WO2017142074A1 - 固体接合型光電変換素子、及びその製造方法 - Google Patents

固体接合型光電変換素子、及びその製造方法 Download PDF

Info

Publication number
WO2017142074A1
WO2017142074A1 PCT/JP2017/005959 JP2017005959W WO2017142074A1 WO 2017142074 A1 WO2017142074 A1 WO 2017142074A1 JP 2017005959 W JP2017005959 W JP 2017005959W WO 2017142074 A1 WO2017142074 A1 WO 2017142074A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
conversion element
conductive
solid junction
Prior art date
Application number
PCT/JP2017/005959
Other languages
English (en)
French (fr)
Inventor
尚洋 藤沼
純一郎 安西
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US16/065,931 priority Critical patent/US20190013155A1/en
Priority to EP17753328.8A priority patent/EP3419068A4/en
Priority to CN201780005226.2A priority patent/CN108475729A/zh
Priority to JP2018500228A priority patent/JPWO2017142074A1/ja
Publication of WO2017142074A1 publication Critical patent/WO2017142074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid junction photoelectric conversion element and a method for manufacturing the same.
  • Non-Patent Document 1 a solid junction photoelectric conversion element having a power generation layer containing a perovskite compound exhibits high photoelectric conversion efficiency (Non-Patent Document 1), and has attracted attention as a new photoelectric conversion element. Starting with this report, further improvements in photoelectric conversion efficiency have been reported one after another (for example, Non-Patent Document 2).
  • FIG. 3 is a cross-sectional view showing a laminated structure of a conventional solid junction photoelectric conversion element.
  • a general process for forming this laminated structure is to form the first conductive layer 102 on the substrate 101 by a physical vapor deposition method such as a sputtering method, and to form a power generation layer 103 including a perovskite layer by a coating method such as a spin coating method.
  • the second conductive layer 104 is formed by a physical vapor deposition method, a printing method, or the like.
  • the present invention has been made in view of the above circumstances, and provides a solid junction photoelectric conversion element in which a leak current hardly occurs, and a method for manufacturing the same.
  • a solid junction photoelectric conversion element including a base material, a first conductive layer, a power generation layer including a perovskite layer, and a conductive material including a second conductive layer in this order.
  • the second conductive layer is a metal foil.
  • the solid junction photoelectric conversion element according to [1] or [2], wherein the conductive material is a laminate including the second conductive layer and a support material.
  • the power generation layer has one or more cracks extending from the surface on the conductive material side to the first conductive layer side, and the conductive material is in close contact with the power generation layer and straddles the crack.
  • the solid junction photoelectric conversion device according to any one of [1] to [5].
  • the solid junction photoelectric conversion element of the present invention a leak current hardly occurs even when a stress is applied from the outside to cause bending or distortion. According to the method for producing a solid junction photoelectric conversion element of the present invention, it is possible to easily produce a solid junction photoelectric conversion element in which leakage current hardly occurs.
  • film and “layer” are not distinguished unless otherwise specified.
  • a solid junction type photoelectric conversion element may be simply referred to as “photoelectric conversion element”
  • an organic / inorganic perovskite compound may be simply referred to as “perovskite compound”.
  • the solid junction photoelectric conversion element includes a base material 1, a first conductive layer 2, a power generation layer 3 including a perovskite layer 32, and a conductive material including a second conductive layer. 4 in order, and the conductive material 4 has a self-supporting property.
  • having self-supporting means that the single conductive material 4 can be handled as a film (planar member).
  • Whether or not the conductive material 4 is self-supporting is determined by the following method. For example, a rectangular film (conductive material 4) of 1 mm ⁇ 2 mm in a plan view is prepared, and a half (1 mm ⁇ 1 mm) plane in the longitudinal direction of the film is in contact with the end of a horizontal base. Secure and allow the other half of the membrane to protrude horizontally from the end of the table to the outside of the table. At this time, the end of the base is a straight side, and the short side (tip side) of the protruding film is substantially parallel to this side.
  • a method of visually observing whether or not 90% or more of the total area of the protruding portion of the film thus projected is maintained for 10 seconds or more without missing is mentioned.
  • 90% or more of the total area of the protrusions is maintained for 10 seconds or more in the above determination method.
  • the conductive material does not have self-supporting property, in the above determination method, more than 10% of the total area of the protruding portion is lost within 10 seconds due to its own weight.
  • the thickness of the conductive material 4 is 1 ⁇ m or more because the conductive material 4 tends to be self-supporting and easily prevents leakage current. More preferably, it is 2 ⁇ m or more. Specifically, the thickness of the conductive material 4 is preferably 1 ⁇ m to 200 ⁇ m, and more preferably 2 ⁇ m to 100 ⁇ m. When the thickness is 200 ⁇ m or less, the photoelectric conversion element can be easily thinned.
  • the thickness T (unit: ⁇ m) of the conductive material 4 and the conductive material 4 The ratio (unit: cm 2 / ⁇ m) expressed by S / T with the area S (unit: cm 2 ) in plan view is preferably, for example, 1 to 1000, more preferably 1 to 500, and 1 to 100. Further preferred.
  • thickness is the cross section of the thickness direction of a solid junction type photoelectric conversion element observed with an electron microscope, measured the thickness of arbitrary 10 places of a measuring object, and the arithmetic mean value of each thickness As required.
  • the end portion 4 z of the conductive material 4 protruding from the end portion of the power generation layer 3 hardly hangs down due to gravity. Is not in contact with the side surface 3a.
  • the second conductive layer 104 is also formed on the side surface 103a of the power generation layer and the surface 101a of the base material. This difference stems from the manufacturing method.
  • the solid junction photoelectric conversion element 10 ⁇ / b> A (10) of the first embodiment of the present invention includes a metal foil that forms a conductive material 4 on a power generation layer 3.
  • This metal foil is the second conductive layer, and the conductive material 4 is composed of the second conductive layer.
  • the thickness of the metal foil is, for example, preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 200 ⁇ m, and even more preferably 5 ⁇ m to 100 ⁇ m.
  • the thickness is equal to or greater than the lower limit of the thickness range, even if a stress is applied to the photoelectric conversion element and the power generation layer 3 has a crack, a part of the metal foil is difficult to enter the crack, and thus leakage current is generated. Can be prevented.
  • the thickness is not more than the upper limit of the thickness range, the metal foil can be prevented from cracking or peeling when stress is applied to the photoelectric conversion element.
  • the type of the metal foil is not particularly limited, and for example, any one or more metals selected from the group consisting of gold, silver, copper, aluminum, tungsten, nickel, and chromium are preferable.
  • the whole electrically conductive material 4 may be comprised with the conductive polymer.
  • the conductive polymer include polyacetylene, poly (p-phenylene), poly (p-phenylene vinylene), polypyrrole, polythiophene, polyethylenedioxythiophene (PEDOT), polythienylene vinylene, polyfluorene, polyaniline, polyacene, A known conductive polymer such as graphene can be used.
  • the solid junction photoelectric conversion element 10 ⁇ / b> B (10) of the second embodiment of the present invention includes a conductive material 4 on the power generation layer 3.
  • the conductive material 4 is a laminate including a second conductive layer 4a and a support material 4b.
  • the thickness of the laminate is, for example, preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 200 ⁇ m, and even more preferably 5 ⁇ m to 100 ⁇ m.
  • the thickness is equal to or more than the lower limit of the thickness range, even when stress is applied to the photoelectric conversion element and the power generation layer 3 has cracks, the second conductive layer 4a can be sufficiently supported, Since a part of the layer 4a hardly penetrates into the crack, the occurrence of leakage current can be prevented. It can prevent that the 2nd conductive layer 4a is cracked or peeled off when stress is added to a photoelectric conversion element as it is below the upper limit of the range of the said thickness.
  • the thickness of the second conductive layer 4a is not particularly limited, and is preferably, for example, 10 nm or more and less than 5 ⁇ m, more preferably 10 nm to 1 ⁇ m, and further preferably 50 nm to 500 nm. If the thickness is equal to or greater than the lower limit of the thickness range, even if stress is applied to the photoelectric conversion element and the power generation layer 3 has a crack, a part of the second conductive layer 4a is difficult to enter the crack. Generation of current can be prevented. Moreover, it can prevent that the resistance of the 2nd conductive layer 4a increases too much, and can reduce the internal resistance of a photoelectric conversion element. It can prevent that the 2nd conductive layer 4a is cracked or peeled off when stress is added to a photoelectric conversion element as it is below the upper limit of the range of the said thickness.
  • the material of the 2nd conductive layer 4a is not specifically limited, For example, any 1 or more types of metal selected from the group which consists of gold
  • the material of the second conductive layer 4a may be one type or two or more types.
  • the shape of the support material 4b is preferably a flat plate shape or a film shape.
  • the thickness of the support material 4b is preferably such that the thickness combined with the second conductive layer 4a is 5 ⁇ m or more, for example, preferably 1 ⁇ m to 500 ⁇ m, more preferably 2 ⁇ m to 200 ⁇ m, and even more preferably 5 ⁇ m to 100 ⁇ m.
  • the 2nd conductive layer 4a can be supported more stably as it is more than the lower limit of the range of the said thickness. When the thickness is not more than the upper limit value of the thickness range, it is advantageous when flexibility is imparted to the entire photoelectric conversion element.
  • the support material 4b is preferably transparent.
  • the material of the support material 4b may be an insulating material or a conductive material, but is preferably an insulating material.
  • the conductivity of the conductive material 4 can be ensured by the second conductive layer 4a.
  • a suitable material for the support member 4b is the same as a suitable material for the substrate 1 described later.
  • Substrate 1 The kind in particular of base material 1 is not restrict
  • the transparent base material used for the photoelectrode of the conventional solar cell is mentioned.
  • the transparent substrate include a substrate made of glass or synthetic resin, a flexible film made of synthetic resin, and the like.
