WO2017146040A1 - 金属表面処理剤 - Google Patents

金属表面処理剤 Download PDF

Info

Publication number
WO2017146040A1
WO2017146040A1 PCT/JP2017/006348 JP2017006348W WO2017146040A1 WO 2017146040 A1 WO2017146040 A1 WO 2017146040A1 JP 2017006348 W JP2017006348 W JP 2017006348W WO 2017146040 A1 WO2017146040 A1 WO 2017146040A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
surface treatment
metal surface
content
treatment agent
Prior art date
Application number
PCT/JP2017/006348
Other languages
English (en)
French (fr)
Inventor
和史 安田
Original Assignee
日本ペイント・サーフケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・サーフケミカルズ株式会社 filed Critical 日本ペイント・サーフケミカルズ株式会社
Publication of WO2017146040A1 publication Critical patent/WO2017146040A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/23Condensed phosphates

Definitions

  • the present invention relates to a metal surface treatment agent.
  • Resin layer is excellent in molding processability, corrosion resistance, and barrier properties of contents, so beverage cans, food cans, design cans, capacitor cases, battery materials, etc. It is used to protect the surface of the material.
  • the metal material in which the resin layer is formed by laminating or the like has the excellent characteristics as described above, but the resin layer may be peeled off when the adhesion between the metal material and the resin layer is not sufficient. It was. Such peeling of the resin layer from the metal material has been a major cause of reducing the corrosion resistance.
  • a surface treatment layer is formed on the surface of the metal material prior to the formation of the resin layer.
  • a technique for improving the adhesiveness see, for example, Patent Documents 1 and 2). If the adhesion between the resin layer and the metal material can be improved, the corrosion resistance of the metal material on which the resin layer is formed is also improved.
  • a compound generally used as a zirconium supply source is a fluoride, but if the metal surface treatment agent contains fluorine, there is a concern about corrosion of equipment. Moreover, when using the processed metal material for a drink can, a food can, etc., we are anxious about the influence on the human body by the residue to the metal material of a fluorine.
  • This invention is made
  • the surface treatment film which can provide sufficient adhesiveness with a resin layer and corrosion resistance on the surface of the metal material which consists of aluminum or aluminum alloy by one process process. It is an object of the present invention to provide a metal surface treatment agent that can be formed and contains substantially no fluorine.
  • the present invention is applied to the surface of a metal material made of aluminum or an aluminum alloy to form a surface treatment film, and the fluorine content (C f ) in terms of fluorine atoms is less than 5 ppm by mass,
  • the content of the phosphorus compound in terms of phosphorus atom (C P ) is 230 to 14000 ppm by mass
  • the water-soluble resin has a carboxy group
  • the acid value of the water-soluble resin is 130 was ⁇ 970mgKOH / g
  • the content in terms of solids of the water-soluble resin (C R) is a metal surface treatment is from 2,000 to 120,000 mass ppm Agent on.
  • the phosphorus compound preferably contains at least one phosphorus compound selected from the group consisting of phosphoric acid, phosphorous acid, phosphonic acid and phytic acid.
  • the water-soluble resin is composed of 20 to 100% by mass of at least one monomer (i) selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, itaconic acid, crotonic acid and fumaric acid, styrene, At least one monomer (ii) selected from the group consisting of vinyl acetate, methyl styrene, 2-hydroxy-3-allyloxypropane sulfonic acid, acrylamidomethylpropane sulfonic acid and styrene sulfonic acid; A polymer obtained by polymerizing is preferred.
  • the ratio (C P / C Zr ) of the content (C P ) of the phosphorus compound in terms of phosphorus atoms to the content (C Zr ) in terms of zirconium atoms of the zirconium is 0.009 to
  • the value (C P / C R ) of the content (C P ) of the phosphorus compound in terms of phosphorus atom to the content (C R ) in terms of solid content of the water-soluble resin Is preferably 0.002 to 7.0.
  • At least one organic acid selected from the group consisting of maleic acid, fumaric acid, succinic acid, malic acid, acetic acid, itaconic acid, tartaric acid, ascorbic acid, glutamic acid and aspartic acid.
  • a surface treatment film capable of imparting sufficient adhesion and corrosion resistance to the resin layer on the surface of a metal material made of aluminum or an aluminum alloy can be formed in a single treatment step. It is possible to provide a metal surface treatment agent that is not contained in the composition.
  • Example of this invention it is a figure which shows the test piece which cut
  • the metal surface treatment agent according to this embodiment is a metal surface treatment agent that is applied to the surface of a metal material made of aluminum or an aluminum alloy to form a surface treatment film.
  • the material of the metal material in the present embodiment is aluminum or an aluminum alloy, but the aluminum alloy is not particularly limited as long as the aluminum alloy is an alloy mainly composed of aluminum.
  • the aluminum alloy include aluminum, aluminum-copper alloy, aluminum-manganese alloy, aluminum-silicon alloy, aluminum-magnesium alloy, aluminum-magnesium-silicon alloy, aluminum-zinc alloy, and aluminum-zinc-magnesium alloy. be able to.
  • the use of the metal material in the present embodiment is not particularly limited, but it is preferably used for beverage cans and food cans and can bodies that require high adhesion to the resin layer and high corrosion resistance.
  • the metal surface treatment agent according to this embodiment is a so-called coating type surface treatment agent.
  • the coating type surface treatment agent is used in a method in which the surface treatment agent is applied to the surface of the metal material, and then the surface of the metal material is dried without washing.
  • the metal surface treating agent according to this embodiment contains zirconium, a phosphorus compound, and a water-soluble resin.
  • Zirconium imparts corrosion resistance to the metal material.
  • Zirconium is derived from a zirconium compound.
  • examples of the zirconium compound include sodium, potassium, ammonium salt, zirconium sulfate, zirconyl sulfate, zirconium nitrate, zirconyl nitrate, zirconium carbonate, and zirconium oxide (oxide sol). These are metal surface treatments alone. You may make it contain in an agent, and may make 2 or more types contain in a metal surface treating agent.
  • the zirconium compound does not include fluorine-containing zirconium compounds such as fluorine-containing fluorozirconic acid, lithium fluorozirconic acid, zirconium fluoride, and zirconium hydrofluoride.
  • the content (C Zr ) of zirconium in terms of zirconium atom in the metal surface treatment agent is 220 to 27000 mass ppm.
  • the content (C Zr ) is less than 220 ppm by mass, the corrosion resistance of the metal material is lowered.
  • the content (C Zr ) exceeds 27000 mass ppm, the stability of the metal surface treatment agent is lowered, and the adhesion between the metal material and the resin layer is also lowered.
  • the phosphorus compound contributes to improving the adhesion between the metal material and the resin layer by coordination of unpaired electrons of phosphorus atoms to the resin component in the resin layer in the surface treatment film. By improving the adhesion between the metal material and the resin layer, the corrosion resistance of the metal material is also improved.
  • the metal surface treatment agent preferably contains at least one phosphorus compound selected from the group consisting of phosphoric acid, phosphorous acid, phosphonic acid, and phytic acid.
  • the phosphorus compound contained in the metal surface treatment agent is at least one selected from the group consisting of phosphoric acid, phosphorous acid, phosphonic acid, and phytic acid, thereby improving the adhesion between the metal material and the resin layer. Further, the corrosion resistance of the metal material is further improved. Further, the phosphorus compound contained in the metal surface treatment agent is more preferably phytic acid having a large number of phosphorus atoms in one molecule.
  • the content (C P ) of the phosphorus compound in terms of phosphorus atoms in the metal surface treatment agent is 230 to 14,000 mass ppm.
  • the content (C P ) is less than 230 ppm by mass, the adhesion between the metal material and the resin layer is lowered.
  • the content (C P ) exceeds 14,000 ppm by mass, the stability of the metal surface treatment agent is lowered, and the adhesion between the metal material and the resin layer is also lowered.
  • the ratio (C P / C Zr ) of the content (C P ) of the phosphorus compound in terms of phosphorus atoms to the content (C Zr ) in terms of zirconium atoms of the zirconium is 0.009 to 63.63. 636 is preferable, and 0.4 to 1.0 is more preferable.
  • the value of the ratio (C P / C Zr ) is less than 0.009, the adhesiveness between the metal material and the resin layer tends to decrease because the content of the phosphorus compound is small.
