WO2017146170A1 - 地質サンプル採取方法および採取装置 - Google Patents

地質サンプル採取方法および採取装置 Download PDF

Info

Publication number
WO2017146170A1
WO2017146170A1 PCT/JP2017/006923 JP2017006923W WO2017146170A1 WO 2017146170 A1 WO2017146170 A1 WO 2017146170A1 JP 2017006923 W JP2017006923 W JP 2017006923W WO 2017146170 A1 WO2017146170 A1 WO 2017146170A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
geological sample
sampling
excavation
tube
Prior art date
Application number
PCT/JP2017/006923
Other languages
English (en)
French (fr)
Inventor
隆雄 澤
津久井 慎吾
剛 堀切
Original Assignee
国立研究開発法人海洋研究開発機構
トピー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構, トピー工業株式会社 filed Critical 国立研究開発法人海洋研究開発機構
Priority to JP2018501771A priority Critical patent/JPWO2017146170A1/ja
Publication of WO2017146170A1 publication Critical patent/WO2017146170A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/124Underwater drilling with underwater tool drive prime mover, e.g. portable drilling rigs for use on underwater floors
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/10Formed core retaining or severing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil

Definitions

  • the present invention relates to a method and apparatus for efficiently collecting a cylindrical geological sample from hard ground for the purpose of exploring and investigating resources on the seabed and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-155109
  • the geological sample collection device disclosed in Patent Document 1 is suspended from a ship on the ocean with a wire and performs core sampling while sitting on the seabed. That is, the bottom of the seabed is excavated to form a cylindrical geological sample planned portion, and the base is broken by pulling the geological sample planned portion upward, and the geological sample (so-called core sample) is separated and taken out from the seabed ground. .
  • Patent Document 2 Japanese Patent Laid-Open No. 60-141484
  • Patent Document 3 Japanese Patent Laid-Open No. 5-293789
  • Patent Document 4 Japanese Patent Laid-Open No. 2010-274669 Equipped with moving means such as underwater thruster and crawler and video camera, it can move to the destination by remote control from mother ship.
  • This device is capable of exploring the ocean floor of several thousand meters and is equipped with a robot hand or the like and can collect minerals from the ocean floor.
  • Patent Document 5 Japanese Patent Laid-Open No. 2010-242344 discloses a detailed structure of an apparatus for collecting a core sample on the ground.
  • This apparatus has a coaxial double cylinder structure of an excavation cylinder and a sampling cylinder inside thereof.
  • An excavation bit is attached to the tip of the excavation cylinder, and by rotating the excavation cylinder and moving downward, excavating the ground, an annular groove is formed in the ground, and a cylinder is formed inside the annular groove.
  • a locking piece is provided on the inner periphery of the lower end of the sampling tube. This locking piece is inclined so as to approach the central axis of the inner cylinder as it goes upward, but can be elastically deformed.
  • the sampling tube is not rotated and moves downward together with the excavation tube.
  • the planned geological sample portion is in a state accommodated in the extraction cylinder.
  • the locking piece bites into the base of the planned geological sample portion, breaks the base, and collects the geological sample while being stored in the sampling cylinder. ing.
  • Patent Document 6 Japanese Patent Laid-Open No. 2011-196140 discloses a detailed structure of an apparatus for collecting a core sample on the ground. This device is equipped with a crawler and can move to the destination. Further, this apparatus is independently equipped with a drilling cylinder having a drilling bit at the lower end and a sampling cylinder having a cutting blade at the lower end. After the annular groove is formed by the excavating cylinder, the core cylinder is sampled by inserting the sampling cylinder into the annular groove and driving the sampling cylinder with a driving mechanism, driving the vibration, or driving the rotation.
  • the geological sample collection devices disclosed in Patent Documents 2 to 4 can be light and small, and can efficiently collect minerals at many points, but can only collect minerals exposed on the seabed.
  • a geological sample (core sample) is obtained by pulling up the collection tube and the excavation tube in a state where the locking piece of the collection tube is locked to the base of the planned geological sample portion. Although it can be collected, if the ground is hard, the base of the planned portion of the geological sample may not be broken, making it difficult to collect the geological sample.
  • Patent Document 6 a sampling tube having a cutting blade at the lower end is driven by striking, driving vibration, or rotating to break the base of the planned portion of the geological sample to collect a geological sample, but the cutting blade extends in the axial direction. If the ground is hard, it cannot be reliably and efficiently broken.
  • Patent Documents 5 and 6 require a large pulling force and are large in size when trying to collect a geological sample even on hard ground. If this large device is to be used for seafloor exploration, the method of Patent Document 1 will be adopted, and it will not be possible to efficiently investigate a large number of points.
  • Breaking step to break the geological sample planned part to obtain a geological sample, While collecting the geological sample in the collection tube, the collection step of pulling up the collection tube, It is provided with.
  • the sampling cylinder may be disposed in the excavation cylinder, or may be disposed away from the excavation cylinder and in parallel with the excavation cylinder.
  • the inner peripheral surface of the cylinder body of the sampling cylinder hits an abutting portion located on a radially opposite side of the protrusion at the upper end portion of the planned geological sample, and the moment is abutted with the abutting portion.
  • the protrusion is pressed against the planned geological sample.
  • the geological sample planned portion is pressed by the protrusions in a state in which a bending load is applied to the geological sample planned portion, so that it is easy to cause a crack.
  • the moment has the upper edge of the protrusion as a fulcrum and the lower edge as a point of action.
  • the geological sample planned portion is broken by the pressing force from the lower edge of the protrusion. According to the above method, a large pressing force can be applied to the lower edge of the projection by the lever principle, and it becomes easy to cause a crack in the planned geological sample portion.
  • the tube main body of the sampling tube is provided with a locking piece at a position above the protrusion, and the locking piece is inclined so as to approach the central axis from the inner periphery of the tube main body as it advances upward. And elastically deformable, In the collecting step, the locking piece bites into the peripheral surface of the geological sample to prevent the geological sample from falling off the sampling tube. According to the above method, the geological sample can be reliably prevented from falling off by the locking piece.
  • a machine body moving step of remotely operating the machine body to move to a destination is further provided.
  • the airframe since the airframe is relatively light, the airframe can be easily moved to the destination point, and the hard ground can be efficiently investigated over many points.
  • a geological sample collection device that constitutes one aspect of the present invention includes an airframe, a drilling cylinder installed in the airframe, a sampling cylinder that is installed in the airframe and is spaced apart from and parallel to the drilling cylinder, and the drilling cylinder.
  • the drilling cylinder includes a cylinder body and a plurality of drilling bits attached to the lower end of the cylinder body
  • the sampling tube includes a tube body and a protrusion provided on the inner periphery of the lower end of the tube body,
  • the excavation cylinder is rotated downward by the first moving mechanism while being rotated by the rotational driving mechanism, thereby forming a circular annular groove and a cylindrical geological sample planned portion radially inside the annular groove on the ground.
  • the sampling tube is moved downward by the second moving mechanism and inserted into the annular groove,
  • the moment applying mechanism applies the moment to the sampling cylinder through a portion located above the ground of the sampling cylinder inserted into the annular groove, thereby pressing the protrusion against the planned geological sample portion.
  • the geological sample planned portion is broken to obtain a geological sample.
  • the planned geological sample can be cracked even when the ground is hard. Therefore, a geological sample can be collected efficiently and reliably without requiring a large force. As a result, the aircraft can be reduced in size and weight, and movement by the aircraft moving means can be facilitated.
  • the vehicle further includes a traveling unit provided on the airframe, and the traveling body moves the airframe to position the sampling tube in the annular groove.
  • the sampling tube can be positioned in the annular groove after excavating the annular groove.
  • the airframe is provided with a moving table so as to be horizontally movable, and a moving table driving mechanism for driving the moving table is provided.
  • the excavation cylinder and the sampling cylinder are provided on the moving table so as to be separated from each other in the moving direction of the moving table with the axis thereof being vertical.
  • the moving table driving mechanism moves the moving table by a distance between the axis of the excavating cylinder and the axis of the sampling cylinder after the annular groove is formed by the excavating cylinder, thereby moving the sampling cylinder to the annular groove.
  • tube can be positioned with respect to an annular groove easily and reliably.
  • the cylinder main body of the sampling cylinder has an outer diameter smaller than a diameter of a circumscribed circle of the drill bit, and an inner diameter thereof is larger than a diameter of the inscribed circle of the drill bit, Furthermore, the diameter of the inscribed circle at the lower end including the protrusion in the sampling tube is equal to or smaller than the diameter of the inscribed circle of the excavation bit.
  • a geological sample collection device is provided.
  • a fuselage, a drilling cylinder equipped in the fuselage, a sampling cylinder accommodated coaxially in the drilling cylinder, a rotation drive mechanism for rotating only the drilling cylinder without rotating the sampling cylinder, and the drilling A moving mechanism that moves the tube and the sampling tube up and down together, and a moment applying mechanism that applies a moment to the sampling tube
  • the drilling cylinder includes a cylinder body and a plurality of drilling bits attached to the lower end of the cylinder body
  • the sampling cylinder includes a cylinder body whose lower end is located above the excavation bit, and a protrusion provided on the inner periphery of the lower end of the cylinder body,
