WO2017148235A1 - 一种无主机泊车雷达系统及控制方法 - Google Patents

一种无主机泊车雷达系统及控制方法 Download PDF

Info

Publication number
WO2017148235A1
WO2017148235A1 PCT/CN2017/072630 CN2017072630W WO2017148235A1 WO 2017148235 A1 WO2017148235 A1 WO 2017148235A1 CN 2017072630 W CN2017072630 W CN 2017072630W WO 2017148235 A1 WO2017148235 A1 WO 2017148235A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
pin
sensors
module
buzzer
Prior art date
Application number
PCT/CN2017/072630
Other languages
English (en)
French (fr)
Inventor
余晓鹏
Original Assignee
余晓鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 余晓鹏 filed Critical 余晓鹏
Priority to US16/074,709 priority Critical patent/US20190041504A1/en
Priority to EP17759086.6A priority patent/EP3425425A4/en
Publication of WO2017148235A1 publication Critical patent/WO2017148235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52004Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2015/932Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles for parking operations

Definitions

  • the invention relates to the field of vehicle parking radar systems, in particular to a hostless parking radar system and a control method thereof.
  • the parking radar system After more than a decade of widespread use, the parking radar system, commonly referred to as the reversing radar system, has grown to maturity.
  • the system was usually equipped with two to four sensors, a main unit (controller), an independent buzzer, or a buzzer designed to be integrated into the mainframe.
  • the system detects the obstacle by each sensor. When the detection distance reaches the alarm condition, the system drives the buzzer to sound the alarm.
  • the parking radar system in addition to the audible alarm prompt, communicates with the vehicle bus module through the host computer, for example, with the instrument and the multimedia display screen, and simultaneously displays the parking radar image display alarm prompt through the instrument or the multimedia display screen. Improved the utility of the parking radar system.
  • a conventional parking radar system also known as a parking radar system, generally includes a host 81, a plurality of sensors (also called sensors or distance sensors) 82a, 82b, 82c, 82d, And at least one alarm 83 connected to the host 81 and coordinated under the control of the host 81, wherein each sensor 82 detects an obstacle to obtain data and transmits the data to the host 81, respectively, and the host 81 analyzes the data. And determining the obstacle distance, when the actual distance is close to the alarm prompt condition, the host 81 drives the buzzer alarm 83 to perform an audible alarm prompt.
  • Part of the parking radar system communicates data through the host and the vehicle bus module.
  • a plurality of sensors are disposed on the front of the vehicle and or on the rear of the car bumper, each of two to four; the main unit 81 is mounted in the body of the vehicle.
  • the cost of the host in the entire parking radar system is relatively high. high.
  • the traditional host parking radar system has more connections between the host and each sensor, and more wires are used.
  • the hostless parking radar system In terms of product composition, the hostless parking radar system mainly omits the host (controller) required for a traditional parking radar system. In the depot application, it saves some connecting wires and saves the installation of the host. The cost of working hours, etc., so the operating cost of the complete system is reduced.
  • the bulletin number is CN1892249A, and there is no host reversing radar system. As shown in Fig. 2 and Fig. 3, it includes a main sensor 91 and one or more slave sensors, such as the slave sensor 92a, the slave sensor 92b, and the slave sensor 92c as shown.
  • the main sensor 91 has an obstacle detecting function and cooperatively controls and communicates with the operation timing of each slave sensor, which cancels the setting of the host 81.
  • the entire reversing radar system can shorten the length of the connecting line, and can also test the system on the bumper, thereby improving the testing efficiency of the whole vehicle.
  • This hostless reversing radar system because it separates the sensor into the main sensor 91 and the slave sensor, the two cannot be used universally, so the manufacturer needs to separately produce the two in the production, which leads to waste of the production line and low production efficiency. problem.
  • the user installs it is necessary to select and identify the two, and since the main sensor 91 and the slave sensor 92 have substantially the same shape, there is a hidden danger that the above two sensors are confused to cause a system failure. For this reason, there is no major defect in the host reversing radar system, so the subsequent development of the hostless parking radar system has technical improvements on this issue.
  • the hostless reversing radar system has the following drawbacks:
  • the slave sensors 92a, 92b, and 92c cannot communicate with the main sensor or communicate with the outside world, and therefore the slave sensors 92a, 92b, and 92c do not function normally even if they are themselves good;
  • the announcement number is CN201600454U, and there is no host reversing radar warning system.
  • the first sensor 61a input terminal RX is connected to the external network and detects the input high and low level signals, thereby determining that the sensor is the end portion.
  • a sensor 61a the output terminal TX of the first sensor 61a is connected to the input terminal RX of the second sensor 61b, the output terminal TX of the second sensor 61b is connected to the input terminal RX of the third sensor 61c, and the output terminal TX and the fourth terminal of the third sensor 61c are connected.
  • the input terminal RX of the sensor 61d is connected, and the output terminal TX of the fourth sensor 61d at the tail is connected to the warning module (buzzer or vehicle bus module).
  • the signals of the sensors 61a, 61b, 61c, and 61d are transmitted in series, the sensors operate in sequence and transmit data, and the sensor data is transmitted to the tail of the fourth sensor 61d for collective processing.
  • the fourth sensor 61d drives the warning module to give an alarm prompt.
  • the fourth sensor 61d which is responsible for coordinating the operation of each sensor, performing internal communication, realizing alarm output or communicating with the external vehicle bus module, is the main sensor of the system.
  • the relative announcement number is CN1892249A without host reversing radar system.
  • the biggest advantage of this hostless radar system is that the uniformity of each sensor is realized. The system does not need to have two kinds of sensors, which improves the convenience of the system in installation, operation and maintenance.
  • the fourth sensor 61d fails, when the hostless radar system is powered on, the system cannot perform complete and accurate self-checking and prompting on the third sensor 61c, the second sensor 61b, and the first sensor 61a;
  • the fourth sensor 61d fails, the third sensor 61c, the second sensor 61b, and the first sensor 61a cannot communicate with the fourth sensor 61d or communicate with the outside. Therefore, when the fourth sensor 61d fails, the third sensor 61c
  • the second sensor 61b and the first sensor 61a do not function normally even if they are themselves good;
  • the hostless reversing radar system is only connected to the fourth sensor 61d and can drive the buzzer to give an alarm prompt, and other sensors cannot, so when the fourth sensor 61d fails, the system controls the buzzer to be disabled. .
  • the announcement number is CN102129076A, a serial-free hostless parking radar system.
  • the second port of the analog switch of the first sensor 71a is connected to the external network and detected. Inputting a signal to determine the first sensor 71a that determines the sensor as the end, the first sensor 71a analog switch first port is connected to the second sensor 71b analog switch second port, and the second sensor 71b is analog switch first port and The third sensor 71c is connected to the switch second port, the third sensor 71c analog switch first port is connected to the fourth sensor 71d analog switch second port, and the tail fourth sensor 71d simulates the switch first port to be suspended.
  • the sensors 71a, 71b, 71c, 71d are connected to form an internal network by turning on the internal switch, so the sensors 71a, 71b, 71c, 71d can work simultaneously and perform two-way communication through the internal network; the first sensor 71a is the main system sensor.
  • the relative announcement number is CN1892249A without host reversing radar system. This hostless radar system also realizes the unification of each sensor. The system does not need to have two kinds of sensors. At the same time, the relative announcement number is CN201600454U without host reversing radar system.
  • This scheme has the following advantages: First, the reaction speed of the system is improved. Second, the system can perform triangulation (trigonometric function calculation), which is a more advanced auxiliary detection method.
  • the first sensor 71a fails, when the hostless radar system is powered on, the system cannot locate and assign ID numbers to the sensors, and cannot complete the second sensor 71b, the third sensor 71c, and the fourth sensor 71d. Accurate self-test and prompts;
  • the second sensor 71b fails, the third sensor 71c, and the fourth sensor 71d are good, but because the self-test fails and the physical connection is interrupted, the normal function cannot be performed;
  • the hostless parking radar system does not support direct connection and drive the buzzer for alarm prompts, but use the car bus module or other unit modules to drive the buzzer to alert the alarm, its functionality is insufficient, in some kind To a certain extent, it uses the car bus module to function as a host, which can be said to be not a completely hostless parking radar system;
  • the announcement number is CN1892249A without host reversing radar system
  • the announcement number is CN201600454U without host reversing radar warning system
  • the announcement number is CN102129076A
  • a serial-free hostless parking radar system compared with the conventional host parking radar system, the hostless parking radar system reduces the operating cost of the system, and at the same time, with the improvement of the hostless parking radar technology, its function It is getting stronger and stronger, and it is getting closer to the traditional host parking radar system in terms of function and performance. Even so, the current hostless parking radar system, summed up, has one or one of the following listed Defects:
  • the system can not directly connect and drive the buzzer to make an audible alarm prompt, or only one of the sensors is connected and drives the buzzer to make an audible alarm prompt. Not all sensors are connected and drive the buzzer to make an audible alarm prompt.
  • the non-host parking radar system that cannot directly connect and drive the buzzer to provide an audible alarm prompt requires an audible alarm prompt by means of the vehicle bus module or another unit module. The functionality of the system is poor, and it can be said that it is not strictly in the sense.
  • Host parking radar system or, only one of the sensors is connected to and drives the buzzer to make an audible alarm prompt. Not all sensors are connected and drive the buzzer to make an audible alarm prompt.
  • the hostless parking radar system fails when the sensor that connects and drives the buzzer fails. When the system's audible alarm function is disabled, the system's functionality is relatively poor.
  • the system cannot communicate with the vehicle bus module, or only one of the sensors is connected to the vehicle bus module for communication. Not all sensors communicate with the vehicle bus module.
