CN107615507A - 稳定的钙钛矿类光电器件的制造 - Google Patents

稳定的钙钛矿类光电器件的制造 Download PDF

Info

Publication number
CN107615507A
CN107615507A CN201680028153.4A CN201680028153A CN107615507A CN 107615507 A CN107615507 A CN 107615507A CN 201680028153 A CN201680028153 A CN 201680028153A CN 107615507 A CN107615507 A CN 107615507A
Authority
CN
China
Prior art keywords
solvent
htl
perovskite
solar cell
chlorobenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680028153.4A
Other languages
English (en)
Other versions
CN107615507B (zh
Inventor
戚亚冰
S·鲁伊斯·拉格
大野路易斯胜也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okinawa Institute of Science and Technology School Corp
Original Assignee
Okinawa Institute of Science and Technology School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okinawa Institute of Science and Technology School Corp filed Critical Okinawa Institute of Science and Technology School Corp
Publication of CN107615507A publication Critical patent/CN107615507A/zh
Application granted granted Critical
Publication of CN107615507B publication Critical patent/CN107615507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2009Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明提供一种制造钙钛矿类光电器件的方法,所述方法包括:形成包含有机金属卤化物钙钛矿的有源层;制造包含空穴输送材料(HTM)和溶剂的溶液,所述溶剂的沸点低于氯苯的沸点;以及通过在所述有源层上旋涂所述溶液形成空穴输送层(HTL)。沸点低于氯苯的所述溶剂包括氯仿和二氯甲烷。