  • the excavation cylinder is moved downward by the moving mechanism while being rotated by the rotation driving mechanism, thereby forming a circular annular groove on the ground and a cylindrical geological sample planned portion radially inside the annular groove
  • the moment applying mechanism is configured to apply the moment to the sampling cylinder through a portion located above the ground of the excavation
  • the same effect as that of the geological sample collection device according to one aspect described above can be obtained. Furthermore, since the excavation cylinder and the sampling cylinder are pulled up together after the annular groove is formed, positioning / insertion into the annular groove by the sampling cylinder alone becomes unnecessary, and a geological sample can be collected more efficiently.
  • the projection of the sampling tube protrudes radially inward from an inscribed circle of the drill bit of the drill tube. According to the above configuration, since the projections contact the planned geological sample portion without play, a force can be reliably applied from the projection to the planned geological sample portion.
  • the moment applying mechanism applies the moment to the sampling tube by changing an inclination angle of the airframe. According to the above configuration, a large moment can be applied to the sampling tube by inclining the airframe.
  • the protrusion is provided on at least one of the front and rear in the inner periphery of the lower end of the sampling tube
  • the moment applying mechanism has four flippers provided on the front left and right and the rear left and right of the airframe, and changes the inclination angle of the airframe by rotating the flipper located at least one of the front and rear. The moment is applied to the sampling tube. According to the above configuration, the aircraft can be tilted with simple control.
  • the protrusion is provided on at least one of the front and rear in the inner periphery of the lower end of the sampling tube
  • the moment application mechanism has a traveling unit mounted on the airframe, and applies the moment to the sampling tube by moving the airframe in either of the front and rear directions by the traveling unit. According to the said structure, a big moment can be provided to a collection pipe
  • the protrusion has edges above and below.
  • the upper edge of the protrusion serves as a fulcrum and the lower edge serves as an action point, and a large pressing force can be applied to the lower edge by the lever principle.
  • the tube main body of the sampling tube is provided with a locking piece at a position above the protrusion, and the locking piece is inclined so as to approach the central axis from the inner periphery of the tube main body as it advances upward. And elastically deformable. According to this configuration, it is possible to reliably prevent the geological sample housed in the sampling cylinder from dropping when the sampling cylinder is pulled up.
  • an underwater thruster provided on the aircraft is further provided. According to this configuration, the aircraft can be easily moved to the destination by using the underwater thruster, and the survey can be efficiently conducted over many points.
  • a geological sample of hard ground can be collected efficiently.
  • FIG. 8D and FIG. 8E It is sectional drawing which shows more specifically the relationship between the said collection pipe
  • FIG. 16B is a view corresponding to FIG.
  • FIG. 16B is a view corresponding to FIG.
  • a geological sample collection device for submarine ground has horizontal thrusters 2 (underwater thrusters) made of propellers or the like at four locations on the front, rear, left and right of the body 1.
  • a vertical thruster 3 underwater thruster
  • a video camera 5 is provided at the front thereof.
  • the thrusters 2 and 3 and the video camera 5 are connected to a remote control device of a mother ship floating on the sea via a transceiver and a cable (both not shown) installed in the body 1.
  • the device By driving the thrusters 2 and 3 by remote control from the mother ship, the device can swim in the sea even in the deep sea and easily reach the destination or its vicinity.
  • the left and right sides of the airframe 1 are equipped with a pair of front and rear crawler-type flippers 10a and 10b (traveling portion, moment applying mechanism).
  • Each of these flippers 10a and 10b has a pair of front and rear wheels 11 and an endless belt 12 spanned between these wheels 11.
  • the front flipper 10a is rotatable about the front end portion of the machine body 1, and the rear flipper 10b is rotatable about the rear end portion of the machine body 1.
  • the rotation centers of these flippers 10a and 10b are denoted by reference characters Ca and Cb in FIG.
  • the front flipper 10a When swimming in the sea, as shown in FIG. 1, the front flipper 10a is tilted to the rear, and the rear flipper 10b is tilted to the front.
  • the front flipper 10a When traveling, the front flipper 10a is rotated approximately 180 ° from the state shown in FIG. 1 and tilted to the front, and the rear flipper 10b is rotated approximately 180 ° from the state shown in FIG. Is possible.
  • the front, rear, left and right flippers 10a, 10b can be moved forward and backward independently. As a result, the airframe 1 can be turned as well as moved forward and backward.
  • a support column 20 is fixed to the front end of the airframe 1, and an elevator platform 21 is supported on the support column 20 so as to be slidable in the vertical direction.
  • the elevator 21 is moved up and down by a drive mechanism 22 such as a ball screw mechanism provided on the support column 20.
  • the lifting platform 21 is vertically elongated and supports the excavating section 30 and the sampling section 40 side by side in the front-rear direction.
  • the excavation part 30 has an excavation cylinder 31 and a first drive part 32 for rotating and moving the excavation cylinder 31 up and down.
  • the sampling unit 40 includes a sampling cylinder 41 and a second drive unit 42 for moving the sampling cylinder 41 up and down.
  • the first drive unit 32 has a pair of upper and lower supports 33a and 33b and a plurality of vertical guide rods 34 with upper and lower ends fixed to the supports 33a and 33b. These supports 33a and 33b are respectively fixed to the lifting platform 21 via fixed blocks 25a and 25b.
  • the first drive unit 32 further includes a slider 35 supported by the guide rod 34 so as to be slidable in the vertical direction, and a ball screw mechanism 36 (first movement mechanism) for moving the slider 35 in the vertical direction.
  • the ball screw mechanism 36 is supported by an upper support 33a.
  • the screw rod 36a extends vertically, a nut (not shown) screwed to the screw rod 36a, and a hydraulic motor 36b that rotationally drives the nut. And have.
  • the lower end of the screw rod 36a is fixed to the slider 35. When the nut is rotated by the hydraulic motor 36b, the screw rod 36a moves up and down, and the slider 35 moves up and down accordingly.
  • the first drive unit 32 further includes a motor 37 (rotation drive mechanism).
  • the motor 37 is installed on the slider 35, and an output shaft 37 a of the motor 37 extends downward, and is fixed coaxially to the upper end of the excavation cylinder 31.
  • the excavation cylinder 31 is rotated by driving the motor 37 and moved up and down by driving the ball screw mechanism 36.
  • the excavation cylinder 31 is inserted through a guide hole 33c formed in the lower support 33b.
  • the second drive unit 42 has a pair of upper and lower supports 43a and 43b and a plurality of vertical guide rods 44 with upper and lower ends fixed to the supports 43a and 43b. These supports 43a and 43b are fixed to the lifting platform 21 via brackets 26a and 26b.
  • the second drive unit 42 further includes a slider 45 supported by the guide rod 44 so as to be slidable in the vertical direction, and a hydraulic cylinder 46 (second moving mechanism) that is vertical.
  • the hydraulic cylinder 46 is installed on the upper support 43 a, and the lower end of the rod 46 a is connected to the slider 45.
  • a support block 47 is fixed to the lower surface of the slider 45, and the upper end portion of the sampling tube 41 is fitted and fixed to the support block 47.
  • the sampling cylinder 41 is moved up and down by driving the hydraulic cylinder 46.
  • the sampling tube 41 is inserted through a guide hole 43c formed in the lower support 43b.
  • the excavation cylinder 31 includes a cylindrical cylinder main body 31a and a plurality of excavation bits 31b fixed to the lower end of the cylinder main body 31a.
  • two excavation bits 31b are shown to simplify the drawing, but it is preferable to use three or more excavation bits 31b.
  • the diameter Dx of the circumscribed circle of the excavation bit 31b is larger than the outer diameter Da of the cylinder body 31a, and the diameter Dy of the inscribed circle of the excavation bit 31b is smaller than the inner diameter Db of the cylinder body 31a.
  • the excavation bit 31b is omitted, and the excavation cylinder 31 is shown in a simplified manner. Instead, the outer diameter and inner diameter of the excavating cylinder 31 are shown to be almost equal to the circumscribed circle and inscribed circle of the excavating bit 31b and are thicker than the actual one.
  • the sampling tube 41 includes a cylindrical tube body 41a, a protrusion 41b disposed on the inner periphery of the lower end of the tube body 41a, and a plurality (for example, 4) disposed above the protrusion 41b. ) Locking piece 41c.
  • the cylinder main body 41a of the sampling cylinder 41 has an inner diameter and an outer diameter substantially the same as the cylinder main body 31a of the excavating cylinder 31, and the outer diameter Da ′ is larger than the diameter Dx of the circumscribed circle of the excavating bit 31b.
  • the inner diameter Db ′ is smaller than the inscribed circle diameter Dy of the excavation bit 31b.
  • the protrusion 41b is arranged at one position located in the foremost position on the inner periphery of the cylinder main body 41a, and is constituted by a screw head screwed into the peripheral wall of the cylinder main body 41a.
  • the diameter Dc of the inscribed circle at the lower end including the protrusion 41b is equal to or slightly smaller than the diameter Dy of the inscribed circle of the excavation bit 31b. In the present embodiment, it is as small as 1 to 2 mm.
  • the protrusion 41b has an annular edge surrounding the flat top surface.
  • the upper part of this edge is referred to as an upper edge 41x, and the lower part is referred to as a lower edge 41y.
  • the locking pieces 41c are arranged at equal intervals in the circumferential direction, and each locking piece 41c forms an inverted U-shaped cut on the peripheral wall of the tube body 41a of the sampling tube 41 and is surrounded by the cut. Is bent inward in the radial direction. Therefore, the locking piece 41c is inclined so as to approach the central axis as it advances upward.
  • the locking piece 41c can be elastically deformed radially outward.
  • the apparatus is used to collect a geological sample of deep sea submarine ground A.
  • the apparatus can land at the seabed destination.
  • the crawler-type flippers 10a and 10b that can travel are provided, so that the position of the apparatus can be easily adjusted after landing.
