WO2017145935A1 - 光学フィルム、光学フィルムの製造方法および表示装置 - Google Patents

光学フィルム、光学フィルムの製造方法および表示装置 Download PDF

Info

Publication number
WO2017145935A1
WO2017145935A1 PCT/JP2017/005922 JP2017005922W WO2017145935A1 WO 2017145935 A1 WO2017145935 A1 WO 2017145935A1 JP 2017005922 W JP2017005922 W JP 2017005922W WO 2017145935 A1 WO2017145935 A1 WO 2017145935A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical film
crystal layer
smectic phase
compound
Prior art date
Application number
PCT/JP2017/005922
Other languages
English (en)
French (fr)
Inventor
匡広 渥美
齊藤 之人
森嶌 慎一
渉 星野
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2018501635A priority Critical patent/JP6727284B2/ja
Priority to CN201780012728.8A priority patent/CN108700694B/zh
Publication of WO2017145935A1 publication Critical patent/WO2017145935A1/ja
Priority to US16/106,677 priority patent/US10955601B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3494Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • C09K19/3497Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom the heterocyclic ring containing sulfur and nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2035Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • C09K2019/3077Cy-Cy-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE

Definitions

  • the present invention relates to an optical film, an optical film manufacturing method, and a display device.
  • LCDs Liquid crystal display devices
  • organic EL (Electroluminescence) display devices are widely used in mobile phones, smartphones, and the like because of low power consumption and space saving.
  • Such a display device is required to have high performance such as power saving, high definition, contrast, and improved viewing angle.
  • a method using an optical compensation film such as a retardation film for improving the viewing angle.
  • a ⁇ / 4 retardation plate or a ⁇ / 2 retardation plate is used depending on the characteristics to be compensated.
  • conversion to a specific wavelength having an appropriate retardation is easy.
  • white light in which a plurality of monochromatic lights are mixed is transmitted, it is difficult to convert all the light rays to wavelengths having an appropriate phase difference.
  • the material constituting the retardation plate has a different phase difference for each monochromatic light, and in general, the shorter the wavelength component, the easier it is to produce a phase difference. In this way, the white light transmitted through the retardation plate has a different phase difference with respect to each monochromatic light.
  • a state having such a phase difference depending on the wavelength is called wavelength dispersion or forward wavelength dispersion.
  • the white light obtained by transmitting through the retardation plate has wavelength dispersion, there is a problem that the polarization state changes at each wavelength and the polarized light converted by the retardation plate becomes colored.
  • a material for obtaining a retardation plate having so-called reverse wavelength dispersion has been studied as a retardation plate (broadband retardation plate) that functions in a wide wavelength range.
  • the optical film which shows the outstanding reverse wavelength dispersion, and the liquid crystal compound used for the optical film are proposed.
  • Patent Document 2 proposes a retardation film that satisfies an Nz factor ⁇ 1 by stretching a liquid crystal layer in which homeotropic alignment is fixed.
  • a broadband ⁇ / 4 plate composed of a retardation plate has been used, and it has been reported that contrast and oblique color change are improved.
  • an optical film used for a broadband retardation plate if the Nz factor is 0.5, the viewing angle characteristics are greatly improved.
  • a film having such an Nz factor is an ideal anti-reflection film for an organic EL display device if it is a ⁇ / 4 plate, and an ideal IPS (In-Plane Switching) type liquid crystal display if it is a ⁇ / 2 plate. It is known to be very useful, for example, as a compensation film for a device.
  • an optical film having an Nz factor of 0.5 has not been realized yet.
  • the present invention has been made in view of the above circumstances, and realizes an optical film having an ideal optical characteristic with an Nz factor of 0.5 or very close to the contrast and oblique color when incorporated in a display device.
  • An object is to provide an optical film capable of improving taste change, a method for producing the optical film, and a display device including the optical film.
  • the present inventors have found that the Nz factor can be realized at 0.5 or very close to the present invention by uniaxially stretching a fixed end film by vertically aligning liquid crystal molecules in a smectic phase. It came. That is, the optical film of the present invention has a liquid crystal layer derived from a smectic phase, and the Nz factor of the liquid crystal layer is 0.2 or more and 0.8 or less.
  • the Nz factor of the liquid crystal layer is preferably 0.4 or more and 0.7 or less.
  • the liquid crystal layer preferably contains a reverse wavelength dispersible liquid crystal compound.
  • the retardation values Re (440), Re (550), and Re (630) measured at a wavelength of 440 nm, a wavelength of 550 nm, and a wavelength of 630 nm, respectively, preferably satisfy the following relationship.
  • the optical film of the present invention may be a ⁇ / 4 plate for an organic EL display device.
  • the optical film of the present invention may be a ⁇ / 2 plate for an IPS type liquid crystal display device.
  • the display device of the present invention preferably includes the optical film of the present invention.
  • the method for producing an optical film of the present invention includes a step of uniaxially stretching a fixed end of a smectic phase liquid crystal layer in which liquid crystal molecules are vertically aligned and fixed in a smectic phase.
  • the optical film of the present invention has a liquid crystal layer derived from a smectic phase, and the Nz factor of the liquid crystal layer is 0.2 or more and 0.8 or less.
  • the Nz factor of the liquid crystal layer is 0.2 or more and 0.8 or less.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the optical film of the present invention.
  • FIG. 2 is a schematic view showing a method for producing the optical film of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing the organic EL display device of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the IPS liquid crystal display device of the present invention.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • “orthogonal” and “parallel” with respect to an angle mean a range of a strict angle ⁇ 10 degrees, and “same” and “different” with respect to an angle indicate whether or not the difference is less than 5 degrees. It can be judged on the basis of.
  • the “slow axis” means a direction in which the refractive index becomes maximum in the plane
  • the “polarizing plate” means a long polarizing plate and a display device unless otherwise specified. It is used to include both polarizing plates cut to the size to be incorporated.
  • “cutting” includes “punching” and “cutting out”.
  • the optical film of the present invention or a form including a laminate of a general ⁇ / 4 plate and a polarizing film is referred to as “antireflection plate” or “circular polarizing plate”.
  • the reverse wavelength dispersion means a property that the absolute value of the in-plane retardation becomes larger as the wavelength becomes longer.
  • Re ( ⁇ ) and Rth ( ⁇ ) represent in-plane retardation and retardation in the thickness direction at wavelength ⁇ , respectively.
  • Re ( ⁇ ) is measured by making light having a wavelength of ⁇ nm incident in the normal direction of the film in “WR” (trade name, manufactured by Oji Scientific Instruments).
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is Re ( ⁇ ) with an in-plane slow axis (determined by “WR”) as a tilt axis (rotation axis) (in the absence of a slow axis, any film surface in-plane
  • the direction of the axis of rotation is the film normal direction), and from the normal direction to 50 degrees on one side, the light of wavelength ⁇ nm is incident from each inclined direction in steps of 10 degrees to measure a total of 6 points.
  • the “WR” is calculated based on the retardation value, the assumed average refractive index, and the input film thickness value.
  • Re ( ⁇ ) represents a retardation value in a direction inclined by an angle ⁇ from the normal direction.
  • nx represents the refractive index in the slow axis direction in the plane
  • ny represents the refractive index in the direction perpendicular to nx in the plane
  • nz represents the refractive index in the direction perpendicular to nx and ny.
  • d represents the film thickness of the film.
  • Rth ( ⁇ ) is calculated by the following method.
  • Rth ( ⁇ ) is 10 from -50 degrees to +50 degrees with respect to the film normal direction, with Re ( ⁇ ) being the in-plane slow axis (determined by “WR”) as the tilt axis (rotation axis).
  • Re ( ⁇ ) being the in-plane slow axis (determined by “WR”) as the tilt axis (rotation axis).
  • WR the in-plane slow axis
  • nx, ny, and nz are calculated in “WR”.
  • Nz factor (nx ⁇ nz) / (nx ⁇ ny) is further calculated from the calculated nx, ny, and nz.
  • an optical film means a film that can be used for an optical member such as various optical devices such as various display devices, light-emitting devices, and polarizing plates.
  • the optical film of the present invention has a liquid crystal layer derived from a smectic phase, and the Nz factor of the liquid crystal layer is 0.2 or more and 0.8 or less.
  • the optical characteristics remain as an optical film. You may measure.
  • the Nz factor is preferably 0.4 or more and 0.7 or less.
  • the smectic phase refers to a state in which liquid crystal molecules are aligned in one direction and have a layer structure.
  • the nematic phase refers to a state in which the constituent molecules have an orientational order but do not have a three-dimensional positional order.
  • the smectic phase has a structure in which a plurality of layers in which liquid crystal molecules are vertically aligned are stacked.
  • liquid crystal layer is uniaxially stretched with a fixed end by the production method of the present invention described later, the liquid crystal molecules that are vertically aligned in the layer fall down in the stretching direction, but the layer order is maintained.
  • liquid crystal layer derived from a smectic phase means a liquid crystal layer in which the vertical alignment of liquid crystal molecules is disturbed but the layer order is maintained. Whether or not the liquid crystal compound is fixed while the layer order of the smectic phase is maintained can be confirmed by observation with an X-ray diffraction pattern. If the smectic phase is fixed, an X-ray diffraction pattern derived from the layer order is observed, so that the fixed state can be determined.
  • the optical film preferably has a thickness of 60 ⁇ m or less from the viewpoint of reducing the thickness of the member. Moreover, it is preferable that it is 5 micrometers or more from a viewpoint of manufacture aptitude. In addition, when used as a ⁇ / 4 plate or a ⁇ / 2 plate, the value is appropriately designed according to the purpose.
  • the liquid crystal layer derived from the smectic phase may have any of reverse wavelength dispersion, flat wavelength dispersion, and forward wavelength dispersion.
  • the film thickness of the liquid crystal layer derived from the smectic phase is preferably 2 to 30 ⁇ m, more preferably 3 to 20 ⁇ m, and even more preferably 5 to 15 ⁇ m.
  • the Re of the liquid crystal layer derived from the smectic phase preferably satisfies 120 nm ⁇ Re (550) ⁇ 150 nm, more preferably satisfies 130 nm ⁇ Re (550) ⁇ 140 nm as the ⁇ / 4 plate.
  • the ⁇ / 2 plate preferably satisfies 200 nm ⁇ Re (550) ⁇ 320 nm, and more preferably satisfies 230 nm ⁇ Re (550) ⁇ 300 nm.
  • the Rth of the liquid crystal layer derived from the smectic phase preferably satisfies ⁇ 45 nm ⁇ Rth (550) ⁇ 45 nm as the ⁇ / 4 plate, and more preferably satisfies ⁇ 25 nm ⁇ Rth (550) ⁇ 25 nm.
  • the ⁇ / 2 plate preferably satisfies ⁇ 100 nm ⁇ Rth (550) ⁇ 100 nm, and more preferably satisfies ⁇ 50 nm ⁇ Rth (550) ⁇ 50 nm.
  • the liquid crystal layer derived from the smectic phase may contain a reverse wavelength dispersive liquid crystal compound, or may be composed entirely of a reverse wavelength dispersive liquid crystal compound.
  • the retardation values Re (440), Re (550), and Re (630) measured at wavelengths of 440 nm, 550 nm, and 630 nm satisfy the following relationship, respectively. preferable.
  • the liquid crystal layer derived from the smectic phase may be a single layer or a plurality of layers, but it is a single layer from the viewpoints that the process can be shortened and optical defects are less likely to occur because of a simpler structure than the conventional one. It is preferable.
  • the optical film of the present invention is useful as a ⁇ / 4 plate for an organic EL display device or a ⁇ / 2 plate for an IPS liquid crystal display device. .
  • FIG. 1 shows a schematic cross-sectional view of an embodiment of the optical film of the present invention.
  • the optical film 10 of the present embodiment has an alignment layer 12 and a liquid crystal layer 13 derived from a smectic phase on a support 11.
  • the optical film 10 may include other functional layers such as a support and an adhesive layer in addition to the liquid crystal layer derived from the smectic phase.
  • FIG. 2 shows a schematic diagram of the method for producing the optical film of the present invention.
  • the method for producing an optical film of the present invention includes a step of uniaxially stretching a fixed smectic phase liquid crystal layer in which liquid crystal molecules are vertically aligned and fixed in a smectic phase.
  • the periphery of the film 21 on which the smectic phase liquid crystal layer is formed is fixed with a tenter 22 and stretched in the left-right direction (arrow in the figure) so that the width W does not change ( Fixed end uniaxial stretching).
  • the width W is not changed, the length L 1 is stretched in L 2.
  • the smectic phase liquid crystal layer is in a state in which the vertical order of the liquid crystal molecules is maintained with respect to the layer plane but the layer order is maintained although a tilt angle different from that before stretching may occur.
  • the draw ratio is appropriately adjusted so that the Nz factor is 0.2 or more and 0.8 or less.
  • the draw ratio is preferably 30 to 70%, more preferably 40 to 60%.
  • the stretching apparatus is not particularly limited as long as it can perform uniaxial stretching at a fixed end, but in addition to the batch stretching machine shown in FIG. 2, a tenter stretching machine that stretches in the width direction while carrying the roll in the longitudinal direction, and a narrow roll interval. By setting, a roll stretching machine that stretches in the longitudinal direction while suppressing width shrinkage can be used.
  • composition ⁇ Smectic phase liquid crystal layer composition> Details of the composition for forming the smectic phase liquid crystal layer will be described below.
  • the “smectic phase liquid crystal layer” means a liquid crystal layer that has been applied and cured and then stretched.
  • the composition for the smectic phase liquid crystal layer contains a liquid crystal compound, and further preferably contains a polymerization initiator, a solvent, or a vertical alignment agent as necessary.
  • the liquid crystal compound used for the smectic phase liquid crystal layer is preferably a rod-like liquid crystal compound.
  • a specific rod-like liquid crystal compound will be described later.
  • the liquid crystal compound is preferably contained in an amount of 50% by mass to 98% by mass with respect to the total mass of the composition.
  • the liquid crystal compound is more preferably polymerizable, and the polymerizable liquid crystal compound is preferably contained in an amount of 50% by mass or 100% by mass with respect to the total mass of the liquid crystal compound.
  • any conventionally known liquid crystal compound may be used.
  • the compound represented by the general formula (I) described in JP-A-2008-297210 in particular, the compounds described in paragraphs 0034 to 0039)
  • Compounds represented by the general formula (1) described in JP 2010-84032 A in particular, compounds described in paragraphs 0067 to 0073
  • the like may be used.
  • liquid crystal compounds in combination with other liquid crystal compounds, azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines,
  • a rod-like liquid crystal compound selected from alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles may be used.
  • rod-like liquid crystal compounds examples include compounds represented by the following general formula (II). L 1 -G 1 -D 1 -Ar-D 2 -G 2 -L 2 General formula (II)
  • D 1 and D 2 are each independently —CO—O—, —O—CO—, —C ( ⁇ S) O—, —O—C ( ⁇ S) —, —CR 1 R 2. —, —CR 1 R 2 —CR 3 R 4 —, —O—CR 1 R 2 —, —CR 1 R 2 —O—, —CR 1 R 2 —O—CR 3 R 4 —, —CR 1 R 2 —O—CO—, —O—CO—CR 1 R 2 —, —CR 1 R 2 —O—CO—CR 3 R 4 —, —CR 1 R 2 —CO—O—CR 3 R 4 —, Represents —NR 1 —CR 2 R 3 —, —CR 1 R 2 —NR 3 —, —CO—NR 1 —, or —NR 1 —CO—, wherein R 1 , R 2 , R 3 , and R 4 are Each independently represents a hydrogen atom, a halogen
  • G 1 and G 2 each independently represents a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and the methylene group contained in the alicyclic hydrocarbon group includes —O—, —S—, — N (R 6 ) — may be substituted, and R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • L 1 and L 2 each independently represent a monovalent organic group, and at least one selected from the group consisting of L 1 and L 2 represents a monovalent group having a polymerizable group.
  • Ar represents a divalent aromatic ring group represented by the following general formula (II-1), (II-2), (II-3), or (II-4).
  • Q 1 represents —S—, —O—, or NR 11 —
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 1 represents an aromatic hydrocarbon group having 6 to 12 carbon atoms or an aromatic heterocyclic group having 3 to 12 carbon atoms.
  • Z 1 , Z 2 , and Z 3 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an alicyclic hydrocarbon group having 3 to 20 carbon atoms, or a monovalent carbon number of 6 Represents an aromatic hydrocarbon group of ⁇ 20, a halogen atom, a cyano group, a nitro group, —NR 12 R 13 or SR 12 .
  • Z 1 and Z 2 may combine with each other to form an aromatic ring or an aromatic heterocyclic ring, and R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • a 1 and A 2 each independently represents a group selected from the group consisting of —O—, —NR 21 — (R 21 represents a hydrogen atom or a substituent), —S— and CO—.
  • X represents a hydrogen atom or a nonmetallic atom of Groups 14 to 16 to which a substituent may be bonded.
  • Ax represents an organic group having 2 to 30 carbon atoms having at least one aromatic ring selected from the group consisting of an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • Ay is a carbon atom having at least one aromatic ring selected from the group consisting of a hydrogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the aromatic ring possessed by Ax and Ay may have a substituent, and Ax and Ay may be bonded to form a ring.
  • Q 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms which may have a substituent.
  • D 1 , D 2 , G 1 , G 2 , L, and the like relating to the compound (A) described in JP2012-21068A are described.
  • 1 , L 2 , R 1 , R 2 , R 3 , R 4 , X 1 , Y 1 , Q 1 , and Q 2 are described as D 1 , D 2 , G 1 , G 2 , L 1 , L 2, respectively.