  • the hostless parking radar system that cannot communicate with the vehicle bus module causes the parking radar system to perform the parking radar image display function through the automobile instrument or the vehicle multimedia display screen, and the system has poor functionality. Or, only one of the sensors communicates with the vehicle bus module, and not all of the sensors communicate with the vehicle bus module. If the sensor connected to the vehicle bus module fails, the data transmission of the parking radar system The function fails, causing all or part of the system function to fail, and the functionality of the system is relatively poor.
  • an object of the present invention is to provide a hostless parking radar system and a control method with improved structure and perfect functions.
  • the present invention provides a hostless parking radar system comprising a plurality of sensors, wherein:
  • Each sensor unit can independently act as a primary sensor to coordinate other sensors as slave sensors and control the timing of operation of each slave sensor;
  • Each sensor unit is independently connected to and communicates with the vehicle bus module and/or the buzzer.
  • each of the sensors is the same.
  • only one of the sensors can be used as the main sensor during the same working time.
  • the senor comprises a single chip microcomputer 11, an ultrasonic sensor 13, a transmitting module 14, a receiving module 15, a power module 16, a detecting and controlling module 17 and a detecting and controlling module 2;
  • the single chip 11 is a control core, which generates ultrasonic pulses, After being amplified by the transmitting module 14, the ultrasonic sensor 13 is driven to transmit ultrasonic waves; the ultrasonic sensor unit 13 receives the return signal, and is amplified and filtered by the receiving module 15 and then sent to the single-chip microcomputer 11 for analysis and processing.
  • detection and control module 17 and the detection and control module 2 18 are both connected to the single chip microcomputer 11, and the detection and control module 17 or the detection and control module 2 18 is connected to the buzzer 4 and communicates. .
  • the senor further includes a communication module 12, and the communication module 12 is connected to and communicates with the vehicle bus module 3.
  • the senor is provided with a pin PIN1, a pin PIN2, a pin PIN3, a pin PIN4, and a pin PIN5 for external connection; wherein, inside the sensor, the pin PIN1 and the detection and control module A 17 connection, a pin PIN2 is connected to the detection and control module 2 18, a pin PIN3 is connected to the communication module 12, a pin PIN4 is a ground terminal, and a pin PIN5 is connected to the power module 16.
  • pin PIN1, the pin PIN2, and the pin PIN3 can be used as input pins and output pins between the respective connection units.
  • the pin PIN1 and the pin PIN2 are connected to a high-level power terminal, a low-level ground terminal or a floating end, and the pin PIN1 and the pin PIN2 in each of the sensors are further connected.
  • the connection combinations are all different to form a distinguishing feature of the input voltage signal between the pin PIN1 and the pin PIN2.
  • pin PIN1 and the pin PIN2 are used as input pins, respectively, three external signal inputs of high level, low level, and floating are respectively received, and each of the sensors passes through the pin PIN1 and the tube therein.
  • the foot PIN2 detects different input voltage signal characteristics to realize the sensor positioning and ID number assignment.
  • the senor is connected to the vehicle bus module 3 via a pin PIN3 and is connected to the system communication line.
  • a high-level line 5 and a high-level line 2 are disposed in the system, and the high-level line 5 and the high-level line 2 are connected to an external power source, wherein the tubes of the respective sensors are
  • the pin PIN5 is connected to the high level line 5-1, and the pin PIN1 and/or the pin PIN2 are connected to the high level line 269.
  • the high level line two 6 serves as an input line and an output line.
  • the buzzer 4 is disposed on the high level line 2-6.
  • the buzzer 4 is independently provided or integrated with other components.
  • a hostless parking radar control method for implementing the above system specifically:
  • the first sensor whose system is set normally is the main sensor of the system, and the remaining sensors are slave sensors;
  • the main sensor commands the slave sensor to self-test and receives the self-test result. After comprehensively judging all the sensor states, the main sensor performs a corresponding self-test alarm prompt to the buzzer, or the main sensor sends the self-test result to the vehicle bus module for prompting. ;
  • the main sensor coordinates the sensors to work in sequence, perform internal communication, realize alarm output and external communication with the vehicle bus module.
  • step 2) and the step 3 if the first sensor fails, when the system is powered on, the second sensor does not receive the self-test inquiry information of the first sensor at a predetermined time, and the second sensor Acts as the primary sensor.
  • the self-test mode of each sensor is:
  • the hostless parking radar system of the present invention can be used as a main sensor by providing a plurality of sensors having an equivalent structure, thereby embodying the utility of the hostless parking radar system of the present invention, and more importantly, ensuring the same.
  • the functional integrity and reliability of the parking radar system can be used as a main sensor by providing a plurality of sensors having an equivalent structure, thereby embodying the utility of the hostless parking radar system of the present invention, and more importantly, ensuring the same.
  • the functional integrity and reliability of the parking radar system can be used as a main sensor by providing a plurality of sensors having an equivalent structure, thereby embodying the utility of the hostless parking radar system of the present invention, and more importantly, ensuring the same.
  • Figure 1 is a block diagram showing the structure of a conventional host parking radar
  • FIG. 2 is a block diagram showing the structure of a hostless parking radar
  • Figure 3 is a block diagram showing the structure of a hostless parking radar
  • Figure 4 is a block diagram of a structure of a hostless parking radar structure
  • Figure 6 is an outline view of the sensor of the present invention.
  • Figure 7 is a schematic block diagram of the internal sensor of the present invention.
  • Figure 8 is a block diagram 1 of the structure of the hostless parking radar of the present invention.
  • Figure 9 is a block diagram 2 of the structure of the hostless parking radar of the present invention.
  • Figure 10 is a block diagram 3 of the structure of the hostless parking radar of the present invention.
  • Figure 11 is a schematic diagram showing the internal electrical structure of the hostless parking radar sensor of the present invention.
  • spatially relative terms such as “upper”, “lower”, “left”, “right”, etc., may be used herein to describe one element or feature shown in the figure relative to another element or The relationship of features. It will be understood that the spatial terms are intended to encompass different orientations of the device in use or operation. For example, elements in the “a” or “an” Thus, the exemplary term “lower” can encompass both an s.
  • the device may be otherwise positioned (rotated 90 degrees or at other orientations), and the relative description of the space used herein may be interpreted accordingly.
  • the invention provides a hostless parking radar system, comprising a plurality of sensors, wherein:
  • Each sensor unit can independently act as a primary sensor to coordinate other sensors as slave sensors and control the timing of operation of each slave sensor;
  • Each sensor unit is independently connected to and communicates with the vehicle bus module and/or the buzzer.
  • FIG. 6 The shape of the sensor described in the present invention is shown in FIG. 6, the internal principle block diagram is shown in FIG. 7, and the internal electrical schematic diagram is shown in FIG.
  • the internal structure of each of the sensors is the same to ensure the compatibility of each sensor function, thereby improving its versatility.
  • Each sensor includes a single chip microcomputer 11, a communication module 12, an ultrasonic sensor 13, an ultrasonic transmitting module 14, an ultrasonic receiving module 15, a power module 16, a detecting and controlling module 17, and a detecting and controlling module 221.
  • the single chip microcomputer 11 is a control core which generates an ultrasonic pulse and is driven by the transmitting module 14 to drive the ultrasonic sensor 13 to transmit ultrasonic waves.
  • the ultrasonic sensor unit 13 receives the return signal, and is amplified and filtered by the receiving module 15 and then sent to the single chip microcomputer 11.
  • the single chip microcomputer 11 analyzes and processes the obstacle distance information.
  • the detection and control module 17 or the detection and control module 2 18 is connected to and communicates with the buzzer 4.
  • the communication module 12 is connected and communicates with the vehicle bus module 3.
  • the sensor includes five pins: pin PIN1, pin PIN2, pin PIN3, pin PIN4, and pin PIN5, which are respectively connected to power, ground, communication, detection and control, detection and control. Namely: inside the sensor, the pin PIN1 is connected to the detection and control module 17 , the pin PIN 2 is connected to the detection and control module 2 18 , the pin PIN 3 is connected to the communication module 12 , the pin PIN 4 is the ground terminal , the pin PIN 5 is The power module 16 is connected. Pin PIN1, pin PIN2, and pin PIN3 can be used as input and output pins between the respective connection units.
  • Pin PIN5 is the power supply pin, 12V or 24V positive input pin, which is connected to the power module 16.
  • Connect; pin PIN4 is 0V negative input pin, that is, ground. Inside the sensor, the pin PIN5 and the pin PIN4 pass through the power module 16, and the power module 16 is connected to other modules and provides power support.
  • the pin PIN3 is a communication pin of the sensor, and is internally connected to the communication module 12, and externally connected to the system communication line to be connected with the car bus module 3.
  • Pin PIN1, pin PIN2 Inside the sensor, pin PIN1 is connected to the detection and control module one 17, and pin PIN2 is connected to the detection and control module 218. Outside the sensor, the pin PIN1 and the pin PIN2 are connected to the high-level power supply terminal, the low-level ground terminal or the floating terminal, and the connection combinations of the pin PIN1 and the pin PIN2 in each sensor are different. To form a distinguishing feature of the input voltage signal between the pin PIN1 and the pin PIN2.
  • pin PIN1 and the pin PIN2 are used as input pins, respectively, three external signal inputs of high level, low level and floating are respectively received, and different input voltage signal combinations are detected through the pin PIN1 and the pin PIN2 to realize sensor positioning and ID number assignment.
  • the pin PIN1 and the pin PIN2 are used as output pins, they can directly connect and drive the buzzer 4 to perform an audible alarm.
  • the system is provided with a high level line 5 and a high level line 2, 6 and a high level line 5 and a high level line 6 are connected to an external power source, wherein the pins PIN5 of each sensor are both high and high.
  • the flat line 1-5 is connected, the pin PIN1 and/or the pin PIN2 are connected to the high level line 269.
  • the high level line 2 is used as the input line and the output line, and the buzzer 4 is set on the high level line 2 6.
  • FIG. 8, FIG. 9, and FIG. 10 are structural block diagrams of a hostless radar system according to the present invention (a network connection structure diagram of the system), which are respectively an example 1, a second example, and a third example, and the second and third embodiments of the present invention are examples of the present invention.