  • the device further performs the following sampling process by remote control. Prior to the sampling step, the flippers 10a and 10b are set to the storage positions shown in FIG. The sampling process will be described step by step with reference to FIGS. Note that FIG. 8 is exaggerated for easy understanding. 1st process (airframe movement process) As shown in FIG. 1, the front / rear / right / left flippers 10a and 10b are driven to move the machine body 1, and the excavation cylinder 31 is positioned right above the place where the geological sample is collected.
  • the drive mechanism 22 is driven to lower the elevator 21 and bring the excavation cylinder 31 and the sampling cylinder 41 closer to the ground A.
  • the flippers 10a and 10b are driven to move the machine body 1, and the sampling cylinder 41 is positioned directly above the annular groove 50 as shown in FIG. 8C. This movement is performed by remote operation based on the video of the video camera 5 provided on the machine body 1.
  • the hydraulic cylinder 46 of the second drive unit 42 is driven to insert the sampling tube 41 into the annular groove 50 as shown in FIG. 8D, and the lower end is abutted against the bottom of the annular groove 50.
  • the sampling tube 41 is shown as being inserted into the annular groove 50 with play, but actually, as shown in FIG. 9, on the inner peripheral surface of the tube body 41a of the sampling tube 41
  • the part on the opposite side to the protrusion 41b in the radial direction is in contact with the outer periphery of the planned geological sample 51.
  • the protrusion 41b descends while slightly shaving the outer periphery of the planned geological sample 51, and slightly bites the outer periphery of the planned geological sample 51. This is because the diameter Dc of the inscribed circle of the portion including the protrusion 41c in the sampling tube 41 is slightly smaller than the diameter Dy of the inscribed circle of the excavation bit 31b.
  • the body 1 is slightly inclined to the rear side by further lowering the collection tube 41 with respect to the body 1, and the front side
  • the flipper 10a floats from the ground A, and only the rear flipper 10b is in contact with the ground A.
  • FIG. 7th process breaking process
  • the rear flipper 10 b is rotated 180 ° or more to lift the rear end portion of the machine body 1.
  • the airframe 1 floats and becomes horizontal, and further tilts forward.
  • the sampling tube 41 is given a moment that tends to tilt the sampling tube 41 forward.
  • FIG. 8E the collection tube 41 is shown in a state of being largely inclined to the front side, but actually the collection tube 41 is hardly inclined due to the resistance of the geological sample scheduled portion 51 as shown in FIGS.
  • the sampling tube 41 pushes a portion (contact portion) on the opposite side of the protrusion 41b in the radial direction at the upper end of the planned geological sample portion 51.
  • the contact portion serves as a fulcrum P, and a force F ⁇ b> 1 that pushes the entire protrusion 41 b of the sampling tube 41 toward the base of the planned geological sample 51 is generated by the moment.
  • the moment applied to the sampling tube 41 also works with the upper edge 41x of the protrusion 41b as a fulcrum and the lower edge 41y as an action point as shown in FIG. Since the distance between the fulcrum and the action point is short, a very large force F2 is applied to the lower edge 41y. As a result, as shown in FIG. 8E, a crack 52 is generated at the base of the planned geological sample portion 51 and is broken, and a geological sample 55 independent of the ground A is obtained. As described above, the occurrence of a crack is also aided by the bending load acting on the base of the planned geological sample 51.
  • the rear flipper 10b is driven in the state shown in FIGS. As a result of advancing, a greater moment is applied to the sampling tube 41 to cause a crack 52. If the crack 52 still does not occur, the fuselage 1 is moved backward by the driving of the rear flipper 10b and then moved forward again to apply a larger moment to the sampling tube 41 using the impact, and the crack 52 Give rise to The forward and backward movement of the airframe 1 may be repeated.
  • moment may be applied to the planned geological sample 51 by simply moving the machine body 1 forward or backward by driving the flippers 10a and 10b, or repeating forward and backward.
  • the thrusters 2 and 3 for moving the airframe in water may be used as the moment applying mechanism. That is, a moment may be applied to the planned geological sample 51 by driving these thrusters 2 and 3.
  • a plurality of guide rails 61 extending horizontally to the left and right are vertically spaced apart on the front surface of the lifting platform 22 (see FIG. 1) of the body 1 or the support platform 60 fixed to the lifting platform 22. And fixed.
  • a movable table 62 is supported on the guide rail 61 so as to be slidable in the left-right direction.
  • the moving table 62 is moved by a moving table driving mechanism 63 such as a hydraulic cylinder from a first position shown in the drawing to a second position separated by a predetermined distance to the right.
  • the excavation unit 30 and the sampling unit 40 are provided on the moving table 62 apart from each other on the left and right.
  • a distance D between the central axis of the excavating cylinder 31 of the excavating unit 30 and the central axis of the sampling cylinder 41 of the sampling unit 40 is equal to the moving stroke between the first position and the second position of the moving table 62.
  • the annular groove 50 is formed by performing excavation with the excavating cylinder 31, and the movable table 62 is moved to the second position after excavation is completed.
  • the sampling tube 41 is positioned with respect to the annular groove 50. Thereby, the sampling cylinder 41 can be positioned without moving the body 1.
  • the excavation cylinder 31 is rotated by driving the motor 37 and moved up and down by driving the ball screw mechanism 36 (moving mechanism), as in the first embodiment.
  • a shaft portion 41 d is formed at the upper end of the sampling tube 41, and this shaft portion 41 d is rotatably supported by the connector 39 via a bearing 49.
  • the connector 39 is for fixing the output shaft 37 a of the motor 37 to the upper end of the excavation cylinder 31. Thereby, the rotation of the motor 37 is transmitted only to the excavation cylinder 31 and not to the sampling cylinder 41.
  • the lower end of the sampling cylinder 41 is located above the excavation bit 31 b attached to the lower end of the excavation cylinder 31.
  • the inner diameter of the sampling tube 41 is larger than the diameter of the inscribed circle of the plurality of excavation bits 31b.
  • the protrusion 41b provided on the inner periphery of the lower end portion of the sampling tube 41 is disposed at the most forward position on the inner periphery of the tube body 41a as in the first embodiment, and from the inscribed circle of the excavation bit 31b. It protrudes inward in the radial direction by the amount indicated by the symbol T in the figure.
  • the excavation bit 31b of the excavation cylinder 31 excavates the ground to form a circular annular groove.
  • a cylindrical geological sample planned portion 51 is formed inside.
  • the sampling tube 41 also descends together with the excavation tube 31 in the process of forming the annular groove.
  • the sampling tube 41 is in contact with the outer periphery of the planned geological sample 51 and does not rotate.
  • the steps of pulling up the excavating cylinder 31 and positioning and lowering the sampling cylinder 41 after forming the annular groove in the first embodiment are unnecessary, and the working efficiency can be further improved.
  • the fourth embodiment shown in FIG. 15 is a crawler structure flipper 10a.
  • flippers 10a ′ and 10b ′ rotation applying mechanism
  • the flippers 10a ′ and 10b ′ can be rotated about the rotation centers Ca and Cb as in the first embodiment, and can perform the same body tilt function as the crawler-type flippers.
  • the flippers 10a ′ and 10b ′ may be used in the third embodiment.
  • crawlers 70 are provided on the left and right sides of the airframe 1.
  • FIG. Further, an excavation part and a sampling part (not shown) are provided on the front surface of the body 1 as in the first embodiment.
  • the airframe 1 is equipped with hydraulic cylinders 71 and 72 (moment applying mechanism) at the front and rear of each crawler 70. As shown in FIG. 16A, these hydraulic cylinders 71 and 72 are arranged vertically, and their rods 71a and 72a are in the retracted position in the traveling state by the crawler 70, and are higher than the ground contact surface of the crawler 70 and do not hinder the traveling. .
  • the rear hydraulic cylinder 72 is driven to tilt the body 1 forward, thereby applying a moment to the sampling cylinder. Break the root of the planned geological sample.
  • the front hydraulic cylinder 71 is driven as shown in FIG. 16C and the body 1 is once tilted later, and then again tilted forward as shown in FIG. 16B. By repeating this, the base of the planned geological sample portion is broken.
  • the present invention is not limited to the above-described embodiment, and can be variously employed.
  • the protrusion is arranged at the foremost position on the inner periphery of the lower end of the sampling tube.
  • the protrusion is arranged at the foremost position and / or at a plurality of positions away from the foremost position by a predetermined angle (less than 90 °). May be.
  • the protrusions may be directed to the rearmost position and / or to a plurality of locations separated from the rearmost position by a predetermined angle (less than 90 °) on the inner periphery of the lower end of the sampling tube. In this case, the direction of the moment applied to the sampling tube is opposite to that in the first embodiment.
  • the protrusions may be arranged on either the left or right side of the sampling tube. In this case, a moment is applied to the sampling tube by tilting the aircraft to the left and right.
  • the protrusions may have an edge or a cusp at only one place.
  • a pressing force is applied to the protrusion by using the moment applied to the sampling tube, with the upper end of the planned geological sample as a fulcrum.
  • the sampling tube may be inserted into the annular groove with play.
  • the protrusions may be formed in a plurality of places over the entire circumference, or in an annular shape on the inner circumference of the sampling cylinder. When the moment is large, the protrusion may not have an edge or a cusp.
  • the moment may be applied to the sampling tube only by moving forward or backward by the traveling unit. Further, the moment may be applied by swinging the sampling tube with a swing mechanism provided in the airframe.
  • the planned geological sample portion may be broken at a position shallower than the base of the planned geological sample portion.
  • the locking piece of the sampling tube may be separate from the tube body. Also, the locking piece may be omitted. In this case, the geological sample is held only by the protrusions.
  • the present invention can also be used for collecting onshore geological samples. Further, the ground may be a mountain constituted by accumulation of a waste part.
  • the present invention can be used to collect geological samples.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Soil Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Earth Drilling (AREA)