  • R 1 , R 2 , R 3 , R 4 , Q 1 , and Y 1 , Z 1 , Z 2 can be referred to, and the compound represented by the general formula (I) described in JP-A-2008-107767 of a 1, a 2, and the description of X respectively can refer for a 1, a 2, and X, Ax of the compound represented by formula (I) according to WO2013 / 018526, Ay, with respect to Q 1 It describes a possible reference Ax, Ay, for Q 2, respectively.
  • Z 3 the description relating to Q 1 relating to the compound (A) described in JP-A No. 2012-21068 can be referred to.
  • the organic groups represented by L 1 and L 2 are each particularly preferably a group represented by —D 3 —G 3 —Sp—P 3 .
  • D 3 is synonymous with D 1 .
  • G 3 represents a single bond, a divalent aromatic or heterocyclic group having 6 to 12 carbon atoms, or a divalent alicyclic hydrocarbon group having 5 to 8 carbon atoms, and the above alicyclic hydrocarbon group
  • the methylene group contained in may be substituted with —O—, —S—, —NR 7 —, wherein R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the polymerizable group is not particularly limited, but a polymerizable group capable of radical polymerization or cationic polymerization is preferable.
  • a generally known radical polymerizable group can be used, and preferable examples include acryloyl group and methacryloyl group.
  • the acryloyl group is generally fast in the polymerization rate, and the acryloyl group is preferable from the viewpoint of productivity improvement, but the methacryloyl group is also used as the polymerizable group of the highly birefringent liquid crystal. be able to.
  • the cationic polymerizable group generally known cationic polymerizable groups can be used.
  • alicyclic ether group, cyclic acetal group, cyclic lactone group, cyclic thioether group, spiro orthoester group, vinyloxy group examples include groups. Of these, alicyclic ether groups and vinyloxy groups are preferable, and epoxy groups, oxetanyl groups, and vinyloxy groups are particularly preferable. Examples of particularly preferred polymerizable groups include the following.
  • alkyl group may be any of linear, branched, or cyclic.
  • examples thereof include a propyl group, an n-hexyl group, an isohexyl group, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • a preferable example is shown below as a compound represented by general formula (II), it is not specifically limited to these.
  • the above rod-like liquid crystal compound has a reverse wavelength dispersion and a smectic phase.
  • liquid crystal compound L-1 liquid crystal compound L-1
  • L-3 liquid crystal compound L-3
  • a compound represented by L-6 liquid crystal compound L-6
  • L-8 liquid crystal compound L-8
  • a compound represented by formula L-10 liquid crystal compound L-10
  • the group adjacent to the acryloyloxy group in the following formula L-1 represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and the liquid crystal compound L-1 is a positional isomer having a different methyl group position.
  • the smectic liquid crystal compound is a compound having a structure represented by the following formula (1) because the electronic interaction between liquid crystal molecules works to improve the orientation of the smectic phase liquid crystal layer. Is preferred.
  • each R 1 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • preferred examples of the compound having the structure represented by the formula (1) include the liquid crystal compound L-1 in which R 1 in the formula (1) is a hydrogen atom.
  • the bond position represented by * represents the bond position with an oxygen atom in the liquid crystal compound L-1.
  • liquid crystal compounds may be contained in addition to the liquid crystal compound exhibiting the smectic phase described above.
  • the other liquid crystal compound include a liquid crystal compound exhibiting a nematic phase, and specifically, a compound represented by the following formula L-2 (liquid crystal compound L-2), which is also used in Examples described later, A compound represented by the following formula L-4 (liquid crystal compound L-4), a compound represented by the following formula L-9 (liquid crystal compound L-9), a compound represented by the following formula L-11 (liquid crystal compound L -11) and the like.
  • the group adjacent to the acryloyloxy group in the following formula L-2 represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and the liquid crystal compound L-2 is a positional isomer having a different methyl group position.
  • the content ratio of the smectic liquid crystal compound is preferably at least 35% by mass or more based on the total mass of the smectic liquid crystal compound and the other liquid crystal compound. .
  • the composition for the smectic phase liquid crystal layer may further contain a liquid crystal compound exhibiting a forward dispersion wavelength property in addition to the rod-shaped liquid crystal compound.
  • a liquid crystal compound exhibiting forward dispersion wavelength include alkylcyclohexane ring-containing compounds.
  • An alkylcyclohexane ring-containing compound is a compound having in part a cyclohexane ring in which one hydrogen atom is substituted with a linear alkyl group.
  • cyclohexane ring in which one hydrogen atom is substituted with a linear alkyl group means, for example, as shown in the following formula (2), when it has two cyclohexane rings, The cyclohexane ring in which one hydrogen atom of the cyclohexane ring is substituted with a linear alkyl group.
  • alkylcyclohexane ring-containing compound examples include a compound having a structure represented by the following formula (2). Among them, from the viewpoint of imparting wet heat durability to the optically anisotropic layer, a (meth) acryloyl group is used. It is preferably a compound represented by the following formula (3).
  • R 2 represents a linear alkyl group having 1 to 10 carbon atoms
  • n represents 1 or 2
  • W 1 and W 2 represent an alkyl group, an alkoxy group, and an alkoxy group, respectively.
  • W 1 and W 2 may be bonded to each other to form a ring structure which may have a substituent.
  • Z represents —COC— or —OCO—
  • L represents an alkylene group having 1 to 6 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group.
  • R 2 in the above formulas (2) and (3) is preferably a linear alkyl group having 2 to 4 carbon atoms.
  • alkylcyclohexane ring-containing compound examples include compounds represented by the following formulas A-1 to A-5.
  • R 4 represents an ethyl group or a butyl group.
  • the amount of the liquid crystal compound in the composition for smectic phase liquid crystal layer is preferably 50 to 98% by mass, more preferably 80 to 98% by mass, based on the total solid mass of the composition for smectic phase liquid crystal layer.
  • the rod-like liquid crystal compounds it is preferable to include a reverse wavelength dispersive liquid crystal compound represented by the general formula (II).
  • the composition for smectic phase liquid crystal layer preferably contains a vertical alignment agent.
  • the vertical alignment agent it is preferable to use at least one of a boronic acid compound and an onium salt.
  • Specific examples of the boronic acid compound include compounds represented by the following formula.
  • R 51 and R 52 each independently represent a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, an aryl group, or a heterocyclic group.
  • R 53 represents a substituent containing a functional group that can be bonded to a (meth) acryl group.
  • a boronic acid compound represented by the general formula (I) described in paragraph Nos. 0023 to 0032 of JP-A-2008-225281 can be used. Further, boronic acid compounds shown below are also preferably used.
  • onium salts include compounds represented by the following formula.
  • ring A represents a quaternary ammonium ion composed of a nitrogen-containing heterocyclic ring.
  • X 51 represents an anion.
  • L 51 represents a divalent linking group.
  • L 52 represents a single bond or a divalent linking group.
  • Y 51 represents a divalent linking group having a 5- or 6-membered ring as a partial structure.
  • Z represents a divalent linking group having 2 to 20 alkylene groups as a partial structure.
  • P 51 and P 52 each independently represent a monovalent substituent having a polymerizable ethylenically unsaturated group.
  • onium salt examples include onium salts described in paragraph numbers 0052 to 0058 of JP2012-208397A, onium salts described in paragraph numbers 0024 to 0055 of JP2008-026730A, JP Examples thereof include onium salts described in JP-A-2002-37777.
  • the vertical alignment agent is preferably 0.1 to 5% by mass, more preferably 0.5 to 3% by mass, based on the total mass of the liquid crystal compound contained in the smectic phase liquid crystal layer composition.
  • the vertical alignment agent may contain only one type or two or more types. When two or more types are included, the total amount is within the above range.
  • the composition for smectic phase liquid crystal layers may contain a polymerization initiator, a non-liquid crystalline polymerizable compound, a solvent, other additives, and the like.
  • the composition for the smectic phase liquid crystal layer may contain a polymerizable compound.
  • the polymerizable compound used together with the liquid crystal compound is not particularly limited as long as it is compatible with the liquid crystal compound and does not significantly change the tilt angle or disturb the alignment of the liquid crystal compound.
  • compounds having a polymerization active ethylenically unsaturated group such as a vinyl group, a vinyloxy group, an acryloyl group, and a methacryloyl group are preferably used.
  • the polymerizable compound it is particularly preferable to use a polymerizable compound having two or more reactive functional groups because an effect of improving the adhesion to the alignment layer can be expected.
  • the polymerizable compound may be a polymer, but is preferably a monomer (for example, a molecular weight of 2000 or less).
  • polymerizable compound examples include esters of polyhydric alcohol and (meth) acrylic acid (eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol).
  • esters of polyhydric alcohol and (meth) acrylic acid eg, ethylene glycol di (meth) acrylate, 1,4-cyclohexanediacrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol).
  • 1,4-divinylbenzene e
  • One type of polymerizable compound may be contained in the composition for smectic phase liquid crystal layers, or two or more types thereof may be contained.
  • the content of the polymerizable compound is generally in the range of 0.5 to 50% by mass with respect to the liquid crystal compound, and preferably in the range of 1 to 30% by mass.
  • the composition for the smectic phase liquid crystal layer may contain a polymerization initiator.
  • the polymerization initiator is preferably blended when the liquid crystal compound has a polymerizable group or contains a polymerizable compound.
  • Specific examples of the polymerization initiator include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos.
  • the photopolymerization initiator examples include Irgacure (registered trademark) series (for example, Irgacure 651, Irgacure 754, Irgacure 184, Irgacure 2959, Irgacure 907, Irgacure, commercially available from BASF). 369, IRGACURE 379, IRGACURE 819, etc.), DAROCURE (registered trademark) series (eg DAROCURE TPO, DAROCURE 1173, etc.), Quantacure PDO, Ezacure commercially available from Lamberti. , Registered trademark) series (for example, Ezacure TZM, Ezacure TZT, Ezacure KTO46, etc.).
  • the amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the smectic phase liquid crystal layer composition.
  • the composition for smectic phase liquid crystal layer may contain a solvent.
  • a solvent for the composition an organic solvent is preferably used.
  • organic solvents include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone, cyclohexanone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Only one type of solvent may be used, or two or more types of organic solvents may be used in combination.
  • the solvent is preferably adjusted so that the solid content concentration of the composition is 10 to 50%
  • the smectic phase liquid crystal layer composition may contain a surfactant for controlling the surface properties and surface shape, and other agents for imparting functionality.
  • the smectic phase liquid crystal layer can be formed by applying a composition for smectic phase liquid crystal layer on a support, drying and curing.
  • the optical film of the present invention may contain a support.
  • the support is a layer having a function as a base material for applying the composition for the smectic phase liquid crystal layer and a function for maintaining the layer shape of the smectic phase.
  • the support may be a temporary support that is applied and cured with a coating liquid for a smectic phase liquid crystal layer and then peeled off, or a temporary support that is peeled off after being stretched. That is, the optical film of the present invention may not include a support. When peeling and using, it is preferable to use the material of the surface property which is easy to peel.
  • the support temporary support
  • glass or the like may be used in addition to the plastic film.
  • the plastic film include polyester such as polyethylene terephthalate (PET), polycarbonate, acrylic resin, epoxy resin, polyurethane, polyamide, polyolefin, cellulose derivative, silicone, polyvinyl alcohol (PVA), and the like.
  • PET polyethylene terephthalate
  • acrylic resin epoxy resin
  • polyurethane polyamide
  • polyolefin polyamide
  • cellulose derivative cellulose derivative
  • silicone polyvinyl alcohol
  • PVA polyvinyl alcohol
  • the smectic phase liquid crystal layer is preferably made of a stretchable material for performing fixed-end uniaxial stretching after coating and curing.
  • PET and acrylic resin are more preferable, and acrylic resin is still more preferable.
  • the film thickness of the support may be about 5 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 250 ⁇ m, and more preferably 15 ⁇ m to 90 ⁇ m.
  • the coating method for smectic phase liquid crystal layer includes curtain coating method, dip coating method, spin coating method, print coating method, spray coating method, slot coating method, roll coating method, slide coating method, blade coating method. And known methods such as a gravure coating method and a wire bar method. In the case of applying by any method, single layer application is preferable.
  • An alignment treatment is performed before the composition for the smectic phase liquid crystal layer is cured.
  • the alignment treatment can be performed by drying at room temperature or by heating.
  • the liquid crystal phase formed by the alignment treatment can generally be transferred by a change in temperature or pressure.
  • it can be transferred also by a composition ratio such as the amount of solvent.
  • the temperature region in which the nematic phase develops is usually higher than the temperature region in which the rod-like liquid crystal compound develops a smectic phase. Therefore, the rod-like liquid crystal compound is heated to a temperature range where the rod-like liquid crystal compound develops a nematic phase, and then the heating temperature is lowered to a temperature region where the rod-like liquid crystal compound develops a smectic phase, thereby bringing the rod-like liquid crystal compound into a nematic phase. To a smectic phase. By adopting such a method, it is possible to provide a smectic phase liquid crystal layer in which liquid crystal compounds are aligned with a high degree of order.
  • the heating time is preferably 10 seconds to 5 minutes, more preferably 10 seconds to 3 minutes, and most preferably 10 seconds to 2 minutes.
  • the heating time is preferably 10 seconds to 5 minutes, more preferably 10 seconds to 3 minutes, and most preferably 10 seconds to 2 minutes.
  • the alignment state can be fixed by thermal polymerization or polymerization by active energy rays, and can be performed by appropriately selecting a polymerizable group and a polymerization initiator suitable for the polymerization.
  • a polymerization reaction by ultraviolet irradiation can be preferably used.
  • the irradiation amount of ultraviolet rays is small, an unpolymerized polymerizable rod-like liquid crystal compound remains, which causes a change in temperature of optical characteristics and deterioration with time. Therefore, it is preferable to determine the irradiation conditions so that the ratio of the remaining polymerizable rod-like liquid crystal compound is 5% or less.
  • the irradiation conditions depend on the prescription of the polymerizable composition and the film thickness of the liquid crystal layer, but as a guideline, 100 It is preferable to carry out at an irradiation dose of ⁇ 1000 mJ / cm 2 .
  • the liquid crystal compound has homeotropic alignment.
  • Homeotropic alignment means a state in which the major axis of the liquid crystal compound is aligned in the vertical direction.
  • the smectic phase has a highly ordered layer structure in which the center of gravity of the liquid crystal molecules are aligned, making it easy to obtain homeotropic alignment and good even when the alignment control force on the layer formation surface (base surface) of the substrate is weak A liquid crystal layer having a homeotropic alignment can be obtained.
  • the optical film of the present invention can be used, for example, as a ⁇ / 2 optical compensation film for optically compensating a liquid crystal cell, as a broadband ⁇ / 4 antireflection film used in an organic EL display device.
  • the optical film of the present invention is suitably used for an IPS liquid crystal display device or an optical compensation film of a liquid crystal display device, and improves color change when viewed from an oblique direction and light leakage during black display. Can do.
  • an adhesive When producing an optical film, a display device, or the like, an adhesive may be used for bonding each member.
  • adhesive is not particularly limited, but is a polyvinyl alcohol adhesive, a boron compound aqueous solution, an epoxy compound curable adhesive that does not contain an aromatic ring in the molecule, as disclosed in JP-A-2004-245925, JP-A-2008-174667, an active energy ray curable adhesive comprising a photopolymerization initiator having a molar extinction coefficient of 400 or more at a wavelength of 360 to 450 nm and an ultraviolet curable compound as essential components, and JP2008-174667A (A) a (meth) acrylic compound having 2 or more (meth) acryloyl groups in the molecule, and (b) a hydroxyl group in the molecule (Meth) acrylic compound having only one polymerizable double bond, and (c)
  • the polyvinyl alcohol adhesive is an adhesive containing modified or unmodified polyvinyl alcohol.
  • the polyvinyl alcohol-based adhesive may contain a crosslinking agent in addition to the modified or unmodified polyvinyl alcohol.
  • Specific examples of the adhesive include an aqueous solution of polyvinyl alcohol or polyvinyl acetal (eg, polyvinyl butyral) and a latex of a vinyl polymer (eg, polyvinyl chloride, polyvinyl acetate, polybutyl acrylate).
  • a particularly preferable adhesive is an aqueous solution of polyvinyl alcohol.
  • the polyvinyl alcohol is preferably completely saponified.
  • the film thickness of the adhesive layer formed by the adhesive is preferably 0.01 to 10 ⁇ m, particularly preferably 0.05 to 5 ⁇ m in terms of dry film thickness.
  • the display device of the present invention includes the optical film of the present invention.
  • An organic EL display device and an IPS liquid crystal display device will be described as examples of the display device.
  • FIG. 3 shows a schematic cross-sectional view of one embodiment of an organic EL display device.
  • the organic EL display device 30 includes an antireflection film ( ⁇ / 4 plate) 32 and a polarizer 36 on an organic EL panel 31.