  • the car bus module 3 is simplified in Figure 9 and the buzzer 4 is simplified in Figure 10.
  • the pin PIN1 and the pin PIN2 are respectively input “high and high”, and the single chip microcomputer recognizes that the sensor is the first sensor 1a of the system, and assigns the corresponding ID number; PIN1 and PIN2 respectively input “high and low”, and are set to The second sensor 1b of the system assigns a corresponding ID number; PIN1 and PIN2 respectively input "low, high”, and are set as the third sensor 1c of the system, and assign corresponding ID numbers; PIN1 and PIN2 respectively input "high, floating", Set to the fourth sensor 1d of the system and assign the corresponding ID number.
  • Pin PIN1 and pin PIN2 also serve as control output pins.
  • pin PIN1 and pin PIN2 When pin PIN1 and pin PIN2 are connected to power supply 2 as a high-level input pin through buzzer 4, it is not only used as a level detection pin, but also as a level detection pin. The output pin of the buzzer 4 is controlled.
  • the connection structure of each sensor pin PIN1 and pin PIN2 is shown in FIG. 8. It is a connection application example of the present invention, and other connection application examples with similar effects are not listed here, and belong to the scope of the present invention.
  • Pin PIN3 is the communication pin of the sensor, and pin PIN3 is connected to the communication module 12.
  • the pins PIN3 of each sensor are connected by a single wire, and each sensor is connected to each other through the single wire and communicates in two directions to realize internal communication of the system; the single wire can also be connected to the vehicle bus module 3 at the same time to realize the system and the vehicle bus module. Communication between 3, that is, the system communicates with the outside world. Communication is usually a LIN bus communication method.
  • a hostless parking radar control method specifically:
  • the first sensor whose system is set normally is the main sensor of the system, and the remaining sensors are slave sensors;
  • the main sensor commands the slave sensor to self-test and receives the self-test result. After comprehensively judging all the sensor states, the main sensor performs a corresponding self-test alarm prompt to the buzzer, or the main sensor sends the self-test result to the vehicle bus module for prompting. ;
  • the main sensor coordinates the sensors to work in sequence, perform internal communication, realize alarm output and/or external communication with the vehicle bus module.
  • the second sensor acts as the self-test inquiry information of the first sensor at the specified time, and the second sensor acts as Main sensor.
  • the self-test mode of each sensor is:
  • the hostless parking radar control method of the present invention can realize system power-on self-test, normal obstacle detection work, buzzer 4 drive control alarm, communication, etc.
  • the body description is as follows:
  • each sensor When the system is powered on, each sensor is detected by different combined level inputs.
  • the system realizes the positioning of each sensor and the assignment of ID numbers.
  • the first sensor 1a with good system setting is the main sensor of the system, and each sensor uses LIN bus. Connect and communicate.
  • the main sensor inquires about the self-test results of the second sensor 1b, the third sensor 1c, and the fourth sensor 1d, and the second sensor 1b, the third sensor 1c, and the fourth sensor 1d answer the main sensor self-test result, if the second sensor 1b, the third sensor 1c, the fourth sensor 1d is abnormal. If the failure occurs, the main sensor cannot receive the self-test response information, so the sensor is judged to be invalid, and after all the sensor states are comprehensively judged, the main sensor responds to the buzzer 4 accordingly. Self-test alarm prompt, or the main sensor sends the self-test result to the vehicle bus module 3, and the vehicle bus module 3 or other unit module performs the corresponding self-test alarm prompt, which may be an audible alarm prompt or an image alarm prompt. .
  • the second sensor 1b does not receive the self-test inquiry information of the first sensor 1a at a predetermined time, and the second sensor 1b functions as the main sensor, and inquires other sensors.
  • the other sensor replies to the second sensor 1b, and performs buzzer alarm output through the second sensor 1b or external communication with the vehicle bus module 3.
  • the specific implementation can be: First, all sensors are no abnormality, buzzer 4 is called 1.0 second; Second, when the first sensor 1a fails, the buzzer 4 sounds once, 0.4 seconds; when the second When the sensor 1b fails, the buzzer 4 sounds twice, each time 0.4 seconds; when the third sensor 1c fails, the buzzer 4 sounds three times, each time 0.4 seconds; when the fourth sensor 1d fails, then The buzzer 4 sounds four times, each time 0.4 seconds; when several of the sensors fail, the buzzer 4 sounds other voice prompts; third, when all the sensors fail, the buzzer 4 does not sound.
  • the invention has no host parking radar, and the system can inform the driver or the after-sales maintenance personnel at one time. Whether the status of each sensor in the current system is good or not, if the sensor fails, the system can be powered on at the same time for all failures at the same time. The sensor performs accurate and complete determinations and makes corresponding alarm prompts. If any sensor fails, it does not physically affect other sensors.
  • the main sensor coordinates the sensors to work in sequence, performs internal communication, realizes alarm output, and performs external communication with the vehicle bus module 3. If the first sensor 1a is a good product, the first sensor 1a operates as a main sensor to coordinate the sensors in sequence. If the first sensor 1a fails, the second sensor 1b acts as a main sensor to coordinate the other non-failed sensors to operate in sequence. Therefore, the hostless parking radar system of the present invention, when any sensor fails, does not physically cause other good sensor failures in the system after power-on, but can be set according to system requirements and settings, other sensors can still be Continue to work normally and play a role.
  • the hostless parking radar system of the invention is shown in Fig. 8.
  • Each sensor of the system is connected with a buzzer alarm through a pin PIN1 or a pin PIN2, so that each sensor of the system can be connected and drive the buzzer 4 to perform an audible alarm prompt.
  • the system will automatically set another non-failed probe to act as the main probe after power-on, and perform an audible alarm prompt, self-test result output alarm and normal object detection distance information.
  • the alarms are the same. This feature not only embodies the better functionality of the hostless parking radar system of the present invention, but more importantly, it ensures the functional integrity and reliability of the parking radar system.
  • the invention has no host parking radar system, as shown in Fig. 8.
  • Each sensor of the system is connected with the vehicle bus module 3 through the LIN bus.
  • the system automatically sets another failure.
  • the probe acts as a primary probe and communicates with the vehicle bus module 3. This feature not only embodies the better functionality of the hostless parking radar system of the present invention, but more importantly, it ensures the functional integrity and reliability of the parking radar system.
  • Other hostless parking radar systems either connect only one sensor (primary sensor) to the vehicle bus module; either only one sensor is connected to the buzzer alarm; or the sensor and system do not support direct connection and drive beep
  • the device performs alarms; either each sensor self-test (positioning and ID assignment, fault detection), data transmission, power connection, etc. physically have a series structure; and these reasons cause the system to have one or the other functional defects.
  • each sensor is independently represented as an equal and equivalent manner in the system regardless of level input, alarm output, data transmission, or power supply.
  • Each sensor in the system determines the orientation and the assigned ID number through combined level detection; each sensor can directly connect and drive the buzzer 4 to give an alarm prompt;
  • the sensors are connected by a single wire and can be connected to the vehicle bus module 3 at the same time to realize internal communication of the system and communicate with the outside; each sensor is connected to the external power source 2 in parallel and in an equivalent manner.
  • the system can perform complete and accurate self-test on all sensors at the same time. In case of failure of any sensor, the system can simultaneously detect and judge the status of each sensor at power-on. (invalid or good). This feature not only facilitates the driver's judgment of the state of the radar system, but also greatly facilitates the after-sales service personnel to troubleshoot the system.
  • each sensor in the system can be connected and drive the buzzer 4 to make an audible alarm prompt.
  • the system does not need to use the car bus module 3 or other unit modules to make an audible alarm prompt; nor is it like some hostless parking radar systems, only one of the sensors is connected and drives the buzzer 4 to make an audible alarm prompt (when this When the sensor fails, the system's audible alarm function is disabled.
  • the invention has no host parking radar system, and each sensor of the system can connect and drive the buzzer 4 to perform an audible alarm prompt.
  • the system automatically sets after power-on.
  • Another non-failed probe acts as the main probe, and the audible alarm prompts, the system self-test result output alarm and the normal object detection distance information prompt alarm can be operated normally.
  • each sensor of the system can communicate with the vehicle bus module 3.
  • the hostless parking radar system that cannot communicate with the vehicle bus module 3 causes the parking radar system to perform radar image display function through the automobile instrument or the vehicle multimedia display screen, and the system has poor functionality. Only the hostless parking radar system in which one of the sensors communicates with the vehicle bus module 3, when the sensor fails, the data transmission function of the system fails, resulting in failure of all or part of the system function.
  • the invention has no host parking radar system, and each sensor of the system is connected with the vehicle bus module 3 through the LIN bus.
  • the system automatically sets another non-failed probe to act as the main The probe communicates with the vehicle bus module 3.
  • the hostless parking radar system of the present invention realizes all the functional features of the conventional host parking radar system, that is, the hostless parking radar system of the present invention overcomes all other currently hostless parking radars.
  • the various defects of the system have made the hostless radar system almost unlimited in its application, and achieved a major breakthrough in technology.
  • the hostless parking radar system of the present invention the simplest way is that the system has an equivalent number of ultrasonic sensors, a buzzer alarm that is independent or integrated with other components, and usually has four sensors in a system configuration.
  • the invention has no host parking radar system, and the number of sensors configured in the system may also be two or three or more than four.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种无主机泊车雷达系统及控制方法,包括若干个传感器(1a-1d),其中:每个传感器单元均能够独立作为主传感器,以协调其他传感器作为从属传感器,并控制各个从属传感器的工作时序;每个传感器单元均独立与车载总线模块(3)和/或蜂鸣器(4)连接并通讯。通过设置具有相同结构的数个传感器,各个传感器均能够作为主传感器,确保了泊车雷达系统的功能完整性、可靠性。