Abstract

海底地盤Aを掘削筒31で掘ることにより、円形の環状溝50を形成し、この環状溝50の径方向内側に円柱形状の地質サンプル予定部51を形成する。次に、円筒形状の筒本体41aとその下端部内周に設けられた突起41bとを有する採取筒41を、環状溝50に差し込む。次に、採取筒41の地盤Aから突出した部位を介して、採取筒41を傾かせるようなモーメントを付与する。これにより、突起41bを上記地質サンプル予定部51に押し当て、この地質サンプル予定部51を破断して、地質サンプル55を得る。次に、地質サンプル55を採取筒41内に保持したまま、採取筒41を引き上げる。

Description

地質サンプル採取方法および採取装置
 本発明は、海底等での資源探査・調査等を目的として硬い地盤から円柱形状の地質サンプルを効率良く採取する方法および装置に関する。
 日本近海には、多くの海底資源が存在することが知られているが、広大な海域に分布しているため、未だにその詳細な状況を把握するには至っていない。
 このような背景のもと、海洋鉱物資源の詳細な分布や資源量を調査することが求められている。
 特許文献1(特開2005-155109号公報)に開示された地質サンプル採取装置は、洋上の船からワイヤで吊り下げられ、海底に着座した状態でコアサンプリングを行なう。すなわち、海底を掘削して円柱形状の地質サンプル予定部を形成し、この地質サンプル予定部を上方に引っ張ることによりその根元を破断し、地質サンプル(いわゆるコアサンプル)を海底地盤から分離して取り出す。
 特許文献2(特開昭60-141484号公報)、特許文献3(特開平5-293789号公報)、特許文献4(特開2010-274669号公報)に開示されている地質サンプル採取装置は、水中スラスタやクローラ等の移動手段とビデオカメラを備え、母船からの遠隔操作によって目的地まで移動できる。この装置は、数千mの海底の探査が可能であり、ロボットハンド等を装備していて、海底の鉱物を採取できる。
 特許文献5(特開2010-242344号公報)には、地上において、コアサンプルを採取する装置の詳細な構造が開示されている。この装置は、掘削筒とその内側の採取筒の同軸二重筒構造を有している。掘削筒の先端には掘削ビットが取り付けられており、この掘削筒を回転駆動させながら下方を移動させて地盤を掘削することにより、この地盤に環状溝を形成し、この環状溝の内側に円柱形状の地質サンプル予定部を形成する。
 上記採取筒の下端部内周には係止片が設けられている。この係止片は上方に向かうにしたがって内筒の中心軸線に近づくように傾斜しているが、弾性変形可能である。
 上記採取筒は回転せずに掘削筒と一緒に下方に移動するようになっている。上記掘削筒による掘削が完了した時、上記地質サンプル予定部が上記採取筒に収容された状態になっている。この後、掘削筒と採取筒が引き上げられる過程で、上記地質サンプル予定部の根元に上記係止片が食い込み、この根元を破断して、地質サンプルを採取筒に収容したまま回収するようになっている。
 特許文献6(特開2011-196140号公報)には、地上においてコアサンプルを採取する装置の詳細な構造が開示されている。この装置はクローラを装備しており、目的地まで移動できる。さらにこの装置は、下端に掘削ビットを有する掘削筒と、下端に切断刃を有する採取筒が独立して装備されている。掘削筒により環状溝を形成した後、採取筒を環状溝に差し込み、駆動機構で採取筒を打撃駆動、振動駆動または回転駆動することにより、コアサンプルを採取するようになっている。
 特許文献1の地質サンプル採取装置では、海底地盤内の地質サンプル(コアサンプル)を採取できるが、大型かつ大重量であり、母船で目的地の上方まで装置運び目的地へ降ろす必要があるため、多くの地点を効率良く調査することができなかった。
 特許文献2~4の地質サンプル採取装置では、軽量・小型にすることができ、多数の地点で効率良く鉱物を採取できるが、海底上に露出した鉱物しか採取することができなかった。
 特許文献5に開示された地上の地質サンプル採取装置では、採取筒の係止片を地質サンプル予定部の根元に係止した状態で採取筒及び掘削筒を引き上げることにより地質サンプル(コアサンプル)を採取できるが、地盤が硬い場合には、地質サンプル予定部の根元を破断できない場合があり、地質サンプルを採取するのが困難になる。
 特許文献6では、下端に切断刃を有する採取筒を打撃駆動、振動駆動または回転駆動することにより地質サンプル予定部の根元を破断して地質サンプルを採取するが、切断刃は軸方向に延びているだけであり、地盤が硬い場合には確実にかつ効率良く破断することができない。
 特許文献5,6の装置は、硬い地盤でも地質サンプルを採取しようとすると大きな引上げ力を必要とし、大型となってしまう。この大型な装置を海底探査に用いようとすると、特許文献1の方式を採用することになり、多数の地点を効率良く調査することができなくなる。
 本発明は上記課題を解決するためになされたもので、地質サンプル採取方法において、
 機体と、上記機体に装備された掘削筒および採取筒と、を備え、上記採取筒が、円筒形状の筒本体とその下端部内周に設けられた突起とを有する採取装置を用意する工程と、
 地盤を上記掘削筒で掘ることにより、円形の環状溝を形成し、この環状溝の径方向内側に円柱形状の地質サンプル予定部を形成する掘削工程と、
 上記採取筒を上記環状溝に差し込んだ状態で、上記採取筒の上記地盤から突出した部位を介して、上記採取筒にモーメントを付与することにより、上記突起を上記地質サンプル予定部に押し当て、上記地質サンプル予定部を破断して地質サンプルを得る破断工程と、
 上記地質サンプルを上記採取筒内に保持したまま、上記採取筒を引き上げる回収工程と、
 を備えたことを特徴とする。
 上記方法によれば、採取筒に付与されるモーメントにより、採取筒の突起を地質サンプルに押し当てるので、地盤が硬い場合でも地質サンプル予定部に亀裂を生じさせることができる。そのため、大きな力を要さずに地質サンプルを効率よく確実に採取することができ、ひいては、機体の小型、軽量化を図ることができる。
 なお、上記方法において、採取筒は掘削筒の中に配置されていてもよいし、掘削筒から離れて掘削筒と平行に配置されていてもよい。
 好ましくは、上記破断工程において、上記採取筒の筒本体の内周面が、上記地質サンプル予定部の上端部において上記突起と径方向反対側に位置する当接部位に当たり、上記モーメントがこの当接部位を支点として働くことにより、上記突起を上記地質サンプル予定部に押し当てる。
 上記方法によれば、地質サンプル予定部に曲げ荷重を付与した状態で突起により地質サンプル予定部を押圧するため、亀裂を生じさせやすくなる。
 好ましくは、上記破断工程において、上記突起の上側エッジと下側エッジを上記地質サンプル予定部に当てた状態で、上記モーメントが、上記突起の上側エッジを支点としその下側エッジを作用点して働くことにより、上記突起の下側エッジからの押圧力で上記地質サンプル予定部を破断する。
 上記方法によれば、てこの原理により突起の下側エッジに大きな押圧力を付与でき、地質サンプル予定部に亀裂を生じさせやすくなる。
 好ましくは、上記採取筒の筒本体には、上記突起より上方の位置において係止片が設けられ、この係止片は上方に進むにしたがって上記筒本体の内周から中心軸線に近づくように傾斜するとともに弾性変形可能であり、
 上記回収工程で、上記係止片が上記地質サンプルの周面に食い込んで、上記地質サンプルの上記採取筒からの脱落を防ぐ。
 上記方法によれば、係止片により確実に地質サンプルの脱落を防止できる。
 好ましくは、上記掘削工程に先立ち、機体を遠隔操作して目的地まで移動させる機体移動工程をさらに備えている。
 上記方法によれば、機体が比較的軽量なので、機体を目的地点まで簡単に移動させることができ、硬い地盤を多点にわたり効率良く調査することができる。
 本発明の一態様をなす地質サンプル採取装置は、機体と、上記機体に装備された掘削筒と、上記機体に装備され上記掘削筒に対して離間し平行をなす採取筒と、上記掘削筒を回転させる回転駆動機構と、上記掘削筒を上下移動させる第1移動機構と、上記採取筒を上下移動させる第2移動機構と、上記採取筒にモーメントを付与するモーメント付与機構とを備え、
 上記掘削筒は、筒本体と、この筒本体の下端に取り付けられた複数の掘削ビットとを備え、
 上記採取筒は、筒本体と、この筒本体の下端部内周に設けられた突起とを備え、
 上記掘削筒は上記回転駆動機構により回転しながら上記第1移動機構により下方に移動することにより、地盤に円形の環状溝と、この環状溝の径方向内側の円柱形状の地質サンプル予定部を形成し、
 上記採取筒は、上記第2移動機構により下方に移動して上記環状溝に差し込まれ、
 上記モーメント付与機構は、上記環状溝に差し込まれた上記採取筒の地盤より上方に位置する部位を介して上記採取筒に上記モーメントを付与することにより、上記突起を上記地質サンプル予定部に押し当て、上記地質サンプル予定部を破断して地質サンプルを得ることを特徴とする。
 上記構成によれば、採取筒に付与されるモーメントにより、採取筒の突起を地質サンプルの予定部に押し当てるので、地盤が硬い場合でも地質サンプル予定部に亀裂を生じさせることができる。そのため、大きな力を要さずに地質サンプルを効率よく確実に採取することができ、ひいては、機体の小型、軽量化を図ることができ、機体移動手段による移動を容易にすることができる。
 好ましくは、さらに、上記機体に設けられた走行部を備え、この走行部により、上記機体を移動させて上記採取筒を上記環状溝に位置決めする。
 上記構成によれば、環状溝を掘削した後に、採取筒を環状溝に位置決めすることができる。
 好ましくは、上記機体に、水平移動可能に移動台が設けられるとともに、この移動台を駆動する移動台駆動機構が設けられ、
 上記移動台に、上記掘削筒および上記採取筒がその軸線を垂直にして上記移動台の移動方向に離間して設けられ、
 上記移動台駆動機構は、上記掘削筒により上記環状溝を形成した後で上記移動台を上記掘削筒の軸線と上記採取筒の軸線の離間距離だけ移動させることにより、上記採取筒を上記環状溝に位置決めする。
 上記構成によれば、環状溝を掘削した後に、採取筒を容易かつ確実に環状溝に対して位置決めすることができる。
 好ましくは、上記採取筒の筒本体は、その外径が上記掘削ビットの外接円の径より小さく、その内径が上記掘削ビットの内接円の径より大きく、
 さらに、上記採取筒における上記突起を含む下端部の内接円の径が、上記掘削ビットの内接円の径と等しいか小さい。
 上記構成によれば、採取筒を環状溝に差し込んだ状態で、突起と、筒本体の内周面において突起に対向する部位とが、地質サンプル予定部に遊びなく接するため、確実に突起から地質サンプル予定部に力を付与することができる。
 本発明の他の態様をなす地質サンプル採取装置は、
 機体と、この機体に装備された掘削筒と、この掘削筒内に同軸をなして収容された採取筒と、上記採取筒を回転させずに掘削筒のみを回転させる回転駆動機構と、上記掘削筒および採取筒を一緒に上下移動させる移動機構と、上記採取筒にモーメントを付与するモーメント付与機構とを備え、
 上記掘削筒は、筒本体と、この筒本体の下端に取り付けられた複数の掘削ビットとを備え、
 上記採取筒は、下端が上記掘削ビットより上に位置する筒本体と、この筒本体の下端部内周に設けられた突起とを備え、
 上記掘削筒は上記回転駆動機構により回転しながら上記移動機構により下方に移動することにより、地盤に円形の環状溝と、この環状溝の径方向内側の円柱形状の地質サンプル予定部を形成し、
 上記モーメント付与機構は、上記環状溝に差し込まれた上記掘削筒および採取筒の地盤より上方に位置する部位を介して上記採取筒に上記モーメントを付与することにより、上記突起を上記地質サンプル予定部に押し当て、上記地質サンプル予定部を破断して地質サンプルを得ることを特徴とする。