  • the antireflection film 32 is the optical film of the present invention.
  • the polarizer 36 side is the viewing side.
  • a light emitting layer 35 is disposed between a pair of electrodes including a back electrode 33 and a transparent electrode 34.
  • the holes injected from the back electrode 33 and the electrons injected from the transparent electrode 34 recombine in the light emitting layer 35 and emit light by exciting a fluorescent substance or the like. Further, the light emitted from the light emitting layer 35 is directly or directly reflected by the back electrode 33 and is emitted from the transparent electrode 34.
  • the antireflection film 32 and the polarizer 36 have an antireflection function. Specifically, incident light from the outside is converted into linearly polarized light by the polarizer 36 and further converted into circularly polarized light by the antireflection film 32. The circularly polarized light is reflected by the transparent electrode 34 and becomes circularly polarized light having a reverse rotation to the incident light. Since the circularly polarized light is converted into linearly polarized light in a direction orthogonal to the incident light by the antireflection film 32, it does not pass through the polarizer 36.
  • the organic EL panel 31 is a member in which a plurality of organic compound thin films are formed, and may include a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, or a protective layer in addition to the light emitting layer 35.
  • each of these layers may have other functions.
  • Various materials can be used for forming each layer.
  • the back electrode 33 supplies holes to the hole injection layer, the hole transport layer, the light emitting layer, and the like, and a metal, an alloy, a metal oxide, an electrically conductive compound, or a mixture thereof may be used.
  • the material has a work function of 4 eV or more.
  • conductive metal oxides such as tin oxide, zinc oxide, indium oxide and indium tin oxide (ITO), metals such as gold, silver, chromium and nickel, and these metals and conductive metal oxides.
  • Inorganic conductive materials such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO, preferably conductive metals It is an oxide, and ITO is particularly preferable from the viewpoint of productivity, high conductivity, transparency, and the like.
  • the film thickness of the back electrode 33 can be appropriately selected depending on the material, but is usually preferably in the range of 10 nm to 5 ⁇ m, more preferably 50 nm to 1 ⁇ m, and still more preferably 100 nm to 500 nm.
  • the optical film of the present invention by providing the optical film of the present invention as an antireflection film, the front contrast and the oblique color tone are improved.
  • FIG. 4 is a schematic cross-sectional view of an embodiment of an IPS liquid crystal display device.
  • an IPS liquid crystal cell 43 is disposed between two polarizing plates 41 and 42.
  • the polarizing plate 42 ( ⁇ / 2 plate) is the optical film of the present invention.
  • liquid crystal molecules 46 a and 46 b
  • a transparent anode 47 and a transparent cathode 48 are formed on the glass substrate 44.
  • the liquid crystal molecules are arranged in parallel to the transparent anode 47 and the transparent cathode 48 like the liquid crystal molecules 46a. However, the liquid crystal molecules rotate 90 degrees horizontally when the voltage is applied, and the transparent anodes like the liquid crystal molecules 46b. 47 and the transparent cathode 48. With no application and application, the liquid crystal molecules rotate 90 degrees in the in-plane direction, thereby creating transmission and shielding between the two polarizing plates.
  • the liquid crystal molecules rotate in a horizontal plane with respect to the glass substrate, the liquid crystal molecules are not inclined, so that a change in optical characteristics due to the viewing angle is small and a wide viewing angle is obtained.
  • the viewing angle is further improved.
  • the optical film of the present invention is used as an antireflection film ( ⁇ / 4 plate) of an organic EL display device.
  • Example 1 First, the support used in Example 1 will be described.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are methyl groups.
  • Alkaline saponification treatment Alkaline saponification treatment
  • the temporary support was passed through a dielectric heating roll having a temperature of 60 ° C., and the film surface temperature was raised to 40 ° C., and then an alkaline solution having the composition shown below was applied to the band surface of the film using a bar coater.
  • the coating was carried out for 10 seconds under a steam far-infrared heater manufactured by Noritake Co., Ltd., which was applied at an amount of 14 ml / m 2 and heated to 110 ° C. Subsequently, 3 ml / m 2 of pure water was applied using the same bar coater.
  • an alignment layer coating solution A having the following composition was continuously applied to the surface of the support subjected to the alkali saponification treatment with a # 14 wire bar. Drying was performed with warm air of 60 ° C. for 60 seconds, and further with warm air of 100 ° C. for 120 seconds. The degree of saponification of the modified polyvinyl alcohol used was 96.8%.
  • orientation layer coating solution A- Denatured polyvinyl alcohol 10 parts by weight Water 308 parts by weight Methanol 70 parts by weight Isopropanol 29 parts by weight Photopolymerization initiator (Irgacure 2959 (registered trademark), manufactured by BASF) 0.8 parts by weight
  • composition ratio of the modified polyvinyl alcohol is a molar fraction.
  • smectic phase liquid crystal layer a smectic phase liquid crystal layer in which liquid crystal molecules are vertically aligned and fixed in a smectic phase.
  • the following smectic phase liquid crystal layer coating solution was dissolved in MEK (methyl ethyl ketone) to prepare a solid content concentration of 33% by mass.
  • MEK methyl ethyl ketone
  • This coating solution was applied onto the alignment layer with a bar and subjected to heat aging at 80 ° C. for 2 minutes to obtain a uniform alignment state. Thereafter, this coating film was kept at 80 ° C., and irradiated with 100 mJ / cm 2 ultraviolet rays at 80 ° C. using a metal halide lamp to form a film.
  • the film thickness at this time was 8 ⁇ m. Details of the compounds used in this coating solution are also described below.
  • Example 1- Reverse-wavelength dispersible rod-like liquid crystal compound L-1 44 parts by weight Reverse-wavelength dispersible rod-like liquid crystal compound L-2 44 parts by weight Forward-wavelength dispersible rod-like liquid crystal compound A-1 12 parts by weight Polymerization initiator 1 1.5 parts by weight Start of polymerization Agent 2 (Irgacure184, manufactured by BASF) 1.5 parts by weight Vertical alignment agent 0.5 parts by weight Polymerizable compound 0.5 parts by weight Surfactant 1 0.2 parts by weight Surfactant 2 0.4 parts by weight
  • the ratio is a mass ratio.
  • the ratio is a mass ratio.
  • Example 2 An optical film was produced in the same manner as in Example 1 except that the following smectic phase liquid crystal layer coating solution was used.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • Example 3 An optical film was produced in the same manner as in Example 1 except that the following smectic phase liquid crystal layer coating solution was used.
  • the liquid crystal layer obtained by stretching exhibited forward wavelength dispersion in the smectic phase.
  • Example 3- 44 parts by weight of the above reverse wavelength dispersible liquid crystal compound L-1 12 parts by weight of the above reverse wavelength dispersive liquid crystal compound L-2 44 parts by weight of the above forward wavelength dispersive liquid crystal compound A-1 1.5 parts by weight of the polymerization initiator 1 Polymerization initiator 2 (Irgacure184, manufactured by BASF) 1.5 parts by weight Vertical alignment agent 0.5 parts by weight Polymerizable compound 12 parts by weight Surfactant 1 0.2 parts by weight Surfactant 2 0.4 parts by weight
  • Example 4 An optical film was produced in the same manner as in Example 2 except that the draw ratio was changed to 45%.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • Example 5 An optical film was produced in the same manner as in Example 2 except that the draw ratio was changed to 55%.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • Example 6 An optical film was produced in the same manner as in Example 1 except that the draw ratio was changed to 40%.
  • the liquid crystal layer obtained by stretching exhibited reverse wavelength dispersion in the smectic phase.
  • Example 7 An optical film was produced in the same manner as in Example 2 except that the draw ratio was changed to 60%.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • Example 8 An optical film was produced in the same manner as in Example 1 except that the draw ratio was changed to 65%.
  • the liquid crystal layer obtained by stretching exhibited reverse wavelength dispersion in the smectic phase.
  • the ratio in compound T-1 is a mass ratio.
  • the ratio of the crosslinkable polymer O-2 is a mass ratio.
  • a coating solution for forming a positive A plate was applied onto the alignment film using a bar coater so that the film thickness of the liquid crystal layer was 1 ⁇ m. Aging at a film surface temperature of 80 ° C. for 20 seconds and irradiating with 1000 mJ / cm 2 of ultraviolet rays using an air-cooled metal halide lamp (manufactured by Eye Graphics Co., Ltd.) to fix the orientation state.
  • the slow axis direction was parallel to the rubbing direction (that is, orthogonal to the absorption axis of the polarizing plate) (the reverse wavelength dispersion liquid crystal compound was aligned in parallel to the polarized light irradiation direction).
  • Re was 137 nm and Rth was 550 nm. 69 nm, Re (450) / Re (550) is 0.85, Re (650) / Re (550) is 1.05, the tilt angle of the optical axis is 0 °, and the inverse wavelength dispersion liquid crystal compound has homogeneous orientation. It was.
  • the smectic-nematic phase transition temperature of the coating solution 6 for forming a positive A plate was 60 ° C.
  • a positive C plate forming coating solution is directly applied, heated and aged at 60 ° C. for 60 seconds, and then air-cooled metal halide lamp in the atmosphere.
  • Eye Graphics Co., Ltd. was used to irradiate 1000 mJ / cm 2 of ultraviolet rays to fix the orientation state, and a positive C plate was produced. It was confirmed that the tilt angle of the optical axis was 90 ° and the polymerizable rod-like liquid crystal compound was homeotropic.
  • Comparative Example 1 when only the retardation of the positive C plate was measured using AxoScan (manufactured by Axometrics), Re was 0 nm and Rth was ⁇ 69 nm at a wavelength of 550 nm. In this way, Comparative Example 1 was produced in which a positive A plate and a positive C plate were directly laminated on the film in this order. Stretching was not performed. The obtained liquid crystal layer exhibited a reverse wavelength dispersion in a nematic phase.
  • Example 2 Using the coating liquid for smectic phase liquid crystal layer of Example 1, heat treatment was performed at 100 ° C. to form a nematic phase liquid crystal layer, and the same procedure as in Example 1 was performed except that fixed end uniaxial stretching was performed at a stretching ratio of 50%. An optical film was produced. The liquid crystal layer obtained by stretching exhibited a reverse wavelength dispersion in the nematic phase.
  • Example 9 An optical film was produced in the same manner as in Example 1 except that the film thickness of the liquid crystal layer after coating and drying was 16 ⁇ m.
  • the liquid crystal layer obtained by stretching exhibited reverse wavelength dispersion in the smectic phase.
  • the film thickness after stretching was 10 ⁇ m.
  • Example 10 An optical film was produced in the same manner as in Example 2 except that the film thickness of the liquid crystal layer after coating and drying was 16 ⁇ m.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • the film thickness after stretching was 10 ⁇ m.
  • Example 11 An optical film was produced in the same manner as in Example 3 except that the film thickness of the liquid crystal layer after coating and drying was 16 ⁇ m.
  • the liquid crystal layer obtained by stretching exhibited forward wavelength dispersion in the smectic phase.
  • the film thickness after stretching was 10 ⁇ m.
  • Example 12 An optical film was produced in the same manner as in Example 11 except that the draw ratio was 45%.
  • the liquid crystal layer obtained by stretching exhibited forward wavelength dispersion in the smectic phase.
  • the film thickness after stretching was 11 ⁇ m.
  • Example 13 An optical film was produced in the same manner as in Example 10 except that the draw ratio was 55%.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • the film thickness after stretching was 10 ⁇ m.
  • Example 14 An optical film was produced in the same manner as in Example 10 except that the draw ratio was 40%.
  • the liquid crystal layer obtained by stretching exhibited a flat wavelength dispersion in a smectic phase.
  • the film thickness after stretching was 12 ⁇ m.
  • Example 15 An optical film was produced in the same manner as in Example 11 except that the draw ratio was 60%.
  • the liquid crystal layer obtained by stretching exhibited forward wavelength dispersion in the smectic phase.
  • the film thickness after stretching was 10 ⁇ m.
  • Comparative Example 4 A film of Comparative Example 4 was prepared in the same manner as Comparative Example 1 except that the coating film of Comparative Example 1 was used and the dry film thickness of the first layer was 2 ⁇ m and the dry film thickness of the second layer was 3 ⁇ m. The obtained liquid crystal layer exhibited a reverse wavelength dispersion in a nematic phase.
  • Comparative Example 5 An optical film was formed in the same manner as in Comparative Example 3 except that the coating liquid for forming a positive A plate in Comparative Example 1 was used and the dry film thickness was changed to 2 ⁇ m. The obtained liquid crystal layer exhibited reverse wavelength dispersion in the smectic phase.
  • Example 6 An optical film was formed in the same manner as in Example 9 except that a nematic liquid crystal layer was formed by heat treatment at 100 ° C. The obtained liquid crystal layer exhibited a reverse wavelength dispersion in a nematic phase. The film thickness after stretching was 10 ⁇ m.
  • Re ⁇ Method for measuring Re (440), Re (550) and Re (630)> Re was measured by the following method.
  • the optical properties of the stretched film were measured with WR (manufactured by Oji Scientific Instruments).
  • the Re values at wavelengths of 440 nm, 550 nm, and 630 nm were Re (440), Re (550), and Re (630), respectively.
  • the optical properties of the stretched film were measured with WR (manufactured by Oji Scientific Instruments). Among them, the value of Rth at a wavelength of 550 nm was defined as Rth (550).
  • Nz factor Rth (550) / Re (550) +0.5
  • the optical film of the present invention was mounted on an organic EL display device, and the display performance was evaluated.
  • the polarizing plate on the viewing side was peeled off from a liquid crystal cell of iPad (using a photo-alignment film, manufactured by Apple, registered trademark), and used as an IPS mode liquid crystal cell using the photo-alignment film.
  • the pretilt of the cell liquid crystal was 0 °.
  • the polarizing plate including the optical film prepared above was bonded to a liquid crystal cell to prepare a liquid crystal display device.
  • the surface side of the positive A plate was bonded to the liquid crystal cell for the polarizing plate containing the produced optical film.
  • the substrates were bonded so that the absorption axis of the polarizing plate and the optical axis of the liquid crystal layer in the liquid crystal cell were perpendicular to each other when observed from the direction perpendicular to the liquid crystal cell substrate surface.
  • An adhesive (SK2057, manufactured by Soken Chemical Co., Ltd.) was used for pasting.
  • the liquid crystal display device displays black and white, and the transmittance in the front direction (normal direction with respect to the display surface) is measured using a measuring instrument (EZ-Contrast 160D, manufactured by ELDIM), respectively, and the front contrast ratio CR ( White display transmittance / black display transmittance) were calculated. Evaluation was made based on the following evaluation criteria.
  • ⁇ Slant color change> A measuring machine (EZ-Contrast 160D, manufactured by ELDIM) was used to measure the color coordinates u′v ′. The measurement angle is fixed in the direction of the polar angle 50 degrees, the azimuth angle is rotated 360 degrees in steps of 15 degrees, the value of the color coordinates u′v ′ is measured, and the color change ⁇ u ′ taking the difference between the maximum and minimum v ′ (50 °) was calculated. The value was used as an evaluation index and evaluated based on the following evaluation criteria.
  • Table 1 shows the evaluation results of Example 1 to Example 8 and Comparative Example 1 to Comparative Example 3.
  • Sm of the liquid crystal layer indicates a smectic phase
  • Ne indicates a nematic phase.
  • Table 2 shows the evaluation results of Example 9 to Example 15 and Comparative Example 4 to Comparative Example 6.
  • Example 1 and Example 6 which are liquid crystal layers having reverse wavelength dispersion have good display performance (described as OLED display performance in Table 1).
  • Comparative Example 1 constituted a ⁇ / 4 plate with a two-layer structure, and the Nz factor was 0.5, which is an ideal value, but the display performance at a polar angle of 60 ° was inferior to C. It is considered that the main cause is that the circular polarization is lowered due to the Rth of each layer due to the two-layer structure.
  • the Nz factor is 0.5, which is an ideal value, but the front display performance is inferior to D. Since this is a nematic phase, it is considered that the arrangement of liquid crystal molecules fluctuated and light leakage occurred.
  • the display performance at a polar angle of 60 ° was inferior to D.
  • the liquid crystal layer is a smectic phase, but the Nz factor is too high as 1.0, which is considered to be due to light leakage.
  • Comparative Example 4 constituted a ⁇ / 2 plate with a two-layer structure, and both the front contrast and the diagonal color were inferior to D. This is probably because the optical compensation film has a two-layer structure and a nematic phase, and thus linearly polarized light was not performed well and light leakage occurred. Although the comparative example 5 is a smectic phase, the diagonal color change was inferior to D.
  • the optical film of the present invention has a liquid crystal layer derived from a smectic phase, and the Nz factor of the liquid crystal layer is 0.2 to 0.8. It was also found that good display performance can be obtained when used as a ⁇ / 2 plate in a display device. In this example, since a support that does not optically affect the liquid crystal layer is used, the optical performance of the optical film is equivalent to the optical performance of the liquid crystal layer. In the present invention, a support that optically affects the liquid crystal layer may be used. In that case, the liquid crystal layer is peeled off from the support after the uniaxial stretching at the fixed end and transferred to another support. The desired performance can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】Nzファクターが0.5あるいはそれにきわめて近く理想的な光学特性となる光学フィルム、光学フィルムの製造方法および表示装置を提供する。 【解決手段】スメクチック相に由来する液晶層(13)を有し、液晶層(13)のNzファクターが0.2以上0.8以下である光学フィルム(10)とする。