  • the ratio value (C P / C Zr ) exceeds 63.636, the corrosion resistance of the metal material tends to decrease because the zirconium content is small.
  • Water-soluble resin contributes to improving the adhesion between the metal material and the resin layer.
  • the water-soluble resin is a resin having a carboxy group. This carboxy group coordinates to the resin component in the resin layer in the surface treatment film, and improves the adhesion between the metal material and the resin layer.
  • the water-soluble resin preferably has at least one carboxy group per unit structure.
  • water-soluble resins include polyacrylic acid, polymethacrylic acid, and polyitaconic acid. More specifically, the water-soluble resin comprises at least one monomer (i) selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, itaconic acid, crotonic acid and fumaric acid, 20 to 100% by mass, styrene At least one monomer (ii) selected from the group consisting of vinyl acetate, methylstyrene, 2-hydroxy-3-allyloxypropanesulfonic acid, acrylamidomethylpropanesulfonic acid and styrenesulfonic acid; It is preferable that it is a polymer obtained by superposing
  • the monomer (i) is less than 20% by mass (when the monomer (ii) exceeds 80% by mass) among the monomers used for obtaining the water-soluble resin, the carboxy contained in the water-soluble resin The number of groups is reduced. When the number of carboxy groups of the water-soluble resin decreases, the adhesion between the metal material and the resin layer tends to decrease.
  • the acid value of the water-soluble resin is 130 to 970 mgKOH / g, preferably 650 to 970 mgKOH / g, in terms of resin solid content.
  • the acid value of water-soluble resin is less than 130 mgKOH / g, the adhesiveness of a metal material and a resin layer falls.
  • the acid value of the soluble resin exceeds 970 mgKOH / g, the stability of the metal surface treatment agent decreases.
  • the content (C R ) in terms of solid content of the water-soluble resin in the metal surface treatment agent is 2000 to 120,000 mass ppm, and preferably 20000 to 80000 mass ppm.
  • the content (C R ) is less than 2000 ppm by mass, the adhesion between the metal material and the resin layer is lowered.
  • the content (C R ) exceeds 120,000 ppm by mass, the adhesion between the metal material and the resin layer decreases due to an increase in the thickness of the formed surface treatment film.
  • the metal surface treatment agent according to this embodiment may further contain an organic acid.
  • the organic acid is at least one selected from the group consisting of maleic acid, fumaric acid, succinic acid, malic acid, acetic acid, itaconic acid, tartaric acid, ascorbic acid, glutamic acid and aspartic acid.
  • succinic acid and malic acid are preferable from the viewpoint of improving the adhesion between the metal material and the resin layer.
  • a metal surface treating agent contains an organic acid, it is preferable to contain multiple types of organic acid from a viewpoint of improving adhesiveness and corrosion resistance.
  • the content of the organic acid is preferably 5000 to 20000 mass ppm.
  • the content (C 2 O 3 ) is less than 5000 ppm by mass, the adhesion between the metal material and the resin layer tends to decrease.
  • the content (C 2 O 3 ) exceeds 20000 mass ppm, the stability of the metal surface treatment agent tends to decrease.
  • the solid content of the metal surface treating agent according to this embodiment is preferably 0.245 to 16.1% by mass.
  • the solid content of the metal surface treatment agent is less than 0.245% by mass, it tends to be difficult to form a sufficient surface treatment film, and when it exceeds 16.1% by mass, the stability of the metal surface treatment agent Tend to decrease.
  • the pH of the metal surface treatment agent according to this embodiment is preferably less than 4.7.
  • the pH of the metal surface treatment agent is 4.7 or more, the stability of the metal surface treatment agent is lowered and tends to be difficult to use as a metal surface treatment agent.
  • the metal surface treatment agent according to this embodiment is substantially free of fluorine. Therefore, the metal surface treatment agent according to the present embodiment can be used without worrying about equipment corrosion and influence on the human body.
  • the metal surface treatment agent according to this embodiment may contain other components as necessary. Note that many of the components of the metal surface treatment agent according to this embodiment described above are highly safe compounds that are recognized as food additives in the US FDA standards. Moreover, the metal surface treating agent according to the present embodiment does not substantially contain fluorine as described above. Thus, the metal surface treatment agent according to the present embodiment can be preferably used for beverage cans and food cans because it is composed of highly safe components.
  • the surface treatment method in the present embodiment includes an application step of applying a metal surface treatment agent to the surface of the metal material, and a drying step of drying the metal surface treatment agent applied with the metal material.
  • the method for applying the metal surface treatment agent to the surface of the metal material is not particularly limited, and examples thereof include a method using a roll coating method, a bar coating method, a spray treatment method, an immersion treatment method, and the like.
  • the surface of the metal material may be subjected to degreasing treatment, pickling, or etching treatment as necessary.
  • the metal surface treatment agent applied to the metal material is dried after the application step, but the method for drying the metal surface treatment agent is not particularly limited.
  • the method for drying the metal surface treatment agent in the drying step include a method of heating the metal material coated with the metal surface treatment agent at 80 to 280 ° C. for 3 to 60 seconds.
  • the film amount of the surface treatment film formed by the surface treatment method described above is not particularly limited, but is preferably an amount of 2 to 20 mg / m 2 in terms of the total mass per unit area in terms of zirconium element. More preferably, the amount is 2 to 6 mg / m 2 .
  • the amount of the film is less than 2 mg / m 2 , the adhesion between the metal material and the resin layer is lowered, and the corrosion resistance of the metal material tends to be lowered.
  • the amount of the above film exceeds 20 mg / m 2 , the surface treatment film becomes brittle, the adhesion between the metal material and the resin layer is lowered, and the corrosion resistance of the metal material also tends to be lowered. is there.
  • the amount of the surface treatment film is less than the amount of the treatment film formed by the conventional coating-type fluorine-containing metal surface treatment agent, the same effects such as adhesion can be obtained.
  • Conventional coating-type fluorine-containing metal surface treatment agents are less susceptible to substrate etching due to the contained fluorine, and there is no consumption of fluorine due to reaction, so that a situation occurs in which fluorine is taken into the formed film. Since the fluorine taken into the film becomes a defect factor of the film and may affect the corrosion resistance, the film amount range is preferably set with a certain margin.
  • the metal surface treatment agent since the metal surface treatment agent has a configuration that does not substantially contain fluorine, defects in the film due to incorporation of fluorine into the film do not occur. Therefore, even when the amount of the surface-treated film is smaller than that of the conventional film, the same effects such as adhesion can be obtained. Therefore, the metal surface treating agent according to the present embodiment can reduce the amount of use, and is preferably used from the viewpoint of cost.
  • the total mass per unit area in terms of elements of zirconium and phosphorus can be determined, for example, by measurement with a fluorescent X-ray analyzer “Primus II” (manufactured by Rigaku Corporation).
  • the metal surface treating agent which concerns on this embodiment is a coating-type metal surface treating agent
  • the component ratio of solid content in a metal surface treating agent becomes a component ratio of a surface treatment film.
  • a surface treatment film can be formed very easily by a single treatment step using a coating-type metal surface treatment agent that is relatively easy to form. it can.
  • the surface treatment method according to the present embodiment uses a coating-type metal surface treatment agent, it is advantageous in that no waste liquid is generated (so-called waste water-less).
  • a resin layer is formed on the metal material on which the surface treatment film is formed.
  • the resin layer may be formed by applying a resin solution to the surface of the metal material, or may be formed by attaching a laminate film. Examples of the method for attaching the laminate film include a dry lamination method and an extrusion lamination method.
  • the resin component of the resin layer is not particularly limited. Resin components include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polypropylene (PP), polycarbonate (PC), triacetyl cellulose (TAC), polyvinyl chloride (PVC), polyester, polyolefin, acrylic, etc.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • PC polycarbonate