  • the material of the transparent substrate is a synthetic resin
  • the synthetic resin include polyacrylic resin, polycarbonate resin, polyester resin, polyimide resin, polystyrene resin, polyvinyl chloride resin, and polyamide resin.
  • polyester resins particularly polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) are preferable from the viewpoint of manufacturing a thin, light and flexible solar cell.
  • the combination of the thickness of the base material 1 and the material is not particularly limited, and examples thereof include a glass substrate having a thickness of 1 mm to 10 mm and a resin film having a thickness of 0.01 mm to 3 mm.
  • the material of the 1st conductive layer 2 is not specifically limited, For example, any 1 or more types of metal selected from the group which consists of gold
  • the thickness of the first conductive layer 2 is not particularly limited, and is preferably 10 nm to 100 nm, for example.
  • the power generation layer 3 is formed in the order of an N-type semiconductor layer (block layer) 31, a perovskite layer (light absorption layer) 32, and a P-type semiconductor layer 33 that are optionally installed on the first conductive layer 2. It is laminated.
  • the N-type semiconductor layer 31 is not an essential configuration, the N-type semiconductor layer 31 is preferably disposed between the first conductive layer 2 and the perovskite layer 32.
  • the P-type semiconductor layer 33 is not an essential configuration, it is preferable that the P-type semiconductor layer 33 is disposed between the conductive material 4 and the perovskite layer 32.
  • the N-type semiconductor layer 31 and the P-type semiconductor layer 33 are preferably non-porous dense layers from the viewpoint of obtaining the above effects.
  • the P-type semiconductor layer 33 is formed on the surface of the perovskite layer 32, and the conductive material 4 is formed on the surface of the P-type semiconductor layer 33. preferable.
  • the N-type semiconductor constituting the N-type semiconductor layer 31 is not particularly limited, and examples thereof include oxide semiconductors having excellent electron conductivity such as ZnO, TiO 2 , SnO, IGZO, and SrTiO 3 . Of these, TiO 2 is particularly preferable because of its excellent electron conductivity.
  • the type of the N-type semiconductor constituting the N-type semiconductor layer 31 may be one type or two or more types.
  • the number of layers of the N-type semiconductor layer 31 may be one or may be two or more.
  • the total thickness of the N-type semiconductor layer 31 is not particularly limited, but may be about 1 nm to 1 ⁇ m, for example. When the thickness is 1 nm or more, the effect of preventing the loss is sufficiently obtained, and when the thickness is 1 ⁇ m or less, the internal resistance can be kept low.
  • the perovskite layer 32 is a layer containing a perovskite compound, and may be formed of only a perovskite compound, or may include an underlayer (not shown) in part or all of the layer.
  • the underlayer is a layer that structurally supports the perovskite layer 32.
  • the thickness of the perovskite layer 32 is not particularly limited.
  • the thickness is preferably 10 nm to 10 ⁇ m, more preferably 50 nm to 1 ⁇ m, and still more preferably 100 nm to 0.5 ⁇ m.
  • the light absorption efficiency in the perovskite layer 32 is increased, and more excellent photoelectric conversion efficiency is obtained.
  • the efficiency with which the photoelectrons generated in the perovskite layer 32 reach the first conductive layer 2 is increased, and a more excellent photoelectric conversion efficiency is obtained.
  • the thickness of the underlayer that may be included in the perovskite layer 32 is not particularly limited, and is preferably 20 to 100%, more preferably 30 to 80%, based on the total thickness of the perovskite layer 32, for example.
  • the thickness of the base layer is the thickness from the surface of the N-type semiconductor layer 31.
  • the type of the perovskite compound is not particularly limited, and a perovskite compound used in a known solar cell is applicable, has a crystal structure, and exhibits light absorption by bandgap excitation in the same manner as a typical compound semiconductor. Is preferred.
  • CH 3 NH 3 PbI 3 which is a known perovskite compound, is known to have an extinction coefficient (cm ⁇ 1 ) per unit thickness that is an order of magnitude higher than that of a sensitizing dye of a dye-sensitized solar cell. Yes.
  • the material of the underlayer is preferably an N-type semiconductor and / or an insulator.
  • the underlayer may be a porous film or a non-porous dense film, and is preferably a porous film. It is preferable that the perovskite compound is supported by the porous structure of the underlayer. Even when the underlayer is a dense film, it is preferable that the dense film contains a perovskite compound.
  • the dense film is preferably formed of an N-type semiconductor.
  • the type of the N-type semiconductor that can form the base layer is not particularly limited, and a known N-type semiconductor can be applied.
  • a known N-type semiconductor can be applied.
  • an oxide that forms a photoelectrode of a conventional dye-sensitized solar cell A semiconductor is mentioned.
  • Specific examples include oxide semiconductors excellent in electronic conductivity such as titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO, SnO 2 ), IGZO, strontium titanate (SrTiO 3 ), and the like.
  • a compound semiconductor such as Si, Cd, or ZnS doped with a pentavalent element may be used.
  • titanium oxide is particularly preferable because of its excellent electron conductivity.
  • the N-type semiconductor forming the base layer may be one type or two or more types.
  • the kind of the insulator that can form the base layer is not particularly limited, and a known insulator can be applied, and examples thereof include an oxide that forms an insulating layer of a conventional semiconductor device. Specific examples include zirconium dioxide, silicon dioxide, aluminum oxide (AlO, Al 2 O 3 ), magnesium oxide (MgO), nickel oxide (NiO), and the like. Of these, aluminum (III) oxide (Al 2 O 3 ) is particularly preferable.
  • the insulator forming the base layer may be one type or two or more types.
  • the P-type semiconductor layer 33 formed on the surface of the perovskite layer 32 is composed of a P-type semiconductor.
  • the P-type semiconductor layer 33 having holes (holes) is disposed between the perovskite layer 32 and the conductive material 4, the generation of reverse current can be suppressed, and electrons are transferred from the conductive material 4 to the perovskite layer 32.
  • the moving efficiency is increased. As a result, the photoelectric conversion efficiency and voltage are increased.
  • the kind of the P-type semiconductor is not particularly limited, and may be an organic material or an inorganic material.
  • a P-type semiconductor for a hole transport layer of a known solar cell can be applied.
  • the organic material include 2,2 ′, 7,7′-tetrakis (N, N-di-p-methoxyphenilamine) -9,9′-spirobifluorene (abbreviation: spiro-OMeTAD), Poly (3-hexylthiophene) (Abbreviation: P3HT), polytriarylamine (abbreviation: PTAA), and the like.
  • the inorganic material include copper compounds such as CuI, CuSCN, CuO, and Cu 2 O, and nickel compounds such as NiO.
  • the thickness of the P-type semiconductor layer 33 is not particularly limited.
  • the thickness is preferably 1 nm to 1000 nm, more preferably 5 nm to 500 nm, and further preferably 30 nm to 500 nm. High electromotive force can be obtained as it is more than the lower limit of the said range. If it is not more than the upper limit of the above range, the internal resistance can be further reduced.
  • the method for producing a solid junction photoelectric conversion element of the present invention includes a step of forming a first conductive layer 2 and a power generation layer 3 in this order on a base material 1, and a second conductive layer on the power generation layer 3. And a step of attaching the conductive material 4 including the layer.
  • a method of sticking the conductive material 4 on the power generation layer 3 for example, a method of pressing the conductive material 4 placed on the power generation layer 3 is preferable. You may heat simultaneously with a press.
  • the area of the conductive material 4 to be attached in plan view is preferably larger than the area of the power generation layer 3 in plan view. With this size, the power generation layer 3 can be easily attached without leaving any excess.
  • the base material 1 can be produced by a conventional method, and a commercially available product may be used.
  • the method for forming the first conductive layer 2 on the surface of the substrate 1 is not particularly limited, and for example, a known film forming method such as a sputtering method or a vapor deposition method can be applied.
  • N-type semiconductor layer 31 is formed on the first conductive layer 2.
  • the method for forming the N-type semiconductor layer 31 is not particularly limited, and examples of known methods capable of forming a dense layer made of an N-type semiconductor with a desired thickness include, for example, sputtering, vapor deposition, and dispersion including an N-type semiconductor precursor. Examples thereof include a sol-gel method in which a liquid is applied.
  • N-type semiconductor precursors include titanium tetrachloride (TiCl 4 ), peroxotitanic acid (PTA), titanium alkoxide such as titanium ethoxide and titanium isopropoxide (TTIP), zinc alkoxide, alkoxysilane, and zirconium. Examples thereof include metal alkoxides such as alkoxides.
  • the method is not particularly limited.
  • a conventional method for forming a semiconductor layer carrying a sensitizing dye of a dye-sensitized solar cell can be applied.
  • a paste containing fine particles made of an N-type semiconductor or an insulator and a binder is applied to the surface of the N-type semiconductor layer 31 by a doctor blade method, dried, and fired, whereby a porous fine particle made of fine particles is obtained.
  • An underlayer can be formed. Further, by spraying fine particles onto the surface of the N-type semiconductor layer 31, a porous or non-porous underlayer made of the fine particles can be formed.
  • the method for spraying the fine particles is not particularly limited, and a known method can be applied, for example, an aerosol deposition method (AD method), an electrostatic fine particle coating method (electrostatic spray method) in which fine particles are accelerated by electrostatic force, The cold spray method etc. are mentioned.
  • AD method aerosol deposition method
  • electrostatic fine particle coating method electrostatic spray method
  • the cold spray method etc. are mentioned.
  • the AD method is preferable because the speed of the sprayed fine particles can be easily adjusted, the film quality and thickness of the underlying layer to be formed can be easily adjusted, and the film can be formed at a low temperature.
  • the method for incorporating the perovskite compound in the underlayer is not particularly limited, for example, a method in which the formed underlayer is impregnated with a solution containing the perovskite compound or a precursor thereof, or a material to which the perovskite compound is previously attached is used. And a method of forming the base layer. The above two methods may be used in combination.
  • a raw material to which the perovskite compound crystallized is adhered by immersing the fine particles in a raw material solution in which a perovskite compound or a precursor of the perovskite compound is dissolved and further drying the solvent.
  • grains is mentioned.