 上記構成によれば、上述した一態様をなす地質サンプル採取装置と同等の作用効果が得られる。さらに、環状溝を形成した後に、掘削筒と採取筒を一緒に引き上げるので、採取筒単独での環状溝への位置決め・差し込みが不要となり、より一層効率良く地質サンプルを採取することができる。
 好ましくは、上記採取筒の突起が、上記掘削筒の掘削ビットの内接円から径方向内方向に突出している。
 上記構成によれば、突起が地質サンプル予定部に遊びなく接するため、確実に突起から地質サンプル予定部に力を付与することができる。
 好ましくは、上記モーメント付与機構は、上記機体の傾斜角度を変えることにより上記採取筒に上記モーメントを付与する。
 上記構成によれば、機体を傾斜させることにより大きなモーメントを採取筒に付与することができる。
 好ましくは、上記突起が上記採取筒の下端部内周において、前後の少なくとも一方に設けられ、
 上記モーメント付与機構は、上記機体の前部左右と後部左右に設けられた4つのフリッパを有し、少なくとも前後いずれかに位置する上記フリッパを回動させることにより、上記機体の傾斜角度を変えて、上記採取筒に上記モーメントを付与する。
 上記構成によれば、簡単な制御で、機体を傾斜させることができる。
 好ましくは、上記突起が上記採取筒の下端部内周において、前後の少なくとも一方に設けられ、
 上記モーメント付与機構は上記機体に装備された走行部を有し、この走行部により上記機体を前後いずれかの方向に移動させることにより、上記採取筒に上記モーメントを付与する。
 上記構成によれば、機体を前後方向に移動させることにより大きなモーメントを採取筒に付与することができる。
 好ましくは、上記突起は、その上下にエッジを有する。
 上記構成によれば、突起の上側のエッジが支点となり下側のエッジが作用点となって、てこの原理により大きな押圧力を下側のエッジに付与することができる。
 好ましくは、上記採取筒の筒本体には、上記突起より上方の位置において係止片が設けられ、この係止片は上方に進むにしたがって上記筒本体の内周から中心軸線に近づくように傾斜するとともに弾性変形可能である。この構成によれば、採取筒を引き上げる際に採取筒に収容された地質サンプルの脱落を確実に防止することができる。
 好ましくは、さらに、上記機体に設けられた水中スラスタを備えている。この構成によれば、水中スラスタにより機体を目的地まで簡単に移動させることができ、多点にわたり効率良く調査することができる。
 本発明によれば、硬い地盤の地質サンプルを効率良く採取することができる。
本発明の第1実施形態をなす地質サンプル採取装置の側面図であり、装置を採取場所まで移動した状態を示す。 同装置の要部を一部断面にして示す拡大側面図である。 同装置の掘削筒の下端部をさらに拡大して示す断面図である。 同装置の採取筒の下端部をさらに拡大して示す断面図である。 上記装置の側面図であり、上記掘削筒と採取筒を支持する昇降台を下方に移動させた状態を示す。 上記装置の側面図であり、上記掘削筒により環状溝を形成した直後の状態を示す。 上記装置の側面図であり、上記採取筒を環状溝に差し込んでその底部に突き当てるとともに機体を浮かせた状態を示す。 上記装置で地質サンプルを採取する工程を順を追って説明する概略図であり,上記掘削筒を位置決めする工程を示す。 上記掘削筒により環状溝を形成する工程を示す概略図である。 上記採取筒を位置決めする工程を示す概略図である。 上記採取筒を環状溝に差し込む工程を示す概略図である。 地質サンプル予定部を破断する工程を示す概略図である。 地質サンプルを引き上げる工程を示す概略図である。 図8D、図8Eの工程における、上記採取筒と地質サンプル予定部の関係をより具体的に示す断面図である。 図9の要部を拡大して示す断面図である。 本発明の第2実施形態をなす地質サンプル採取装置を前方から見た図である。 本発明の第3実施形態をなす地質サンプル採取装置の要部を一部断面にして示す側面図であり、環状溝を形成する直前の状態を示す。 上記環状溝を形成した直後の状態を示す図12A相当図である。 図12の要部を、拡大するとともに一部断面にして示す側面図である。 図13の要部を、さらに拡大して示す断面図である。 本発明の第4実施形態をなす地質サンプル採取装置の側面図である。 本発明の第5実施形態をなす地質サンプル採取装置の通常状態を示す概略側面図である。 前傾状態を示す図16A相当図である。 後傾状態を示す図16A相当図である。
 以下、本発明の第1実施形態をなす地質サンプル採取装置について図1~図10を参照しながら説明する。理解を容易にするために、図1において前後方向を明示しておく。図1に示すように、海底地盤の地質サンプル採取装置(以下、装置と言う)は、機体1の前後左右の4か所にプロペラ等からなる水平スラスタ2(水中スラスタ)を有し、左右2カ所に垂直スラスタ3(水中スラスタ)を有しており、その前部にビデオカメラ5を有している。これらスラスタ2,3およびビデオカメラ5は、機体1に設置された送受信器およびケーブル(いずれも図示しない)を介して、海上に浮かぶ母船の遠隔操作装置に接続されている。
 母船からの遠隔操作により、スラスタ2,3を駆動することにより、上記装置は深海であっても海中を遊泳して、目的地またはその近傍まで容易に到達することができる。
 上記機体1の左右それぞれには、前後一対のクローラ構造のフリッパ10a,10b(走行部、モーメント付与機構)が装備されている。これらフリッパ10a、10bの各々は、前後一対のホイール11と、これらホイール11間に架け渡された無端ベルト12とを有している。
 前側のフリッパ10aは、機体1の前端部を中心として回動可能であり、後側のフリッパ10bは、機体1の後端部を中心として回動可能である。これらフリッパ10a,10bの回動中心を図1において符号Ca、Cbで示す。
 海中遊泳時には、図1に示すように前側のフリッパ10aを後側に倒し、後側のフリッパ10bを前側に倒しておく。走行の際には前側のフリッパ10aを図1の状態から略180°回して前側に倒し、後側のフリッパ10bを図1の状態から略180°回して後側に倒すことにより、安定した走行が可能である。
 なお、前後左右のフリッパ10a、10bは独立して前進、後退が可能であり、その結果、機体1は前進、後退のみならず、旋回も可能である。
 上記機体1の前端には支柱20が固定されており、この支柱20には、昇降台21が上下方向にスライド可能に支持されている。この昇降台21は、支柱20に設けられたボールねじ機構等の駆動機構22により上下移動される。
 上記昇降台21は垂直に細長く形成されており、この昇降台21には掘削部30と採取部40が前後方向に並んで支持されている。
 上記掘削部30は、掘削筒31と、この掘削筒31を回転および上下動させるための第1駆動部32とを有している。
 上記採取部40は、採取筒41と、この採取筒41を上下動させるための第2駆動部42とを有している。
 図2に示すように、上記第1駆動部32は、上下一対のサポート33a,33bと、これらサポート33a,33bに上下端が固定された垂直をなす複数のガイドロッド34を有している。これらサポート33a,33bは、固定ブロック25a,25bを介して昇降台21にそれぞれ固定されている。
 上記第1駆動部32はさらに、上記ガイドロッド34に上下方向にスライド可能に支持されたスライダ35と、このスライダ35を上下方向に移動するボールねじ機構36(第1移動機構)を有している。このボールねじ機構36は、上側のサポート33aに支持されており、垂直に延びるねじロッド36aと、このねじロッド36aに螺合されたナット(図示しない)と、このナットを回転駆動させる油圧モータ36bとを有している。このねじロッド36aの下端が上記スライダ35に固定されている。油圧モータ36bによりナットを回転させると、ねじロッド36aが上下動し、これに伴い上記スライダ35が上下動するようになっている。
 上記第1駆動部32はさらに、モータ37(回転駆動機構)を有している。このモータ37は上記スライダ35に設置されており、このモータ37の出力軸37aが下方に延びて、上記掘削筒31の上端に同軸をなして固定されている。
 上記掘削筒31は、上記モータ37の駆動により回転され、上記ボールねじ機構36の駆動により上下動されるようになっている。
 上記掘削筒31は、下側のサポート33bに形成されたガイド穴33cに挿通されている。
 図2に示すように、上記第2駆動部42は、上下一対のサポート43a,43bと、これらサポート43a,43bに上下端が固定された垂直をなす複数のガイドロッド44を有している。これらサポート43a,43bは、ブラケット26a,26bを介して昇降台21に固定されている。
 上記第2駆動部42はさらに、上記ガイドロッド44に上下方向にスライド可能に支持されたスライダ45と、垂直をなす油圧シリンダ46(第2移動機構)とを備えている。この油圧シリンダ46は上側のサポート43aに設置され、そのロッド46aの下端がスライダ45に連結されている。
 上記スライダ45の下面には、支持ブロック47が固定されており、この支持ブロック47には上記採取筒41の上端部が嵌め込まれて固定されている。
 上記油圧シリンダ46の駆動により、採取筒41が上下動される。採取筒41は下側のサポート43bに形成されたガイド穴43cに挿通されている。
 図3に概略的に示すように、上記掘削筒31は、円筒形状の筒本体31aと、この筒本体31aの下端に固定された複数の掘削ビット31bとを有している。図3では図面を簡略化するために2つの掘削ビット31bを示すが、3つ以上とするのが好ましい。
 上記掘削ビット31bの外接円の径Dxは、筒本体31aの外径Daより大きく、掘削ビット31bの内接円の径Dyは、筒本体31aの内径Dbより小さい。
 図2では、上記掘削ビット31bを省略し掘削筒31を簡略化して示す。その代りに、掘削筒31の外径及び内径を掘削ビット31bの外接円、内接円とほぼ等しくして実際より厚肉で示す。
 図4に示すように、上記採取筒41は、円筒形状の筒本体41aと、この筒本体41aの下端部内周に配置された突起41bと、この突起41bの上方に配置された複数(例えば4つ)の係止片41cとを有している。
 上記採取筒41の筒本体41aは、上記掘削筒31の筒本体31aと略同程度の内径および外径を有しており、その外径Da’は上記掘削ビット31bの外接円の径Dxより小さく、その内径Db’は上記掘削ビット31bの内接円の径Dyより大きい。
 本実施形態では、上記突起41bは上記筒本体41aの内周のうち最も前方に位置する1箇所に配置され、筒本体41aの周壁にねじ込まれたねじの頭部により構成されている。
 上記採取筒41において、上記突起41bを含む下端部の内接円の径Dcは、上記掘削ビット31bの内接円の径Dyと等しいか若干小さい。本実施形態では、1~2mm程小さい。
 図10に示すように、上記突起41bは、その平坦な頂面を囲む環状のエッジを有している。以下の説明では、このエッジの上側部分を上側エッジ41xと称し、下側部分を下側エッジ41yと称す。
 上記係止片41cは周方向に等間隔に配置されており、各係止片41cは、採取筒41の筒本体41aの周壁に逆U字形の切り込みを形成し、この切り込みで囲われた部分を径方向内側に折り曲げることにより構成されている。そのため、係止片41cは、上方に進むにしたがって中心軸線に近づくように傾斜している。係止片41cは径方向外方向に弾性変形可能である。
 上記装置は深海の海底地盤Aの地質サンプルを採取するために用いられる。装置は母船からの遠隔操作でスラスタ2,3を制御することにより、海底の目的地に着地することができる。なお、本実施形態では走行可能なクローラ構造のフリッパ10a,10bを装備しているので、着地後に簡単に装置の位置を調整することができる。
 装置はさらに遠隔操作により次の採取工程を実行する。採取工程前には、フリッパ10a,10bは、図1に示す格納位置にしておく。
 図5~図9を参照しながら採取工程を順を追って説明する。なお、図8は理解を容易にするために誇張して示している。