  • TAC triacetyl cellulose
  • PVC polyvinyl chloride
  • polyester polyolefin, acrylic, etc.
  • a plastic resin can be mentioned.
  • the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Unless otherwise specified, the unit is based on mass.
  • C P / C Zr in Table 1 is a value of the ratio of the content (C P ) in terms of phosphorus atom of the phosphorus compound to the content in terms of zirconium atom (C Zr ) of zirconium
  • C P / C R is the value of the ratio of the content (C P ) in terms of phosphorus atom of the phosphorus compound to the content (C R ) in terms of solid content of the water-soluble resin.
  • each metal surface treating agent was obtained by the same method as Example 22 except having mixed the phosphorus compound shown in Table 2 instead of phytic acid so that it might become content shown in Table 2.
  • 2 types of phosphorus compounds (mass ratio is 1: 1) described in Table 2 were mixed so that it might become the total content shown in Table 2.
  • the following compounds were used as phosphorus compounds.
  • Phosphorous acid Phosphorous acid, manufactured by Terada Fine Co., Ltd.
  • Phosphonic acid Dequest 2010, manufactured by Italmatch Japan Co., Ltd.
  • Phosphoric acid Phosphoric acid, manufactured by BK Gurini Japan Co., Ltd.
  • Metal surface treatment was performed in the same manner as in Example 22 except that ammonium zirconium carbonate (zircozol AC-7) was not used as the zirconium source, but zirconyl nitrate was used in Example 30, and ammonium zircon fluoride was used in Reference Example 2. An agent was obtained.
  • ammonium zirconium carbonate zircozol AC-7
  • zirconyl nitrate was used in Example 30, and ammonium zircon fluoride was used in Reference Example 2.
  • each metal surface treating agent was obtained in the same manner as in Example 22 except that the resins shown in Table 2 were mixed.
  • the resins shown in Table 2 were mixed.
  • Polyallylamine Polyallylamine 15C, Nitto Boseki Co., Ltd.
  • polyurethane PX-200, Sanyo Kasei Kogyo Co., Ltd.
  • Polyoxazoline Epochros WS700, Nippon Shokubai Co., Ltd.
  • Polyester Pesresin HSX155, Takamatsu Yushi Co., Ltd. , Kuraray Co., Ltd.
  • Phenol resin Shounol BRL 2854, Showa Denko Co., Ltd.
  • Melamine resin Cymel 771, Nihon Cytec Industries, Ltd.
  • a metal surface treating agent was obtained in the same manner as in Example 22 except that titanium ammonium fluoride (manufactured by Morita Chemical Co., Ltd.) was mixed as a titanium source instead of zirconium ammonium carbonate (zircazole AC-7).
  • each metal surface treatment agent was obtained by further mixing the organic acids shown in Table 3 so as to have the contents shown in Table 3.
  • two types of organic acids listed in Table 3 (mass ratio is 1: 1) were mixed so that the total content shown in Table 3 was obtained.
  • the succinic acid, malonic acid, ascorbic acid, malic acid, tartaric acid, aspartic acid and fumaric acid used are all manufactured by Wako Pure Chemical Industries, Ltd.
  • the coating amount of the metal surface treatment agent of each example, comparative example and reference example was 4 mg / m 2 for each side, It apply
  • the plate material coated with the metal surface treatment agent was dried at 80 ° C. for 20 seconds using a conveyor oven.
  • the “film amount” is the total mass per unit area in terms of elements of zirconium and phosphorus in the surface treatment film.
  • the coating amount was determined by measurement with a fluorescent X-ray analyzer “Primus II” (manufactured by Rigaku Corporation).
  • a surface-treated film was formed using the metal surface treating agent of Example 22 so as to have a film amount shown in Table 4 different from Example 22.
  • the “film amount” shown in Table 4 was determined by measurement with a fluorescent X-ray analyzer “Primus II” (manufactured by Rigaku Corporation).
  • Solvent-type polyester paint (Flexcoat # 5000 White, manufactured by Nippon Paint Co., Ltd.) is wet-massed on the surface of the aluminum alloy plate of each Example, Comparative Example, Reference Example, and Test Example on the side where the surface treatment film is formed. It apply
  • Example 22 When the test piece obtained using the metal surface treatment agent of Example 22 and the test piece obtained using the metal surface treatment agent of Comparative Example 14 were compared, the metal surface treatment agent of Example 22 was used. It was found that the obtained test piece was superior in adhesion and corrosion resistance. From this result, it was confirmed that when the metal surface treatment agent contains zirconium, the obtained test piece is improved in both adhesion and corrosion resistance. Moreover, when the test piece obtained using the metal surface treating agent of Example 22 and the test piece obtained using the metal surface treating agent of Example 30 and Reference Example 2 were compared, the metal of Example 22 was compared. It was found that the evaluation results of the adhesion and corrosion resistance of the test pieces obtained using the surface treatment agent were equivalent to or higher than the evaluation results of Example 30 and Reference Example 2.
  • test pieces obtained using the metal surface treatment agents of Examples 8 to 16 and the test pieces obtained using the metal surface treatment agent of Comparative Example 3 were compared, the metal surface treatments of Examples 8 to 16 were compared. It was found that the test piece obtained using the agent was superior in adhesion and corrosion resistance.
  • test pieces obtained using the metal surface treatment agents of Examples 8 to 16 and the test pieces obtained using the metal surface treatment agent of Comparative Example 4 were compared, the metals of Examples 8 to 16 were compared. It was found that the test piece obtained using the surface treatment agent was superior in corrosion resistance.
  • test pieces obtained using the metal surface treatment agents of Examples 1 to 7 and the test pieces obtained using the metal surface treatment agent of Comparative Example 1 were compared, the metal surface treatments of Examples 1 to 7 were compared. It was found that the test piece obtained using the agent was superior in adhesion and corrosion resistance.
  • test pieces obtained using the metal surface treatment agents of Examples 1 to 7 and the test pieces obtained using the metal surface treatment agent of Comparative Example 2 were compared, the metals of Examples 1 to 7 were compared. It was found that the test piece obtained using the surface treatment agent was superior in adhesion and corrosion resistance.
  • the metal surface treatment agent of Example 22 was compared. It turned out that the direction of the test piece obtained by using is excellent in adhesiveness and corrosion resistance. From this result, it was confirmed that when the metal surface treatment agent contains a water-soluble resin having a carboxy group, the obtained test piece improves both adhesion and corrosion resistance.
  • Example 22 The results of Example 22 were the most excellent in the adhesion and corrosion resistance of the test pieces obtained using the metal surface treatment agent of Example 22 and the test pieces obtained using the metal surface treatment agents of Examples 26 to 29. However, it was confirmed that they are almost the same. From this result, the phosphorus compound contained in the metal surface treatment agent may be any of phosphoric acid, phosphorous acid, phosphonic acid and phytic acid, or two or more phosphorus compounds selected from the above phosphorus compounds are included. Even in this case, it was confirmed that the obtained test piece was excellent in both adhesion and durability.
  • the metal surface treatment agent of Example 22 was compared. It turned out that the direction of the test piece obtained by using is excellent in adhesiveness and corrosion resistance. From this result, the ratio value (C P / C Zr ) of the content (C P ) of the phosphorus compound in terms of phosphorus atoms to the content (C Zr ) in terms of zirconium atoms of zirconium is 0.009 to By setting it to 63.636, it was confirmed that the obtained test piece was improved in both adhesion and corrosion resistance.
  • the metal surface treatment agent of Example 22 was compared. It turned out that the direction of the test piece obtained by using is excellent in adhesiveness and corrosion resistance. From this result, the ratio value (C P / C R ) of the content (C P ) in terms of phosphorus atom of the phosphorus compound to the content (C R ) in terms of solid content of the water-soluble resin is defined as 0 It was confirmed that by setting the value to 0.002 to 7.0, the obtained test piece was improved in both adhesion and corrosion resistance.
  • test pieces of Test Examples 2 to 7 were compared with the test pieces of Test Examples 1 and 8, it was found that the test pieces of Test Examples 2 to 7 were superior in adhesion and corrosion resistance. From this result, it was confirmed that when the coating amount of the surface treatment film is 2 to 20 mg / m 2 in terms of the total mass per unit area in terms of zirconium element, both the adhesion and the corrosion resistance of the test piece are improved. It was.