Description

一种无主机泊车雷达系统及控制方法 技术领域
本发明涉及车载泊车雷达系统领域,尤其是一种无主机泊车雷达系统及控制方法。
背景技术
经过十多年的普及运用,泊车雷达系统,即通常我们所说的倒车雷达系统,已发展日趋成熟。早期的泊车雷达系统,系统通常配置有两至四个传感器,一个主机(控制器),一个独立蜂鸣器,或蜂鸣器设计集成于主机内。系统通过各传感器对障碍物体进行探测,当探测距离达到报警条件时,系统通过主机驱动蜂鸣器进行声音报警提示。现阶段的泊车雷达系统,除了进行声音报警提示,通过主机与车载总线模块通讯,譬如与仪表、多媒体显示屏连接及通讯,通过仪表或多媒体显示屏同时进行泊车雷达图像显示报警提示,进一步提升了泊车雷达系统的功用性。
如图1所述,为一种传统的泊车雷达系统,又称倒车雷达系统,一般包含主机81,多个传感器(也称感测器或距离感测器)82a、82b、82c、82d,以及至少一个报警器83,该多个传感器分别与主机81相连,并在主机81的控制下协调工作,其中每一个传感器82探测障碍物获得数据并分别把数据传输给主机81,主机81分析数据并判断障碍物距离,当实际距离较近符合报警提示条件时,主机81驱动蜂鸣报警器83进行声音报警提示。部分泊车雷达系统,通过主机与车载总线模块通讯进行数据传输。通常,多个传感器布置于汽车前方及或后方汽车保险杠上,各为两至四个;主机81安装布置于汽车车身内。
对于传统有主机泊车雷达系统,特别是当系统所配置的传感器个数较少,譬如系统配置四个、三个或两个传感器,主机在整套泊车雷达系统里面所占的成本比例相对较高。同时,传统有主机泊车雷达系统,主机与各个传感器之间的连线较多,导线用材较多。
近年,基于泊车雷达系统成本降低考虑,无主机泊车雷达系统开始 发展运用,在产品组成上,无主机泊车雷达系统主要是省略了一个传统泊车雷达系统所需的主机(控制器),在车厂运用上,节省了一些连接导线,也节省了主机的安装工时成本等,因此成套系统的运用成本有所降低。
但目前所有无主机泊车雷达系统,皆存在一些缺陷。
公告号为CN1892249A,无主机倒车雷达系统,如图2、图3所示,其包括一个主传感器91以及一个或一个以上的从属传感器,如图示的从属传感器92a、从属传感器92b、从属传感器92c,该主传感器91具有障碍物探测功能,并协调控制各从属传感器的工作时序并与之通讯,其取消了主机81的设置。同时由于主传感器91与从属传感器均设置在保险杠上,故使得整个倒车雷达系统能缩短连接线的长度,并还能实现在保险杠上对系统进行测试,从而提高整车的测试效率。
此无主机倒车雷达系统,由于其将传感器区分为主传感器91和从传感器,两者不能通用,故厂家在生产制造时需要对两者进行分别生产,从而带来浪费生产线及生产效率偏低的问题。同时用户在安装时,还需要对两者进行挑选辨认,而由于主传感器91和从属传感器92外形又大致相同,故存在混淆上述两种传感器从而引发系统故障的隐患。这为此无主机倒车雷达系统的重大缺陷,因此后续发展的无主机泊车雷达系统,在此问题上均有做技术改进。
如图2、图3所示无主机倒车雷达系统,还存在如下缺陷:
一、当主传感器91失效后,无主机雷达系统在上电时,系统不能对从属传感器92a、92b、92c作出完整、准确的自检及提示;
二、当主传感器91失效后,从属传感器92a、92b、92c因不能与主传感器通讯或与外界进行通讯,因此从属传感器92a、92b、92c即使自身良好,但也发挥不了正常功能;
三、仅主传感器91与蜂鸣器连接、并可驱动蜂鸣器进行报警提示,从属传感器无此功能,因此当主传感器91失效时,系统对蜂鸣器的驱动控制则已失效。
公告号为CN201600454U,无主机倒车雷达警示系统,如图4所示,第一传感器61a输入端RX连外部网络并通过检测其输入的高低电平信号,以此判断确定此传感器为端部的第一传感器61a,第一传感器61a输出端TX与第二传感器61b输入端RX相连接,第二传感器61b输出端TX与第三传感器61c输入端RX相连接,第三传感器61c输出端TX与第四传感器61d输入端RX相连接,尾部的第四传感器61d输出端TX与警示模块(蜂鸣器或车载总线模块)相连接。传感器61a、61b、61c、61d的信号传输为串联连接的方式,传感器依次工作并传递数据,各传感器数据传至尾部的第四传感器61d汇总处理。
如满足报警条件,则第四传感器61d驱动警示模块进行报警提示。通常,我们称负责协调各传感器按序工作、进行内部通讯,实现报警输出或与外界车载总线模块进行通讯的第四传感器61d为系统的主传感器。相对公告号为CN1892249A无主机倒车雷达系统,此无主机雷达系统的最大优点是实现了各个传感器的统一,系统不需设两种传感器,提高了系统在安装、运用、维护等方面的便利性。
但此无主机倒车雷达警示系统,存在如下缺陷:
一、当第四传感器61d失效时,那该无主机雷达系统在上电时,系统不能对第三传感器61c、第二传感器61b、第一传感器61a作出完整、准确的自检及提示;
二、当第四传感器61d失效时,第三传感器61c、第二传感器61b、第一传感器61a因不能与第四传感器61d通讯或与外界进行通讯,因此第四传感器61d失效时,第三传感器61c、第二传感器61b、第一传感器61a即使自身良好,但也发挥不了正常功能;
三、此无主机倒车雷达系统因仅为第四传感器61d连接并可驱动蜂鸣器进行报警提示,其它传感器不能,因此当第四传感器61d失效时,系统对蜂鸣器的驱动控制则已失效。
公告号为CN102129076A,一种串联结构的无主机泊车雷达系统,如图5所示,第一传感器71a的模拟开关第二端口连外部网络并检测其 输入信号,以此判断确定此传感器为端部的第一传感器71a,第一传感器71a模拟开关第一端口与第二传感器71b模拟开关第二端口相连接,第二传感器71b模拟开关第一端口与第三传感器71c模拟开关第二端口相连接,第三传感器71c模拟开关第一端口与第四传感器71d模拟开关第二端口相连接,尾部的第四传感器71d模拟开关第一端口悬空。传感器71a、71b、71c、71d上电后通过接通内部开关连接形成内部网络,所以传感器71a、71b、71c、71d可同时工作,并通过内部网络进行双向通讯;第一传感器71a为系统的主传感器。相对公告号为CN1892249A无主机倒车雷达系统,此无主机雷达系统也实现了各个传感器的统一,系统不需设两种传感器。同时,相对公告号为CN201600454U无主机倒车雷达系统,此方案有如下优点:一、提高了系统的反应速度,二、系统可以进行三角定位(三角函数计算),这是较先进的辅助探测方式。
但此无主机泊车雷达系统,存在如下缺陷:
一、当第一传感器71a失效后,无主机雷达系统在上电时,系统不能给各传感器进行定位以及分配ID号,不能对第二传感器71b、第三传感器71c、第四传感器71d作出完整、准确的自检及提示;
二、当第一传感器71a失效后,第二传感器71b、第三传感器71c、第四传感器71d即使自身良好,但因为自检失败,且物理连接中断,故也发挥不了正常功能;
三、此无主机泊车雷达系统,系统不支持直接连接并驱动蜂鸣器进行报警提示,而是利用车载总线模块或其它单元模块驱动蜂鸣器进行报警提示,其功能性不足,在某种程度上可以说,其利用车载总线模块充当了主机的功能,可以说其不是完全意义上的无主机泊车雷达系统;
四、当第一传感器71a失效后,即使第二传感器71b、第三传感器71c、第四传感器71d自身良好,但因其不与车载总线模块进行连接及通讯,因此系统与车载总线模块的通讯则已失效。
以上,公告号为CN1892249A无主机倒车雷达系统、公告号为CN201600454U无主机倒车雷达警示系统、公告号为CN102129076A 一种串联结构的无主机泊车雷达系统,相对于传统有主机泊车雷达系统,无主机泊车雷达系统降低了系统的运用成本,同时,随着无主机泊车雷达技术的提升,其功能性越来越强,在功能、性能上越来越靠近传统有主机泊车雷达系统;但即便于此,目前的无主机泊车雷达系统,总结起来,皆存在如下所列其中或一条或几条的缺陷:
一、上电时,当某一传感器(主要为主传感器)失效时,导致系统不能对所有传感器进行完整及准确的自检,即在某一传感器失效的情形下,上电时系统不能同时判断其它各个传感器状态为失效或良好。
二、上电后,当某一传感器失效时,导致系统其它即使自身良好的传感器探测功能失效,致使系统整体探测功能失效。
三、系统不可直接连接并驱动蜂鸣器进行声音报警提示,或者仅为其中某一个传感器连接并驱动蜂鸣器进行声音报警提示,并非所有传感器连接并驱动蜂鸣器进行声音报警提示。不可直接连接并驱动蜂鸣器进行声音报警提示的无主机泊车雷达系统,需借助车载总线模块或别的单元模块进行声音报警提示,系统的功能性较差,可以说不是严格意义上的无主机泊车雷达系统。或者,仅为其中某一个传感器连接并驱动蜂鸣器进行声音报警提示,并非所有传感器连接并驱动蜂鸣器进行声音报警提示的无主机泊车雷达系统,当连接并驱动蜂鸣器的传感器失效时,则系统的声音报警功能失效,故系统的功能性相对较差。