Description

稳定的钙钛矿类光电器件的制造
技术领域
本发明涉及稳定的钙钛矿类光电器件及其制造方法。
背景技术
太阳能电池(也称为光伏电池)是通过使用表现出光伏效应的半导体将太阳能转换成电能的电气器件。在水电和风力发电之后,太阳能光伏发电是全球装机容量第三大的可再生能源。这些太阳能电池的结构基于p-n结的概念,其中来自太阳辐射的光子被转换成电子-空穴对。用于商业太阳能电池的半导体的实例包括单晶硅、多晶硅、非晶硅、碲化镉和二硒化铜铟镓。据报道,商业化电池的太阳能电池能量转换效率约为14-22%。
高转换效率、长期稳定性和低成本制造对于太阳能电池的商业化至关重要。为此,为了替代太阳能电池中的常规半导体,已经研究了各种各样的材料。例如,使用有机半导体的太阳能电池技术是相对较新的,其中这些电池可以由液体溶液加工而成,潜在地通向廉价的大规模生产。除了有机材料,有机金属卤化物钙钛矿(例如H3NH3PbX3和CH3NH3SnX3,其中X=Cl、Br、I或其组合)近来已经成为下一代高效、低成本太阳能技术的有希望的材料。已经报道,这些合成的钙钛矿可以表现出高电荷载流子迁移率和寿命,其允许光产生的电子和空穴移动足够远以被提取为电流,而不是作为电池内的热量而损失其能量。这些合成钙钛矿可以通过使用与有机太阳能电池相同的薄膜制造技术制造,例如溶液处理、真空蒸发技术、化学气相沉积等。
最近的报道已经表明,这类材料,即有机金属卤化物钙钛矿,在其他光电器件中也具有高性能半导体介质的潜力。特别地,已知一些钙钛矿表现出强烈的光致发光性质,使其成为用于发光二极管(LED)的有吸引力的候选者。另外,据报道,钙钛矿也表现出相干发光特性,因此光放大性能适用于电驱动激光器。在这些器件中,电子和空穴载流子注入到光致发光介质中,而在太阳能电池器件中需要载流子提取。
然而,迄今为止,使用现有的制造技术难以获得稳定的钙钛矿类器件。鉴于对高性能器件的低成本制造技术的需求不断增加,需要新的制造技术来生产适用于太阳能电池和其他光电应用的稳定且高效的钙钛矿类器件。
引用文献列表
非专利文献
NPL1:G.E.Eperon等,Formamidinium lead trihalide:a broadly tunableperovskite for efficient planar heterojunction solar cells.EnergyEnviron.Sci.7,982-988(2014)。
NPL2:Z.Hawash等,Air-exposure induced dopant redistribution and energylevel shifts in spin-coated spiro-MeOTAD films.Chem.Mater.27,562-569(2015)。
NPL3:J.Burschka等,Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature Vol.499,316-320(July,2013)。
专利文献
PL1:Lupo等,US 5,885,368
PL2:Windhap等,US 6,664,071
PL3:Onaka等,US 8,642,720
PL4:Isobe等,US 2012/0085411A1
PL5:Nishimura等,US 2012/0325319A1
PL6:Kawasaki等,US 2013/0125987A1
PL7:Horiuchi等,US 2014/0212705A
PL8:Arai等,US 2015/0083210A
PL9:Arai等,US 2015/0083226A1
PL10:Snaith等,US 2015/0122314A1
发明内容
提供一种制造钙钛矿类光电器件的方法,所述方法包括:形成包含有机金属卤化物钙钛矿的有源层;制造包含空穴输送材料(HTM)和溶剂的溶液,所述溶剂的沸点低于氯苯的沸点;以及通过在所述有源层上旋涂所述溶液形成空穴输送层(HTL)。沸点低于氯苯的所述溶剂包括氯仿和二氯甲烷。
附图说明
图1显示了(a)中氯苯(ClB)电池的AFM图像,(b)中氯仿(ClF)电池的AFM图像,(c)中ClB电池的SEM图像,和(d)中ClF电池的SEM图像。
图2显示了(a)中ClB电池和(b)中ClF电池的j-V曲线图。
图3显示了基于(a)中的正向扫描和(b)中的反向扫描的在空气中逾102小时测量的5个独立CIB电池的功率转换效率(PCE)、开路电压(Voc)、短路电流(jsc)、填充因子(FF)值的图。
图4显示了基于(a)中的正向扫描和(b)中的反向扫描的在空气中逾102小时测量的6个独立CIF电池的PCE、jsc、Voc和FF值的图。
图5显示了在102小时的稳定性测试后测量的对应于ClB和ClF电池的I 3d核心电平的事后XPS图。
图6显示了用二氯甲烷(CH2Cl2)制备的旋涂的螺-MeOTAD膜的AFM图像。
图7显示了使用(a)中的氯仿和(b)中的氯苯制备的旋涂聚苯乙烯薄膜的AFM图像。
具体实施方式
用于制造有机金属卤化物钙钛矿膜的常规方法中的源材料包括卤化物材料如PbCl2、PbBr2、PbI2、SnCl2、SnBr2和SnI2等,以及甲基铵(MA=CH3NH3 +)化合物如CH3NH3Cl、CH3NH3Br和CH3NH3I等。代替MA化合物或与MA化合物组合,也可以使用甲脒(FA=HC(NH2)2 +)化合物。有机卤化物钙钛矿具有通常用ABX3表示的斜方晶结构,其中有机元素MA、FA或其它合适的有机元素占据每个位置A;金属元素Pb2+或Sn2+占据每个位置B;和卤素元素Cl-、I-或Br-占据每个位置X(参见例如Eperon等,NPL1)。源材料表示为AX和BX2,其中AX表示有机卤化物,其具有组合的用作A-阳离子的有机元素MA、FA或其它合适的有机元素与用作X阴离子的卤素元素Cl、I或Br;BX2表示金属化合物,其具有组合的用作B-阳离子的金属元素Pb或Sn与用作X阴离子的卤素元素Cl、I或Br。此处,AX中的实际元素X和BX2中的实际元素X可以相同或不同,只要各自选自卤素基团即可。例如,AX中的X可以是Cl,而BX2中的X可以是Cl、I或Br。因此,可以形成混合的钙钛矿,例如MAPbI3-XClX。术语“钙钛矿”和“有机金属卤化物钙钛矿”在本文中可互换使用并同义使用。