Abstract

アルミニウム又はアルミニウム合金からなる金属材料の表面に、樹脂層との十分な密着性と耐食性を付与できる表面処理皮膜を1回の処理工程によって形成させることができる、フッ素を実質的に含有しない金属表面処理剤を提供する。 アルミニウム又はアルミニウム合金からなる金属材料の表面に塗布されるフッ素フリー金属表面処理剤であって、ジルコニウムと、リン化合物と、水溶性樹脂と、を含有し、ジルコニウム原子換算での含有量(CZr)は、220~27000質量ppmであり、リン原子換算での含有量(C)は、230~14000質量ppmであり、水溶性樹脂は、カルボキシ基を有し、水溶性樹脂の酸価は、130~970mgKOH/gであり、水溶性樹脂の固形分換算での含有量(C)は、2000~120000質量ppmである金属表面処理剤である。

Description

金属表面処理剤
 本発明は、金属表面処理剤に関する。
 従来、アルミニウム又はアルミニウム合金からなる金属材料の表面を保護し、意匠を施すために、金属材料の表面に塗装やラミネート加工等によって樹脂層が形成される。樹脂層は、成型加工性、耐食性、及び内容物のバリア性等に優れることから、飲料缶、食品缶、意匠缶、コンデンサーケース、電池材等、コイルやシート状でプレコートされる包装用の金属材料の表面を保護するために用いられている。
 ところで、ラミネート加工等によって樹脂層を形成した金属材料は、上述のような優れた特性を有する一方、金属材料と樹脂層との密着性が十分でない場合、樹脂層が剥離してしまうことがあった。このような、金属材料からの樹脂層の剥離は、耐食性を低下させる大きな原因となっていた。
特許第5231738号公報 特許第5077651号公報
 ラミネート加工等によって樹脂層が形成された金属材料における、このような問題を解決するため、樹脂層の形成に先立って、金属材料の表面に表面処理層を形成して、樹脂層と金属材料との密着性を向上させる技術が知られている(例えば、特許文献1及び2参照)。樹脂層と金属素材との密着性を向上させることができれば、樹脂層を形成した金属材料の耐食性も向上する。
 しかしながら、従来は、金属材料の表面にジルコニウムを含む化成処理剤によって化成皮膜を形成させた後に、金属表面処理剤によって樹脂層と金属素材との密着性を向上させる表面処理層を形成させていた。このように、金属材料の表面を2回の処理工程によって処理するのは煩雑であった。
 また、金属表面処理剤において、一般的にジルコニウム供給源として用いられる化合物はフッ化物であるが、金属表面処理剤にフッ素が含有されると設備の腐食が懸念される。また、処理を行った金属材料を飲料缶や食缶等に用いる場合、フッ素の金属材料への残存による人体への影響が懸念される。
 本発明は、上記課題に鑑みてなされたものであり、アルミニウム又はアルミニウム合金からなる金属材料の表面に、樹脂層との十分な密着性と耐食性を付与できる表面処理皮膜を1回の処理工程によって形成させることができる、フッ素を実質的に含有しない金属表面処理剤を提供することを目的とする。
 本発明は、アルミニウム又はアルミニウム合金からなる金属材料の表面に塗布されて表面処理皮膜を形成し、フッ素のフッ素原子換算での含有量(C)は、5質量ppm未満である、実質的にフッ素を含有しないフッ素フリー金属表面処理剤であって、ジルコニウムと、リン化合物と、水溶性樹脂と、を含有し、前記ジルコニウムのジルコニウム原子換算での含有量(CZr)は、220~27000質量ppmであり、前記リン化合物のリン原子換算での含有量(C)は、230~14000質量ppmであり、前記水溶性樹脂は、カルボキシ基を有し、前記水溶性樹脂の酸価は、130~970mgKOH/gであり、前記水溶性樹脂の固形分換算での含有量(C)は、2000~120000質量ppmである金属表面処理剤に関する。
 また、前記リン化合物として、リン酸、亜リン酸、ホスホン酸及びフィチン酸からなる群より選択される少なくとも一種のリン化合物を含有することが好ましい。
 また、前記水溶性樹脂は、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸及びフマル酸からなる群より選択される少なくとも一種の単量体(i)20~100質量%と、スチレン、酢酸ビニル、メチルスチレン、2-ヒドロキシ-3-アリロキシプロパンスルホン酸、アクリルアミドメチルプロパンスルホン酸及びスチレンスルホン酸からなる群より選択される少なくとも一種の単量体(ii)0~80質量%と、を重合して得られる重合体であることが好ましい。
 また、前記ジルコニウムのジルコニウム原子換算での含有量(CZr)に対する、前記リン化合物のリン原子換算での含有量(C)の比の値(C/CZr)は、0.009~63.636であり、前記水溶性樹脂の固形分換算での含有量(C)に対する、前記リン化合物のリン原子換算での含有量(C)の比の値(C/C)は、0.002~7.0であることが好ましい。
 また、更に、マレイン酸、フマル酸、コハク酸、リンゴ酸、酢酸、イタコン酸、酒石酸、アスコルビン酸、グルタミン酸及びアスパラギン酸からなる群より選択される少なくとも一種の有機酸を含有することが好ましい。
 本発明によれば、アルミニウム又はアルミニウム合金からなる金属材料の表面に、樹脂層との十分な密着性と耐食性を付与できる表面処理皮膜を1回の処理工程によって形成させることができる、フッ素を実質的に含有しない金属表面処理剤を提供できる。
本発明の実施例における、密着性の評価のために切り込みを入れた試験片を示す図である。 本発明の実施例における、テンシロン引っ張り試験機による引っ張り方を示す図である。 本発明の実施例における、密着性の評価の基準(5段階)を示す図である。
 以下、本発明の実施形態について詳細に説明する。ただし、本発明は下記の実施形態に限定されない。なお、特に断りのない限り、単位は質量基準である。
 本実施形態に係る金属表面処理剤は、アルミニウム又はアルミニウム合金からなる金属材料の表面に塗布されて表面処理皮膜を形成する金属表面処理剤である。
 <金属材料>
 本実施形態における金属材料の素材は、アルミニウム又はアルミニウム合金であるが、アルミニウム合金はアルミニウムを主成分とする合金であれば特に限定されない。アルミニウム合金としては、例えば、アルミニウム、アルミニウム-銅合金、アルミニウム-マンガン合金、アルミニウム-珪素合金、アルミニウム-マグネシウム合金、アルミニウム-マグネシウム-珪素合金、アルミニウム-亜鉛合金、アルミニウム-亜鉛-マグネシウム合金等を挙げることができる。
 また、本実施形態における金属材料の用途は特に限定されないが、樹脂層との高い密着性や高い防食性が求められる飲料缶や食品缶の缶蓋や缶ボディに用いることが好ましい。
<金属表面処理剤>
 本実施形態に係る金属表面処理剤は、いわゆる塗布型の表面処理剤である。塗布型の表面処理剤は、表面処理剤を金属材料の表面に塗布した後に、金属材料の表面を水洗せずに乾燥させる方法で使用される。
 本実施形態に係る金属表面処理剤は、ジルコニウムと、リン化合物と、水溶性樹脂と、を含有する。
 ジルコニウムは、金属材料の耐食性を付与する。ジルコニウムは、ジルコニウム化合物に由来する。
 ここで、ジルコニウム化合物としては、ナトリウム、カリウム、アンモニウム塩、硫酸ジルコニウム、硫酸ジルコニル、硝酸ジルコニウム、硝酸ジルコニル、炭酸ジルコニウム、酸化ジルコニウム(酸化物ゾル)を挙げることができ、これらは単独で金属表面処理剤に含有させてもよく、2種以上を金属表面処理剤に含有させてもよい。
 なお、上記ジルコニウム化合物としては、フッ素を含有するフルオロジルコニウム酸、フルオロジルコニウム酸のリチウム、フッ化ジルコニウム、フッ化水素酸ジルコニウム等のフッ素を含有するジルコニウム化合物は含まれない。
 金属表面処理剤における、ジルコニウムのジルコニウム原子換算での含有量(CZr)は、220~27000質量ppmである。含有量(CZr)が、220質量ppm未満の場合には金属材料の耐食性が低下する。一方、含有量(CZr)が、27000質量ppmを超えると金属表面処理剤の安定性が低下し、金属材料と樹脂層との密着性も低下する。