四、系统不可与车载总线模块进行通讯,或者仅为其中某一个传感器与车载总线模块连接进行通讯,并非所有传感器与车载总线模块进行通讯。不可与车载总线模块进行通讯的无主机泊车雷达系统,导致泊车雷达系统不能通过汽车仪表或车载多媒体显示屏等进行泊车雷达图像显示功能,系统的功能性较差。或者,仅为其中某一个传感器与车载总线模块通讯,并非所有传感器均与车载总线模块通讯的无主机泊车雷达系统,当与车载总线模块连接的传感器失效时,则泊车雷达系统的数据传输功能失效,导致系统功能全部或局部失效,系统的功能性相对较差。
发明内容
针对现有技术存在的问题,本发明的目的在于提供一种结构经过改进、功能完善的无主机泊车雷达系统及控制方法。
为实现上述目的,本发明一种无主机泊车雷达系统,包括若干个传感器,其中:
每个传感器单元均能够独立作为主传感器,以协调其他传感器作为从属传感器,并控制各个从属传感器的工作时序;
每个传感器单元均独立与车载总线模块和/或蜂鸣器连接并通讯。
进一步,每一个所述传感器内部结构均相同。
进一步,在同一工作时间,只能有一个所述传感器作为主传感器。
进一步,所述传感器包括单片机11、超声波传感器13、发射模块14、接收模块15、电源模块16、检测及控制模块一17和检测及控制模块二18;单片机11为控制核心,其产生超声波脉冲,并经过发射模块14放大后驱动超声波传感器13发送超声波;超声波传感器单元13接收返回信号,并由接收模块15放大滤波处理后输送至单片机11进行分析处理。
进一步,所述检测及控制模块一17和检测及控制模块二18均与所述单片机11连接,所述检测及控制模块一17或检测及控制模块二18与所述蜂鸣器4连接并通讯。
进一步,所述传感器还包括通讯模块12,该通讯模块12与所述车载总线模块3连接并通讯。
进一步,所述传感器上设置有用于外部连接的管脚PIN1、管脚PIN2、管脚PIN3、管脚PIN4、管脚PIN5;其中,在所述传感器内部,管脚PIN1与所述检测及控制模块一17连接,管脚PIN2与所述检测及控制模块二18连接,管脚PIN3与所述通讯模块12连接,管脚PIN4为接地端,管脚PIN5与所述电源模块16连接。
进一步,所述管脚PIN1、管脚PIN2和管脚PIN3能够作为相应连接单元之间的输入管脚和输出管脚。
进一步,所述管脚PIN1、管脚PIN2连接于高电平的电源端、低电平的接地端或悬空端,每一个所述传感器内的所述管脚PIN1、管脚PIN2 的连接组合形式均不相同,来形成所述管脚PIN1、管脚PIN2之间输入电压信号的区别特征。
进一步,所述管脚PIN1、管脚PIN2作为输入管脚时,分别接收外部高电平、低电平、悬空三种信号输入,每一个所述传感器通过其内的所述管脚PIN1、管脚PIN2检测不同的输入电压信号特征,实现所述传感器定位及ID号分配。
进一步,所述传感器通过管脚PIN3外连系统通讯线,来与所述车载总线模块3连接并通讯。
进一步,系统内设置有高电平线路一5和高电平线路二6,高电平线路一5和高电平线路二6均与外接电源相连接,其中,各个所述传感器的所述管脚PIN5均与高电平线路一5连接,所述管脚PIN1和/或所述管脚PIN2与高电平线路二6连接。
进一步,所述高电平线路二6作为输入线路和输出线路。
进一步,所述蜂鸣器4设置在所述高电平线路二6上。
进一步,所述蜂鸣器4为独立设置或者集成于其它部件。
一种实施上述系统的无主机泊车雷达控制方法,具体为:
1)系统上电时,通过检测各个传感器的输入电压信号的区别特征,来鉴定各个传感器的定位及对各个传感器分配ID号;
2)系统设定正常的第一传感器为系统的主传感器,其余传感器为从属传感器;
3)主传感器指令从属传感器自检,并接收自检结果,综合判断所有传感器状态后,主传感器对蜂鸣器进行相应自检报警提示,或者主传感器将自检结果发送给车载总线模块进行提示;
4)系统上电自检完成后,主传感器协调各传感器按序工作、进行内部通讯,实现报警输出及与车载总线模块进行外部通讯。
进一步,所述步骤2)、步骤3)中,如果第一个传感器失效,在系统上电时,在规定的时间第二传感器因为接收不到第一传感器的自检询问信息,第二传感器则充当为主传感器。
进一步,所述步骤3)中,各个传感器的自检方式为:
a)所有传感器无异常,蜂鸣器4鸣叫语音提示;
b)当一个或若干个传感器失效时,蜂鸣器4鸣叫不同的语音提示;
c)当所有传感器失效时,蜂鸣器鸣不鸣叫。
本发明无主机泊车雷达系统,通过设置具有等同结构的数个传感器,各个传感器均能够作为主传感器,从而体现了本发明无主机泊车雷达系统的功用性更佳,更重要的是其确保了泊车雷达系统的功能完整性、可靠性。
附图说明
图1为传统有主机泊车雷达结构原理框图;
图2为一种无主机泊车雷达结构原理框图;
图3为一种无主机泊车雷达结构原理框图;
图4为一种无主机泊车雷达结构原理框图;
图6为本发明的传感器外形图;
图7为本发明的传感器内部原理框图;
图8为本发明无主机泊车雷达结构原理框图一;
图9为本发明无主机泊车雷达结构原理框图二;
图10为本发明无主机泊车雷达结构原理框图三;
图11为本发明无主机泊车雷达传感器内部电气原理图。
具体实施方式
下面,参考附图,对本发明进行更全面的说明,附图中示出了本发明的示例性实施例。然而,本发明可以体现为多种不同形式,并不应理解为局限于这里叙述的示例性实施例。而是,提供这些实施例,从而使本发明全面和完整,并将本发明的范围完全地传达给本领域的普通技术人员。
为了易于说明,在这里可以使用诸如“上”、“下”“左”“右”等空间相对术语,用于说明图中示出的一个元件或特征相对于另一个元件或 特征的关系。应该理解的是,除了图中示出的方位之外,空间术语意在于包括装置在使用或操作中的不同方位。例如,如果图中的装置被倒置,被叙述为位于其他元件或特征“下”的元件将定位在其他元件或特征“上”。因此,示例性术语“下”可以包含上和下方位两者。装置可以以其他方式定位(旋转90度或位于其他方位),这里所用的空间相对说明可相应地解释。
本发明一种无主机泊车雷达系统,包括若干个传感器,其中:
每个传感器单元均能够独立作为主传感器,以协调其他传感器作为从属传感器,并控制各个从属传感器的工作时序;
每个传感器单元均独立与车载总线模块和/或蜂鸣器连接并通讯。
本发明中所述的传感器外形如图6所示,内部原理框图如图7所示,内部电气原理图如图11。每一个所述传感器内部结构均相同,以保证每一个传感器功能的相通性,从而提高其通用性。
其中,每一传感器均包含单片机11、通讯模块12、超声波传感器13、超声波发射模块14、超声波接收模块15、电源模块16、检测及控制模块一17、检测及控制模块二18。
单片机11为控制核心,其产生超声波脉冲,并经过发射模块14放大后驱动超声波传感器13发送超声波。超声波传感器单元13接收返回信号,并由接收模块15放大滤波处理后输送至单片机11,单片机11经分析处理而获得障碍物距离信息。检测及控制模块一17或检测及控制模块二18与所述蜂鸣器4连接并通讯。通讯模块12与所述车载总线模块3连接并通讯。
传感器包括有5个管脚:管脚PIN1、管脚PIN2、管脚PIN3、管脚PIN4、管脚PIN5,其分别连接电源、地、通讯,检测及控制一、检测及控制二。即:在传感器内部,管脚PIN1与检测及控制模块一17连接,管脚PIN2与检测及控制模块二18连接,管脚PIN3与通讯模块12连接,管脚PIN4为接地端,管脚PIN5与电源模块16连接。管脚PIN1、管脚PIN2和管脚PIN3能够作为相应连接单元之间的输入管脚和输出管脚。
管脚PIN5为电源脚,12V或24V正极输入脚,其与电源模块16连 接;管脚PIN4为0V负极输入脚,即接地。在传感器内部,管脚PIN5、管脚PIN4通过电源模块16,电源模块16与其它各模块连接并提供电源支持。
管脚PIN3为传感器的通讯管脚,其内部连接通讯模块12,外连接系统通讯线来与车载总线模块3连接。
管脚PIN1、管脚PIN2:在传感器内部,管脚PIN1连接检测及控制模块一17,管脚PIN2连接检测及控制模块二18。在传感器外部,管脚PIN1、管脚PIN2连接于高电平的电源端、低电平的接地端或悬空端,每一个传感器内的管脚PIN1、管脚PIN2的连接组合形式均不相同,来形成管脚PIN1、管脚PIN2之间输入电压信号的区别特征。管脚PIN1、管脚PIN2作为输入管脚时,分别接收外部高电平、低电平、悬空三种信号输入,通过管脚PIN1、管脚PIN2检测不同的输入电压信号组合,实现传感器定位及ID号分配。管脚PIN1、管脚PIN2作为输出管脚时,其可直接连接并驱动蜂鸣器4进行声音报警。
系统内设置有高电平线路一5和高电平线路二6,高电平线路一5和高电平线路二6均与外接电源相连接,其中,各个传感器的管脚PIN5均与高电平线路一5连接,管脚PIN1和/或所述管脚PIN2与高电平线路二6连接。高电平线路二6作为输入线路和输出线路,蜂鸣器4设置在高电平线路二6上。
图8、图9、图10为本发明无主机雷达系统的结构原理框图(系统的网络连接结构图),分别为例一、例二、例三,本发明例二及例三为本发明例一的简化运用实施例。图9中简化去掉了车载总线模块3,图10中简化去掉了蜂鸣器4。
其中,管脚PIN1、管脚PIN2分别输入“高、高”,单片机识别判断设此传感器为系统的第一传感器1a,分配相应的ID号;PIN1、PIN2分别输入“高、低”,设为系统的第二传感器1b,分配相应的ID号;PIN1、PIN2分别输入“低、高”,设为系统的第三传感器1c,分配相应的ID号;PIN1、PIN2分别输入“高、悬空”,设为系统的第四传感器1d,分配相应的ID号。