Description

光学フィルム、光学フィルムの製造方法および表示装置
 本発明は、光学フィルム、光学フィルムの製造方法および表示装置に関する。
 液晶表示装置(以下、LCDともいう)、および有機EL(Electroluminescence)表示装置等は、消費電力が小さく、省スペースであるため携帯電話またはスマートフォン等に広く使用されている。このような表示装置においては、省電力化、高精細化、コントラスト、視野角改良等の高性能化が求められている。
 視野角改良のために、位相差フィルムなどの光学補償フィルムを用いる方法が知られている。位相差フィルムとしては、補償したい特性に応じて、λ/4位相差板またはλ/2位相差板が用いられる。単色光がλ/4位相差板またはλ/2位相差板を透過する場合は、適切な位相差を有する特定の波長への変換が容易である。しかし、同様に複数の単色光が混在している白色光が透過する場合、全ての光線を適切な位相差を有する波長へと変換することは困難である。これは、位相差板を構成する材料が、各単色光に対して異なる位相差を有することに起因しており、一般的に短波長成分ほど位相差を生じやすい。このように位相差板を透過した白色光は、それぞれの単色光に対して異なる位相差を生じる。このように波長によって異なる位相差を有した状態のことを波長分散性または順波長分散性があるという。
 したがって、位相差板を透過して得られた白色光は波長分散性を有するため、各波長で偏光状態が変化し位相差板によって変換された偏光が有色となる問題がある。このような問題を解決するため、広い波長域で機能する位相差板(広帯域位相差板)として、いわゆる逆波長分散性を有する位相差板を得るための材料が検討されている。特許文献1では、優れた逆波長分散性を示す光学フィルムおよびその光学フィルムに用いる液晶化合物が提案されている。
 一方、光学フィルムの屈折率成分nx、ny、およびnzの大小関係を表す指標の1つにNzファクターがある。Nzファクターが0.5のフィルムは、位相差値が視野角によらずほぼ一定である。このようなフィルムを液晶表示装置に用いることによって視野角特性が大幅に改善することが知られている。例えば、特許文献2では、ホメオトロピック配向を固定化した液晶層を延伸することにより、Nzファクター<1を満たす位相差フィルムが提案されている。
特開2015-200877号公報 特開2009-288440号公報
 近年、有機EL表示装置用反射防止膜として、位相差板を組み合わせて構成する広帯域λ/4板などが使用されており、コントラストおよび斜め色味変化が向上することが報告されている。
 広帯域位相差板に用いられる光学フィルムにおいて、Nzファクターが0.5であれば視野角特性が大幅に改善される。このようなNzファクターを有するフィルムは、λ/4板であれば理想的な有機EL表示装置用反射防止フィルムとなり、λ/2板であれば理想的なIPS(In-Plane Switching)型液晶表示装置用補償フィルムとなる等、非常で有用であることが知られている。しかしながら、Nzファクターが0.5の光学フィルムは未だ実現されていなかった。
 本発明は、上記事情に鑑みてなされたものであり、Nzファクターが0.5あるいはそれにきわめて近く理想的な光学特性となる光学フィルムを実現して、表示装置に組み込んだ場合にコントラストおよび斜め色味変化を改善することが可能な光学フィルム、光学フィルムの製造方法およびその光学フィルムを備えた表示装置を提供することを目的とする。
 本発明者らは、液晶分子をスメクチック相で垂直配向させて配向を固定したフィルムを固定端一軸延伸することにより、Nzファクターが0.5あるいはそれにきわめて近い値を実現できることを見出し、本発明に至った。
 すなわち、本発明の光学フィルムは、スメクチック相に由来する液晶層を有し、液晶層のNzファクターが0.2以上0.8以下である。
 液晶層のNzファクターは、0.4以上0.7以下が好ましい。
 液晶層は、逆波長分散性液晶化合物を含むことが好ましい。
 液晶層は、波長440nm、波長550nm、および波長630nmでそれぞれ測定されるレターデーション値Re(440)、Re(550)、およびRe(630)は、以下の関係を満たすことが好ましい。
 Re(440)<Re(550)×0.9、かつRe(630)>Re(550) 
 本発明の光学フィルムは、有機EL表示装置用のλ/4板であってもよい。
 本発明の光学フィルムは、IPS型液晶表示装置用のλ/2板であってもよい。
 本発明の表示装置は、本発明の光学フィルムを備えることが好ましい。
 本発明の光学フィルムの製造方法は、液晶分子がスメクチック相で垂直配向されて固定化されたスメクチック相液晶層を、固定端一軸延伸する工程を含む。
 本発明の光学フィルムは、スメクチック相に由来する液晶層を有し、液晶層のNzファクターが0.2以上0.8以下である。このような構成を有することにより、有機EL表示装置やIPS型液晶表示装置等の表示装置に実装した場合、正面コントラストおよび斜め色味変化を良好とすることができる。
 また、本発明の光学フィルムの製造方法によれば、Nzファクターが0.5の光学フィルムを得ることができる。
 また、本発明の表示装置によれば、高コントラストで斜め色味変化が低減されたものとすることができる。
図1は、本発明の光学フィルムの一実施形態を示す概略断面図である。 図2は、本発明の光学フィルムの製造方法を示す模式図である。 図3は、本発明の有機EL表示装置を示す概略断面図である。 図4は、本発明のIPS型液晶表示装置の概略断面図ある。
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。また、角度について「直交」および「平行」とは、厳密な角度±10度の範囲を意味するものとし、並びに角度について「同一」および「異なる」は、その差が5度未満であるか否かを基準に判断できる。
 本明細書において「遅相軸」とは、面内において屈折率が最大となる方向を意味し、「偏光板」とは、特別な記述がない限り、長尺の偏光板、および表示装置に組み込まれる大きさに裁断された偏光板の両者を含む意味で用いている。なお、ここでいう「裁断」には「打ち抜き」および「切り出し」等も含むものとする。また、本明細書において、「偏光板」のうち、特に、本発明の光学フィルムまたは一般的なλ/4板と偏光膜との積層体を含む形態を「反射防止板」または「円偏光板」と呼ぶ。
 また、本明細書において逆波長分散性とは、長波長になるほど面内レターデーションの絶対値が大きくなる性質を意味する。
 本明細書において、Re(λ)およびRth(λ)は、各々、波長λにおける面内のレターデーションおよび厚さ方向のレターデーションを表す。Re(λ)は「WR」(商品名,王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。
 測定されるフィルムが1軸または2軸の屈折率楕円体で表されるものである場合には、以下の方法によりRth(λ)は算出される。
 Rth(λ)は、Re(λ)を、面内の遅相軸(「WR」により判断される)を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)のフィルム法線方向に対して法線方向から片側50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて全部で6点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基に「WR」において算出される。
 上記において、法線方向から面内の遅相軸を回転軸として、ある傾斜角でレターデーションの値がゼロとなる方向をもつフィルムの場合には、その傾斜角度より大きい傾斜角度でのレターデーション値はその符号を負に変更した後、「WR」において算出される。
 なお、遅相軸を傾斜軸(回転軸)として(遅相軸がない場合にはフィルム面内の任意の方向を回転軸とする)、任意の傾斜した2方向からレターデーション値を測定し、その値と平均屈折率の仮定値および入力された膜厚値を基に、以下の数式(1)および数式(2)によりRthを算出することもできる。
Figure JPOXMLDOC01-appb-M000001
 式中、Re(θ)は法線方向から角度θ傾斜した方向におけるレターデーション値を表す。nxは面内における遅相軸方向の屈折率を表し、nyは面内においてnxに直交する方向の屈折率を表し、nzはnxおよびnyに直交する方向の屈折率を表す。dはフィルムの膜厚を表す。
 測定されるフィルムが1軸や2軸の屈折率楕円体で表現できないもの、いわゆる光学軸(OPTIC AXIS)がないフィルムの場合には、以下の方法によりRth(λ)が算出される。
 Rth(λ)は、Re(λ)を、面内の遅相軸(「WR」により判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して-50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレターデーション値と平均屈折率の仮定値および入力された膜厚値を基に「WR」により算出される。
 上記の測定において、平均屈折率の仮定値は、ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する:セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、「WR」においてnx、ny、およびnzが算出される。この算出されたnx、ny、およびnzによりNzファクター=(nx-nz)/(nx-ny)がさらに算出される。
<<光学フィルム>>
 本明細書において、光学フィルムとは、各種表示装置、発光装置、偏光板などの各種光学素子などの、光学部材に用いることができるフィルムを意味する。
 本発明の光学フィルムは、スメクチック相に由来する液晶層を有し、液晶層のNzファクターが0.2以上0.8以下である。ここで、支持体上にスメクチック相に由来する液晶層を設けた場合に、支持体の波長分散、Re(λ)あるいはRth(λ)の影響が無視できる場合は、光学フィルムのまま光学特性を測定してもよい。また、スメクチック相に由来する液晶層の光学特性に影響する支持体を用いる場合は、スメクチック相に由来する液晶層を剥離した上で、この液晶層の光学特性を測定する。
Nzファクターは上記式Nzファクター=(nx-nz)/(nx-ny)により算出された値、あるいはNzファクター=Rth(550)/Re(550)+0.5により算出された値とする。
 Nzファクターは0.4以上0.7以下が好ましい。
 なお、本明細書において、スメクチック相とは、液晶分子が一方向に揃い、層構造を有している状態をいう。また、ネマチック相とは、その構成分子が配向秩序を持つが、三次元的な位置秩序を持たない状態をいう。
 スメクチック相は液晶分子が垂直配向した層が複数層積層された構造となっている。スメクチック相液晶層を、後述する本発明の製造方法で固定端一軸延伸することにより、層内で垂直配向していた液晶分子は延伸方向に倒れるが、層秩序は維持される。上記「スメクチック相に由来する液晶層」とは、このように液晶分子の垂直配向は乱れるが層秩序は維持されている液晶層を意味する。スメクチック相の層秩序が維持された状態で液晶化合物が固定されているか否かの確認は、X線回折パターンによる観察によって行うことができる。スメクチック相の状態で固定されていれば、層秩序に由来するX線回折パターンが観察されるため、固定されている状態の判別が可能である。
 光学フィルムは、60μm以下の膜厚であることが部材の薄型化の観点から好ましい。また製造適性の観点から5μm以上であることが好ましい。また、λ/4板またはλ/2板として用いる場合には、目的によって、適宜設計された値とする。
(スメクチック相に由来する液晶層)
 スメクチック相に由来する液晶層は、逆波長分散性、フラットな波長分散性、および順波長分散性のいずれでもよい。
 スメクチック相に由来する液晶層の膜厚は、2~30μmが好ましく、3~20μmがより好ましく、5~15μmがさらに好ましい。
 また、スメクチック相に由来する液晶層のReは、λ/4板としては120nm≦Re(550)≦150nmを満たすことが好ましく、130nm≦Re(550)≦140nmを満たすことがより好ましい。λ/2板としては200nm≦Re(550)≦320nmを満たすことが好ましく、230nm≦Re(550)≦300nmを満たすことがより好ましい。
 また、スメクチック相に由来する液晶層のRthは、λ/4板としては -45nm≦Rth(550)≦45nmを満たすことが好ましく、-25nm≦Rth(550)≦25nmを満たすことがより好ましい。λ/2板としては -100nm≦Rth(550)≦100nmを満たすことが好ましく、-50nm≦Rth(550)≦50nmを満たすことがより好ましい。このような範囲とすることにより、Nzファクターを0.2以上0.8以下にすることができ、表示装置に組み込んだときにより効果的に本発明の効果が発揮される。
 スメクチック相に由来する液晶層は、逆波長分散性の液晶化合物を含むものであってもよく、全て逆波長分散性の液晶化合物からなるものであってもよい。
 スメクチック相に由来する液晶層は、波長440nm、波長550nm、および波長630nmでそれぞれ測定されるレターデーション値Re(440)、Re(550)、およびRe(630)が、以下の関係を満たすことが好ましい。
 Re(440)<Re(550)×0.9、かつRe(630)>Re(550) 
 スメクチック相に由来する液晶層は、単層でも複数層でも良いが、工程を短縮できる、および従来に比べ簡便な構成であるため光学的な欠陥を生じにくい、などの観点から、単層であることが好ましい。
 本発明の光学フィルムは、液晶層のNzファクターが0.2以上0.8以下であるので、有機EL表示装置用のλ/4板またはIPS型液晶表示装置のλ/2板として有用である。
 図1に本発明の光学フィルムの一実施形態の概略断面図を示す。本実施形態の光学フィルム10は、図1に示すように、支持体11上に、配向層12、およびスメクチック相に由来する液晶層13を有する。光学フィルム10は、スメクチック相に由来する液晶層の他に支持体および接着層などの他の機能性層を含んでいてもよい。
<<光学フィルムの製造方法>>
 本発明の光学フィルムの製造方法について説明する。図2に本発明の光学フィルムの製造方法の模式図を示す。本発明の光学フィルムの製造方法は、液晶分子がスメクチック相で垂直配向されて固定化されたスメクチック相液晶層を、固定端一軸延伸する工程を含む。
 図2(a)に示すように、スメクチック相液晶層が形成されたフィルム21の周囲をテンター22で固定し、幅Wが変化しないように、紙面左右方向(図中の矢印)に延伸する(固定端一軸延伸)。このように一軸延伸すると、図2(b)に示すように、幅Wは変化せず、長さLはLに伸ばされる。
 固定端一軸延伸することにより、スメクチック相液晶層は、液晶分子の垂直配向は層平面に対し、延伸前と異なる傾斜角が生じる場合もあるが層秩序は維持された状態となる。これがスメクチック相に由来する液晶層である。
 延伸倍率は、Nzファクターが0.2以上0.8以下となるように適宜調整する。Nzファクターが0.2より大きく0.8以下となるようにするには、延伸倍率は30~70%とすることが好ましく、40~60%とすることがより好ましい。
 延伸装置としては、固定端一軸延伸ができれば特に限定されないが、図2に示したバッチ延伸機の他に、長手方向にロール搬送しながら幅手方向に延伸するテンター延伸機や、ロール間隔を狭く設定することで幅収縮を抑えながら長手方向に延伸するロール延伸機などを使用することができる。
<スメクチック相液晶層用組成物>
 以下にスメクチック相液晶層を形成するための組成物の詳細について説明する。
 本明細書において、「スメクチック相液晶層」とは、組成物を塗布し硬化させた後、延伸する前の液晶層を意味する。スメクチック相液晶層用組成物は、液晶化合物を含み、さらに必要に応じて、重合開始剤、溶剤、または垂直配向剤を含むことが好ましい。
(液晶化合物)
 スメクチック相液晶層に用いられる液晶化合物は、棒状液晶化合物が好ましい。なお、具体的な棒状液晶化合物については後述する。液晶化合物は、組成物総質量に対し50質量%以上98質量%以下含むことが好ましい。また、液晶化合物は、重合性であることがより好ましく、重合性液晶化合物は、液晶化合物総質量に対し50質量%以上または100質量%含むことが好ましい。
 液晶化合物としては従来公知のいずれの液晶化合物を用いてもよく、例えば特開2008-297210号公報に記載の一般式(I)で表される化合物(特に、段落番号0034~0039に記載の化合物)、特開2010-84032号公報に記載の一般式(1)で表される化合物(特に、段落番号0067~0073に記載の化合物)等を用いてもよい。また、特に他の液晶化合物と併用して、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類から選ばれる棒状液晶化合物を用いてもよい。
 特に好ましい棒状液晶化合物の例としては、以下一般式(II)で表される化合物が挙げられる。