 リン化合物は、表面処理皮膜において、リン原子の不対電子が樹脂層中の樹脂成分に配位することで、金属材料と樹脂層との密着性の向上に寄与する。金属材料と樹脂層との密着性が向上することにより、金属材料の耐食性も向上する。
 リン化合物としては、フィチン酸、亜リン酸、ホスホン酸、ポリリン酸、リン酸、リン酸ナトリウム等のリン酸塩等が挙げられる。金属表面処理剤は、これらのリン化合物の中でも、リン酸、亜リン酸、ホスホン酸及びフィチン酸からなる群より選択される少なくとも一種のリン化合物を含有することが好ましい。金属表面処理剤の含有するリン化合物が、リン酸、亜リン酸、ホスホン酸及びフィチン酸からなる群より選択される少なくとも一種であることで、金属材料と樹脂層との密着性がより向上し、金属材料の耐食性が更に向上する。また、金属表面処理剤の含有するリン化合物は、1分子中にリン原子を多数有するフィチン酸であることがより好ましい。
 金属表面処理剤における、リン化合物のリン原子換算での含有量(C)は、230~14000質量ppmである。含有量(C)が、230質量ppm未満の場合には金属材料と樹脂層との密着性が低下する。一方、含有量(C)が、14000質量ppmを超える場合には金属表面処理剤の安定性が低下し、金属材料と樹脂層との密着性も低下する。
 前記ジルコニウムのジルコニウム原子換算での含有量(CZr)に対する、前記リン化合物のリン原子換算での含有量(C)の比の値(C/CZr)は、0.009~63.636であることが好ましく、0.4~1.0であることがより好ましい。比の値(C/CZr)が0.009未満の場合には、リン化合物の含有量が少ないことから金属材料と樹脂層との密着性が低下する傾向にある。一方、比の値(C/CZr)が63.636を超える場合には、ジルコニウムの含有量が少ないことから金属材料の耐食性が低下してしまう傾向にある。
 水溶性樹脂は、金属材料と樹脂層との密着性の向上に寄与する。水溶性樹脂は、カルボキシ基を有する樹脂である。このカルボキシ基は、表面処理皮膜において樹脂層中の樹脂成分に配位して、金属材料と樹脂層との密着性を向上させる。水溶性樹脂は、単位構造あたり少なくとも1つのカルボキシ基を有することが好ましい。
 水溶性樹脂としては、ポリアクリル酸、ポリメタクリル酸、ポリイタコン酸等を挙げることができる。より詳しくは、水溶性樹脂は、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸及びフマル酸からなる群より選択される少なくとも一種の単量体(i)20~100質量%と、スチレン、酢酸ビニル、メチルスチレン、2-ヒドロキシ-3-アリロキシプロパンスルホン酸、アクリルアミドメチルプロパンスルホン酸及びスチレンスルホン酸からなる群より選択される少なくとも一種の単量体(ii)0~80質量%と、を重合して得られる重合体であることが好ましい。
 水溶性樹脂を得る際に用いる単量体のうち単量体(i)が20質量%未満の場合(単量体(ii)が80質量%を超える場合)には、水溶性樹脂の有するカルボキシ基の数が少なくなる。水溶性樹脂の有するカルボキシ基の数が少なくなると、金属材料と樹脂層との密着性が低下する傾向にある。
 水溶性樹脂の酸価は、樹脂固形分換算で、130~970mgKOH/gであり、650~970mgKOH/gであることが好ましい。水溶性樹脂の酸価が、130mgKOH/g未満の場合には、金属材料と樹脂層との密着性が低下する。溶性樹脂の酸価が、970mgKOH/gを超える場合には、金属表面処理剤の安定性が低下する。
 金属表面処理剤における、水溶性樹脂の固形分換算での含有量(C)は、2000~120000質量ppmであり、20000~80000質量ppmであることが好ましい。含有量(C)が、2000質量ppm未満である場合には金属材料と樹脂層との密着性が低下する。一方、含有量(C)が、120000質量ppmを超える場合には形成される表面処理皮膜の膜厚が厚くなることに起因して、金属材料と樹脂層との密着性が低下する。
 本実施形態に係る金属表面処理剤は、更に有機酸を含有していてもよい。有機酸は、マレイン酸、フマル酸、コハク酸、リンゴ酸、酢酸、イタコン酸、酒石酸、アスコルビン酸、グルタミン酸及びアスパラギン酸からなる群より選択される少なくとも一種である。金属表面処理剤がこれらの有機酸を含有することで金属材料と樹脂層との密着性が向上し、金属材料の耐食性も向上する。金属表面処理剤の含有する有機酸としては、金属材料と樹脂層との密着性を向上させる観点から、コハク酸及びリンゴ酸が好ましい。また、金属表面処理剤が有機酸を含有する場合には、密着性及び耐食性を向上させる観点から、複数種類の有機酸を含有させることが好ましい。
 金属表面処理剤が有機酸を含有する場合には、有機酸の含有量は、5000~20000質量ppmであることが好ましい。含有量(C)が、5000質量ppm未満である場合には金属材料と樹脂層との密着性が低下する傾向にある。一方、含有量(C)が、20000質量ppmを超える場合には、金属表面処理剤の安定性が低下する傾向にある。
 本実施形態に係る金属表面処理剤の固形分含有量は、0.245~16.1質量%であることが好ましい。金属表面処理剤の固形分含有量が、0.245質量%未満の場合、十分な表面処理皮膜を形成し難くなる傾向にあり、16.1質量%を超える場合、金属表面処理剤の安定性が低下する傾向にある。
 本実施形態に係る金属表面処理剤のpHは、4.7未満であることが好ましい。金属表面処理剤のpHが、4.7以上である場合、金属表面処理剤の安定性が低下し、金属表面処理剤として使用し難くなる傾向にある。
 本実施形態に係る金属表面処理剤中のフッ素のフッ素原子換算での含有量(C)は、5質量ppm未満である。即ち、本実施形態に係る金属表面処理剤は実質的にフッ素を含有しないものである。従って、本実施形態に係る金属表面処理剤は、設備腐食や人体への影響を懸念することなく用いる事ができる。
 本実施形態に係る金属表面処理剤は、必要に応じて他の成分を含有してもよい。なお、上述した本実施形態に係る金属表面処理剤の成分の多くは、米国FDA規格において、食品添加物として認められている安全性の高い化合物である。また、本実施形態に係る金属表面処理剤は上述のようにフッ素を実質的に含有しない。このように、本実施形態に係る金属表面処理剤は、安全性の高い成分によって構成されていることから飲料缶や食料缶に対して好ましく用いることができる。
<表面処理方法>
 続いて、本実施形態に係る金属表面処理剤による金属材料の表面処理方法について説明する。
 本実施形態における表面処理方法は、金属材料の表面に金属表面処理剤を塗布する塗布工程と、金属材料の塗布した金属表面処理剤を乾燥させる乾燥工程と、を備える。
 塗布工程において、金属材料の表面に金属表面処理剤を塗布する方法は特に限定されず、例えば、ロールコート法、バーコート法、スプレー処理法、浸漬処理法等による方法が挙げられる。なお、塗布工程に先立って、必要に応じて金属材料の表面に脱脂処理や酸洗、エッチング処理を施してもよい。
 乾燥工程では、塗布工程の後に、金属材料に塗布した金属表面処理剤を乾燥させるが、金属表面処理剤を乾燥させる方法は特に限定されない。乾燥工程において、金属表面処理剤を乾燥させる方法としては、金属表面処理剤を塗布した金属材料を80~280℃で、3~60秒加熱する方法が挙げられる。
 上述の表面処理方法により形成される表面処理皮膜の皮膜量は、特に限定されないが、ジルコニウム元素換算での単位面積当たりの合計質量において、2~20mg/mとなる量であることが好ましく、2~6mg/mとなる量であることがより好ましい。上記の皮膜量が、2mg/m未満となる量の場合、金属材料と樹脂層との密着性が低下して、金属材料の耐食性が低下する傾向にある。一方、上記の皮膜量が、20mg/mを超える量の場合、表面処理皮膜が脆くなることで金属材料と樹脂層との密着性が低下して、やはり金属材料の耐食性が低下する傾向にある。