  • a layer (upper layer) containing a perovskite compound may be further formed on the surface of the underlayer.
  • the method for forming the upper layer is not particularly limited, and examples thereof include the following method. That is, a raw material solution in which a perovskite compound or a perovskite compound precursor is dissolved is applied to the surface of the base layer, the raw material solution is impregnated inside the base layer, and the surface of the base layer has a desired thickness. In this method, the solvent is dried in a state where there is a solution layer made of the raw material solution.
  • At least a part of the raw material solution applied to the base layer penetrates into the porous film of the base layer, and crystallization proceeds with drying of the solvent, and a perovskite compound adheres and deposits in the porous film. Further, by applying a sufficient amount of the raw material solution, the raw material solution that has not penetrated into the porous film forms the upper layer made of a perovskite compound on the surface of the underlayer together with the drying of the solvent.
  • the perovskite compound constituting the upper layer and the perovskite compound inside the underlayer are integrally formed, and the perovskite layer 32 is integrally formed.
  • the perovskite compound used in the present embodiment is not particularly limited as long as it can generate an electromotive force by light absorption, and a known perovskite compound is applicable.
  • perovskite-type crystals can be formed, and the following composition formula (1) having an organic component and an inorganic component in a single compound: ABX 3 (1)
  • the perovskite compound represented by these is preferable.
  • A represents an organic cation
  • B represents a metal cation
  • X represents a halogen ion.
  • the B site can take octahedral coordination with the X site. It is considered that the metal cation at the B site and the atomic orbital of the halogen ion at the X site are mixed to form a valence band and a conduction band related to photoelectric conversion.
  • the metal constituting the metal cation represented by B in the composition formula (1) is not particularly limited, and examples thereof include Cu, Ni, Mn, Fe, Co, Pd, Ge, Sn, Pb, and Eu. Among these, Pb and Sn are preferable because they can easily form a highly conductive band by hybridization with the atomic orbitals of halogen ions at the X site.
  • the metal cation constituting the B site may be one type or two or more types.
  • the halogen constituting the halogen ion represented by X in the composition formula (1) is not particularly limited, and examples thereof include F, Cl, Br, and I. Among these, Cl, Br, and I are preferable because they can easily form a highly conductive band by a hybrid orbital with a metal cation at the B site. There may be one kind of halogen ion constituting the X site, or two or more kinds.
  • the organic group constituting the organic cation represented by A in the composition formula (1) is not particularly limited, and examples thereof include alkylammonium derivatives and formamidinium derivatives.
  • the organic cation constituting the A site may be one type or two or more types.
  • Examples of the organic cation formed by the alkyl ammonium derivative include carbon such as methyl ammonium, dimethyl ammonium, trimethyl ammonium, ethyl ammonium, propyl ammonium, isopropyl ammonium, tert-butyl ammonium, pentyl ammonium, hexyl ammonium, octyl ammonium, and phenyl ammonium.
  • Examples thereof include primary or secondary ammonium having a number 1 to 6 alkyl group. Of these, methylammonium, which can easily obtain perovskite crystals, is preferred.
  • formamidinium derivative examples include formamidinium, methylformamidinium, dimethylformamidinium, trimethylformamidinium, and tetramethylformamidinium. Of these, formamidinium is preferred because it can easily obtain a perovskite crystal.
  • a suitable perovskite compound represented by the composition formula (1) for example, CH 3 NH 3 PbI 3 , CH 3 NH 3 PbI 3-h Cl h (h represents 0 to 3), CH 3 NH 3 PbI.
  • the following composition formula (2) such as 3-j Br j (j represents 0 to 3): RNH 3 PbX 3 (2)
  • R represents an alkyl group
  • X represents a halogen ion. Since the perovskite compound having this composition formula has a wide absorption wavelength range and can absorb a wide wavelength range of sunlight, excellent photoelectric conversion efficiency can be obtained.
  • the alkyl group represented by R in the composition formula (2) is preferably a linear, branched or cyclic saturated or unsaturated alkyl group having 1 to 6 carbon atoms, and a straight chain having 1 to 6 carbon atoms.
  • a chain saturated alkyl group is more preferable, and a methyl group, an ethyl group, or an n-propyl group is further preferable. With these preferable alkyl groups, perovskite crystals can be easily obtained.
  • examples of the precursor contained in the raw material solution include a halide (BX) containing a metal ion at the B site and a halogen ion at the X site, and an organic at the A site. And halide (AX) containing a cation and a halogen ion at the X site.
  • a single raw material solution containing halide (AX) and halide (BX) may be applied to the underlayer, or two raw material solutions containing each halide individually may be applied in turn to the underlayer. You may apply to.
  • the solvent of the raw material solution is not particularly limited as long as it is a solvent that dissolves the raw material and does not damage the underlying layer.
  • a solvent that dissolves the raw material and does not damage the underlying layer for example, ester, ketone, ether, alcohol, glycol ether, amide, nitrile, carbonate, halogenated hydrocarbon , Hydrocarbons, sulfones, sulfoxides, formamides and the like.
  • an alkylamine halide and a lead halide are dissolved in a mixed solvent of ⁇ -butyrolactone (GBL) and dimethyl sulfoxide (DMSO), and the solution is applied to the underlayer and dried, whereby the composition formula (2
  • GBL ⁇ -butyrolactone
  • DMSO dimethyl sulfoxide
  • a solvent that does not dissolve the perovskite crystal and is miscible with GBL or DMSO, such as toluene or chloroform is applied at about 100 ° C.
  • An annealing process may be added. This additional treatment may improve the stability of the perovskite crystal and increase the photoelectric conversion efficiency.
  • the concentration of the raw material in the raw material solution is not particularly limited, and is preferably a concentration that is sufficiently dissolved and exhibits a viscosity that allows the raw material solution to penetrate into the porous membrane.
  • the amount of the raw material solution applied to the undercoat layer is not particularly limited.
  • the upper solution having a thickness of about 1 nm to 1 ⁇ m permeates the whole or at least a part of the porous film.
  • a coating amount sufficient to form a layer is preferable.
  • the method for applying the raw material solution to the underlayer is not particularly limited, and a known method such as a gravure coating method, a bar coating method, a printing method, a spray method, a spin coating method, a dip method, or a die coating method can be applied.
  • a method for drying the raw material solution applied to the base layer is not particularly limited, and a known method such as natural drying, reduced pressure drying, hot air drying, or the like can be applied.
  • the drying temperature of the raw material solution applied to the underlayer may be a temperature at which the crystallization of the perovskite compound proceeds sufficiently, and may be in the range of 40 to 150 ° C., for example.
  • the method for forming the P-type semiconductor layer 33 is not particularly limited.
  • a solution in which a P-type semiconductor is dissolved or dispersed in a solvent that hardly dissolves the perovskite compound constituting the perovskite layer 32 is prepared.
  • the method of obtaining the P-type semiconductor layer 33 by applying to the surface and drying is used.
  • the power generation layer 3 including the N-type semiconductor layer 31, the perovskite layer 32, and the P-type semiconductor layer 33 in this order can be formed.
  • Example 1 A transparent resin substrate (PEN substrate) having a transparent conductive layer made of ITO formed on the surface thereof was prepared. A part of this ITO layer was etched using hydrochloric acid. The purpose of this etching is to leave only the region for forming the power generation layer and the region necessary for the lead wiring out of the ITO layer formed on the entire surface of the PEN substrate, and to remove other unnecessary regions. Subsequently, a DMF solution in which 1M CH 3 NH 3 PbI 3 was dissolved was spin-coated on the PEN substrate, and heated and dried at 100 ° C. for 90 minutes to form a perovskite layer (power generation layer).
  • a DMF solution in which 1M CH 3 NH 3 PbI 3 was dissolved was spin-coated on the PEN substrate, and heated and dried at 100 ° C. for 90 minutes to form a perovskite layer (power generation layer).
  • a gold foil (Au foil) having a thickness of 10 ⁇ m having a self-supporting property was placed on the perovskite layer, and the gold foil and the PEN substrate were sandwiched between clips, thereby pressing the gold foil to the power generation layer.
  • the frequency (leakage frequency) at which leakage current occurs was evaluated by the following method. As a result, 16 pieces passed and 4 pieces failed. In other words, leak current was generated in 4 of the 20 manufactured solid junction photoelectric conversion elements, and the leak frequency was 20%.
  • Example 2 to 5 A photoelectric conversion element was produced and evaluated in the same manner as in Example 1 except that a Ti foil, Al foil, or Ag foil having a thickness of 50 ⁇ m having a self-supporting property was used instead of the Au foil. The results are shown in Table 1.
  • Example 6 In place of Au foil, except that a self-supporting conductive material in which a 0.1 ⁇ m thick Au layer, Ti layer, Al layer, and Ag layer were formed on the surface of a 125 ⁇ m thick PEN film was used. A photoelectric conversion element was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • the solid junction photoelectric conversion element according to the present invention is less prone to leak current and is manufactured with a high yield.
  • the cause is the roughness of ITO deposited on the PEN substrate and the press (crimping) conditions. .
  • the solid junction photoelectric conversion element of the present invention a leak current hardly occurs even when a stress is applied from the outside to cause bending or distortion. According to the method for producing a solid junction photoelectric conversion element of the present invention, it is possible to easily produce a solid junction photoelectric conversion element in which leakage current hardly occurs.
  • DESCRIPTION OF SYMBOLS 1 ... Base material, 2 ... 1st conductive layer, 3 ... Power generation layer, 3a ... Side surface of power generation layer, 4 ... Conductive material, 4a ... 2nd conductive layer, 4b ... Support material, 10 ... Solid junction type photoelectric conversion element, DESCRIPTION OF SYMBOLS 31 ... N-type semiconductor layer, 32 ... Perovskite layer, 33 ... P-type semiconductor layer, 100 ... Solid junction photoelectric conversion element of comparative example, 101 ... Base material, 101a ... Surface of base material, 102 ... First conductive layer, DESCRIPTION OF SYMBOLS 103 ... Power generation layer, 103a ... Side surface of power generation layer, 104 ... Second conductive layer, 131 ... N type semiconductor layer, 132 ... Perovskite layer, 133 ... P type semiconductor layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