管脚PIN1、管脚PIN2同时也作为控制输出脚,当管脚PIN1、管脚PIN2通过蜂鸣器4连接电源2作为高电平输入管脚时,其不但作为电平状态检测管脚,同时为蜂鸣器4的控制输出管脚。各传感器管脚PIN1、管脚PIN2连接结构见图8,其为本发明一种连接运用例,其它类似等同效果的连接运用例在此不一一列举,属于本发明范畴。
管脚PIN3为传感器的通讯管脚,管脚PIN3连接通讯模块12。各个传感器的管脚PIN3通过单一导线相连接,各传感器通过此单一导线相互连接并进行双向通讯,以实现系统内部通讯;此单一导线也可同时连接车载总线模块3,以实现系统与车载总线模块3之间的通讯,即实现系统与外界通讯。通讯通常为LIN总线通讯方式。
一种无主机泊车雷达控制方法,具体为:
1)系统上电时,通过检测各个传感器的输入电压信号的区别特征,来鉴定各个传感器的定位及对各个传感器分配ID号;
2)系统设定正常的第一传感器为系统的主传感器,其余传感器为从属传感器;
3)主传感器指令从属传感器自检,并接收自检结果,综合判断所有传感器状态后,主传感器对蜂鸣器进行相应自检报警提示,或者主传感器将自检结果发送给车载总线模块进行提示;
4)系统上电自检完成后,主传感器协调各传感器按序工作、进行内部通讯,实现报警输出和/或与车载总线模块进行外部通讯。
所述步骤2)、步骤3)中,如果第一个传感器失效,在系统上电时,在规定的时间第二传感器因为接收不到第一传感器的自检询问信息,第二传感器则充当为主传感器。
所述步骤3)中,各个传感器的自检方式为:
a)所有传感器无异常,蜂鸣器4鸣叫语音提示;
b)当一个或若干个传感器失效时,蜂鸣器4鸣叫不同的语音提示;
c)当所有传感器失效时,蜂鸣器鸣不鸣叫。
结合图8所示,本发明无主机泊车雷达控制方法,可实现系统上电自检、正常障碍物探测工作、蜂鸣器4驱动控制报警、通讯等方面,具 体说明如下:
系统上电时,各个传感器通过不同的组合电平输入检测,系统实现了各传感器的定位及ID号的分配,通常系统设定良好的第一传感器1a为系统的主传感器,各传感器采用LIN总线进行连接及通讯。
上电时,主传感器询问第二传感器1b、第三传感器1c、第四传感器1d自检结果,第二传感器1b、第三传感器1c、第四传感器1d回答主传感器自检结果,如果第二传感器1b、第三传感器1c、第四传感器1d异常,如失效,则主传感器接收不到其自检回答信息,因此判断该传感器失效,综合判断所有传感器状态后,主传感器对蜂鸣器4进行相应自检报警提示,或者主传感器将自检结果以数据的发送给车载总线模块3,车载总线模块3或其它单元模块进行相应的自检报警提示,可以是声音报警提示,也可以是图像报警提示。
如果第一传感器1a失效,在系统上电时,在规定的时间第二传感器1b因为接收不到第一传感器1a的自检询问信息,第二传感器1b则充当主传感器,对其它传感器进行问询,其它传感器对第二传感器1b进行答复,并通过第二传感器1b进行蜂鸣报警输出及或与车载总线模块3进行外部通讯。
以此类推。系统上电自检,具体实施可以为:一、所有传感器无异常,蜂鸣器4鸣叫1.0秒;二、当第一传感器1a失效时,则蜂鸣器4鸣叫一声,0.4秒;当第二传感器1b失效时,则蜂鸣器4鸣叫两声,每声0.4秒;当第三传感器1c失效时,则蜂鸣器4鸣叫三声,每声0.4秒;当第四传感器1d失效时,则蜂鸣器4鸣叫四声,每声0.4秒;当其中若干个传感器失效时,蜂鸣器4鸣叫其他设定的语音提示;三、当所有传感器失效时,则蜂鸣器4鸣不鸣叫。
可上可知,本发明无主机泊车雷达,系统可以一次性告知驾驶员或售后维修人员,当前系统中各个传感器状态是良好还是失效,如有传感器失效,系统上电可以一次性同时对所有失效传感器进行准确、完整判定及做出相应的报警提示。任一传感器失效,在物理上不对其它传感器形成关联影响。
系统上电自检完成后,主传感器协调各传感器按序工作、进行内部通讯,实现报警输出及与车载总线模块3进行外部通讯。如果第一传感器1a为良品,则第一传感器1a作为主传感器协调各传感器按序工作,如果第一传感器1a失效,则第二传感器1b作为主传感器协调其它未失效的各传感器按序工作。因此本发明无主机泊车雷达系统,当任一传感器失效时,上电后,不会物理上导致系统内其它自身良好的传感器工作失效,而是可根据系统需要、设定,其它传感器仍可继续正常工作,发挥功用。
本发明无主机泊车雷达系统,见图8,系统各传感器通过管脚PIN1或管脚PIN2均有连接蜂鸣报警器,因此系统各传感器均可连接并驱动蜂鸣器4进行声音报警提示。当系统中原驱动蜂鸣器4进行声音报警的主探头失效,系统上电后会自动设定另一未失效的探头充当主探头,进行声音报警提示,自检结果输出报警及正常物体探测距离信息提示报警皆一样。此特点不仅体现了本发明无主机泊车雷达系统的功用性更佳,更重要的是其确保了泊车雷达系统的功能完整性、可靠性。
本发明无主机泊车雷达系统,见图8,系统各传感器通过LIN总线均与车载总线模块3进行连接,当其中某一负责数据传输的主探头失效时,系统会自动设定另一未失效的探头充当主探头,与车载总线模块3进行通讯。此特点不仅体现了本发明无主机泊车雷达系统的功用性更佳,更重要的是其确保了泊车雷达系统的功能完整性、可靠性。
其它无主机泊车雷达系统,要么仅为某一传感器(主传感器)与车载总线模块相连;要么仅为某一传感器与蜂鸣器报警器相连;要么传感器及系统不支持直接连接并驱动蜂鸣器进行报警;要么各传感器自检(定位及ID分配、故障检测)、数据传输、电源连接等物理上存在串联结构;等等这些原因使得系统存在这样或那样的功能缺陷。
而本发明的传感器方案以及系统的网络连接方案,各传感器无论电平输入、报警输出、数据传输、还是电源供应等,在系统内均独立地体现为平等、等同的方式。系统中各传感器均通过组合电平检测判定方位及分配ID号;各传感器均可直接连接并驱动蜂鸣器4进行报警提示;各 传感器通过单一导线相连并可同时与车载总线模块3相连实现系统内部通讯及与外界通讯;各传感器以并联、等同的方式连接外界的电源2。
本发明无主机泊车雷达系统的以上创新,克服了目前其它所有无主机泊车雷达系统存在的各种缺陷,相对优势,总结说明如下:
一、上电时,当任一传感器失效时,系统能同时对所有传感器进行完整及准确的自检,在任一传感器失效的情况下,上电时系统都能同时检知、判断各个传感器的状态(失效或良好)。此功能特点不但方便了驾驶员对雷达系统的状态判断,也极大方便了售后服务人员对系统的故障检修。
二、上电后,当任一传感器失效时,物理上不会导致系统内其它正常的传感器工作失效,根据系统需要、设定,其它传感器仍可继续正常工作,发挥功用。此特点使得无主机泊车雷达系统的功用性更佳。
三、系统中各个传感器均可连接并驱动蜂鸣器4进行声音报警提示。
系统不须借助车载总线模块3或别的单元模块进行声音报警提示;也并非如某些无主机泊车雷达系统,仅为其中某一个传感器连接并驱动蜂鸣器4进行声音报警提示(当此传感器失效时,则系统的声音报警功能失效)。
本发明无主机泊车雷达系统,系统各传感器均可连接并驱动蜂鸣器4进行声音报警提示,当系统中原驱动蜂鸣器4进行声音报警的主探头失效,系统上电后会自动设定另一未失效的探头充当主探头,进行声音报警提示,系统自检结果输出报警及正常物体探测距离信息提示报警都一样可正常运行。此特点不仅体现了本发明无主机泊车雷达系统的功用性更佳,更重要的是其确保了泊车雷达系统的功能完整性、可靠性。
四、系统各传感器均可与车载总线模块3进行通讯。
不可与车载总线模块3进行通讯的无主机泊车雷达系统,导致泊车雷达系统难以通过汽车仪表或车载多媒体显示屏进行雷达图像显示功能,系统的功能性较差。而仅为其中某一个传感器与车载总线模块3通讯的无主机泊车雷达系统,当此传感器失效时,则系统的数据传输功能失效,导致系统全部或局部功能失效。
本发明无主机泊车雷达系统,系统各传感器通过LIN总线均与车载总线模块3进行连接,当其中某一负责数据传输的主探头失效时,系统会自动设定另一未失效的探头充当主探头,与车载总线模块3进行通讯。此特点不仅体现了本发明无主机泊车雷达系统的功用性更佳,更重要的是其确保了泊车雷达系统的功能完整性、可靠性。
综上所述,本发明无主机泊车雷达系统,实现了传统有主机泊车雷达系统的全部功能特点,也就是说,本发明无主机泊车雷达系统克服了当前所有其它无主机泊车雷达系统的各种缺陷,使得无主机雷达系统在运用上已几乎没有任何限制,在技术上实现了较大的突破。
本发明无主机泊车雷达系统,最简单的方式为系统具有等同的数个超声波传感器、一个独立或集成于其它部件的的蜂鸣报警器,通常系统配置具有四个传感器。在具体运用上,本发明无主机泊车雷达系统,系统配置的传感器数量也可以为两个或三个,也可为超过四个。
同时,在运用上,除了设置一组如图8(图9、图10)无主机泊车雷达于车后作为倒车雷达使用外,我们也可设置如图8(图9、图10)两组无主机泊车雷达,一组设置于车前,一组设置于车后,作汽车前后泊车雷达使用。此外,如果单个传感器增加一个管脚,那传感器之间以及传感器与车载总线模块3之间采用LIN总线连接通讯的方式,可设为CAN总线连接通讯方式;或者设为两组LIN总线通讯,一组负责系统传感器之间的内部通讯,一组负责系统与车载总线模块3之间的外部通讯。