 なお、上記表面処理皮膜の皮膜量は、従来の塗布型のフッ素含有金属表面処理剤により形成される処理皮膜よりも皮膜量を少なくした場合であっても同等の密着性等の効果が得られる。従来の塗布型のフッ素含有金属表面処理剤は、含有フッ素による基材エッチングが起きにくく、反応によるフッ素の消費が無いため、形成された皮膜中にフッ素が取り込まれる事態が生じる。皮膜中に取り込まれたフッ素は皮膜の欠陥因子となり耐食性に影響を及ぼす恐れがあるため、皮膜量範囲はある程度の余裕を持って設定されることが好ましい。
 これに対し、本実施形態においては、金属表面処理剤を、フッ素を実質的に含有しない構成としたため、皮膜中にフッ素が取り込まれることによる皮膜の欠陥が生じない。従って、表面処理皮膜の皮膜量を従来よりも少なくした場合においても同等の密着性等の効果が得られる。従って、本実施形態に係る金属表面処理剤はその使用量を低減させることができ、コストの観点からも好ましく用いられる。
 上記ジルコニウム及びリンの元素換算での単位面積当たりの合計質量は、例えば、蛍光X線分析装置「PrimusII」(株式会社リガク製)による測定によって求めることができる。
 なお、本実施形態に係る金属表面処理剤は、塗布型の金属表面処理剤であるので、金属表面処理剤における固形分の成分比は、表面処理皮膜の成分比となる。本実施形態に係る表面処理方法によれば、表面処理皮膜を形成するのが比較的簡便な塗布型の金属表面処理剤による、1回の処理工程だけで、非常に容易に表面処理皮膜を形成できる。また、本実施形態に係る表面処理方法は、塗布型の金属表面処理剤を用いるので、廃液を生じない点でも有利である(いわゆる廃水レス)。
 表面処理皮膜を形成させた金属材料には、樹脂層を形成する。樹脂層は、樹脂溶液を金属材料の表面に塗布することによって形成してもよいし、ラミネートフィルムの貼り付けることで形成してもよい。ラミネートフィルムの貼り付け方法としては、ドライラミネート法、押出ラミネート法を挙げることができる。樹脂層の樹脂成分は特に限定されない。樹脂成分としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、ポリ塩化ビニル(PVC)、ポリエステル、ポリオレフィン、アクリル等の熱可塑性の樹脂を挙げることができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、特に断りのない限り、単位は質量基準である。
<実施例1の金属表面処理剤の調製>
 ジルコニウム源としての炭酸ジルコニウムアンモニウム(ジルコゾールAC-7、第一稀元素化学工業株式会社)、リン化合物としてのフィチン酸(築野食品工業株式会社)、及び、水溶性樹脂としてのポリアクリル酸(ジュリマーAC10L、酸価:750~800mgKOH/g、東亜合成株式会社製)を、それぞれ表1に示す含有量(単位:質量ppm)となるように水に混合し、実施例1の金属表面処理剤を得た。なお、表1における「C/CZr」は、ジルコニウムのジルコニウム原子換算での含有量(CZr)に対する、リン化合物のリン原子換算での含有量(C)の比の値であり、「C/C」は、水溶性樹脂の固形分換算での含有量(C)に対する、リン化合物のリン原子換算での含有量(C)の比の値である。
<実施例2~25、及び比較例1~6、15~18の金属表面処理剤の調製>
 各成分の含有量を表1、2及び4に示す含有量となるように混合した以外は実施例1と同様の方法で各金属表面処理剤を得た。
<実施例26~29及び比較例13の金属表面処理剤の調製>
 リン化合物として、フィチン酸に代えて、表2に示したリン化合物を、表2に示した含有量となるよう混合した以外は実施例22と同様の方法で各金属表面処理剤を得た。なお、実施例29については、表2に記載した2種類のリン化合物(質量比は1:1)を、表2に示す合計含有量となるよう混合した。なお、リン化合物としては以下のものを用いた。
 亜リン酸:亜リン酸、寺田ファイン株式会社製
 ホスホン酸:ディクエスト2010、イタルマッチジャパン株式会社製
 リン酸:リン酸、ビーケー・ギューリニ・ジャパン株式会社製
<実施例30、参考例2の金属表面処理剤の調製>
 ジルコニウム源として炭酸ジルコニウムアンモニウム(ジルコゾールAC-7)を用いずに実施例30においては硝酸ジルコニル、参考例2においてはジルコン弗化アンモニウムを用いたこと以外は実施例22と同様の方法で金属表面処理剤を得た。
<比較例7~13の金属表面処理剤の調製>
 ポリアクリル酸に代えて、表2に示した樹脂を混合した以外は、実施例22と同様の方法で各金属表面処理剤を得た。なお、樹脂としては以下のものを用いた。
 ポリアリルアミン:ポリアリルアミン15C、日東紡績株式会社製
 ポリウレタン:PX-200、三洋化成工業株式会社製
 ポリオキサゾリン:エポクロスWS700、株式会社日本触媒製
 ポリエステル:ペスレジンHSX155、高松油脂株式会社製
 PVA:クラレポバール105MC、株式会社クラレ製
 フェノール樹脂:ショウノールBRL2854、昭和電工株式会社製
 メラミン樹脂:サイメル771、日本サイテックインダストリーズ株式会社製
<比較例14の金属表面処理剤の調製>
 炭酸ジルコニウムアンモニウム(ジルコゾールAC-7)に代えて、チタン源としてチタンフッ化アンモニウム(森田化学工業株式会社製)を混合した以外は実施例22と同様の方法で金属表面処理剤を得た。
<実施例31~44の金属表面処理剤の調製>
 実施例22の金属表面処理剤において、更に、表3に示した有機酸を表3に示した含有量となるように混合することで各金属表面処理剤を得た。なお、実施例37~43については、表3に記載した2種類の有機酸(質量比は1:1)を、表3に示す合計含有量となるよう混合した。用いたコハク酸、マロン酸、アスコルビン酸、リンゴ酸、酒石酸、アスパラギン酸及びフマル酸は、全て和光純薬株式会社製である。
<表面処理皮膜の形成>
 各実施例、比較例及び参考例の金属表面処理剤を、厚さ0.28mmのアルミニウム合金3004板材の表面に、リバースロールコーターを用いて、皮膜量が片面当たり、それぞれジルコニウム4mg/m、リン2mg/m(参考例1についてはクロム20mg/m)となるように塗布した。続いて、金属表面処理剤を塗布した板材を、コンベア式オーブンを用いて80℃で、20秒間乾燥させた。ここで、「皮膜量」とは、表面処理皮膜における、ジルコニウム及びリンの元素換算での単位面積当たりの合計質量である。ここで、上記皮膜量は蛍光X線分析装置「PrimusII」(株式会社リガク製)による測定によって求めた。
 表4の試験例1~8については、実施例22の金属表面処理剤を用いて、実施例22とは異なる表4に示す皮膜量となるように、表面処理皮膜を形成した。
 表4に示す「皮膜量」については、蛍光X線分析装置「PrimusII」(株式会社リガク製)による測定によって求めた。
 なお、参考例1については、クロム化合物・リン酸系化成処理剤である「アルサーフ408」(商品名、日本ペイント社製)を用いて調整した以外は、他の実施例及び比較例と同様の方法でリン酸クロム皮膜を形成させた。参考例の「皮膜量」は、表面処理皮膜における、クロムの元素換算での単位面積当たりの質量である。参考例の「皮膜量」も、蛍光X線分析装置「PrimusII」(株式会社リガク製)による測定によって求めた。
 <樹脂層の形成>
 各実施例、比較例、参考例及び試験例のアルミニウム合金板の、表面処理皮膜を形成した側の表面に、溶剤型ポリエステル塗料(フレキコート#5000ホワイト、日本ペイント株式会社製)を、ウェット質量15g/mとなるようにバーコーターを用いて塗布した。続いて、このアルミニウム合金板を、コンベア式オーブンを用いて温度260℃、風速1~30m/分の条件下、60秒間加熱することで樹脂層を形成した。
 <密着性(フェザリング性)の評価>
 樹脂層を形成した各アルミニウム合金板を、70mm×50mmのサイズに切り出して試験片1を得た。続いて、図1に示すように、試験片1の非塗装面22に、NTカッターでV字の切り込み21をb-c-bに沿って入れた。そして、試験片1を125℃で30分間ロトマト処理して、V字の切り込み21の裾を金切はさみで、試験片の端から5mm、a-bに沿って切断した。
