An improved damage index for nondestructive evaluation of a disbond in honeycomb sandwich structure using guided waves
Scalerandi et al. Discrimination between cracks and recrystallization in steel using nonlinear techniques
Xu et al. Study on single mode Lamb wave interaction with defect of plate by finite element model
KR101191364B1 (ko) 비선형 평가 시스템 및 장치
Zhu et al. The potential of ultrasonic non-destructive measurement of residual stresses by modal frequency spacing using leaky lamb waves
Lin et al. High sensitive evaluation fatigue of plate using high mode Lamb wave
Xiao et al. Thin-plate imaging inspection using scattered waves cross-correlation algorithm and non-contact air-coupled transducer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016545949

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892503

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892503

Country of ref document: EP

Kind code of ref document: A1