   L1-G1-D1-Ar-D2-G2-L一般式(II)
 式中、D1およびD2は、それぞれ独立に、-CO-O-、-O-CO-、-C(=S)O-、-O-C(=S)-、-CR12-、-CR12-CR34-、-O-CR12-、-CR12-O-、-CR12-O-CR34-、-CR12-O-CO-、-O-CO-CR12-、-CR12-O-CO-CR34-、-CR12-CO-O-CR34-、-NR1-CR23-、-CR12-NR3-、-CO-NR1-、または-NR1-CO-を表し、R1、R2、R3、およびR4は、それぞれ独立に、水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。G1およびG2は、それぞれ独立に炭素数5~8の2価の脂環式炭化水素基を表し、脂環式炭化水素基に含まれるメチレン基は、-O-、-S-、-N(R6)-で置換されていてもよく、R6は水素原子または炭素数1~6のアルキル基を表す。L1およびL2は、それぞれ独立に、1価の有機基を表し、L1およびL2からなる群から選ばれる少なくとも一種が、重合性基を有する1価の基を表す。Arは下記一般式(II-1)、(II-2)、(II-3)、または(II-4)で表される2価の芳香環基を表す。
Figure JPOXMLDOC01-appb-C000002
 式(II-1)~(II-4)中、Q1は、-S-、-O-、またはNR11-を表し、R11は、水素原子または炭素数1~6のアルキル基を表す。Y1は、炭素数6~12の芳香族炭化水素基、または、炭素数3~12芳香族複素環基を表す。Z1、Z2、および、Z3は、それぞれ独立に、水素原子または炭素数1~20の脂肪族炭化水素基、炭素数3~20の脂環式炭化水素基、1価の炭素数6~20の芳香族炭化水素基、ハロゲン原子、シアノ基、ニトロ基、-NR1213またはSR12を表す。Z1およびZ2は、互いに結合して芳香環または芳香族複素環を形成してもよく、R12およびR13は、それぞれ独立に水素原子または炭素数1~6のアルキル基を表す。A1およびA2は各々独立に、-O-、-NR21-(R21は水素原子または置換基を表す。)、-S-およびCO-からなる群から選ばれる基を表す。Xは水素原子または置換基が結合していてもよい第14~16族の非金属原子を表す。Axは芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。Ayは水素原子、置換基を有していてもよい炭素数1~6のアルキル基、または、芳香族炭化水素環および芳香族複素環からなる群から選ばれる少なくとも一つの芳香環を有する、炭素数2~30の有機基を表す。AxおよびAyが有する芳香環は置換基を有していてもよく、AxとAyは結合して、環を形成していてもよい。Q2は、水素原子、または、置換基を有していてもよい炭素数1~6のアルキル基を表す。
 一般式(II)で表される化合物の各置換基の定義および好ましい範囲については、特開2012-21068号公報に記載の化合物(A)に関するD1、D2、G1、G2、L1、L2、R1、R2、R3、R4、X1、Y1、Q1、およびQ2に関する記載をそれぞれD1、D2、G1、G2、L1、L2、R1、R2、R3、R4、Q、およびY1、Z1、Z2について参照でき、特開2008-107767号公報に記載の一般式(I)で表される化合物についてのA1、A2、およびXに関する記載をそれぞれA1、A2、およびXについて参照でき、WO2013/018526に記載の一般式(I)で表される化合物についてのAx、Ay、Q1に関する記載をそれぞれAx、Ay、Q2について参照できる。Z3については特開2012-21068号公報に記載の化合物(A)に関するQ1に関する記載を参照できる。
 特に、L1、L2で示される有機基としては、それぞれ、特に、-D3-G3-Sp-P3で表される基であることが好ましい。D3は、D1と同義である。G3は、単結合、炭素数6~12の2価の芳香環基もしくは複素環基、または炭素数5~8の2価の脂環式炭化水素基を表し、上記脂環式炭化水素基に含まれるメチレン基は、-O-、-S-、-NR7-で置換されていてもよく、ここでR7は水素原子または炭素数1~6のアルキル基を表す。Spは、単結合、-(CH2n-、-(CH2n-O-、-(CH2-O-)n-、-(CH2CH2-O-)m、-O-(CH2n-、-O-(CH2n-O-、-O-(CH2-O-)n-、-O-(CH2CH2-O-)m、-C(=O)-O-(CH2n-、-C(=O)-O-(CH2n-O-、-C(=O)-O-(CH2-O-)n-、-C(=O)-O-(CH2CH2-O-)m、-C(=O)-N(R8)-(CH2n-、-C(=O)-N(R8)-(CH2n-O-、-C(=O)-N(R8)-(CH2-O-)n-、または-C(=O)-N(R8)-(CH2CH2-O-)mで表されるスペーサー基を表す。ここで、nは2~12の整数を表し、mは2~6の整数を表し、R8は水素原子または炭素数1~6のアルキル基を表す。P3は重合性基を示す。
 重合性基は特に限定されないが、ラジカル重合またはカチオン重合可能な重合性基が好ましい。ラジカル重合性基としては、一般に知られているラジカル重合性基を用いることができ、好適なものとして、アクリロイル基またはメタアクリロイル基を挙げることができる。この場合、重合速度はアクリロイル基が一般的に速いことが知られており、生産性向上の観点からアクリロイル基が好ましいが、メタアクリロイル基も高複屈折性液晶の重合性基として同様に使用することができる。カチオン重合性基としては、一般に知られているカチオン重合性を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、ビニルオキシ基などを挙げることができる。中でも、脂環式エーテル基、ビニルオキシ基が好適であり、エポキシ基、オキセタニル基、ビニルオキシ基が特に好ましい。
 特に好ましい重合性基の例としては下記が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 なお、本明細書において、「アルキル基」は、直鎖状、分枝鎖状、または環状のいずれでもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、およびシクロヘキシル基等が挙げられる。
 一般式(II)で表される化合物として好ましい例を以下に示すが、これらに特に限定されない。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 上記棒状液晶化合物は逆波長分散性でスメクチック相を示す。
 また、さらにスメクチック相を示す液晶化合物としては、下記式L-1で表される化合物(液晶化合物L-1)、下記式L-3で表される化合物(液晶化合物L-3)、下記式L-6で表される化合物(液晶化合物L-6)、下記式L-8で表される化合物(液晶化合物L-8)、下記式L-10で表される化合物(液晶化合物L-10)などが挙げられる。
 なお、下記式L-1中のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、液晶化合物L-1は、メチル基の位置が異なる位置異性体の混合物を表す。
Figure JPOXMLDOC01-appb-C000012
 また、スメクチック液晶化合物としては、液晶分子間に電子的相互作用が働くことでスメクチック相液晶層の配向性がより良好となる理由から、下記式(1)で表される構造を有する化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000013
 ここで、上記式(1)中、*は結合位置を表し、R1はそれぞれ独立に水素原子または炭素数1~6のアルキル基を表す。
 また、上記式(1)で表される構造を有する化合物としては、上記式(1)におけるR1がいずれも水素原子である液晶化合物L-1が好適に挙げられる。なお、上記式(1)中、*で表される結合位置は、液晶化合物L-1においては、酸素原子との結合位置を表す。
(他の液晶化合物)
 本発明においては、上述したスメクチック相を示す液晶化合物以外に、他の液晶化合物を含有していてもよい。
 他の液晶化合物としては、例えば、ネマチック相を示す液晶化合物などが挙げられ、具体的には、後述する実施例でも用いられる下記式L-2で表される化合物(液晶化合物L-2)、下記式L-4で表される化合物(液晶化合物L-4)、下記式L-9で表される化合物(液晶化合物L-9)、下記式L-11で表される化合物(液晶化合物L-11)で表される化合物などが挙げられる。
 なお、下記式L-2中のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、液晶化合物L-2は、メチル基の位置が異なる位置異性体の混合物を表す。
 また、上述したスメクチック液晶化合物と他の液晶化合物を含有する場合、スメクチック液晶化合物の含有割合は、スメクチック液晶化合物と他の液晶化合物との合計質量に対して少なくとも35質量%以上であるのが好ましい。
Figure JPOXMLDOC01-appb-C000014
(アルキルシクロヘキサン環含有化合物)
 スメクチック相液晶層用組成物は、上記棒状液晶化合物の他に、さらに順分散波長性を示す液晶化合物を含有してもよい。順分散波長性を示す液晶化合物としてアルキルシクロヘキサン環含有化合物が挙げられる。
 アルキルシクロヘキサン環含有化合物とは、直鎖状のアルキル基で水素原子が1個置換されたシクロヘキサン環を一部に有する化合物である。
 ここで、「直鎖状のアルキル基で水素原子が1個置換されたシクロヘキサン環」とは、例えば、下記式(2)に示すように、シクロヘキサン環を2つ有する場合には、分子末端側に存在するシクロヘキサン環の水素原子が直鎖状のアルキル基で1個置換されたシクロヘキサン環をいう。
 アルキルシクロヘキサン環含有化合物としては、例えば、下記式(2)で表される構造を有する化合物が挙げられ、なかでも、光学異方性層の湿熱耐久性付与の観点から、(メタ)アクリロイル基を有する下記式(3)で表される化合物であるのが好ましい。
Figure JPOXMLDOC01-appb-C000015
 ここで、上記式(2)中、*は結合位置を表す。
 また、上記式(2)および(3)中、R2は炭素数1~10の直鎖状のアルキル基を表し、nは1または2を表し、W1およびW2はそれぞれアルキル基、アルコキシ基またはハロゲン原子を表し、また、W1およびW2はこれらが互いに結合し、置換基を有していてもよい環構造を形成していてもよい。
 また、上記式(3)中、Zは-COC-または-OCO-を表し、Lは炭素数1~6のアルキレン基を表し、R3は水素原子またはメチル基を表す。
 また、上記式(2)および(3)中のR2は、炭素数2~4の直鎖状のアルキル基が好ましい。
 このようなアルキルシクロヘキサン環含有化合物としては、具体的には、例えば、下記式A-1~A-5で表される化合物が挙げられる。なお、下記式A-3中、R4は、エチル基またはブチル基を表す。
Figure JPOXMLDOC01-appb-C000016
 スメクチック相液晶層用組成物における液晶化合物の量は、スメクチック相液晶層用組成物全固形分質量の50~98質量%が好ましく、80~98質量%がより好ましい。
 上記棒状液晶化合物のなかでも、一般式(II)で表される逆波長分散性液晶化合物を含むことが好ましい。
(垂直配向剤)
 スメクチック相液晶層用組成物は、垂直配向剤を含んでいることが好ましい。垂直配向剤を配合することにより、液晶化合物の配向をより効果的に行うことができる。垂直配向剤は、ボロン酸化合物およびオニウム塩の少なくとも一方を用いることが好ましい。
 ボロン酸化合物の具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 式中、R51およびR52はそれぞれ独立に、水素原子、置換若しくは無置換の、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。R53は、(メタ)アクリル基と結合し得る官能基を含む置換基を表す。
 ボロン酸化合物の具体例としては、特開2008-225281号公報の段落番号0023~0032に記載の一般式(I)で表されるボロン酸化合物を用いることができる。また、下記に示すボロン酸化合物も好ましく用いられる。
Figure JPOXMLDOC01-appb-C000018
 オニウム塩の具体例としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 式中、環Aは含窒素複素環からなる第4級アンモニウムイオンを表す。X51はアニオンを表す。L51は二価の連結基を表す。L52は単結合または二価の連結基を表す。Y51は5または6員環を部分構造として有する2価の連結基を表す。Zは2~20のアルキレン基を部分構造として有する2価の連結基を表す。P51およびP52はそれぞれ独立に重合性エチレン性不飽和基を有する一価の置換基を表す。
 オニウム塩の例の具体例としては、特開2012-208397号公報の段落番号0052~0058に記載のオニウム塩、特開2008-026730号公報の段落番号0024~0055に記載のオニウム塩、特開2002-37777号公報に記載のオニウム塩が挙げられる。
 垂直配向剤は、スメクチック相液晶層用組成物に含まれる液晶化合物の総質量に対し、0.1~5質量%が好ましく、0.5~3質量%がより好ましい。垂直配向剤は、1種類のみ含んでいてもよいし、2種類以上含んでいてもよい。2種類以上含む場合、その合計量が上記範囲となる。
 さらに、スメクチック相液晶層用組成物は、重合開始剤、非液晶性の重合性化合物、溶剤、その他の添加剤等を含んでいてもよい。
(重合性化合物)
 スメクチック相液晶層用組成物は、重合性化合物を含んでいてもよい。
 液晶化合物とともに使用する重合性化合物としては、液晶化合物と相溶性を有し、液晶化合物の傾斜角変化や配向阻害を著しく引き起こさない限り、特に限定はない。これらの中では重合活性なエチレン性不飽和基、例えばビニル基、ビニルオキシ基、アクリロイル基およびメタクリロイル基などを有する化合物が好ましく用いられる。
 重合性化合物は、反応性官能基数が2以上の重合性化合物を用いることが、配向層との密着性を高める効果が期待できるため、特に好ましい。重合性化合物は、ポリマーでもよいが、モノマー(例えば、分子量2000以下)が好ましい。
 重合性化合物の具体例としては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、1,4-シクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,2,3-シクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンおよびその誘導体(例、1,4-ジビニルベンゼン、4-ビニル安息香酸-2-アクリロイルエチルエステル、1,4-ジビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。
 重合性化合物は、スメクチック相液晶層用組成物に1種類のみ含まれていてもよいし、2種類以上含まれていてもよい。重合性化合物の含有量は、液晶化合物に対して一般に0.5~50質量%の範囲にあり、1~30質量%の範囲にあることが好ましい。
(重合開始剤)
 スメクチック相液晶層用組成物は、重合開始剤を含んでいてもよい。重合開始剤は、液晶化合物が重合性基を有する場合や重合性化合物を含む場合に好ましく配合される。重合開始剤の具体例としては、α-カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許4239850号明細書記載)、オキサジアゾール化合物(米国特許4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)が含まれる。
 重合開始剤として、光重合開始剤の具体的な例としてはBASF社から市販されているイルガキュア(Irgacure,登録商標)シリーズ(例えば、イルガキュア651、イルガキュア754、イルガキュア184、イルガキュア2959、イルガキュア907、イルガキュア369、イルガキュア379、イルガキュア819など)、ダロキュア(Darocure,登録商標)シリーズ(例えば、ダロキュアTPO、ダロキュア1173など)、クオンタキュア(Quantacure)PDO、ランベルティ(Lamberti)社から市販されているエザキュア(Ezacure,登録商標)シリーズ(例えば、エザキュアTZM、エザキュアTZT、エザキュアKTO46など)等が挙げられる。
 光重合開始剤の使用量は、スメクチック相液晶層用組成物の固形分の0.01~20質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。
(溶剤)
 スメクチック相液晶層用組成物は、溶剤を含んでいてもよい。組成物の溶剤としては、有機溶剤が好ましく用いられる。有機溶剤の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン、シクロヘキサノン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。溶剤は、1種類のみでも、2種類以上の有機溶剤を併用してもよい。溶剤は、組成物の固形分濃度が10~50質量%となるように調整されるのが好ましい。