Claims (18)

  1. 一种无主机泊车雷达系统,包括若干个传感器,其特征在于:
    每个传感器单元均能够独立作为主传感器,以协调其他传感器作为从属传感器,并控制各个从属传感器的工作时序;
    每个传感器单元均独立与车载总线模块和/或蜂鸣器连接并通讯。
  2. 如权利要求1所述的系统,其特征在于,每一个所述传感器内部结构均相同。
  3. 如权利要求1所述的系统,其特征在于,在同一工作时间,只能有一个所述传感器作为主传感器。
  4. 如权利要求1所述的系统,其特征在于,所述传感器包括单片机(11)、超声波传感器(13)、发射模块(14)、接收模块(15)、电源模块(16)、检测及控制模块一(17)和检测及控制模块二(18);单片机(11)为控制核心,其产生超声波脉冲,并经过发射模块(14)放大后驱动超声波传感器(13)发送超声波;超声波传感器单元(13)接收返回信号,并由接收模块(15)放大滤波处理后输送至单片机(11)进行分析处理。
  5. 如权利要求4所述的系统,其特征在于,所述检测及控制模块一17和检测及控制模块二18均与所述单片机11连接,所述检测及控制模块一17或检测及控制模块二18与所述蜂鸣器(4)连接并通讯。
  6. 如权利要求4或5所述的系统,其特征在于,所述传感器还包括通讯模块(12),该通讯模块(12)与所述车载总线模块(3)连接并通讯。
  7. 如权利要求6所述的系统,其特征在于,所述传感器上设置有用于外部连接的管脚PIN1、管脚PIN2、管脚PIN3、管脚PIN4、管脚PIN5;其中,在所述传感器内部,管脚PIN1与所述检测及控制模块一(17)连接,管脚PIN2与所述检测及控制模块二(18)连接,管脚PIN3与所述通讯模块(12)连接,管脚PIN4为接地端,管脚PIN5与所述电源模块(16)连接。
  8. 如权利要求7所述的系统,其特征在于,所述管脚PIN1、管脚PIN2和管脚PIN3能够作为相应连接单元之间的输入管脚和输出管脚。
  9. 如权利要求7所述的系统,其特征在于,所述管脚PIN1、管脚PIN2连接于高电平的电源端、低电平的接地端或悬空端,每一个所述传感器内的所述管脚PIN1、管脚PIN2的连接组合形式均不相同,来形成所述管脚PIN1、管脚PIN2之间输入电压信号的区别特征。
  10. 如权利要求9所述的系统,其特征在于,所述管脚PIN1、管脚PIN2作为输入管脚时,分别接收外部高电平、低电平、悬空三种信号输入,每一个所述传感器通过其内的所述管脚PIN1、管脚PIN2检测不同的输入电压信号特征,实现所述传感器定位及ID号分配。
  11. 如权利要求7所述的系统,其特征在于,所述传感器通过管脚PIN3外连系统通讯线,来与所述车载总线模块(3)连接并通讯。
  12. 如权利要求7所述的系统,其特征在于,系统内设置有高电平线路一(5)和高电平线路二(6),高电平线路一(5)和高电平线路二(6)均与外接电源相连接,其中,各个所述传感器的所述管脚PIN5均与高电平线路一(5)连接,所述管脚PIN1和/或所述管脚PIN2与高电平线路二(6)连接。
  13. 如权利要求12所述的系统,其特征在于,所述高电平线路二(6)作为输入线路和输出线路。
  14. 如权利要求12所述的系统,其特征在于,所述蜂鸣器(4)设置在所述高电平线路二(6)上。
  15. 如权利要求1所述的系统,其特征在于,所述蜂鸣器(4)为独立设置或者集成于其它部件。
  16. 一种实施上述系统的无主机泊车雷达控制方法,具体为:
    1)系统上电时,通过检测各个传感器的输入电压信号的区别特征,来鉴定各个传感器的定位及对各个传感器分配ID号;
    2)系统设定正常的第一传感器为系统的主传感器,其余传感器为从属传感器;
    3)主传感器指令从属传感器自检,并接收自检结果,综合判断所 有传感器状态后,主传感器对蜂鸣器进行相应自检报警提示,或者主传感器将自检结果发送给车载总线模块进行提示;
    4)系统上电自检完成后,主传感器协调各传感器按序工作、进行内部通讯,实现报警输出及与车载总线模块进行外部通讯。
  17. 如权利要求16所述的控制方法,其特征在于,所述步骤2)、步骤3)中,如果第一个传感器失效,在系统上电时,在规定的时间第二传感器因为接收不到第一传感器的自检询问信息,第二传感器则充当为主传感器。
  18. 如权利要求16所述的控制方法,其特征在于,所述步骤3)中,各个传感器的自检方式为:
    a)所有传感器无异常,蜂鸣器鸣叫语音提示;
    b)当一个或若干个传感器失效时,蜂鸣器鸣叫不同的语音提示;
    c)当所有传感器失效时,蜂鸣器鸣不鸣叫。
PCT/CN2017/072630 2016-03-04 2017-01-25 一种无主机泊车雷达系统及控制方法 WO2017148235A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/074,709 US20190041504A1 (en) 2016-03-04 2017-01-25 Hostless parking radar system and control method
EP17759086.6A EP3425425A4 (en) 2016-03-04 2017-01-25 NON-HOST PARKING RADAR SYSTEM AND CONTROL METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610123548.4A CN105699979B (zh) 2016-03-04 2016-03-04 一种无主机泊车雷达系统及控制方法
CN201610123548.4 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017148235A1 true WO2017148235A1 (zh) 2017-09-08