 次いで、図2のようにV字の切り込みの部分の裾と、その両端部を逆方向に、テンシロン引っ張り試験機にて50mm/分の速度で引っ張って分離させた。そして、切断面の塗膜残存状態を、目視にて図3に示す5段階で評価した。評価結果を表1~4に示す。評価結果が4又は5である場合を以って合格とする。
 1;塗膜が残る
 2;やや塗膜が残る
 3;塗膜片が残る
 4;塗膜片がほとんど残らない
 5;塗膜残りが無い
 <耐食性A(加工耐食)の評価>
 樹脂層を形成した各アルミニウム合金板を、25mm×70mmのサイズに切り出して試験片を得た。試験片の非塗装面にバックシールを施して、被塗装面にデュポン式落下衝撃試験機を用いて衝撃を加えた(落下高さ20cm、重り500g)。続いて、試験片を、60℃の環境下、密閉容器中において清涼飲料(コーラ、コカ・コーラ社製)に56時間浸漬し、腐食の程度を以下の基準で評価した。評価結果を表1~4に示す。評価結果が4又は5である場合を以って合格とする。
 1;評価面積の30%未満の領域が腐食なし
 2;評価面積の30%以上60%未満の領域が腐食なし
 3;評価面積の60%以上90%未満の領域が腐食なし
 4;評価面積の90%以上の領域が腐食なし
 5;全面腐食なし
 <耐食性B(クロスカット耐食)の評価>
 樹脂層を形成したアルミニウム合金板を、70mm×50mmのサイズに切り出して試験片を得た。試験片の非塗装面にバックシールを施して、塗装面にNTカッターで50mm×50mmのクロスカットを施した。続いて、試験片を、70℃の環境下、密閉容器中において塩化ナトリウムとクエン酸の混合水溶液(それぞれ1質量%)に72時間浸漬し、腐食の程度を以下の基準で評価した。評価結果を表1~4に示す。評価結果が4又は5である場合を以って合格とする。
 1;評価面積の30%未満の領域が腐食なし
 2;評価面積の30%以上60%未満の領域が腐食なし
 3;評価面積の60%以上90%未満の領域が腐食なし
 4;評価面積の90%以上の領域が腐食なし
 5;全面腐食なし
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例22の金属表面処理剤を用いて得られた試験片と、比較例14の金属表面処理剤を用いて得られた試験片とを比較すると、実施例22の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。この結果から、金属表面処理剤がジルコニウムを含有することで、得られる試験片は密着性、耐食性ともに向上することが確認された。
 また、実施例22の金属表面処理剤を用いて得られた試験片と、実施例30、参考例2の金属表面処理剤を用いて得られた試験片とを比較すると、実施例22の金属表面処理剤を用いて得られた試験片の密着性及び耐食性の評価結果は実施例30、参考例2の評価結果に対し同等以上であることが分かった。この結果から、金属表面処理剤のジルコニウム源としてはいずれの化合物を用いても同等の効果が得られ、従来のフッ素含有ジルコニウム化合物(ジルコン弗化アンモニウム)を用いた場合と遜色のない密着性及び耐食性が得られることが確認された。
 実施例8~16の金属表面処理剤を用いて得られた試験片と、比較例3の金属表面処理剤を用いて得られた試験片とを比較すると、実施例8~16の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。また、実施例8~16の金属表面処理剤を用いて得られた試験片と、比較例4の金属表面処理剤を用いて得られた試験片とを比較すると、実施例8~16の金属表面処理剤を用いて得られた試験片の方が耐食性に優れることが分かった。これらの結果から、金属表面処理剤の含有するジルコニウムのジルコニウム原子換算での含有量(CZr)を220~27000質量ppmとすることによって、得られる試験片は密着性、耐食性ともに向上することが確認された。
 実施例1~7の金属表面処理剤を用いて得られた試験片と、比較例1の金属表面処理剤を用いて得られた試験片とを比較すると、実施例1~7の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。また、実施例1~7の金属表面処理剤を用いて得られた試験片と、比較例2の金属表面処理剤を用いて得られた試験片とを比較すると、実施例1~7の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。これらの結果から、金属表面処理剤の含有するリン化合物のリン原子換算での含有量(C)を、230~14000質量ppmとすることによって、得られる試験片は密着性、耐食性ともに向上することが確認された。
 実施例22の金属表面処理剤を用いて得られた試験片と、比較例7~13の金属表面処理剤を用いて得られた試験片とを比較すると、実施例22の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。この結果から、金属表面処理剤に、カルボキシ基を有する水溶性樹脂を含有させることによって、得られる試験片は密着性、耐食性ともに向上することが確認された。
 実施例17~25の金属表面処理剤を用いて得られた試験片と、比較例5の金属表面処理剤を用いて得られた試験片とを比較すると、実施例17~25の金属表面処理剤を用いて得られた試験片の方が密着性に優れることが分かった。また、実施例17~25の金属表面処理剤を用いて得られた試験片と、比較例6の金属表面処理剤を用いて得られた試験片とを比較すると、実施例17~25の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。これらの結果から、金属表面処理剤の含有する水溶性樹脂の固形分換算での含有量(C)を、2000~120000質量ppmとすることによって、得られる試験片は密着性、耐食性ともに向上することが確認された。
 実施例22の金属表面処理剤を用いて得られた試験片及び実施例26~29の金属表面処理剤を用いて得られた試験片の密着性及び耐食性は、実施例22の結果が最も優れているものの、ほぼ同等であることが確認された。この結果から、金属表面処理剤に含まれるリン化合物はリン酸、亜リン酸、ホスホン酸及びフィチン酸のいずれであっても、あるいは上記リン化合物から選択される2種以上のリン化合物が含まれる場合であっても、得られる試験片は密着性、耐久性ともに優れることが確認された。
 実施例22の金属表面処理剤を用いて得られた試験片と、比較例15、16の金属表面処理剤を用いて得られた試験片とを比較すると、実施例22の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。この結果から、ジルコニウムのジルコニウム原子換算での含有量(CZr)に対する、リン化合物のリン原子換算での含有量(C)の比の値(C/CZr)を、0.009~63.636とすることによって、得られる試験片は密着性、耐食性ともに向上することが確認された。
 実施例22の金属表面処理剤を用いて得られた試験片と、比較例17、18の金属表面処理剤を用いて得られた試験片とを比較すると、実施例22の金属表面処理剤を用いて得られた試験片の方が密着性及び耐食性に優れることが分かった。この結果から、水溶性樹脂の固形分換算での含有量(C)に対する、前記リン化合物のリン原子換算での含有量(C)の比の値(C/C)を、0.002~7.0とすることによって、得られる試験片は密着性、耐食性ともに向上することが確認された。
 実施例22の金属表面処理剤を用いて得られた試験片及び実施例31~44の金属表面処理剤を用いて得られた試験片の密着性及び耐食性は、同等であることが確認された。この結果から、金属表面処理剤が各種の有機酸を含有する場合にも、得られる試験片は密着性、耐食性ともに優れることが確認された。
 試験例2~7の試験片と、試験例1、8の試験片とを比較すると、試験例2~7の試験片の方が密着性及び耐食性に優れることが分かった。この結果から、表面処理皮膜の皮膜量を、ジルコニウム元素換算での単位面積当たりの合計質量において、2~20mg/mとすることで、試験片は密着性、耐食性ともに向上することが確認された。
 1 試験片
 21 切り込み
 22 非塗装面