(その他の添加剤)
 スメクチック相液晶層用組成物は、上記以外に、表面性状や表面形状を制御するための界面活性剤、その他機能性を付与するための薬剤等を含んでいてもよい。
<スメクチック相液晶層の形成方法>
 スメクチック相液晶層は、支持体上に、スメクチック相液晶層用組成物を塗布し、乾燥および硬化することによって形成することができる。
(支持体)
 本発明の光学フィルムは支持体を含んでいてもよい。支持体は、スメクチック相液晶層用組成物を塗布するための基材として機能や、スメクチック相の層形状を維持するための機能を有する層である。支持体はスメクチック相液晶層用塗布液を塗布および硬化させ他後に剥離される仮支持体や、延伸した後に剥離される仮支持体であってもよい。すなわち、本発明の光学フィルムは支持体を含んでいなくてもよい。剥離して用いる場合は、剥離しやすい表面性状の材質を用いることが好ましい。
 支持体(仮支持体)としては、プラスチックフィルムの他、ガラス等を用いてもよい。プラスチックフィルムの例としては、ポリエチレンテレフタレート(PET)などのポリエステル、ポリカーボネート、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリアミド、ポリオレフィン、セルロース誘導体、シリコーン、ポリビニルアルコール(PVA)などが挙げられる。
 これらのなかでも、スメクチック相液晶層は、塗布形成し硬化した後、固定端一軸延伸を行うため延伸可能な材料がよい。例えばPETやアクリル樹脂がより好ましく、アクリル樹脂が更に好ましい。
 支持体の膜厚としては、5μm~1000μm程度であればよく、10μm~250μmが好ましく、15μm~90μmがより好ましい。
(塗布方法)
 スメクチック相液晶層用組成物を塗布する際の方法としてはカーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、ワイヤーバー法等の公知の方法が挙げられる。いずれの方法で塗布する場合においても、単層塗布が好ましい。
(液晶化合物の配向)
 スメクチック相液晶層用組成物の硬化前に、配向処理を行う。配向処理は、室温等により乾燥させる、または加熱することにより行うことができる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度または圧力の変化により転移させることができる。リオトロピック性をもつ液晶化合物の場合には、溶媒量等の組成比によっても転移させることができる。
 棒状液晶化合物がスメクチック相を発現する場合、ネマチック相を発現する温度領域の方が、棒状液晶化合物がスメクチック相を発現する温度領域よりも高いことが普通である。従って、棒状液晶化合物がネマチック相を発現する温度領域まで棒状液晶化合物を加熱し、次に、加熱温度を棒状液晶化合物がスメクチック相を発現する温度領域まで低下させることにより、棒状液晶化合物をネマチック相からスメクチック相に転移させることができる。このような方法とすることで、液晶化合物が高秩序度で配向したスメクチック相液晶層を提供できる。
 棒状液晶化合物がネマチック相を発現する温度領域では、棒状液晶化合物がモノドメインを形成するまで一定時間加熱する必要がある。加熱時間は、10秒間~5分間が好ましく、10秒間~3分間がさらに好ましく、10秒間~2分間が最も好ましい。
 棒状液晶化合物がスメクチック相を発現する温度領域では、棒状液晶化合物がスメクチック相を発現するまで一定時間加熱する必要がある。加熱時間は、10秒~5分が好ましく、10秒~3分がさらに好ましく、10秒~2分が最も好ましい。
(配向状態の固定)
 配向状態の固定は、熱重合や活性エネルギー線による重合で行うことができ、その重合に適した重合性基や重合開始剤を適宜選択することで行うことができる。製造適性等を考慮すると紫外線照射による重合反応を好ましく用いることができる。紫外線の照射量が少ないと、未重合の重合性棒状液晶化合物が残存し、光学特性の温度変化や、経時劣化の起きる原因となる。
 そのため、残存する重合性棒状液晶化合物の割合が5%以下になる様に照射条件を決めることが好ましく、その照射条件は重合性組成物の処方や液晶層の膜厚にもよるが目安として100~1000mJ/cm2の照射量で行われることが好ましい。
(スメクチック相液晶層)
 スメクチック相液晶層は、液晶化合物がホメオトロピック配向をしている。ホメオトロピック配向とは、液晶化合物の分子長軸が垂直方向に配向している状態を意味する。スメクチック相であると液晶分子の重心位置が揃った高秩序のレイヤー構造を取るためホメオトロピック配向を取り易く、基材の層形成面(下地面)の配向規制力が弱い場合であっても良好なホメオトロピック配向の液晶層を得ることができる。
<<光学フィルムの用途>>
 本発明の光学フィルムは、例えば、液晶セルを光学補償するためのλ/2光学補償フィルムとして、有機EL表示装置に用いられる広帯域λ/4反射防止膜として用いることができる。
 また、本発明の光学フィルムは、IPS型液晶表示装置、または液晶表示装置の光学補償フィルムに好適に用いられ、斜め方向から視認した時の色味変化や黒表示時の光漏れを改善することができる。
(接着剤)
 光学フィルムおよび表示装置等の作製の際は、各部材の貼合のために接着剤を用いてもよい。本明細書において、「接着」は「粘着」も含む概念で用いられる。接着剤としては特に限定はないが、ポリビニルアルコール系接着剤、ホウ素化合物水溶液、特開 2004-245925号公報に示されるような、分子内に芳香環を含まないエポキシ化合物の硬化性接着剤、特開2008-174667号公報記載の360~450nmの波長におけるモル吸光係数が400以上である光重合開始剤と紫外線硬化性化合物とを必須成分とする活性エネルギー線硬化型接着剤、特開2008-174667号公報記載の(メタ)アクリル系化合物の合計量100質量部中に(a)分子中に(メタ)アクリロイル基を2以上有する(メタ)アクリル系化合物と、(b)分子中に水酸基を有し、重合性二重結合をただ1個有する(メタ)アクリル系化合物と、(c)フェノールエチレンオキサイド変性アクリレートまたはノニルフェノールエチレンオキサイド変性アクリレートとを含有する活性エネルギー線硬化型接着剤などが挙げられる。
 なお、ポリビニルアルコール系接着剤は変性または未変性ポリビニルアルコールを含む接着剤である。ポリビニルアルコール系接着剤は、変性または未変性ポリビニルアルコールのほか、架橋剤を含有していてもよい。接着剤の具体例としては、ポリビニルアルコールまたはポリビニルアセタール(例、ポリビニルブチラール)の水溶液や、ビニル系ポリマー(例、ポリ塩化ビニル、ポリ酢酸ビニル、ポリブチルアクリレート)のラテックスが挙げられる。特に好ましい接着剤は、ポリビニルアルコールの水溶液である。このとき、ポリビニルアルコールは完全鹸化されたものが好ましい。
 接着剤により形成される接着層の膜厚は、乾燥膜厚で0.01~10μmが好ましく、0.05~5μmが特に好ましい。
<<表示装置>>
 本発明の表示装置は、本発明の光学フィルムを備える。表示装置の一例として有機EL表示装置およびIPS型液晶表示装置について説明する。
<有機EL表示装置>
 有機EL表示装置の一実施形態について説明する。図3に有機EL表示装置の一実施形態の概略断面図を示す。
 図3に示すように、有機EL表示装置30は、有機ELパネル31上に反射防止膜(λ/4板)32と偏光子36とを備える。反射防止膜32が本発明の光学フィルムである。偏光子36側が視認側である。有機ELパネル31は、背面電極33および透明電極34からなる一対の電極間に発光層35が配置されている。背面電極33から注入された正孔と透明電極34から注入された電子が発光層35で再結合し、蛍光性物質などを励起することにより発光する。また、発光層35から発光した光は、直接、または背面電極33で反射して、透明電極34から出射する。反射防止膜32と偏光子36とにより反射防止機能を有する。具体的には、外からの入射光は、偏光子36により直線偏光に変換され、さらに反射防止膜32によって円偏光に変換される。円偏光された光は透明電極34によって反射され入射光とは逆回転の円偏光となる。円偏光された光は、反射防止膜32により入射光と直交する方向の直線偏光に変換されるため、偏光子36を透過しない。
 有機ELパネル31は、複数の有機化合物薄膜を形成した部材であり、発光層35のほか正孔注入層、正孔輸送層、電子注入層、電子輸送層、または保護層などを有してもよく、またこれらの各層はそれぞれ他の機能を備えたものであってもよい。各層の形成にはそれぞれ種々の材料を用いることができる。
 背面電極33は正孔注入層、正孔輸送層、および発光層などに正孔を供給するものであり、金属、合金、金属酸化物、電気伝導性化合物、またはこれらの混合物などを用いることができ、好ましくは仕事関数が4eV以上の材料である。具体例としては酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)等の導電性金属酸化物、あるいは金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物または積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、およびこれらとITOとの積層物などが挙げられ、好ましくは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からITOが好ましい。背面電極33の膜厚は材料により適宜選択可能であるが、通常10nm~5μmの範囲のものが好ましく、より好ましくは50nm~1μmであり、さらに好ましくは100nm~500nmである。
 有機EL表示装置において、本発明の光学フィルムを反射防止膜として備えることにより、正面コントラストと斜め色味が良好となる。
<IPS型液晶表示装置>
 次に、本発明の光学フィルムを備えたIPS型液晶表示装置について説明する。図4にIPS型液晶表示装置の一実施形態の概略断面図を示す。
 図4に示すように、本実施形態のIPS型液晶表示装置40は、2枚の偏光板41および42の間にIPS型の液晶セル43が配置されている。偏光板42(λ/2板)が本発明の光学フィルムである。液晶セル43は、ガラス基板44および45との間に、液晶分子(46aおよび46b)が封入されている。ガラス基板44上には透明陽極47および透明陰極48が形成されている。電圧無印加の状態では、液晶分子は液晶分子46aのように透明陽極47および透明陰極48に平行に並んでいるが、電圧印加により90度水平に回転し、液晶分子46bのように、透明陽極47および透明陰極48に亘って並ぶ。無印加と印加で液晶分子が面内方向で90度回転することにより、2枚の偏光板の間で透過および遮蔽を作り出す。
 IPS型では、液晶分子がガラス基板に対して水平面内で回転するので、液晶分子が斜めになることがないため、視野角による光学特性の変化が少なく広視野角が得られる。このようなIPS型液晶表示装置に本発明の光学フィルムを用いることによって、視野角がさらに向上する。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 以下、本発明の光学フィルムを有機EL表示装置の反射防止膜(λ/4板)として用いた例について、説明する。
[実施例1]
 まず、実施例1に用いる支持体について説明する。
<支持体>
 [下記一般式(III)で表されるラクトン環構造を有するアクリル系樹脂{共重合モノマー質量比=メタクリル酸メチル/2-(ヒドロキシメチル)アクリル酸メチル=8/2、ラクトン環化率約100%、ラクトン環構造の含有割合19.4%、重量平均分子量133,000、メルトフローレート6.5g/10分(240℃、10kgf)、Tg131℃}90質量部と、アクリロニトリル-スチレン(AS)樹脂{トーヨーAS AS20、東洋スチレン社製}10質量部との混合物;Tg127℃]のペレットを二軸押出機に供給し、約280℃でシート状に溶融押出しして、厚さ40μmの長尺状の仮支持体を得た。
Figure JPOXMLDOC01-appb-C000020
 上記一般式(III)中、Rは水素原子であり、R及びRはメチル基である。
<配向層の形成>
(アルカリ鹸化処理)
 上記仮支持体を、温度60℃の誘電式加熱ロールを通過させ、フィルム表面温度を40℃に昇温した後に、フィルムのバンド面に下記に示す組成のアルカリ溶液を、バーコーターを用いて塗布量14ml/mで塗布し、110℃に加熱した(株)ノリタケカンパニーリミテド製のスチーム式遠赤外ヒーターの下に、10秒間搬送した。続いて、同じくバーコーターを用いて、純水を3ml/m塗布した。次いで、ファウンテンコーターによる水洗とエアナイフによる水切りを3回繰り返した後に、70℃の乾燥ゾーンに10秒間搬送して乾燥し、アルカリ鹸化処理した支持体を作製した。この支持体は波長分散、Re(550)あるいはRth(550)の影響が無視できる。
-アルカリ溶液組成-
 水酸化カリウム                   4.7質量部
 水                        15.8質量部
 イソプロパノール                 63.7質量部
 界面活性剤SF-1:C1429O(CH2CH2O)20H   1.0質量部
 プロピレングリコール               14.8質量部
(配向層の形成)
 続いて支持体のアルカリ鹸化処理を行った面に、下記組成の配向層塗布液Aを#14のワイヤーバーで連続的に塗布した。60℃の温風で60秒、さらに100℃の温風で120秒乾燥した。使用した変性ポリビニルアルコールの鹸化度は96.8%であった。
-配向層塗布液Aの組成-
 下記の変性ポリビニルアルコール            10質量部
 水                         308質量部
 メタノール                      70質量部
 イソプロパノール                   29質量部
 光重合開始剤
(Irgacure2959(登録商標)、BASF社製)      0.8質量部
Figure JPOXMLDOC01-appb-C000021
 変性ポリビニルアルコールの組成割合は、モル分率である。
<スメクチック相液晶層の形成>
 次に、液晶分子がスメクチック相で垂直配向されて固定化されたスメクチック相液晶層の形成について説明する。
 下記のスメクチック相液晶層用塗布液を、MEK(メチルエチルケトン)に溶解して、固形分濃度が33質量%となるよう調製した。この塗布液を上記配向層上にバー塗布して、80℃で2分間加熱熟成を行って、均一な配向状態を得た。その後、この塗布膜を80℃に保持し、これにメタルハライドランプを用いて80℃で、100mJ/cm紫外線照射して、フィルムを形成した。この時の膜厚は8μmであった。また、この塗布液に用いる化合物の詳細についても以下に記載する。
-実施例1のスメクチック相液晶層用塗布液-
 逆波長分散性棒状液晶化合物L-1           44質量部
 逆波長分散性棒状液晶化合物L-2           44質量部
 順波長分散性棒状液晶化合物A-1           12質量部
 重合開始剤1                    1.5質量部
 重合開始剤2(Irgacure184,BASF社製)      1.5質量部
 垂直配向剤                     0.5質量部
 重合性化合物                    0.5質量部
 界面活性剤1                    0.2質量部
 界面活性剤2                    0.4質量部
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
比率は質量比率である。
Figure JPOXMLDOC01-appb-C000028
比率は質量比率である。
<固定端一軸延伸>
 上記のように作製したフィルムを140℃で50%固定端一軸延伸した。延伸されてできた液晶層はスメクチック相で逆波長分散性を示し、延伸後の膜厚は5μmであった。
[実施例2]
 以下のスメクチック相液晶層用塗布液を用いた以外は実施例1と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。
-実施例2のスメクチック相液晶層用塗布液-
 上記逆波長分散性棒状液晶化合物L-1         44質量部
 上記逆波長分散性棒状液晶化合物L-2         31質量部
 上記順波長分散性液晶化合物A-1           25質量部
 重合開始剤1                    1.5質量部
 重合開始剤2(Irgacure184,BASF社製)      1.5質量部
 垂直配向剤                     0.5質量部
 重合性化合物                     12質量部
 界面活性剤1                    0.2質量部