基材と、第一導電層と、ペロブスカイト層を含む発電層と、第二導電層を含む導電材と、をこの順に備えた固体接合型光電変換素子であって、導電材が自立性を有する、固体接合型光電変換素子。

Description

固体接合型光電変換素子、及びその製造方法
 本発明は、固体接合型光電変換素子、及びその製造方法に関する。
 本願は、2016年2月19日に、日本に出願された特願2016-029952号に基づき優先権を主張し、その内容をここに援用する。
 近年、ペロブスカイト化合物を含む発電層を備えた固体接合型光電変換素子が高い光電変換効率を示すことが報告され(非特許文献1)、新たな光電変換素子として注目を集めている。この報告を皮切りに、更なる光電変換効率の向上が相次いで報告されている(例えば、非特許文献2)。
 従来の固体接合型光電変換素子の積層構造を示す断面図を図3に示す。この積層構造を形成する一般的なプロセスは、スパッタ法等の物理蒸着法によって基材101上に第一導電層102を形成し、スピンコート法等の塗工法によってペロブスカイト層を含む発電層103を形成し、物理蒸着法や印刷法等によって第二導電層104を形成する、という一連の成膜プロセスを有する。この成膜プロセスにおいて、第二導電層104を形成する際に、発電層103の厚さ方向に貫通するクラックが生じていた場合、第二導電層104の一部がクラックに侵入して、第一導電層102側へ延びる導電性突起が形成される。この導電性突起の先端が第一導電層102又はN型半導体層131に到達すると、第二導電層104と第一導電層102とが短絡してリーク電流が発生する、という問題が生じる。
 本発明は、上記事情に鑑みてなされたものであり、リーク電流が発生し難い固体接合型光電変換素子、及びその製造方法を提供する。
[1] 基材と、第一導電層と、ペロブスカイト層を含む発電層と、第二導電層を含む導電材と、をこの順に備えた固体接合型光電変換素子であって、前記導電材が自立性を有する、固体接合型光電変換素子。
[2] 前記導電材の厚さが1μm以上である、[1]に記載の固体接合型光電変換素子。
[3] 前記第二導電層は金属箔である、[1]又は[2]に記載の固体接合型光電変換素子。
[4] 前記導電材は、前記第二導電層と支持材を備えた積層体である、[1]又は[2]に記載の固体接合型光電変換素子。
[5] 前記第二導電層は、金属、金属酸化物、カーボン材料及び有機高分子材料から選ばれる1つ以上からなる、[4]に記載の固体接合型光電変換素子。
[6] 前記発電層は、前記導電材側の面から前記第一導電層側へ伸びるクラックを1つ以上有し、前記導電材は、前記発電層に密着し、且つ前記クラックを跨いでいる、[1]~[5]の何れか一項に記載の固体接合型光電変換素子。
[7] 第一導電層と、ペロブスカイト層を含む発電層と、第二導電層を含む導電材と、をこの順に備えた固体接合型光電変換素子の製造方法において、基材上に、前記第一導電層と、前記発電層と、をこの順に形成する工程と、前記発電層の上に、前記導電材を張付ける工程と、を有する、固体接合型光電変換素子の製造方法。
[8] 前記導電材を張付ける工程において、前記発電層の上に、前記導電材を載せた後、プレスすることにより張付ける、[7]に記載の固体接合型光電変換素子の製造方法。
[9] 前記第二導電層は金属箔である、[7]又は[8]に記載の固体接合型光電変換素子の製造方法。
[10] 前記導電材は、前記第二導電層と支持材を備えた積層体である、[7]又は[8]に記載の固体接合型光電変換素子の製造方法。
[11] 前記第二導電層は、金属、金属酸化物、カーボン材料及び有機高分子材料から選ばれる1つ以上からなる、[10]に記載の固体接合型光電変換素子の製造方法。
 本発明の固体接合型光電変換素子においては、外部から応力が加わって、撓みや歪みが生じた場合にもリーク電流が発生し難い。
 本発明の固体接合型光電変換素子の製造方法によれば、リーク電流が発生し難い固体接合型光電変換素子を簡便に製造することができる。
本発明の固体接合型光電変換素子の第一実施形態の断面図である。 本発明の固体接合型光電変換素子の第二実施形態の断面図である。 従来の固体接合型光電変換素子モジュールの断面図である。
 以下、好適な実施の形態に基づき、図面を参照して本発明を説明するが、本発明はかかる実施形態に限定されない。
 本明細書において、「膜」と「層」は特に明記しない限り区別しない。また、固体接合型の光電変換素子を単に「光電変換素子」といい、有機無機ペロブスカイト化合物を単に「ペロブスカイト化合物」ということがある。
《固体接合型光電変換素子》
 本発明にかかる固体接合型光電変換素子は、図1及び図2に示すように、基材1、第一導電層2、ペロブスカイト層32を含む発電層3、及び第二導電層を含む導電材4、を順に備えた固体接合型光電変換素子であり、導電材4は自立性を有する。
 ここで、自立性を有するとは、単独の導電材4を膜(平面形状部材)として取り扱うことができるということを意味する。
 導電材4が自立性を有するか否かは、次の方法によって判定される。その判定方法は、例えば、平面視で1mm×2mmの矩形の膜(導電材4)を用意し、その膜の長手方向の半分(1mm×1mm) の平面を水平な台の端部に接して固定し、膜の残り半分の平面を台の端部から台の外へ水平に突出させる。この際、台の端部は直線の辺であり、この辺に対して、突出した膜の短手方向の辺(先端の辺)が略平行となる。このように突出させた膜の突出部を平面視した総面積のうち、90%以上が、10秒以上、欠落することなく維持されるか否かを目視等にて観察する方法が挙げられる。
 導電材が自立性を有する場合は、上記判定方法において、突出部の総面積のうち90%以上が10秒以上維持される。
 導電材が自立性を有しない場合は、上記判定方法において、自重により、突出部の総面積のうち10%超が10秒以内に欠落する。
 導電材4の厚さが1μm以上であると、導電材4が自立性を有しやすく、リーク電流を防止ししやすいので好ましい。より好ましくは2μm以上である。
 具体的には、導電材4の厚さは1μm~200μmが好ましく、2μm~100μmがより好ましい。200μm以下であると、光電変換素子の薄型化が容易になる。
 導電材4が高い自立性を有し、製造時の取り扱いが容易になり、リーク電流の発生を容易に防止できる観点から、導電材4の厚さT(単位:μm)と、導電材4の平面視の面積S(単位:cm)とのS/Tで表される比(単位:cm/μm)は、例えば、1~1000が好ましく、1~500がより好ましく、1~100がさらに好ましい。
 なお、本願明細書において厚さは、固体接合型光電変換素子の厚さ方向の断面を電子顕微鏡で観察し、測定対象の任意の10箇所の厚さを測定し、各厚さの算術平均値として求められる。
 図1及び図2に示すように、導電材4は自立性を有するので、発電層3の端部からはみ出した導電材4の端部4zは、重力によってほとんど下垂しておらず、発電層3の側面3aに接触していない。
 一方、図3に示す従来の光電変換素子100においては、第二導電層104が発電層の側面103a及び基材の表面101aにも成膜されている。この相違は、製造方法に由来する。
 図1及び図2に図示していないが、発電層3において、第二導電層側の表面から第一導電層側へ伸びるクラック(ひび割れ)が1つ以上ある場合においても、発電層3の表面に密着する導電材4は前記クラックを跨いでいる。ここで、「跨いでいる」とは、導電材4がクラックの内部を充填しておらず、導電材4がクラックの開口部に蓋をしている状態をいう。
 ここで、前記クラックの深さは、深いほどリーク電流が発生するリスクが高まり、例えば、発電層3のN型半導体層31を除く厚さ(100%)(すなわち、ペロブスカイト層32とP型半導体層33の合計の厚さ)に対して、30%以上の深さに到達しているクラックが実質的なリスクを有するといえる。なお、前記クラックの深さは、発電層3の断面を電子顕微鏡によって観察することによって調べることができる。
[第一実施形態]
 本発明の第一実施形態の固体接合型光電変換素子10A(10)は、図1に示すように、発電層3の上に導電材4を構成する金属箔を備える。この金属箔が第二導電層であり、且つ導電材4は、第二導電層からなる。
 金属箔の厚さは、例えば1μm~500μmが好ましく、2μm~200μmがより好ましく、5μm~100μmがさらに好ましい。
 上記厚さの範囲の下限値以上であると、光電変換素子に応力が加わり、発電層3にクラックがあった場合においても、金属箔の一部がクラックに侵入し難いので、リーク電流の発生を防ぐことができる。
 上記厚さの範囲の上限値以下であると、光電変換素子に応力が加わった場合に、金属箔が割れたり剥離したりすることを防止できる。