第1工程(機体移動工程)
 図1に示すように、前後左右のフリッパ10a,10bを駆動して機体1を移動させ、上記掘削筒31を、地質サンプルを採取する場所の真上に位置決めする。
第2工程
 図5、図8Aに示すように、駆動機構22を駆動して昇降台21を下降させ、掘削筒31、採取筒41を地盤Aに近づける。
第3工程(掘削工程)
 図6、図8Bに示すように、第1駆動部32のモータ37を駆動して掘削筒31を回転させながら、ボールねじ機構36のモータ36bを駆動して掘削筒31を下降させる。これにより、掘削筒31の掘削ビット31bが地盤Aを掘削し、円形の環状溝50を形成するとともに、この環状溝50の内側に円柱形状の地質サンプル予定部51を形成する。この地質サンプル予定部51はその根元で地盤Aに連なっている。
第4工程
 上記掘削筒31の回転を停止し、ボールねじ機構36により掘削筒31を上昇させ、図8Aと同じ高さに戻す。
第5工程
 上記フリッパ10a,10bを駆動させて機体1を移動させ、図8Cに示すように、採取筒41を上記環状溝50の真上に位置させる。この移動は、機体1に設けたビデオカメラ5の映像に基づき、遠隔操作により行う。
第6工程
 上記第2駆動部42の油圧シリンダ46を駆動して、図8Dに示すように採取筒41を上記環状溝50に差し込み、下端を環状溝50の底に突き当てる。
 図8Dでは採取筒41が環状溝50に遊びを有して差し込まれているように示されているが、実際には図9に示すように、採取筒41の筒本体41aの内周面において、突起41bと径方向反対側の部位は、地質サンプル予定部51の外周に接している。突起41bは地質サンプル予定部51の外周を若干量削りながら下降し、地質サンプル予定部51の外周に若干量食い込む。上記採取筒41において上記突起41cを含む部位の内接円の径Dcが、上記掘削ビット31bの内接円の径Dyより若干小さいからである。
 図示しないが、本実施形態では、採取筒41が環状溝50の底に突き当たった後、さらに採取筒41を機体1に対して下降させることにより、機体1が若干後側に傾斜し、前側のフリッパ10aが地盤Aから浮き、後側のフリッパ10bだけが地盤Aに接地した状態になる。
第7工程(破断工程)
 図7に示すように、上記後側のフリッパ10bを180°以上回動させて機体1の後端部を持ち上げる。これにより、機体1は浮いた状態で水平になり、さらに前側に傾こうとする。これにより、採取筒41には、採取筒41を前側に傾かせようとするモーメントが付与される。
 なお、図8Eでは採取筒41を前側に大きく傾いた状態で示すが、実際には図7、図9に示すように採取筒41は地質サンプル予定部51の抵抗を受けて殆ど傾かない。
 上記採取筒41に付与されるモーメントにより、採取筒41は地質サンプル予定部51の上端部において突起41bと径方向反対側の部位(当接部位)を押すため、地質サンプル予定部51の根元には曲げ応力が生じる。
 また、図9に示すように、上記当接部位が支点Pとなり、上記モーメントにより、採取筒41の突起41b全体を地質サンプル予定部51の根元に向かって押す力F1が生じる。これにより、突起41bの上側エッジ41x、下側エッジ41yが確実に地質サンプル予定部51の外周に押し当たった状態が得られる。
 上記採取筒41に付与されるモーメントは、図10のように突起41bの上側エッジ41xを支点とし、下側エッジ41yを作用点としても働く。この支点と作用点の距離は短いので、下側エッジ41yには非常に大きな力F2が付与される。その結果、図8Eに示すように、地質サンプル予定部51の根元に亀裂52が生じて破断し、地盤Aから独立した地質サンプル55が得られる。上述したように地質サンプル予定部51の根元に曲げ荷重が作用していることによっても、亀裂の発生を助ける。
 後側のフリッパ10bを立てただけでは地質サンプル予定部51の根元に亀裂52が生じない場合には、図7、図8E、図9の状態で後側のフリッパ10bを駆動して、機体1を前進させることにより、より大きなモーメントを採取筒41に付与して亀裂52を生じさせる。
 それでも亀裂52が生じない場合には、後側のフリッパ10bの駆動により機体1を後退させてから再び前進させることにより、その衝撃を利用して一層大きなモーメントを採取筒41に付与し、亀裂52を生じさせる。
 上記機体1の前進後退を繰り返してもよい。
第8工程(回収工程)
 後側のフリッパ10bを回動させて元の位置に戻し、上記第2駆動部42の油圧シリンダ46を駆動することにより、図8Fに示すように採取筒41を上昇させる。この際、突起41bが地質サンプル55に食い込んでいること、および係止片41cが地質サンプル55に食い込んでいることにより、地質サンプル55は採取筒41に収容されたまま脱落せずに環状溝50から引き上げることができる。
第9工程
 最後に、昇降台21を上昇させる。
 上記実施形態において、フリッパ10a,10bの駆動により機体1を前進または後退させたり、前進・後退を繰り返すだけで、地質サンプル予定部51にモーメントを付与してもよい。
 さらに、機体を水中で移動させるためのスラスタ2,3をモーメント付与機構として用いてもよい。すなわち、これらスラスタ2,3を駆動することにより、地質サンプル予定部51にモーメントを付与してもよい。
 次に、本発明の他の実施形態について説明する。これら実施形態において先行する実施形態に対応する構成部には同番号を付してその詳細な説明を省略する。
 図11に示す第2実施形態では、機体1の昇降台22(図1参照)またはこの昇降台22に固定された支持台60の前面に左右に水平に延びる複数のガイドレール61が上下に離間して固定されている。このガイドレール61には、移動台62が左右方向にスライド可能に支持されている。この移動台62は、油圧シリンダ等の移動台駆動機構63により、図示の第1位置から、それより右側に所定距離離れた第2位置までの間で移動されるようになっている。
 上記移動台62には、掘削部30と採取部40が左右に離れて設けられている。掘削部30の掘削筒31の中心軸線と採取部40の採取筒41の中心軸線との間の距離Dは、上記移動台62の第1位置と第2位置との間の移動ストロークと等しい。
 上記第2実施形態では、上記移動台62が上記第1位置にある時に、掘削筒31で掘削を行うことにより環状溝50を形成し、掘削終了後に移動台62を第2位置まで移動させて採取筒41を環状溝50に対して位置決めする。これにより、機体1を移動させずに採取筒41の位置決めを行うことができる。
 図12~図14に本発明の第3実施形態を示す。この実施形態において、上記掘削筒31が、上記モータ37の駆動により回転され、上記ボールねじ機構36(移動機構)の駆動により上下動される点は、第1実施形態と同様である。
 図13に示すように、採取筒41が掘削筒31に同軸をなして収容されている点が、第1実施形態と大きく異なる。この採取筒41の上端には軸部41dが形成され、この軸部41dが、軸受49を介してコネクタ39に回転可能に支持されている。このコネクタ39は、モータ37の出力軸37aを掘削筒31の上端に固定するものである。これにより、モータ37の回転は、掘削筒31にのみ伝達され採取筒41には伝達されない。
 図14に示すように、採取筒41の下端は掘削筒31の下端に取り付けられた掘削ビット31bより上に位置している。採取筒41の内径は複数の掘削ビット31bの内接円の径より大きい。採取筒41の下端部内周に設けられた突起41bは、第1実施形態と同様に上記筒本体41aの内周のうち最も前方に位置する1箇所に配置され、掘削ビット31bの内接円から図中符号Tで示す量だけ径方向内側に突出している。
 上記第3実施形態では、第1実施形態の第1工程~第3工程と同様にして、掘削筒31の掘削ビット31bが地盤を掘削し、円形の環状溝を形成するとともに、この環状溝の内側に円柱形状の地質サンプル予定部51を形成する。第1実施形態と異なるのは、環状溝の形成過程で、採取筒41も掘削筒31と一緒に下降する点である。ただし、採取筒41は地質サンプル予定部51の外周に接しており回転しない。
 環状溝を形成した後、掘削筒31を引き上げずに、掘削筒31と採取筒41の2重管に第1実施形態と同様にモーメントを付与する。これにより、地質サンプル予定部51の根元を破断して地質サンプルを得る。
 その後で、ボールねじ機構36(移動機構)を駆動して、掘削筒31と採取筒41の2重管を引き上げ、地質サンプルを回収する。
 上記第3実施形態では、第1実施形態における、環状溝を形成した後の掘削筒31の引き上げ、採取筒41の位置決めおよび下降工程が不要となり、作業効率をさらに向上させることができる。
 図15に示す第4実施形態は、第1実施形態のクローラ構造のフリッパ10a.10bの代わりに、所定厚さのボードからなるフリッパ10a’,10b’(モーメント付与機構)を用いる。このフリッパ10a’,10b’は、第1実施形態と同様に回転中心Ca,Cbを中心に回動可能であり、クローラ構造のフリッパと同様の機体傾斜機能を果たすことができる。
 なお、このフリッパ10a’,10b’を第3実施形態で用いてもよい。
 図16A~16Cに示す第5実施形態では、機体1の左右にクローラ70(走行部)が装備されている。さらに機体1の前面には、第1実施形態と同様に掘削部と採取部(図示しない)が設けられている。
 さらに機体1には、各クローラ70の前方お呼び後方に油圧シリンダ71,72(モーメント付与機構)が装備されている。図16Aに示すように、これら油圧シリンダ71,72は垂直に配置され、そのロッド71a、72aはクローラ70による走行状態では後退位置にあり、クローラ70の接地面より高く、走行の支障とはならない。
 第1実施形態と同様にして環状溝に採取筒を差し込んだ後、図16Bに示すように後側の油圧シリンダ72を駆動して機体1を前に傾けることにより、採取筒にモーメントを付与し、地質サンプル予定部の根元を破断する。破断しない場合には図16Cに示すように前側の油圧シリンダ71を駆動させて機体1を後に一旦傾けた後で、再び図16Bに示すように前側に傾ける。これを繰り返すことにより、地質サンプル予定部の根元を破断する。
 本発明は上記実施形態に制約されず、種々採用可能である。
 上記実施形態では突起は採取筒の下端部内周において最も前方の1か所に配置したが、この最前方位置及び/又はこの最前方位置から所定角度(90°未満)離れた複数箇所に配置してもよい。
 突起を採取筒の下端部内周において、最後方位置及び/又はこの最後方位置から所定角度(90°未満)離れた複数箇所に向けてもよい。この場合には、採取筒に付与するモーメントの方向は第1実施形態とは逆になる。
 また、突起は採取筒の左右いずれかに配置してもよい。この場合には機体を左右に傾けることにより採取筒にモーメントを付与する。
 上記突起は種々の形状を採用可能である。例えば、1か所だけにエッジまたは尖点部を有していてもよい。この場合には、採取筒に付与されるモーメントにより、地質サンプル予定部の上端部を支点として突起に押圧力を付与する。採取筒は遊びをもって環状溝に差し込んでもよい。突起は全周にわたって複数箇所、あるいは採取筒内周に環状に形成してもよい。
 モーメントが大きい場合には、突起はエッジや尖点部を有さなくてもよい。
 採取筒へのモーメントの付与は、走行部による前進または後退だけで行ってもよい。また、機体に設けた揺動機構で採取筒を揺動させることにより、モーメントを付与してもよい。
 第1、第2実施形態では、地質サンプル予定部の根元より浅い位置で地質サンプル予定部を破断してもよい。
 採取筒の係止片は筒本体と別体であってもよい。
 また、係止片を省いてもよい。この場合、突起のみで地質サンプルを保持する。
 本発明は、陸上の地質サンプルを採取する場合にも用いることができる。また、地盤は廃棄部の堆積により構成された山であってもよい。
 本発明は、地質サンプルを採取するために用いることができる。