 界面活性剤2                    0.4質量部
[実施例3]
 以下のスメクチック相液晶層用塗布液を用いた以外は実施例1と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で順波長分散性を示した。
-実施例3のスメクチック相液晶層用塗布液-
 上記逆波長分散性棒状液晶化合物L-1         44質量部
 上記逆波長分散性棒状液晶化合物L-2         12質量部
 上記順波長分散性液晶化合物A-1           44質量部
 重合開始剤1                    1.5質量部
 重合開始剤2(Irgacure184,BASF社製)      1.5質量部
 垂直配向剤                     0.5質量部
 重合性化合物                     12質量部
 界面活性剤1                    0.2質量部
 界面活性剤2                    0.4質量部
[実施例4]
 延伸倍率を45%に変えた以外は、実施例2と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。
[実施例5]
 延伸倍率を55%に変えた以外は、実施例2と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。
[実施例6]
 延伸倍率を40%に変えた以外は、実施例1と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で逆波長分散性を示した。
[実施例7]
 延伸倍率を60%に変えた以外は、実施例2と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。
[実施例8]
 延伸倍率を65%に変えた以外は、実施例1と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で逆波長分散性を示した。
[比較例1]
 実施例1と同様に配向層を形成し、配向層付きフィルムをTD(Transverse Direction)方向にラビングした。
<ポジティブAプレート付き偏光板の作製>
 次に、下記のポジティブAプレート形成用塗布液を調製した。
-ポジティブAプレート形成用塗布液-
 上記逆波長分散性棒状液晶化合物L-1      40.00質量部
 上記逆波長分散性棒状液晶化合物L-2      40.00質量部
 上記順波長分散性液晶化合物A-1        20.00質量部
 重合開始剤(IRGACURE184,BASF社製)      3.00質量部
 重合開始剤(IRGACURE OXE-01,BASF社製)   3.00質量部
 架橋性ポリマー O-2              0.30質量部
 レベリング剤(下記化合物T-1)         0.20質量部
 シクロペンタノン               423.11質量部
Figure JPOXMLDOC01-appb-C000029
化合物T-1中の比率は質量比率である。
架橋性ポリマーO-2の比率は質量比率である。
 次に、配向膜上にポジティブAプレート形成用塗布液を、バーコーターを用いて、液晶層膜厚が1μmとなるよう塗布した。膜面温度80℃で20秒間加熱熟成し、空気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cm2の紫外線を照射して、その配向状態を固定化することによりポジティブAプレートを形成した。形成されたポジティブAプレートは、ラビング方向に対し遅相軸方向が平行(すなわち、偏光板の吸収軸とは直交)であった(逆波長分散液晶化合物が偏光照射方向に対して平行に配向していた)。自動複屈折率計(KOBRA-21ADH、王子計測機器(株)社製)を用いて、Reの光入射角度依存性および光軸のチルト角を測定したところ、波長550nmにおいてReが137nm、Rthが69nm、Re(450)/Re(550)が0.85、Re(650)/Re(550)が1.05、光軸のチルト角は0°で、逆波長分散液晶化合物はホモジニアス配向であった。なお、ポジティブAプレート形成用塗布液6のスメクチック-ネマチック相転移温度は60℃であった。
<ポジティブCプレートの形成>
 まず、下記のポジティブCプレート形成用塗布液を調製した。
-ポジティブCプレート形成用塗布液-
 液晶化合物B01                   80質量部
 液晶化合物B02                   20質量部
 垂直配向剤(S01)                  1質量部
 垂直配向剤(S02)                0.5質量部
 エチレンオキサイド変成トリメチロールプロパントリアクリレート
 (V#360、大阪有機化学(株)製)          8質量部
 イルガキュア 907(BASF製)           3質量部
 カヤキュア DETX(日本化薬(株)製)        1質量部
 化合物B03                    0.4質量部
 メチルエチルケトン                 170質量部
 シクロヘキサノン                   30質量部
Figure JPOXMLDOC01-appb-C000030
 上記ポジティブAプレートの表面を上述のラビング方向と直交する方向にラビングした後、直接、ポジティブCプレート形成用塗布液を塗布し、60℃60秒間加熱熟成させた後に、大気下にて空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて1000mJ/cm2の紫外線を照射して、その配向状態を固定化し、ポジティブCプレートを作製した。光軸のチルト角が90°で、重合性棒状液晶化合物がホメオトロピック配向であることを確認した。また、AxoScan(Axometrics製)を用いてポジティブCプレートのレターデーションのみを測定したところ、波長550nmにおいてReは0nm、Rthは-69nmであった。このようにして、フィルムにポジティブAプレートとポジティブCプレートとがこの順に直接積層された、比較例1を作製した。
 延伸は行わなかった。得られた液晶層は、ネマチック相で逆波長分散性を示した。
[比較例2]
 実施例1のスメクチック相液晶層用塗布液を用いて、100℃で熱処理しネマチック相液晶層を形成し、延伸倍率を50%で固定端一軸延伸を行ったこと以外は実施例1と同様に光学フィルムを作製した。延伸して得られた液晶層は、ネマチック相で逆波長分散性を示した。
[比較例3]
 55℃に冷却してから紫外線照射を行ったこと以外は比較例1のポジティブAプレートと同様に光学フィルムを作製した。得られた液晶層は、スメクチック相で逆波長分散性を示した。
 次に、IPS型液晶表示装置用のλ/2板(光学補償フィルム)の例について説明する。
[実施例9]
 塗布乾燥後の液晶層の膜厚を16μmとした以外は、実施例1と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で逆波長分散性を示した。延伸後の膜厚は10μmであった。
[実施例10]
 塗布乾燥後の液晶層の膜厚を16μmとした以外は、実施例2と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。延伸後の膜厚は10μmであった。
[実施例11]
 塗布乾燥後の液晶層の膜厚を16μmとした以外は、実施例3と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で順波長分散性を示した。延伸後の膜厚は10μmであった。
[実施例12]
 延伸倍率を45%とした以外は、実施例11と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で順波長分散性を示した。延伸後の膜厚は11μmであった。
[実施例13]
 延伸倍率を55%とした以外は、実施例10と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。延伸後の膜厚は10μmであった。
[実施例14]
 延伸倍率を40%にした以外は、実施例10と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相でフラットな波長分散性を示した。延伸後の膜厚は12μmであった。
[実施例15]
 延伸倍率を60%にした以外は、実施例11と同様に光学フィルムを作製した。延伸して得られた液晶層は、スメクチック相で順波長分散性を示した。延伸後の膜厚は10μmであった。
[比較例4]
 比較例1の塗布液を用い、1層目の乾燥膜厚を2μmおよび2層目の乾燥膜厚を3μmとした以外は比較例1と同様にして比較例4のフィルムを作製した。得られた液晶層は、ネマチック相で逆波長分散性を示した。
[比較例5]
 比較例1のポジティブAプレート形成用塗布液を用い、乾燥膜厚を2μmとした以外は比較例3と同様にして光学フィルムを形成した。得られた液晶層は、スメクチック相で逆波長分散性を示した。
[比較例6]
 100℃で熱処理してネマチック相液晶層を形成したこと以外は、実施例9と同様に光学フィルムを形成した。得られた液晶層は、ネマチック相で逆波長分散性を示した。延伸後の膜厚は10μmであった。
[評価]
<スメクチック相に由来する液晶層の確認>
 下記の装置および条件を用いて得られた光学フィルムのX線回折測定を行った。比較例1、2、4および6を除いた光学フィルムに関しては、延伸して得られた液晶層がスメクチック相に由来することを確認できた。
 X線回折装置R-AXIS、Cu線源(50kV、300mA)、2θ=2.9~3.7°に層構造を示すピークが観察され、スメクチック相の秩序性に起因する回折光が確認できた。
<Re(440)、Re(550)およびRe(630)の測定方法>
 Reを以下の方法により測定した。
 延伸して完成したフィルムをWR(王子計測機器(株)製)により光学特性を測定した。そのうち波長440nm、550nm、630nmでのReの値を、それぞれRe(440)、Re(550)、およびRe(630)とした。
<Rth(550)の測定方法>
 Rthを以下の方法により測定した。
 延伸して完成したフィルムをWR(王子計測機器(株)製)により光学特性を測定した。そのうち波長550nmでのRthの値をRth(550)とした。
<Nzファクターの算出方法>
 上記で得られたRe(550)およびRth(550)を用い、以下に式によりNzファクターを算出した。
  Nzファクター=Rth(550)/Re(550)+0.5
<有機EL表示装置への実装および表示性能の評価>
 本発明の光学フィルムを有機EL表示装置に実装し、表示性能の評価を行った。
(有機EL表示装置への実装)
 有機ELパネル搭載のSAMSUNG社製GALAXY SIIを分解し、円偏光板を剥離して、剥離した面に、実施例および比較例のフィルムを面貼合し、さらに偏光板を偏光板の吸収軸が実施例および比較例のフィルムの遅相軸と45°の関係になるように視認側に貼合し、表示装置を作製した。貼合には、光学的に等方性の接着剤(SK2057、綜研化学社製)を利用した。
(表示性能の評価)
 作製した有機EL表示装置について、明光下にて視認性および表示品位を評価した。
 表示装置に白表示、黒表示、画像表示をして、正面および極角60°から蛍光灯を映し込んだときの反射光を観察した。正面および極角60°の表示品位を下記の基準に基づいて評価した。表1に評価結果を示す。
(評価基準)
 A:色味付きが全く視認されない
 B:色味差が視認されるものの、ごくわずかである
 C:色味差が視認されるが反射光は小さく、使用上問題はない
 D:色味差が視認され、反射光も多く、許容できない
<IPS型液晶表示装置への実装および表示性能の評価>
 iPad(光配向膜使用、Apple社製、登録商標)の液晶セルから視認側の偏光板を剥し、光配向膜を使用したIPSモードの液晶セルとして利用した。なお、セル液晶のプレチルトは0°であった。
 剥がした偏光板の代わりに、実施例では上記で作製した光学フィルムを含む偏光板を、液晶セルに貼合し、液晶表示装置を作製した。また、比較例では、作製した光学フィルムを含む偏光板をポジティブAプレートの面側を液晶セルに貼合した。このとき、液晶セル基板面に対して垂直な方向から観察したとき、偏光板の吸収軸と、液晶セル内の液晶層の光軸とが垂直な方向になるように貼りあわせた。貼合には、接着剤(SK2057、綜研化学社製)を利用した。
<正面コントラスト>
 液晶表示装置を黒表示及び白表示させて、正面方向(表示面に対して法線方向)の透過率を測定機(EZ-Contrast160D、ELDIM社製)を用いそれぞれ測定し、正面コントラスト比CR(白表示の透過率/黒表示の透過率)を算出した。以下の評価基準に基づいて評価した。
(評価基準)
 A:900≦CR
 B:850≦CR<900
 C:800≦CR<850
 D:800>CR
<斜め色味変化>
 色味座標u’v’の測定に、測定機(EZ-Contrast160D、ELDIM社製)を用いた。測定角度を極角50度方向に固定し、方位角を15度刻みで360度回転させて色味座標u’v’の値を測定し、最大と最小の差分をとった色味変化Δu’v’(50°)を算出した。その値を評価指標とし、以下の評価基準に基づいて評価した。
(評価基準)
 A:比較例4を用いた液晶表示装置の斜め色味変化よりも40%以上良好である
 B:比較例4を用いた液晶表示装置の斜め色味変化よりも25%以上40%未満良好である
 C:比較例4を用いた液晶表示装置の斜め色味変化よりも10%以上25%未満良好である
 D:比較例4を用いた液晶表示装置の斜め色味変化と同等以下である
 実施例1から実施例8および比較例1から比較例3の評価結果を表1に示す。表1において、液晶層のSmとはスメクチック相であることを示し、Neとはネマチック相であることを示す。
Figure JPOXMLDOC01-appb-T000031
 実施例9から実施例15および比較例4から比較例6の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000032
 本発明の光学フィルムを有機EL表示装置のλ/4板(反射防止膜)として使用した場合、表1に示すように、正面および極角60°の表示性能が良好であった。特に逆波長分散性の液晶層である実施例1および実施例6では、表示性能(表1でOLED表示性能と記載する)が良好であった。
 一方、比較例1は、2層構造でλ/4板を構成しており、Nzファクターが0.5と理想的な値であるが、極角60°での表示性能がCと劣った。2層構造としたことにより、各層のRthの影響で円偏光性が低下したことが主原因と考えられる。比較例2は、Nzファクターが0.5と理想的な値であるが、正面表示性能がDと劣った。これはネマチック相であることから、液晶分子の配列にゆらぎが生じ、光漏れが生じたためと考えられる。また比較例3は、極角60°の表示性能がDと劣った。液晶層はスメクチック相であるがNzファクターが1.0と高すぎ、光漏れが生じたためと考えられる。
 また、本発明の光学フィルムをIPS型液晶表示装置のλ/2板(光学補償フィルム)に用いた場合、表2に示すように、正面コントラストおよび斜め色味変化の表示性能(表2でIPS表示性能と記載する)が良好であった。
 一方、比較例4は、2層構造でλ/2板を構成しており、正面コントラストおよび斜め色味のいずれもDと劣った。光学補償フィルムが2層構造であることとネマチック相であることにより、直線偏光が良好に行われず光漏れが生じたためと考えられる。比較例5は、スメクチック相であるが、斜め色味変化がDと劣った。Nzファクターが1.0と大きすぎ、光漏れが生じたためと考えられる。比較例6は、Nzファクターが0.5と理想的な値であるが正面コントラストがDと劣った。ネマチック相であるため液晶分子の配列にゆらぎが生じたためと考えられる。
 以上のように、本発明の光学フィルムは、スメクチック相に由来する液晶層を有し、液晶層のNzファクターが0.2から0.8であるため、単層の液晶層でλ/4板またはλ/2板として表示装置に用いた場合良好な表示性能を得られることがわかった。本実施例ではいずれも液晶層へ光学的な影響を与えない支持体を用いたため、光学フィルムの光学性能は、液晶層の光学性能と同等である。
 本発明においては、液晶層へ光学的な影響を与える支持体を用いても良いが、その場合は、固定端一軸延伸の後に支持体から液晶層を剥離して、他の支持体へ転写するなどにより所望の性能を達成できる。
 10 光学フィルム
 11 支持体
 12 配向層
 13 液晶層
 21 延伸前フィルム
 22 テンター
 23 延伸後フィルム
 30 有機EL表示装置
 31 有機ELパネル
 32 λ/4板(反射防止膜)
 33 背面電極
 34 透明電極
 35 発光層
 36 偏光子
 40 IPS型液晶表示装置
 41,42 偏光板
 43 液晶セル
 44,45 ガラス基板
 46a,46b 液晶分子
 47 透明陽極
 48 透明陰極