 前記金属箔の種類は特に限定されず、例えば、金、銀、銅、アルミニウム、タングステン、ニッケル及びクロムからなる群から選択される何れか1種以上の金属が好適である。
 本実施形態においては導電材4の全体が金属箔である場合を説明したが、導電材4の全体が導電性高分子によって構成されていてもよい。
 導電性高分子としては、例えば、ポリアセチレン、ポリ(p-フェニレン)、ポリ(p-フェニレンビニレン)、ポリピロール、ポリチオフェン、ポリエチレンジオキシチオフェン(PEDOT)、ポリチエニレンビニレン、ポリフルオレン、ポリアニリン、ポリアセン、グラフェン等の公知の導電性高分子が挙げられる。 
[第二実施形態]
 本発明の第二実施形態の固体接合型光電変換素子10B(10)は、図2に示すように、発電層3の上に導電材4を備える。導電材4は、第二導電層4aと支持材4bを備えた積層体である。
 前記積層体の厚さは、例えば1μm~500μmが好ましく、2μm~200μmがより好ましく、5μm~100μmがさらに好ましい。
 上記厚さの範囲の下限値以上であると、光電変換素子に応力が加わり、発電層3にクラックがあった場合においても、第二導電層4aを充分に支持することができ、第二導電層4aの一部がクラックに侵入し難いので、リーク電流の発生を防ぐことができる。
 上記厚さの範囲の上限値以下であると、光電変換素子に応力が加わった場合に、第二導電層4aが割れたり剥離したりすることを防止できる。
 第二導電層4aの厚さは特に限定されず、例えば10nm以上5μm未満が好ましく、10nm~1μmがより好ましく、50nm~500nmがさらに好ましい。
 上記厚さの範囲の下限値以上であると、光電変換素子に応力が加わり、発電層3にクラックがあった場合においても、第二導電層4aの一部がクラックに侵入し難いので、リーク電流の発生を防ぐことができる。また、第二導電層4aの抵抗が過度に高まることを防止し、光電変換素子の内部抵抗を低減することができる。
 上記厚さの範囲の上限値以下であると、光電変換素子に応力が加わった場合に、第二導電層4aが割れたり剥離したりすることを防止できる。
 第二導電層4aの材料は特に限定されず、例えば、金、銀、銅、アルミニウム、タングステン、ニッケル及びクロムからなる群から選択される何れか1種以上の金属が好適である。
 また、第二導電層4aの材料としては、例えば、金属酸化物、グラファイト等のカーボン材料、導電性高分子等の有機高分子材料が挙げられる。
 第二導電層4aの材料は1種でもよいし、2種以上でもよい。
 支持材4bの形状としては、平板状又はフィルム状であることが好ましい。
 支持材4bの厚さは、第二導電層4aと合わせた厚さが5μm以上となる厚さが好ましく、例えば1μm~500μmが好ましく、2μm~200μmがより好ましく、5μm~100μmがさらに好ましい。
 上記厚さの範囲の下限値以上であると、第二導電層4aをより安定に支持することができる。
 上記厚さの範囲の上限値以下であると、光電変換素子の全体に可撓性を付与する場合に有利である。
 支持材4bは透明であることが好ましい。支持材4bの材料は絶縁材料であってもよいし、導電材料であってもよいが、絶縁材料であることが好ましい。導電材4の導電性は第二導電層4aにより確保することができる。支持材4bの好適な材料は、後述する基板1の好適な材料と同じである。
 以下、その他の構成について説明する。
<基材1>
 基材1の種類は特に制限されず、例えば従来の太陽電池の光電極に使用される透明基材が挙げられる。前記透明基材としては、例えばガラス又は合成樹脂からなる基板、合成樹脂製の可撓性を有するフィルム等が挙げられる。
 前記透明基材の材料が合成樹脂である場合、その合成樹脂としては、例えば、ポリアクリル樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂等が挙げられる。これらの中でも、ポリエステル樹脂、特にポリエチレンナフタレート(PEN)やポリエチレンテレフタレート(PET)が、薄く、軽く、かつフレキシブルな太陽電池を製造する観点から好ましい。
 基材1の厚みと材料の組み合わせは特に限定されず、例えば1mm~10mm厚のガラス基板、0.01mm~3mm厚の樹脂フィルム等が挙げられる。
<第一導電層2>
 第一導電層2の材料は特に限定されず、例えば、金、銀、銅、アルミニウム、タングステン、ニッケル及びクロムからなる群から選択される何れか1種以上の金属が好適である。
 第一導電層2の厚みは特に限定されず、例えば、10nm~100nmが好ましい。
<発電層3>
 発電層3は、第一導電層2の上に、任意で設置されるN型半導体層(ブロック層)31、ペロブスカイト層(光吸収層)32、任意で設置されるP型半導体層33の順に積層されてなる。
 N型半導体層31は必須の構成ではないが、N型半導体層31が第一導電層2とペロブスカイト層32の間に配置されていることが好ましい。
 P型半導体層33は必須の構成ではないが、P型半導体層33が導電材4とペロブスカイト層32の間に配置されていることが好ましい。
 N型半導体層31及びP型半導体層33の少なくとも一方が配置されていると、起電力の損失が防止され、光電変換効率が向上する。
 N型半導体層31及びP型半導体層33は、上記効果を得る観点から、非多孔性の緻密層であることが好ましい。
 発電層3を構成する上記の各層の相対的な順序が維持される限り、本発明の趣旨を損なわない範囲で、発電層3の何れかの層の上又は下に他の層が挿入されても構わない。光電変換素子の内部抵抗を減らし、光電変換効率を高める観点から、ペロブスカイト層32の表面にP型半導体層33が形成され、P型半導体層33の表面に導電材4が形成されていることが好ましい。
<N型半導体層31>
 N型半導体層31を構成するN型半導体は、特に限定されず、例えば、ZnO、TiO、SnO、IGZO、SrTiO等の電子伝導性に優れた酸化物半導体が挙げられる。中でも特にTiOが電子伝導性に優れるので好ましい。
 N型半導体層31を構成するN型半導体の種類は、1種類でもよく、2種類以上でもよい。
 N型半導体層31の層数は、1層であってもよく、2層以上であってもよい。
 N型半導体層31の合計の厚みは特に限定されないが、例えば1nm~1μm程度が挙げられる。1nm以上であると上記損失を防止する効果が充分に得られ、1μm以下であると内部抵抗を低く抑えることができる。
<ペロブスカイト層32>
 ペロブスカイト層32は、ペロブスカイト化合物を含む層であり、ペロブスカイト化合物のみから形成されていてもよいし、層内の一部又は全部に下地層(不図示)を含んでいてもよい。前記下地層はペロブスカイト層32を構造的に支持する層である。
 ペロブスカイト層32の厚さは特に限定されず、例えば、10nm~10μmが好ましく、50nm~1μmがより好ましく、100nm~0.5μmがさらに好ましい。
 上記範囲の下限値以上であると、ペロブスカイト層32における光の吸収効率が高まり、より優れた光電変換効率が得られる。
 上記範囲の上限値以下であると、ペロブスカイト層32内で発生した光電子が第一導電層2に到達する効率が高まり、より優れた光電変換効率が得られる。
 ペロブスカイト層32内に含まれていてもよい前記下地層の厚さは特に限定されず、ペロブスカイト層32の総厚さに対して、例えば、20~100%が好ましく、30~80%がより好ましい。ここで前記下地層の厚さは、N型半導体層31の表面からの厚さである。
 ペロブスカイト化合物の種類は、特に限定されず、公知の太陽電池に使用されるペロブスカイト化合物が適用可能であり、結晶構造を有し、典型的な化合物半導体と同様にバンドギャップ励起による光吸収を示すものが好ましい。例えば、公知のペロブスカイト化合物であるCH3NH3PbI3は、色素増感太陽電池の増感色素と比べて、単位厚さ当たりの吸光係数(cm-1)が1桁高いことが知られている。
 前記下地層の材料は、N型半導体及び/又は絶縁体であることが好ましい。
 前記下地層は、多孔質膜であってもよく、非多孔質の緻密膜であってもよく、多孔質膜であることが好ましい。前記下地層の多孔質構造によって、ペロブスカイト化合物が担持されていることが好ましい。前記下地層が緻密膜である場合にも、前記緻密膜にペロブスカイト化合物が含まれることが好ましい。前記緻密膜は、N型半導体によって形成されていることが好ましい。
 前記下地層を構成することが可能な前記N型半導体の種類は特に限定されず、公知のN型半導体が適用可能であり、例えば、従来の色素増感太陽電池の光電極を構成する酸化物半導体が挙げられる。具体的には、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化スズ(SnO, SnO2)、IGZO、チタン酸ストロンチウム(SrTiO3)等の電子伝導性に優れた酸化物半導体が例示できる。また、5価の元素がドープされたSi、Cd、ZnSなどの化合物半導体も適用できる場合がある。これらのうち、特に酸化チタンが電子伝導性に優れるので好ましい。