Claims (17)

  1.  機体(1)と、上記機体に装備された掘削筒(31)および採取筒(41)と、を備え、上記採取筒が、円筒形状の筒本体(41a)とその下端部内周に設けられた突起(41b)とを有する採取装置を用意する工程と、
     地盤を上記掘削筒(31)で掘ることにより、円形の環状溝(50)を形成し、この環状溝の径方向内側に円柱形状の地質サンプル予定部(51)を形成する掘削工程と、
     上記採取筒(41)を上記環状溝(50)に差し込んだ状態で、上記採取筒の上記地盤から突出した部位を介して、上記採取筒にモーメントを付与することにより、上記突起(41b)を上記地質サンプル予定部(51)に押し当て、上記地質サンプル予定部を破断して地質サンプル(55)を得る破断工程と、
     上記地質サンプル(55)を上記採取筒(41)内に保持したまま、上記採取筒を引き上げる回収工程と、
     を備えたことを特徴とする地質サンプル採取方法。
  2.  上記破断工程において、上記採取筒(41)の筒本体(41a)の内周面が、上記地質サンプル予定部(51)の上端部において上記突起(41b)と径方向反対側に位置する当接部位に当たり、上記モーメントがこの当接部位を支点として働くことにより、上記突起を上記地質サンプル予定部に押し当てることを特徴とする請求項1に記載の地質サンプル採取方法。
  3.  上記破断工程において、上記突起(41b)の上側エッジ(41x)と下側エッジ(41y)を上記地質サンプル予定部(51)に当てた状態で、上記モーメントが、上記突起の上側エッジを支点としその下側エッジを作用点して働くことにより、上記突起の下側エッジからの押圧力で上記地質サンプル予定部を破断することを特徴とする請求項2に記載の地質サンプル採取方法。
  4.  上記採取筒(41)の筒本体(41a)には、上記突起(41b)より上方の位置において係止片(41c)が設けられ、この係止片は上方に進むにしたがって上記筒本体の内周から中心軸線に近づくように傾斜するとともに弾性変形可能であり、
     上記回収工程で、上記係止片(41c)が上記地質サンプル(55)の周面に食い込んで、上記地質サンプルの上記採取筒(41)からの脱落を防ぐことを特徴とする請求項1に記載の地質サンプル採取方法。
  5.  上記掘削工程に先立ち、機体(1)を遠隔操作して目的地まで移動させる機体移動工程をさらに備えたことを特徴とする請求項1に記載の地質サンプル採取方法。
  6.  機体(1)と、この機体に装備された掘削筒(31)と、上記機体に装備され上記掘削筒に対して離間し平行をなす採取筒(41)と、上記掘削筒を回転させる回転駆動機構(37)と、上記掘削筒を上下移動させる第1移動機構(36)と、上記採取筒を上下移動させる第2移動機構(46)と、上記採取筒にモーメントを付与するモーメント付与機構(10a,10b;10a’,10b’;71,72)とを備え、
     上記掘削筒(31)は、筒本体(31a)と、この筒本体の下端に取り付けられた複数の掘削ビット(31b)とを備え、
     上記採取筒(41)は、筒本体(41a)と、この筒本体の下端部内周に設けられた突起(41b)とを備え、
     上記掘削筒(31)は上記回転駆動機構(37)により回転しながら上記第1移動機構(36)により下方に移動することにより、地盤に円形の環状溝(50)と、この環状溝の径方向内側の円柱形状の地質サンプル予定部(51)を形成し、
     上記採取筒(41)は、上記第2移動機構(46)により下方に移動して上記環状溝(50)に差し込まれ、
     上記モーメント付与機構(10a,10b;10a’,10b’;71,72)は、上記環状溝(50)に差し込まれた上記採取筒(41)の地盤より上方に位置する部位を介して上記採取筒に上記モーメントを付与することにより、上記突起(41b)を上記地質サンプル予定部(51)に押し当て、上記地質サンプル予定部を破断して地質サンプル(55)を得ることを特徴とする地質サンプル採取装置。
  7.  さらに、上記機体(1)に設けられた走行部(10a,10b)を備え、この走行部により、上記機体を移動させて上記採取筒(41)を上記環状溝(50)に位置決めすることを特徴とする請求項6に記載の地質サンプル採取装置。
  8.  上記機体(1)に、水平移動可能に移動台(62)が設けられるとともに、この移動台を駆動する移動台駆動機構(63)が設けられ、
     上記移動台(62)に、上記掘削筒(31)および上記採取筒(41)がその軸線を垂直にして上記移動台の移動方向に離間して設けられ、
     上記移動台駆動機構(63)は、上記掘削筒(31)により上記環状溝(50)を形成した後で上記移動台(62)を上記掘削筒の軸線と上記採取筒(41)の軸線の離間距離だけ移動させることにより、上記採取筒を上記環状溝に位置決めすることを特徴とする請求項6に記載の地質サンプル採取装置。
  9.  上記採取筒(41)の筒本体(41a)は、その外径が上記掘削ビット(31b)の外接円の径より小さく、その内径が上記掘削ビットの内接円の径より大きく、
     さらに、上記採取筒(41)における上記突起(41b)を含む下端部の内接円の径が、上記掘削ビットの内接円の径と等しいか小さいことを特徴とする請求項6に記載の地質サンプル採取装置。
  10.  機体(1)と、この機体に装備された掘削筒(31)と、この掘削筒内に同軸をなして収容された採取筒(41)と、上記採取筒を回転させずに掘削筒のみを回転させる回転駆動機構(37)と、上記掘削筒および採取筒を一緒に上下移動させる移動機構(36)と、上記採取筒にモーメントを付与するモーメント付与機構(10a,10b;10a’,10b’;71,72)とを備え、
     上記掘削筒(31)は、筒本体(31a)と、この筒本体の下端に取り付けられた複数の掘削ビット(31b)とを備え、
     上記採取筒(41)は、下端が上記掘削ビットより上に位置する筒本体(41a)と、この筒本体の下端部内周に設けられた突起(41b)とを備え、
     上記掘削筒(31)は上記回転駆動機構(37)により回転しながら上記移動機構(36)により下方に移動することにより、地盤に円形の環状溝(50)と、この環状溝の径方向内側の円柱形状の地質サンプル予定部(51)を形成し、
     上記モーメント付与機構(10a,10b;10a’,10b’;71,72)は、上記環状溝(50)に差し込まれた上記掘削筒(31)および採取筒(41)の地盤より上方に位置する部位を介して上記採取筒に上記モーメントを付与することにより、上記突起(41b)を上記地質サンプル予定部(51)に押し当て、上記地質サンプル予定部を破断して地質サンプル(55)を得ることを特徴とする地質サンプル採取装置。
  11.  上記採取筒(41)の突起(41b)が、上記掘削筒(31)の掘削ビット(31b)の内接円から径方向内方向に突出していることを特徴とする請求項10に記載の地質サンプル採取装置。
  12.  上記モーメント付与機構(10a,10b;10a’,10b’;71,72)は、上記機体(1)の傾斜角度を変えることにより上記採取筒(41)に上記モーメントを付与することを特徴とする請求項6または10に記載の地質サンプル採取装置。
  13.  上記突起(41b)が上記採取筒(41)の下端部内周において、前後の少なくとも一方に設けられ、
     上記モーメント付与機構は、上記機体(1)の前部左右と後部左右に設けられた4つのフリッパ(10a,10b;10a’,10b’)を有し、少なくとも前後いずれかに位置する上記フリッパを回動させることにより、上記機体の傾斜角度を変えて、上記採取筒(41)に上記モーメントを付与することを特徴とする請求項12に記載の地質サンプル採取装置。
  14.  上記突起(41b)が上記採取筒(41)の下端部内周において、前後の少なくとも一方に設けられ、
     上記モーメント付与機構は上記機体(1)に装備された走行部(10a,10b)を有し、この走行部により上記機体を前後いずれかの方向に移動させることにより、上記採取筒(41)に上記モーメントを付与することを特徴とする請求項6または10に記載の地質サンプル採取装置。
  15.  上記突起(41b)は、その上下にエッジ(41x、41y)を有することを特徴とする請求項6または10に記載の地質サンプル採取装置。
  16.  上記採取筒(41)の筒本体(41a)には、上記突起(41b)より上方の位置において係止片(41c)が設けられ、この係止片は上方に進むにしたがって上記筒本体の内周から中心軸線に近づくように傾斜するとともに弾性変形可能であることを特徴とする請求項6または10に記載の地質サンプル採取装置。
  17.  さらに、上記機体(1)に設けられた水中スラスタ(2,3)を備えたことを特徴とする請求項6または10に記載の地質サンプル採取装置。
PCT/JP2017/006923 2016-02-26 2017-02-23 地質サンプル採取方法および採取装置 WO2017146170A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018501771A JPWO2017146170A1 (ja) 2016-02-26 2017-02-23 地質サンプル採取方法および採取装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-035224 2016-02-26
JP2016035224 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017146170A1 true WO2017146170A1 (ja) 2017-08-31