Claims (5)

  1.  アルミニウム又はアルミニウム合金からなる金属材料の表面に塗布されて表面処理皮膜を形成し、フッ素のフッ素原子換算での含有量(C)は、5質量ppm未満である、実質的にフッ素を含有しないフッ素フリー金属表面処理剤であって、
     ジルコニウムと、リン化合物と、水溶性樹脂と、を含有し、
     前記ジルコニウムのジルコニウム原子換算での含有量(CZr)は、220~27000質量ppmであり、
     前記リン化合物のリン原子換算での含有量(C)は、230~14000質量ppmであり、
     前記水溶性樹脂は、カルボキシ基を有し、
     前記水溶性樹脂の酸価は、130~970mgKOH/gであり、
     前記水溶性樹脂の固形分換算での含有量(C)は、2000~120000質量ppmである金属表面処理剤。
  2.  前記リン化合物は、リン酸、亜リン酸、ホスホン酸及びフィチン酸からなる群より選択される少なくとも一種のリン化合物を含有する請求項1記載の金属表面処理剤。
  3.  前記水溶性樹脂は、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、クロトン酸及びフマル酸からなる群より選択される少なくとも一種の単量体(i)20~100質量%と、スチレン、酢酸ビニル、メチルスチレン、2-ヒドロキシ-3-アリロキシプロパンスルホン酸、アクリルアミドメチルプロパンスルホン酸及びスチレンスルホン酸からなる群より選択される少なくとも一種の単量体(ii)0~80質量%と、を重合して得られる重合体である請求項1又は2記載の金属表面処理剤。
  4.  前記ジルコニウムのジルコニウム原子換算での含有量(CZr)に対する、前記リン化合物のリン原子換算での含有量(C)の比の値(C/CZr)は、0.009~63.636であり、
     前記水溶性樹脂の固形分換算での含有量(C)に対する、前記リン化合物のリン原子換算での含有量(C)の比の値(C/C)は、0.002~7.0である請求項1から3いずれかに記載の金属表面処理剤。
  5.  更に、マレイン酸、フマル酸、コハク酸、リンゴ酸、酢酸、イタコン酸、酒石酸、アスコルビン酸、グルタミン酸及びアスパラギン酸からなる群より選択される少なくとも一種の有機酸を含有する請求項1から4のいずれか記載の金属表面処理剤。
PCT/JP2017/006348 2016-02-22 2017-02-21 金属表面処理剤 WO2017146040A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016031371A JP2017150012A (ja) 2016-02-22 2016-02-22 金属表面処理剤
JP2016-031371 2016-02-22

Publications (1)

Publication Number Publication Date
WO2017146040A1 true WO2017146040A1 (ja) 2017-08-31

Family

ID=59685173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006348 WO2017146040A1 (ja) 2016-02-22 2017-02-21 金属表面処理剤

Country Status (2)

Country Link
JP (1) JP2017150012A (ja)
WO (1) WO2017146040A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112776525A (zh) * 2020-11-03 2021-05-11 浙江天画家居用品有限公司 一种玻璃内雕镀银装饰画的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162718A (ja) * 1999-12-06 2001-06-19 Sky Alum Co Ltd 密着性および加工性に優れた樹脂被覆アルミニウム板の製造方法
JP2001234352A (ja) * 2000-02-22 2001-08-31 Nippon Paint Co Ltd アルミニウム製フィン材の製造方法およびこの方法により製造されたアルミニウム製フィン材
JP2004262143A (ja) * 2003-03-03 2004-09-24 Nippon Parkerizing Co Ltd 樹脂膜被覆アルミニウム薄板
JP2007268387A (ja) * 2006-03-30 2007-10-18 Kobe Steel Ltd 熱交換器用表面処理フィン材
JP2008050693A (ja) * 2006-07-25 2008-03-06 Nippon Light Metal Co Ltd アルミニウム塗装材
JP2012212512A (ja) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111983A (ja) * 2010-11-22 2012-06-14 Shin-Etsu Chemical Co Ltd 金属表面処理剤及びこれを用いた金属表面処理方法
JP5712980B2 (ja) * 2012-08-06 2015-05-07 信越化学工業株式会社 金属表面処理剤、表面処理鋼材及びその表面処理方法、並びに塗装鋼材及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001162718A (ja) * 1999-12-06 2001-06-19 Sky Alum Co Ltd 密着性および加工性に優れた樹脂被覆アルミニウム板の製造方法
JP2001234352A (ja) * 2000-02-22 2001-08-31 Nippon Paint Co Ltd アルミニウム製フィン材の製造方法およびこの方法により製造されたアルミニウム製フィン材
JP2004262143A (ja) * 2003-03-03 2004-09-24 Nippon Parkerizing Co Ltd 樹脂膜被覆アルミニウム薄板
JP2007268387A (ja) * 2006-03-30 2007-10-18 Kobe Steel Ltd 熱交換器用表面処理フィン材
JP2008050693A (ja) * 2006-07-25 2008-03-06 Nippon Light Metal Co Ltd アルミニウム塗装材
JP2012212512A (ja) * 2011-03-30 2012-11-01 Nisshin Steel Co Ltd 電池外装用積層体および二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOICHI HATANAKA ET AL.: "Coating adhesion and corrosion resistance of polyacrylic acid- zirconium composite treated aluminum", JOURNAL OF JAPAN INSTITUTE OF LIGHT METALS, vol. 40, no. 4, 1990, pages 298 - 304 *

Also Published As

Publication number Publication date
JP2017150012A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
JP5089316B2 (ja) 金属表面処理組成物、この組成物を用いたアルミニウム系金属基材の表面処理方法、及びこの方法を用いて製造されたアルミニウム系金属表面処理基材
WO2016129640A1 (ja) 金属表面処理剤
JP6055085B2 (ja) 化成処理剤及び金属表面処理方法
KR102107271B1 (ko) 아연-알루미늄-마그네슘 합금 도금 강판의 표면 처리 방법
WO2013147146A1 (ja) 表面処理アルミニウム板及び有機樹脂被覆表面処理アルミニウム板並びにこれを用いて成る缶体及び缶蓋
EP1960567A1 (en) Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet
JP5231738B2 (ja) 金属表面処理組成物を用いて処理されてなる金属材料
JP6014005B2 (ja) 黒色塗装金属板
WO2017146040A1 (ja) 金属表面処理剤
WO2014057899A1 (ja) 表面処理剤及び表面処理方法
JP6586266B2 (ja) 金属表面処理剤
WO2005053949A1 (ja) 耐食性に優れ、環境負荷の小さい塗装金属板
JP3904984B2 (ja) 被覆金属材料、及び、ノンクロム金属表面処理方法
JP3904983B2 (ja) 被覆金属材料、及び、ノンクロム金属表面処理方法
JP2008184664A (ja) 金属表面処理組成物、これにより処理されてなる金属材料、及びこの金属材料を用いた金属ラミネートフィルム
JP2003313681A (ja) ノンクロム金属表面処理方法、及び、アルミニウム又はアルミニウム合金板
JP3998056B2 (ja) 熱可塑性ポリエステル系樹脂被覆金属板の製造方法及び熱可塑性ポリエステル系樹脂被覆金属板
WO2017138464A1 (ja) 表面処理剤、表面処理皮膜の製造方法、及び表面処理皮膜を有するアルミニウム材又はアルミニウム合金材
JP6160162B2 (ja) 表面処理アルミニウム板及び有機樹脂被覆表面処理アルミニウム板並びにこれを用いて成る缶体及び缶蓋
JP2020059228A (ja) 金属調化粧フィルム及び金属調化粧板
JP4774629B2 (ja) ポリエステル樹脂被覆錫合金めっき鋼板
JP7140772B2 (ja) 表面処理剤、表面処理皮膜を有する缶用アルミニウム合金材の製造方法、並びにそれを用いたアルミニウム合金缶体及び缶蓋
WO2000055390A1 (fr) Procede d'obtention d'une tole d'acier traitee en surface, tole d'acier traitee en surface, et tole d'acier traitee en surface revetue de resine organique
JP2003313677A (ja) ノンクロム金属表面処理方法、及び、アルミニウム又はアルミニウム合金板
JP2008127625A (ja) 成型加工後の樹脂密着性に優れたキャップ成型用アルミニウム板及びその製造方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756478

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756478

Country of ref document: EP

Kind code of ref document: A1