Family

ID=56220131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/072630 WO2017148235A1 (zh) 2016-03-04 2017-01-25 一种无主机泊车雷达系统及控制方法

Country Status (4)

Country Link
US (1) US20190041504A1 (zh)
EP (1) EP3425425A4 (zh)
CN (1) CN105699979B (zh)
WO (1) WO2017148235A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661688A (zh) * 2019-02-08 2021-11-16 艾尔默斯半导体欧洲股份公司 用于连接测量变换器的电路
CN114397624A (zh) * 2022-03-22 2022-04-26 北京蓝天航空科技股份有限公司 基于数据配置的兼容式雷达自检画面生成方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699979B (zh) * 2016-03-04 2018-09-14 厦门澳仕达电子有限公司 一种无主机泊车雷达系统及控制方法
US10068485B2 (en) * 2016-08-15 2018-09-04 Ford Global Technologies, Llc Platooning autonomous vehicle navigation sensory exchange
CN106842214A (zh) * 2017-03-27 2017-06-13 厦门澳仕达电子有限公司 一种无主机泊车雷达系统
US11359943B2 (en) 2018-02-21 2022-06-14 Mediatek Inc. Sensor system interconnect for automatic configuration
CN108594789A (zh) * 2018-03-28 2018-09-28 吉利汽车研究院(宁波)有限公司 一种无主机倒车雷达系统及控制方法
CN111319613A (zh) * 2018-12-14 2020-06-23 上海汽车集团股份有限公司 一种泊车辅助系统及机动车辆
CN109634189A (zh) * 2019-01-15 2019-04-16 北京今日蓝天科技有限公司 一种用于机动车尾气检测的传感器延时失效系统及其控制方法
DE102019103222B3 (de) 2019-02-08 2020-06-25 Elmos Semiconductor Aktiengesellschaft Vorrichtung zur Autokonfiguration von automobilen Ultraschallsensoren an verschiedenen Datenbussen in verschiedenen Anwendungen und entsprechendes Verfahren
DE102020100425B3 (de) 2019-02-08 2020-06-04 Elmos Semiconductor Aktiengesellschaft Vorrichtung zur Autokonfiguration von automobilen Ultraschallsensoren an verschiedenen Datenbussen und entsprechendes Verfahren
CN111578975B (zh) * 2019-02-19 2022-03-22 联发科技股份有限公司 传感器传输数据的方法及电子装置
DE102019130373A1 (de) * 2019-11-11 2021-05-12 Valeo Schalter Und Sensoren Gmbh Umfeldüberwachung eines Kraftfahrzeugs
CN110879392B (zh) * 2019-11-29 2022-04-22 安徽江淮汽车集团股份有限公司 无主机雷达测距报警方法、装置、电路及存储介质
CN111289986A (zh) * 2020-02-25 2020-06-16 北京汽车集团越野车有限公司 传感器、泊车雷达系统及其定位通讯方法
DE102020114889A1 (de) 2020-06-04 2021-12-09 Bayerische Motoren Werke Aktiengesellschaft Elektronische Komponente mit Massekodierung für ein Kraftfahrzeug
CN111999704B (zh) * 2020-08-18 2023-05-26 中国电子科技集团公司第三十八研究所 一种基于vpx总线的车载雷达时序产生系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892249A (zh) * 2005-07-05 2007-01-10 李世雄 无控制盒的倒车雷达装置
CN202421500U (zh) * 2011-12-29 2012-09-05 深圳市豪恩汽车电子装备有限公司 一种车辆雷达系统
CN103995254A (zh) * 2014-05-14 2014-08-20 林海明 一种可快速定位探头id的泊车雷达数字探头模组及其id定位方法
CN104181541A (zh) * 2014-09-11 2014-12-03 合肥晟泰克汽车电子有限公司 一种无主机倒车雷达系统
CN204279227U (zh) * 2013-12-31 2015-04-22 重庆君歌电子科技有限公司 无主机泊车辅助系统
CN105699979A (zh) * 2016-03-04 2016-06-22 余晓鹏 一种无主机泊车雷达系统及控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003057065A (ja) * 2001-08-15 2003-02-26 Koji Onuma 飛行体同士の相互位置確認方法
JP4639969B2 (ja) * 2005-06-01 2011-02-23 株式会社デンソー 車両用障害物検知装置
DE102005046054A1 (de) * 2005-09-27 2007-03-29 Robert Bosch Gmbh Vorrichtung und Verfahren zur Unterstützung eines Einparkvorgangs eines Fahrzeugs
GB2432958A (en) * 2005-11-19 2007-06-06 Shih-Hsiung Li Vehicle reversing sensor system with a master sensor and slave sensors instead of a separate central control box
CN101726739A (zh) * 2009-11-20 2010-06-09 柯文河 无主机泊车辅助系统
US20120182160A1 (en) * 2011-01-14 2012-07-19 TCS International, Inc. Directional Vehicle Sensor Matrix
CN203561746U (zh) * 2013-10-18 2014-04-23 柳州市华航电器有限公司 智能倒车雷达系统
CN203909296U (zh) * 2013-12-30 2014-10-29 柳州市华航电器有限公司 一种四线制智能倒车雷达系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1892249A (zh) * 2005-07-05 2007-01-10 李世雄 无控制盒的倒车雷达装置
CN202421500U (zh) * 2011-12-29 2012-09-05 深圳市豪恩汽车电子装备有限公司 一种车辆雷达系统
CN204279227U (zh) * 2013-12-31 2015-04-22 重庆君歌电子科技有限公司 无主机泊车辅助系统
CN103995254A (zh) * 2014-05-14 2014-08-20 林海明 一种可快速定位探头id的泊车雷达数字探头模组及其id定位方法
CN104181541A (zh) * 2014-09-11 2014-12-03 合肥晟泰克汽车电子有限公司 一种无主机倒车雷达系统
CN105699979A (zh) * 2016-03-04 2016-06-22 余晓鹏 一种无主机泊车雷达系统及控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3425425A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113661688A (zh) * 2019-02-08 2021-11-16 艾尔默斯半导体欧洲股份公司 用于连接测量变换器的电路
CN113661688B (zh) * 2019-02-08 2023-09-08 艾尔默斯半导体欧洲股份公司 用于连接测量变换器的电路
CN114397624A (zh) * 2022-03-22 2022-04-26 北京蓝天航空科技股份有限公司 基于数据配置的兼容式雷达自检画面生成方法和装置
CN114397624B (zh) * 2022-03-22 2022-07-15 北京蓝天航空科技股份有限公司 基于数据配置的兼容式雷达自检画面生成方法和装置

Also Published As

Publication number Publication date
US20190041504A1 (en) 2019-02-07
CN105699979B (zh) 2018-09-14
EP3425425A4 (en) 2020-02-26
EP3425425A1 (en) 2019-01-09
CN105699979A (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2017148235A1 (zh) 一种无主机泊车雷达系统及控制方法
CN101607538B (zh) 车辆驾驶员辅助系统以及相应的方法
CN102353961B (zh) 雷达探头id自动分配系统以及倒车雷达探测方法
WO2018177123A1 (zh) 一种无主机泊车雷达系统
CN105891829A (zh) 一种汽车平台化无主机雷达系统及其通讯方法
CN108508448A (zh) 一种无主机倒车雷达
WO2023005638A1 (zh) 辅助驾驶方法、装置、设备及存储介质
CN103499817A (zh) 智能倒车雷达系统及其自动控制方法
US7643940B2 (en) Obstacle detecting apparatus
CN108749709B (zh) 一种能够匹配不同光源的转向灯控制系统及方法
KR102392250B1 (ko) 원격 자가진단이 가능한 소방 특장차량 및 모니터링 시스템
CN201133937Y (zh) 一种倒车雷达系统
CN202041850U (zh) 客车内用电设备的现场诊断和控制数据配置仪
CN103713629A (zh) 一种电机控制器的故障定位方法、装置及系统
CN209086432U (zh) 一种无主机倒车雷达
KR101318854B1 (ko) 초음파 센서의 고장 진단 방법 및 시스템
US20210288869A1 (en) Fault diagnosing method for interaction between elevator system and robot passenger, readable storage medium, electronic device and fault diagnosing system
CN203909296U (zh) 一种四线制智能倒车雷达系统
CN114546698A (zh) 一种车载显示屏故障的诊断方法
US9754473B1 (en) Automotive on-board diagnostic computer system with audiovisual guiding function
JP3160219U (ja) メインフレームを有しないバックレーダのアラームシステム
KR20050030802A (ko) 주차보조 장치 및 그 제어 방법
CN218938444U (zh) 电池电压采集电路、燃料电池电压巡检仪及车辆
CN213338019U (zh) 车内遗留人员检测装置
TWI828275B (zh) 可切換模式之胎壓偵測系統及其運行方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759086

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759086

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759086

Country of ref document: EP

Kind code of ref document: A1