Family

ID=59686507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006923 WO2017146170A1 (ja) 2016-02-26 2017-02-23 地質サンプル採取方法および採取装置

Country Status (2)

Country Link
JP (1) JPWO2017146170A1 (ja)
WO (1) WO2017146170A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056274A1 (ja) * 2016-09-23 2018-03-29 鉱研工業株式会社 海底地盤のコアサンプリング装置及びコアサンプリング方法
KR102441446B1 (ko) * 2022-05-11 2022-09-08 전상구 돌기둥 절단 및 인발기를 이용한 돌기둥 절단 및 인발 공법
KR102488087B1 (ko) * 2022-05-11 2023-01-13 주식회사 일화건업 돌기둥 절단 및 인발기

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473084U (ja) * 1990-11-06 1992-06-26
US20020148643A1 (en) * 2001-04-11 2002-10-17 Contreras Gary W. Method and apparatus for retaining a core sample within a coring tool
JP2010274669A (ja) * 2009-05-26 2010-12-09 Japan Agengy For Marine-Earth Science & Technology 水中走行車両およびその制御方法
JP3166383U (ja) * 2010-12-20 2011-03-03 東亜道路工業株式会社 供試体採取装置
JP2011196140A (ja) * 2010-03-23 2011-10-06 Sumiko Techno-Research Co Ltd 自走式土壌削孔採取装置
US20130081879A1 (en) * 2011-09-29 2013-04-04 Richard Dan Ward Downhole coring tools and methods of coring
CN103398868A (zh) * 2013-01-11 2013-11-20 河北科技大学 一种特定深度土层的土壤样品采集装置和采集方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0473084U (ja) * 1990-11-06 1992-06-26
US20020148643A1 (en) * 2001-04-11 2002-10-17 Contreras Gary W. Method and apparatus for retaining a core sample within a coring tool
JP2010274669A (ja) * 2009-05-26 2010-12-09 Japan Agengy For Marine-Earth Science & Technology 水中走行車両およびその制御方法
JP2011196140A (ja) * 2010-03-23 2011-10-06 Sumiko Techno-Research Co Ltd 自走式土壌削孔採取装置
JP3166383U (ja) * 2010-12-20 2011-03-03 東亜道路工業株式会社 供試体採取装置
US20130081879A1 (en) * 2011-09-29 2013-04-04 Richard Dan Ward Downhole coring tools and methods of coring
CN103398868A (zh) * 2013-01-11 2013-11-20 河北科技大学 一种特定深度土层的土壤样品采集装置和采集方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056274A1 (ja) * 2016-09-23 2018-03-29 鉱研工業株式会社 海底地盤のコアサンプリング装置及びコアサンプリング方法
KR102441446B1 (ko) * 2022-05-11 2022-09-08 전상구 돌기둥 절단 및 인발기를 이용한 돌기둥 절단 및 인발 공법
KR102488087B1 (ko) * 2022-05-11 2023-01-13 주식회사 일화건업 돌기둥 절단 및 인발기

Also Published As

Publication number Publication date
JPWO2017146170A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5863040B2 (ja) 水中浮遊式採泥装置
KR101787660B1 (ko) 토양 및 암석 시료 채취용 드론 장치
EP2546418B1 (en) Method for providing a foundation for a mass located at height
WO2017146170A1 (ja) 地質サンプル採取方法および採取装置
EP3690182B1 (en) Sediment core-boring drilling process suitable for submarine rope core-boring drill
CN108194024B (zh) 一种配备变径岩芯取样钻杆动力头的深海钻机及方法
CN105625940B (zh) 钻孔打桩一体机
JP6742007B2 (ja) 地質サンプル採取方法および姿勢制御可能な作業装置
US9097102B2 (en) Downhole coring tools and methods of coring
CN111594049A (zh) 钻探自动化控制系统及钻探方法
BR112013031977B1 (pt) sistema de perfuração
JP6085484B2 (ja) 杭打ち機
JP6052691B1 (ja) 深海におけるレアアース資源泥の採掘装置及び同採掘方法
WO2019196184A1 (zh) 一种水下机器人可携带型水平方向地质取样钻具
CN107965317A (zh) 一种基于rov的全方位水下短距钻机取样器及其取样方法
Gibson et al. Replicate ice-coring system architecture: mechanical design
CN207620787U (zh) 一种基于rov的全方位水下短距钻机取样器
JPH10205265A (ja) 試料採取装置および試料採取方法
JP6864190B2 (ja) 地質サンプル採取方法および地盤食い付き機能を有する作業装置
CN103869322B (zh) 一种模拟深海采矿混响环境超声微地形探测装置及其方法
CN217270041U (zh) 一种用于工程地质勘察的地下水压探测装置
AU2019280082A1 (en) Drilling and boring system for diamond drilling
JP4642367B2 (ja) 岩盤の深礎掘削機及びそれを用いた深礎工法
DK3034702T3 (en) PROCEDURE AND APPARATUS FOR THE CONSTRUCTION OF A FOUNDATION AND FOUNDATION
CN114198024B (zh) 深水钻孔套管定位装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501771

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756608

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756608

Country of ref document: EP

Kind code of ref document: A1