 前記下地層を形成するN型半導体は、1種であってもよく、2種以上であってもよい。
 前記下地層を構成することが可能な前記絶縁体の種類は特に制限されず、公知の絶縁体が適用可能であり、例えば、従来の半導体デバイスの絶縁層を構成する酸化物が挙げられる。具体的には、二酸化ジルコニウム、二酸化珪素、酸化アルミニウム(AlO, Al2O3)、酸化マグネシウム(MgO)、酸化ニッケル(NiO)等が例示できる。これらのうち、特に酸化アルミニウム(III)(Al2O3)が好ましい。
 前記下地層を形成する絶縁体は、1種であってもよく、2種以上であってもよい。
<P型半導体層33>
 ペロブスカイト層32の表面に形成されたP型半導体層33は、P型半導体によって構成されている。ホール(正孔)を有するP型半導体層33がペロブスカイト層32と導電材4の間に配置されていると、逆電流の発生を抑制することができ、導電材4からペロブスカイト層32へ電子が移動する効率が高められる。この結果、光電変換効率及び電圧が高められる。
 前記P型半導体の種類は特に限定されず、有機材料であってもよく、無機材料であってもよく、例えば、公知の太陽電池の正孔輸送層のP型半導体が適用できる。前記有機材料として、例えば、2,2',7,7'-tetrakis(N,N-di-p-methoxyphenilamine)-9,9'-spirobifluorene(略称:spiro-OMeTAD)、Poly(3-hexylthiophene)(略称:P3HT)、polytriarylamine(略称:PTAA) などが挙げられる。
 前記無機材料としては、例えば、CuI、CuSCN、CuO、CuO等の銅化合物やNiOなどのニッケル化合物などが挙げられる。
 P型半導体層33の厚さは特に限定されず、例えば、1nm~1000nmが好ましく、5nm~500nmがより好ましく、30nm~500nmがさらに好ましい。
 上記範囲の下限値以上であると、高い起電力を得ることができる。
 上記範囲の上限値以下であると、内部抵抗をより低減することができる。
《固体接合型光電変換素子10の発電》
 ペロブスカイト層32が光を吸収すると、層内で光電子及び正孔が発生する。光電子はN型半導体層31に受容され、第一導電層2が構成する作用極(正極)に移動する。一方、正孔はP型半導体層33を介して導電材4が構成する対極(負極)に移動する。
 光電変換素子10によって発電された電流は、第一導電層2及び導電材4に接続された引出電極を介して外部回路へ取り出され得る。
《固体接合型光電変換素子の製造方法》
 本発明の固体接合型光電変換素子の製造方法は、基材1上に、第一導電層2と、発電層3と、をこの順に形成する工程と、発電層3の上に、第二導電層を含む導電材4を張付ける工程と、を有する。
 発電層3の上に導電材4を張付ける方法としては、例えば、発電層3の上に載置した導電材4をプレスする方法が好ましい。プレスと同時に加熱してもよい。
 張付ける導電材4の平面視の面積は、発電層3の平面視の面積よりも大きいことが好ましい。このサイズであると、発電層3を余すことなく容易に張付けることができる。
 以下、各工程を詳細に説明する。
<基材1の準備>
 基材1は常法により作製可能であり、市販品を使用してもよい。
<第一導電層2の形成>
 基材1の表面に、第一導電層2を形成する方法は特に限定されず、例えば、スパッタ法、蒸着法等の公知の成膜方法が適用できる。
<N型半導体層31の形成>
 第一導電層2の上にN型半導体層31を形成する。
 N型半導体層31の形成方法は特に限定されず、所望の厚みでN型半導体からなる緻密層を形成可能な公知方法として、例えば、スパッタ法、蒸着法、N型半導体の前駆体を含む分散液を塗布するゾルゲル法等が挙げられる。
 N型半導体の前駆体としては、例えば、四塩化チタン(TiCl)、ペルオキソチタン酸(PTA)や、チタンエトキシド、チタンイソプロポキシド(TTIP)等のチタンアルコキシド、亜鉛アルコキシド、アルコキシシラン、ジルコニウムアルコキシド等の金属アルコキシドが挙げられる。
<ペロブスカイト層32の形成>
 ペロブスカイト層32を支持する前記下地層を形成する場合、その方法は特に限定されず、例えば、従来の色素増感太陽電池の増感色素を担持する半導体層の形成方法が適用できる。具体例として、例えば、N型半導体又は絶縁体からなる微粒子及びバインダーを含むペーストをドクターブレード法でN型半導体層31の表面に塗布し、乾燥し、焼成することによって、微粒子からなる多孔質の下地層を形成することができる。また、微粒子をN型半導体層31の表面に吹き付けることによって、前記微粒子からなる多孔質又は非多孔質の下地層を成膜することができる。
 前記微粒子の吹き付け方法は、特に限定されず、公知方法が適用可能であり、例えば、エアロゾルデポジション法(AD法)、静電力により微粒子を加速する静電微粒子コーティング法(静電スプレー法)、コールドスプレー法等が挙げられる。これらの方法のうち、吹き付ける微粒子の速度の調整が容易であり、形成する下地層の膜質や厚さの調整が容易であり、低温で成膜できることから、AD法が好ましい。
 前記下地層の内部にペロブスカイト化合物を含有させる方法は、特に限定されず、例えば、形成した下地層にペロブスカイト化合物又はその前駆体を含む溶液を含浸させる方法、予めペロブスカイト化合物が付着した材料を使用して前記下地層を形成する方法、等が挙げられる。上記2つの方法を併用してもよい。
 前記微粒子にペロブスカイト化合物を付着させる方法としては、ペロブスカイト化合物又はペロブスカイト化合物の前駆体を溶解した原料溶液に、前記微粒子を浸漬し、さらに溶媒を乾燥することによって、結晶化したペロブスカイト化合物が付着した原料粒子を得る方法が挙げられる。
 前記下地層の表面にさらにペロブスカイト化合物を含む層(アッパー層)を形成してもよい。前記アッパー層を形成する方法は、特に限定されず、例えば、次の方法が挙げられる。すなわち、ペロブスカイト化合物又はペロブスカイト化合物の前駆体を溶解した原料溶液を前記下地層の表面に塗布し、前記下地層の内部に前記原料溶液を含浸させるとともに、前記下地層の表面に所望の厚みの前記原料溶液からなる溶液層がある状態で、溶媒を乾燥する方法である。
 前記下地層に塗布した前記原料溶液の少なくとも一部は前記下地層の多孔質膜内に浸透し、溶媒の乾燥とともに結晶化が進行し、多孔質膜内にペロブスカイト化合物が付着及び堆積する。また、充分量の前記原料溶液を塗布することにより、多孔質膜内に浸透しなかった前記原料溶液は、溶媒の乾燥とともに前記下地層の表面にペロブスカイト化合物からなる前記アッパー層を形成する。前記アッパー層を構成するペロブスカイト化合物と前記下地層内部のペロブスカイト化合物は、一体的に形成されており、ペロブスカイト層32を一体的に構成する。
 本実施形態で使用するペロブスカイト化合物は、光吸収により起電力を発生させ得るものであれば特に限定されず、公知のペロブスカイト化合物が適用可能である。なかでも、ペロブスカイト型の結晶を形成可能であり、単一の化合物内に有機成分及び無機成分を有する下記組成式(1):
 ABX ・・・(1)
で表されるペロブスカイト化合物が好ましい。
 組成式(1)において、Aは有機カチオンを表し、Bは金属カチオンを表し、Xはハロゲンイオンを表す。ペロブスカイト結晶構造において、Bサイトは、Xサイトに対して八面体配位をとることができる。Bサイトの金属カチオンと、Xサイトのハロゲンイオンの原子軌道とが混成し、光電変換に関わる価電子帯と伝導帯が形成される、と考えられる。
 組成式(1)のBで表される金属カチオンを構成する金属は特に限定されず、例えばCu、Ni、Mn、Fe、Co、Pd、Ge、Sn、Pb、Euが挙げられる。なかでも、Xサイトのハロゲンイオンの原子軌道との混成により伝導性の高いバンドを容易に形成することが可能な、Pb及びSnが好ましい。
 Bサイトを構成する金属カチオンは1種類であってもよいし、2種類以上であってもよい。
 組成式(1)のXで表されるハロゲンイオンを構成するハロゲンは特に限定されず、例えばF、Cl、Br、Iが挙げられる。なかでも、Bサイトの金属カチオンとの混成軌道により伝導性の高いバンドを容易に形成することが可能な、Cl、Br及びIが好ましい。
 Xサイトを構成するハロゲンイオンは1種類であってもよいし、2種類以上であってもよい。
 組成式(1)のAで表される有機カチオンを構成する有機基は特に限定されず、例えばアルキルアンモニウム誘導体、ホルムアミジニウム誘導体が挙げられる。
 Aサイトを構成する有機カチオンは1種類であってもよいし、2種類以上であってもよい。