Claims (8)

  1.  スメクチック相に由来する液晶層を有し、該液晶層のNzファクターが0.2以上0.8以下である光学フィルム。
  2.  前記液晶層のNzファクターが0.4以上0.7以下である請求項1記載の光学フィルム。
  3.  前記液晶層が、逆波長分散性液晶化合物を含む請求項1または2記載の光学フィルム。
  4.  前記液晶層が、波長440nm、波長550nm、および波長630nmでそれぞれ測定されるレターデーション値Re(440)、Re(550)、およびRe(630)が、以下の関係を満たす請求項1から3いずれか1項記載の光学フィルム。
     Re(440)<Re(550)×0.9、かつRe(630)>Re(550)
  5.  有機EL表示装置用のλ/4板である請求項1から4いずれか1項記載の光学フィルム。
  6.  IPS型液晶表示装置用のλ/2板である請求項1から4いずれか1項記載の光学フィルム。
  7.  請求項1から6いずれか1項記載の光学フィルムを備える表示装置。
  8.  液晶分子がスメクチック相で垂直配向されて固定化されたスメクチック相液晶層を、固定端一軸延伸する工程を含む光学フィルムの製造方法。
PCT/JP2017/005922 2016-02-22 2017-02-17 光学フィルム、光学フィルムの製造方法および表示装置 WO2017145935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018501635A JP6727284B2 (ja) 2016-02-22 2017-02-17 光学フィルム、光学フィルムの製造方法および表示装置
CN201780012728.8A CN108700694B (zh) 2016-02-22 2017-02-17 光学膜、光学膜的制造方法及显示装置
US16/106,677 US10955601B2 (en) 2016-02-22 2018-08-21 Optical film, method for producing optical film, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016030706 2016-02-22
JP2016-030706 2016-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/106,677 Continuation US10955601B2 (en) 2016-02-22 2018-08-21 Optical film, method for producing optical film, and display device

Publications (1)

Publication Number Publication Date
WO2017145935A1 true WO2017145935A1 (ja) 2017-08-31

Family

ID=59685121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005922 WO2017145935A1 (ja) 2016-02-22 2017-02-17 光学フィルム、光学フィルムの製造方法および表示装置

Country Status (4)

Country Link
US (1) US10955601B2 (ja)
JP (1) JP6727284B2 (ja)
CN (1) CN108700694B (ja)
WO (1) WO2017145935A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101122A1 (ja) * 2016-11-29 2018-06-07 Dic株式会社 重合性組成物及びそれを用いた光学異方体
JP2019139220A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
CN111373018A (zh) * 2017-12-22 2020-07-03 株式会社Lg化学 液晶组合物及其用途
JPWO2021060427A1 (ja) * 2019-09-27 2021-04-01
KR20230121743A (ko) 2020-12-28 2023-08-21 니폰 제온 가부시키가이샤 광학 필름 및 그 제조 방법, 그리고 편광판

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536561A (ja) * 2004-05-07 2007-12-13 富士フイルム株式会社 液晶表示装置
JP2011069922A (ja) * 2009-09-24 2011-04-07 Fujifilm Corp 液晶表示装置
JP2015169875A (ja) * 2014-03-10 2015-09-28 大日本印刷株式会社 光学フィルム、光学フィルム用転写体、及び画像表示装置
JP2015200861A (ja) * 2013-09-11 2015-11-12 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2015227947A (ja) * 2014-05-30 2015-12-17 富士フイルム株式会社 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5781268A (en) * 1996-04-09 1998-07-14 Board Of Regents Of The University Of Colorado Polarization-insensitive fabry-perot tunable filter
JP2005062669A (ja) * 2003-08-19 2005-03-10 Fuji Photo Film Co Ltd 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置
US7733452B2 (en) * 2005-05-06 2010-06-08 Kent State University Materials for promoting alignment of liquid crystals on SiOx and other substrates
CN100529808C (zh) * 2005-05-11 2009-08-19 日东电工株式会社 附有光学补偿层的偏振板及使用该偏振板的图像显示装置
US7505099B2 (en) * 2005-08-17 2009-03-17 Fujifilm Corporation Optical resin film and polarizing plate and liquid crystal display using same
US7480021B2 (en) * 2005-12-29 2009-01-20 Nitto Denko Corporation Optical films having reverse dispersion
WO2007091716A1 (en) * 2006-02-07 2007-08-16 Fujifilm Corporation Optical film and phase difference plate, and liquid crystal compound
JP2007316592A (ja) * 2006-04-27 2007-12-06 Nitto Denko Corp 複屈折フィルム及びその製造方法
JP5553468B2 (ja) * 2006-10-05 2014-07-16 日東電工株式会社 偏光板および液晶表示装置
JP4911710B2 (ja) * 2007-03-30 2012-04-04 日東電工株式会社 複屈折性フィルム、積層フィルム、及び画像表示装置
JP5316421B2 (ja) * 2007-11-27 2013-10-16 日本ゼオン株式会社 延伸フィルム、その製造方法、及び液晶表示装置
WO2009122621A1 (ja) * 2008-03-31 2009-10-08 凸版印刷株式会社 位相差板、その製造方法及び液晶表示装置
JP2009288440A (ja) * 2008-05-28 2009-12-10 Nippon Oil Corp 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
DE102010005038A1 (de) * 2009-02-14 2010-08-19 Lofo High Tech Film Gmbh Optische Kompensationsfolien
JP2010243820A (ja) * 2009-04-07 2010-10-28 Sekisui Chem Co Ltd 位相差補償フィルムの製造方法、位相差補償フィルム、複合偏光板、偏光板及び液晶表示装置
KR101576220B1 (ko) * 2009-11-02 2015-12-09 동우 화인켐 주식회사 면상 스위칭 모드 액정표시장치
JP2011102867A (ja) * 2009-11-10 2011-05-26 Tosoh Corp 光学補償フィルム
JP2011186358A (ja) * 2010-03-11 2011-09-22 Fujifilm Corp ポリマーフィルム、その製造方法、それを用いた位相差フィルム、偏光板及び液晶表示装置
JP5982828B2 (ja) * 2012-01-10 2016-08-31 東ソー株式会社 光学補償用積層フィルム
KR101566077B1 (ko) * 2012-07-25 2015-11-05 제일모직주식회사 광학필름, 그 제조방법 및 이를 포함하는 액정 디스플레이
JP2015043073A (ja) * 2013-07-25 2015-03-05 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
JP6047604B2 (ja) 2014-03-31 2016-12-21 富士フイルム株式会社 液晶化合物および光学フィルム、ならびに光学フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007536561A (ja) * 2004-05-07 2007-12-13 富士フイルム株式会社 液晶表示装置
JP2011069922A (ja) * 2009-09-24 2011-04-07 Fujifilm Corp 液晶表示装置
JP2015200861A (ja) * 2013-09-11 2015-11-12 富士フイルム株式会社 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
JP2015169875A (ja) * 2014-03-10 2015-09-28 大日本印刷株式会社 光学フィルム、光学フィルム用転写体、及び画像表示装置
JP2015227947A (ja) * 2014-05-30 2015-12-17 富士フイルム株式会社 積層体およびその製造方法、偏光板、液晶表示装置、有機el表示装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101122A1 (ja) * 2016-11-29 2018-06-07 Dic株式会社 重合性組成物及びそれを用いた光学異方体
CN111373018A (zh) * 2017-12-22 2020-07-03 株式会社Lg化学 液晶组合物及其用途
US11539002B2 (en) 2017-12-22 2022-12-27 Lg Chem, Ltd. Liquid crystal composition and use thereof
CN111373018B (zh) * 2017-12-22 2023-08-08 株式会社Lg化学 液晶组合物及其用途
JP2019139220A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 積層体およびその製造方法
JPWO2021060427A1 (ja) * 2019-09-27 2021-04-01
WO2021060427A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 重合性液晶組成物、硬化物、光学フィルム、偏光板および画像表示装置
JP7386256B2 (ja) 2019-09-27 2023-11-24 富士フイルム株式会社 重合性液晶組成物、硬化物、光学フィルム、偏光板および画像表示装置
US11987742B2 (en) 2019-09-27 2024-05-21 Fujifilm Corporation Polymerizable liquid crystal composition, cured product, optical film, polarizing plate, and image display device
KR20230121743A (ko) 2020-12-28 2023-08-21 니폰 제온 가부시키가이샤 광학 필름 및 그 제조 방법, 그리고 편광판

Also Published As

Publication number Publication date
CN108700694B (zh) 2021-04-27
JPWO2017145935A1 (ja) 2018-09-20
CN108700694A (zh) 2018-10-23
JP6727284B2 (ja) 2020-07-22
US10955601B2 (en) 2021-03-23
US20180356578A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6243869B2 (ja) 光学フィルム、偏光板、および光学フィルムの製造方法
JP6427340B2 (ja) 光学異方性層とその製造方法、積層体とその製造方法、偏光板、液晶表示装置及び有機el表示装置
KR102443875B1 (ko) 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치
WO2017145935A1 (ja) 光学フィルム、光学フィルムの製造方法および表示装置
WO2006085454A1 (ja) ホメオトロピック配向液晶フィルム、それを用いた光学フィルムおよび画像表示装置
WO2009150779A1 (ja) 楕円偏光板およびそれを用いた垂直配向型液晶表示装置
KR101891421B1 (ko) 위상차판, 위상차판을 이용한 적층 편광판, 및 위상차판을 이용한 표시 장치
JP5723077B1 (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
KR20080034405A (ko) 위상차 필름 및 편광판
TW200402459A (en) Achromatic quarter wave film
JP2015161714A (ja) 位相差板、楕円偏光板およびそれを用いた表示装置
JP2008191630A (ja) 楕円偏光板、その製造方法、輝度向上フィルムおよび画像表示装置
WO2009028429A1 (ja) 楕円偏光板、その製造方法およびそれを用いた液晶表示装置
JP2008009403A (ja) 楕円偏光板、楕円偏光板の製造方法および液晶表示装置
CN115698788A (zh) 光吸收各向异性膜、层叠体及图像显示装置
JP2009288440A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
JP2017072786A (ja) 積層光学フィルム、照明装置及び表示装置
WO2015046399A1 (ja) 偏光板の製造方法
JP2007017637A (ja) 積層位相差板、その製造方法、輝度向上フィルムおよび画像表示装置
JP2006337575A (ja) ホメオトロピック配向液晶フィルムおよびそれを用いた装置
JP2009294521A (ja) 位相差フィルム、位相差フィルムの製造方法、偏光板および液晶表示装置
US11333813B2 (en) Optical film and method for producing optical film
JP2005274909A (ja) 位相差板の製造方法およびそれにより製造される位相差板
JP4832796B2 (ja) 光学補償シート、偏光板および液晶表示装置
JP2016200639A (ja) 位相差板の製造方法、位相差板を備えた積層板、および位相差板を備えた表示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756374

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17756374

Country of ref document: EP

Kind code of ref document: A1