 前記アルキルアンモニウム誘導体がなす有機カチオンとして、例えば、メチルアンモニウム、ジメチルアンモニウム、トリメチルアンモニウム、エチルアンモニウム、プロピルアンモニウム、イソプロピルアンモニウム、tert-ブチルアンモニウム、ペンチルアンモニウム、ヘキシルアンモニウム、オクチルアンモニウム、フェニルアンモニウム等の、炭素数1~6のアルキル基を有する1級又は2級のアンモニウムが挙げられる。なかでも、ペロブスカイト結晶が容易に得られる、メチルアンモニウムが好ましい。
 前記ホルムアミジニウム誘導体がなす有機カチオンとして、例えば、ホルムアミジニウム、メチルホルムアミジニウム、ジメチルホルムアミジニウム、トリメチルホルムアミジニウム、テトラメチルホルムアミジニウムが挙げられる。なかでも、ペロブスカイト結晶が容易に得られる、ホルムアミジニウムが好ましい。
 組成式(1)で表される好適なペロブスカイト化合物として、例えば、CHNHPbI、CHNHPbI3-hCl(hは0~3を表す。)、CHNHPbI3-jBr(jは0~3を表す。)等の下記組成式(2):
 RNHPbX ・・・(2)
で表されるアルキルアミノ鉛ハロゲン化物が挙げられる。組成式(2)において、Rはアルキル基を表し、Xはハロゲンイオンを表す。この組成式を有するペロブスカイト化合物は、その吸収波長域が広く、太陽光の広い波長範囲を吸収できるので、優れた光電変換効率が得られる。
 組成式(2)のRで表されるアルキル基は、炭素数1~6の直鎖状、分岐鎖状若しくは環状の飽和又は不飽和アルキル基であることが好ましく、炭素数1~6の直鎖状飽和アルキル基であることがより好ましく、メチル基、エチル基又はn-プロピル基であることがさらに好ましい。これらの好適なアルキル基であると、ペロブスカイト結晶が容易に得られる。
 ペロブスカイト層32の形成において、前記原料溶液に含まれる前記前駆体としては、例えば、前述したBサイトの金属イオン及びXサイトのハロゲンイオンが含有されたハロゲン化物(BX)、前述したAサイトの有機カチオン及びXサイトのハロゲンイオンが含有されたハロゲン化物(AX)、が挙げられる。
 ハロゲン化物(AX)及びハロゲン化物(BX)が含まれた単一の原料溶液を前記下地層に塗布してもよいし、各ハロゲン化物が個別に含まれた2つの原料溶液を順に前記下地層に塗布してもよい。
 前記原料溶液の溶媒は、原料を溶解し、前記下地層を損なわない溶媒であれば特に限定されず、例えば、エステル、ケトン、エーテル、アルコール、グリコールエーテル、アミド、ニトリル、カーボネート、ハロゲン化炭化水素、炭化水素、スルホン、スルホキシド、ホルムアミド等の化合物が挙げられる。
 一例として、ハロゲン化アルキルアミンとハロゲン化鉛を、γ-ブチロラクトン(GBL)及びジメチルスルホキシド(DMSO)の混合溶媒に溶かし、その溶液を前記下地層に塗布して乾かすことによって、前記組成式(2)で表されるペロブスカイト化合物からなるペロブスカイト結晶が得られる。さらに、非特許文献2に記載されているように、ペロブスカイト結晶の上に、そのペロブスカイト結晶を溶解せず、GBLやDMSOと混和する溶媒、例えばトルエン、クロロホルムなどを塗布した後、100℃程度でアニーリングする処理を加えてもよい。この追加処理によって、ペロブスカイト結晶の安定性が向上し、光電変換効率が高まる場合がある。
 前記原料溶液中の原料の濃度は特に限定されず、充分に溶解され、多孔質膜内に前記原料溶液が浸透可能な程度の粘度を呈する濃度であることが好ましい。
 前記下地層に塗布する前記原料溶液の塗布量は特に限定されず、例えば、多孔質膜内の全体又は少なくとも一部に浸透するとともに、多孔質膜の表面に厚さ1nm~1μm程度の前記アッパー層が形成される程度の塗布量が好ましい。
 前記下地層に対する前記原料溶液の塗布方法は特に限定されず、グラビア塗布法、バー塗布法、印刷法、スプレー法、スピンコーティング法、ディップ法、ダイコート法等の公知方法を適用できる。
 前記下地層に塗布した前記原料溶液を乾燥する方法は特に限定されず、自然乾燥、減圧乾燥、温風乾燥等の公知方法を適用できる。
 前記下地層に塗布した前記原料溶液の乾燥温度は、ペロブスカイト化合物の結晶化が充分に進行する温度であればよく、例えば40~150℃の範囲が挙げられる。
<P型半導体層33の形成>
 P型半導体層33の形成方法は特に限定されず、例えば、ペロブスカイト層32を構成するペロブスカイト化合物を溶解しにくい溶媒に、P型半導体を溶解又は分散した溶液を調製し、この溶液をペロブスカイト層32の表面に塗布し、乾かすことにより、P型半導体層33を得る方法が挙げられる。
 以上の工程により、N型半導体層31、ペロブスカイト層32及びP型半導体層33をこの順で備える発電層3を形成することができる。
[実施例1]
 ITOからなる透明導電層が表面に形成された透明樹脂基板(PEN基板)を準備した。このITO層の一部を、塩酸を用いてエッチングした。このエッチングの目的は、PEN基板表面の全体に形成されたITO層のうち、発電層を形成する領域および引出配線に必要な領域のみを残し、その他の不要な領域を除去することである。
 続いて、1MのCHNHPbIが溶解したDMF溶液をPEN基板上にスピンコートし、100℃で90分加熱乾燥させることでペロブスカイト層(発電層)を形成した。
 その後、厚さ10μmの自立性を有する金箔(Au箔)をペロブスカイト層の上に載置し、金箔とPEN基板をクリップではさむことによって、金箔を発電層に圧着させた。
 以上の方法で作製した20個の固体接合型光電変換素子について、リーク電流が発生する頻度(リーク頻度)を以下の方法で評価した。その結果、16個が合格であり、4個が不合格であった。つまり、作製した20個の固体接合型光電変換素子のうち、4個でリーク電流が発生したので、リーク頻度は20%であった。
 各光電変換素子のリーク頻度を評価するために、暗状態時の電流-電圧特性をソースメーターにて測定した。具体的には、並列抵抗Rshを測定することで評価した。ここで、暗状態でのRshを「0V付近の(電流の電圧に対する傾き)=(電圧の変位)/(電流の変位)」と定義した。この定義において、Rshが小さくなればなるほど、リーク電流が流れやすいことを意味する。そこでRshが1000以下であった光電変換素子を、リーク電流が発生した不良品であると評価した。
[実施例2~5]
 Au箔に代えて、厚さが50μmの自立性を有するTi箔、Al箔又はAg箔を使用した以外は、実施例1と同様に光電変換素子を作製して、評価した。その結果を表1に示す。
[実施例6~9]
 Au箔に代えて、厚さ125μmのPENフィルムの表面に、厚さが0.1μmのAu層、Ti層、Al層、Ag層が形成された自立性を有する導電材を使用した以外は、実施例1と同様に光電変換素子を作製して、評価した。その結果を表1に示す。
[比較例1~4]
 導電材を発電層の上に載置する実施例の方法に代えて、物理蒸着法によって発電層の上に、厚さ100nmのAu膜、Ti膜、Al膜又はAg膜からなる第二導電層を形成し、比較例の固体接合型光電変換素子を作製した。ここで、第二導電層を形成する厚さ100nmの金属膜を単独で取り扱った場合、前述の判定方法において何れも自立性を有しない。
 作成した比較例の固体接合型光電変換素子について、実施例と同様の方法でリーク頻度を調べた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、本発明にかかる固体接合型光電変換素子はリーク電流が発生し難く、歩留り良く製造されることが明らかである。
 なお、実施例の一部においてリーク電流が発生した原因の詳細は未解明であるが、PEN基板上に成膜されたITOのラフネスや、プレス(圧着)条件が一因であると推測される。
 以上で説明した各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は各実施形態によって限定されることはない。
 本発明の固体接合型光電変換素子においては、外部から応力が加わって、撓みや歪みが生じた場合にもリーク電流が発生し難い。
 本発明の固体接合型光電変換素子の製造方法によれば、リーク電流が発生し難い固体接合型光電変換素子を簡便に製造することができる。
1…基材、2…第一導電層、3…発電層、3a…発電層の側面、4…導電材、4a…第二導電層、4b…支持材、10…固体接合型光電変換素子、31…N型半導体層、32…ペロブスカイト層、33…P型半導体層、100…比較例の固体接合型光電変換素子、101…基材、101a…基材の表面、102…第一導電層、103…発電層、103a…発電層の側面、104…第二導電層、131…N型半導体層、132…ペロブスカイト層、133…P型半導体層

Claims (11)

  1.  基材と、第一導電層と、ペロブスカイト層を含む発電層と、第二導電層を含む導電材と、をこの順に備えた固体接合型光電変換素子であって、
     前記導電材が自立性を有する、固体接合型光電変換素子。
  2.  前記導電材の厚さが1μm以上である、請求項1に記載の固体接合型光電変換素子。
  3.  前記第二導電層は金属箔である、請求項1又は2に記載の固体接合型光電変換素子。
  4.  前記導電材は、前記第二導電層と支持材を備えた積層体である、請求項1又は2に記載の固体接合型光電変換素子。
  5.  前記第二導電層は、金属、金属酸化物、カーボン材料及び有機高分子材料から選ばれる1つ以上からなる、請求項4に記載の固体接合型光電変換素子。
  6.  前記発電層は、前記導電材側の面から前記第一導電層側へ伸びるクラックを1つ以上有し、
     前記導電材は、前記発電層に密着し、且つ前記クラックを跨いでいる、請求項1~5の何れか一項に記載の固体接合型光電変換素子。
  7.  第一導電層と、ペロブスカイト層を含む発電層と、第二導電層を含む導電材と、をこの順に備えた固体接合型光電変換素子の製造方法において、
     基材上に、前記第一導電層と、前記発電層と、をこの順に形成する工程と、
     前記発電層の上に、前記導電材を張付ける工程と、
    を有する、固体接合型光電変換素子の製造方法。
  8.  前記導電材を張付ける工程において、前記発電層の上に、前記導電材を載せた後、プレスすることにより張付ける、請求項7に記載の固体接合型光電変換素子の製造方法。
  9.  前記第二導電層は金属箔である、請求項7又は8に記載の固体接合型光電変換素子の製造方法。
  10.  前記導電材は、前記第二導電層と支持材を備えた積層体である、請求項7又は8に記載の固体接合型光電変換素子の製造方法。
  11.  前記第二導電層は、金属、金属酸化物、カーボン材料及び有機高分子材料から選ばれる1つ以上からなる、請求項10に記載の固体接合型光電変換素子の製造方法。
PCT/JP2017/005959 2016-02-19 2017-02-17 固体接合型光電変換素子、及びその製造方法 WO2017142074A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/065,931 US20190013155A1 (en) 2016-02-19 2017-02-17 Solid junction-type photovoltaic device and method for producing same
EP17753328.8A EP3419068A4 (en) 2016-02-19 2017-02-17 SOLID JUNCTION PHOTOELECTRIC TRANSDUCER AND METHOD FOR PRODUCING SAME
CN201780005226.2A CN108475729A (zh) 2016-02-19 2017-02-17 固体接合型光电转换元件及其制造方法
JP2018500228A JPWO2017142074A1 (ja) 2016-02-19 2017-02-17 固体接合型光電変換素子、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016029952 2016-02-19
JP2016-029952 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017142074A1 true WO2017142074A1 (ja) 2017-08-24

Family

ID=59626018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005959 WO2017142074A1 (ja) 2016-02-19 2017-02-17 固体接合型光電変換素子、及びその製造方法

Country Status (6)

Country Link
US (1) US20190013155A1 (ja)
EP (1) EP3419068A4 (ja)
JP (1) JPWO2017142074A1 (ja)
CN (1) CN108475729A (ja)
TW (1) TW201801366A (ja)
WO (1) WO2017142074A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038103A1 (ja) * 2021-09-10 2023-03-16 株式会社Gceインスティチュート 発電素子、発電素子の製造方法、発電装置、及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210340021A1 (en) * 2018-09-06 2021-11-04 King Abdullah University Of Science And Technology Method for making inorganic perovskite nanocrystals film and applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237165A (ja) * 2005-02-23 2006-09-07 Sharp Corp 有機太陽電池モジュール及びその製造方法
JP2011142217A (ja) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2012053373A1 (ja) * 2010-10-22 2012-04-26 リンテック株式会社 導電性粘着剤組成物、電子デバイス及び電子デバイスの製造方法
JP2012124336A (ja) * 2010-12-08 2012-06-28 Dainippon Printing Co Ltd 有機薄膜太陽電池の製造方法
JP2013225447A (ja) * 2012-04-23 2013-10-31 Mitsui Mining & Smelting Co Ltd 電極箔及び電子デバイス
JP2014229747A (ja) * 2013-05-22 2014-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法
JP2014236065A (ja) * 2013-05-31 2014-12-15 三井化学株式会社 有機薄膜太陽電池の製造方法および有機薄膜太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013136502A (ja) * 2011-11-28 2013-07-11 Mitsubishi Materials Corp 強誘電体薄膜形成用組成物及びその薄膜の形成方法並びにその方法で形成された薄膜
US20160071655A1 (en) * 2013-04-04 2016-03-10 The Regents Of The University Of California Electrochemical solar cells
EP2808913A1 (en) * 2013-05-31 2014-12-03 Swansea University A laminated opto-electronic device and method for manufacturing the same
CN104134752B (zh) * 2014-07-08 2017-02-08 中国科学院物理研究所 钙钛矿太阳能电池及其热塑性碳对电极的制备方法
GB201412201D0 (en) * 2014-07-09 2014-08-20 Isis Innovation Two-step deposition process
WO2016014845A1 (en) * 2014-07-23 2016-01-28 The University Of Akron Ultrasensitive solution-processed perovskite hybrid photodetectors
CN104993054B (zh) * 2015-05-14 2018-01-16 大连理工大学 一种新型叠合式钙钛矿太阳能电池的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237165A (ja) * 2005-02-23 2006-09-07 Sharp Corp 有機太陽電池モジュール及びその製造方法
JP2011142217A (ja) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd 有機薄膜太陽電池
WO2012053373A1 (ja) * 2010-10-22 2012-04-26 リンテック株式会社 導電性粘着剤組成物、電子デバイス及び電子デバイスの製造方法
JP2012124336A (ja) * 2010-12-08 2012-06-28 Dainippon Printing Co Ltd 有機薄膜太陽電池の製造方法
JP2013225447A (ja) * 2012-04-23 2013-10-31 Mitsui Mining & Smelting Co Ltd 電極箔及び電子デバイス
JP2014229747A (ja) * 2013-05-22 2014-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法
JP2014236065A (ja) * 2013-05-31 2014-12-15 三井化学株式会社 有機薄膜太陽電池の製造方法および有機薄膜太陽電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites", SCIENCE, vol. 338, 2012, pages 643 - 647
"Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells", NATURE MATERIALS, vol. 13, 2014, pages 897 - 903

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038103A1 (ja) * 2021-09-10 2023-03-16 株式会社Gceインスティチュート 発電素子、発電素子の製造方法、発電装置、及び電子機器

Also Published As

Publication number Publication date
CN108475729A (zh) 2018-08-31
JPWO2017142074A1 (ja) 2018-12-20
US20190013155A1 (en) 2019-01-10
EP3419068A1 (en) 2018-12-26
EP3419068A4 (en) 2019-10-02
TW201801366A (zh) 2018-01-01

Similar Documents

Publication Publication Date Title
US10079356B2 (en) Perovskite schottky type solar cell
US9502182B2 (en) Solar cell and method of manufacturing the same
US20180369861A1 (en) Film forming method
JP6206855B2 (ja) 半導体素子及び太陽電池
WO2016002211A1 (en) Surface-passivated mesoporous structure solar cell
JP6849673B2 (ja) 固体接合型光電変換素子、及びその製造方法
Yang et al. An annealing-free aqueous-processed anatase TiO 2 compact layer for efficient planar heterojunction perovskite solar cells
JP7389018B2 (ja) Sn系ペロブスカイト層及び太陽電池の製造方法
CN108431982B (zh) 固体接合型光电转换元件模块及其制造方法
EP4422378A2 (en) Nickel oxide sol-gel ink
CN107615507A (zh) 稳定的钙钛矿类光电器件的制造
JP2016178167A (ja) 光電極の製造方法、光電極、太陽電池の製造方法および太陽電池
Pintilie et al. Properties of perovskite ferroelectrics deposited on F doped SnO2 electrodes and the prospect of their integration into perovskite solar cells
JP2017028027A (ja) 固体接合型光電変換素子および固体接合型光電変換素子用p型半導体層
WO2017142074A1 (ja) 固体接合型光電変換素子、及びその製造方法
JP2018157147A (ja) 固体接合型光電変換素子
Yi et al. Enhanced interface of polyurethane acrylate via perfluoropolyether for efficient transfer printing and stable operation of PEDOT: PSS in perovskite photovoltaic cells
JP6704133B2 (ja) ペロブスカイト膜の製造方法
JP2017028028A (ja) 固体接合型光電変換素子および固体接合型光電変換素子用p型半導体層
JP2016178166A (ja) 光電極の製造方法、光電極、太陽電池の製造方法および太陽電池
KR101316237B1 (ko) 용액 공정 기반의 정공 전도층 제조방법 및 이를 이용한 유기태양전지의 제조방법
JP7007114B2 (ja) 固体接合型光電変換素子
JP2018117008A (ja) 固体接合型光電変換素子および固体接合型光電変換素子用のp型半導体層
JP2015138869A (ja) 半導体素子
JP2019175919A (ja) 光電変換素子及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17753328

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018500228

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017753328

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017753328

Country of ref document: EP

Effective date: 20180919