有机金属卤化物钙钛矿可用于光电器件如太阳能电池、LED、激光器等中的有源层。此处,“有源层”是指在光电器件中发生光子向电荷载流子(电子和空穴)的转换的吸收层;对于光致发光器件,其是指电荷载流子组合以产生光子的层。空穴输送层(HTL)可用作用于将空穴载流子从有源层输送到光伏器件中的电极的介质;对于光致发光器件,HTL是指用于将空穴载流子从电极输送到有源层的介质。用于在钙钛矿类器件中形成HTL的空穴输送材料(HTM)的实例包括但不限于:2,2′,7,7′-四(N,N′-二对甲氧基苯胺)-9,9'-螺二芴(螺-MeOTAD,也称为螺-OMeTAD)、聚苯乙烯、聚(3-己基噻吩-2,5-二基)(P3HT)、聚(三芳基胺)(PTAA)、氧化石墨烯、镍氧化物、聚(3,4-亚乙基二氧噻吩)聚苯乙烯磺酸盐(PEDOT:PSS)、硫氰酸亚铜(CuSCN)、CuI、Cs2SnI6、α-NPD、Cu2O、CuO、亚酞菁、6,13-双(三异丙基甲硅烷基乙炔基)并五苯(TIPS-并五苯)、PCPDTBT、PCDTBT、OMeTPA-FA、OMeTPA-TPA和喹嗪并吖啶。
通常采用溶液方法来形成用于钙钛矿类器件的HTL。例如,螺-MeOTAD与4-叔丁基吡啶(tBP)和双-(三氟甲基磺酰基)酰亚胺盐(Li-盐)的溶液可旋涂,以在钙钛矿膜上形成HTL。然而,在Hawash等(NPL2)中描述的一项最近研究表明,这些由螺-MeOTAD制成的溶液处理膜通常包括高密度的针孔。此处,针孔被定义为具有穿透膜的小直径孔形状的缺陷。这些针孔可以从膜表面开始穿透膜的整个厚度或深入到膜中。HTL中的这些针孔可以通过层之间的缩短或混合而导致钙钛矿类器件的不稳定性,这可能是为什么使用溶液处理的螺-MeOTAD膜形成HTL的典型钙钛矿太阳能电池在暴露于空气中时效率显著降低的原因。这些针孔也可能是包含用于HTL的溶液处理螺-MeOTAD的典型钙钛矿太阳能电池寿命非常短的原因。效果被认为是双重的:(i)针孔促进水分迁移通过HTL至到达并降解钙钛矿;(ii)针孔促进来自钙钛矿的组分元素(例如碘)迁移到顶表面,并降解或分解钙钛矿。基于这样的观察,应注意,用于制备用作HTL的螺-MeOTAD的溶剂的选择可以被优化以避免针孔形成,从而增加钙钛矿太阳能电池的寿命。
本文件包括实验和分析的描述,进行所述实验和分析以阐明溶剂在制备沉积在钙钛矿膜上的空穴输送材料(HTM)时的作用,目的是减少所得HTL中针孔的数量。在下文中,使用螺-MeOTAD作为特定的HTM实例;然而,本方法适用于其他类型的HTM。首先,考虑使用氯仿作为溶剂的情况,而不是通常使用的氯苯。下面参考附图描述细节。尽管本文引用了具体值来解释作为实例的各种步骤、实验和分析,但是应当理解,这些是近似值和/或在测量公差内。
在示例性方法中,通过使用涂覆在玻璃上的氟掺杂氧化锡(FTO)制备透明导电基材。用十二烷基硫酸钠水溶液刷洗,用水冲洗,然后在2-丙醇中超声处理,最后用N2气干燥,从而对FTO进行蚀刻和清洗。使用乙酰丙酮、异丙氧基钛(IV)和无水乙醇的3:3:1重量的混合物进行喷雾热解沉积80nm厚的TiO2致密层。通过以4000旋涂在萜品醇中的1:3重量的稀释糊剂(90-T)沉积厚度约170nm的介孔结构TiO2层,然后在350℃下烧结10分钟,然后在480℃下烧结30分钟。冷却后,将基材在UV-O3中处理15分钟,并在N2手套箱中转移用于钙钛矿沉积。
接下来,通过按照Burschka等(NPL 3)中所述的改进的两步溶液方法进行基材上的钙钛矿沉积。首先,制备PbI2的二甲基甲酰胺(460mg mL-1)溶液,并在70℃下搅拌至少2小时。将溶液旋涂在预先在70℃加热的介孔结构的TiO2基材上,以6000rpm进行30秒。在开始旋涂之前,将溶液置于介孔层上10秒以进行适当的孔渗透。旋涂后,将PbI2层在70℃下干燥20分钟。对于第二步,制备20mg mL-1的甲基碘化铵(MAI)的2-丙醇(IPA)溶液,并保持在70℃。将PbI2膜浸入MAI溶液中30秒钟,同时轻轻摇动基材。浸渍后,将基材在足量的IPA中漂洗,并立即使用旋涂机旋转样品进行干燥,并在70℃下在热板上退火20分钟。在这种情况下,所得的钙钛矿是MAPbI3
接下来,通过使用沉积在各个基材上的钙钛矿膜来制造太阳能电池。制造了第一批太阳能电池样品,每个样品包括通过使用以下三种材料的混合物制备的HTL:溶解在氯苯中的72.5mg/mL浓度的螺-MeOTAD,17.5μL溶于乙腈的Li-双(三氟甲磺酰基)-酰亚胺(LiTFSI)(52mg/100μL),和28.8μL叔丁基吡啶(t-BP)。将该混合物溶液旋涂在钙钛矿膜上,制成第一批太阳能电池样品,本文中称为ClB电池。制造第二批太阳能电池样品,每个样品包含使用氯仿而不是氯苯作为溶剂制备的HTL,保持所有其它材料相同。将包括替代氯苯的氯仿的混合溶液旋涂在钙钛矿膜上。这些电池在本文中称为ClF电池。最后,对于这两批,通过经由限定了0.05、0.08、0.12和0.16cm2的太阳能电池有效面积的荫罩的热蒸发沉积Au顶部电极(100nm)。
通过扫描电子显微镜(SEM)、X射线衍射(XRD)和UV-可见光谱进行钙钛矿膜表征。在制备好的钙钛矿膜中观察到在14.1°、28.4°和43.2°的特征XRD峰,其对应于正交晶体结构中的(110)、(220)和(330)面。SEM图像显示了完全覆盖介孔结构的TiO2膜的均匀层,钙钛矿晶体域在50-100nm的范围内。UV-可见扫描中钙钛矿膜的吸光度的开始确认了1.58eV的光学带隙。
基于原子力显微镜(AFM)和SEM进行HTL的形态学表征。图1显示了(a)中CIB电池的AFM图像,(b)中CIF电池的AFM图像,(c)中ClB电池的SEM图像,和(d)中ClF电池的SEM图像。在未被Au电极覆盖的螺旋MeOTAD区域上获取AFM图像。在Au电极上获取SEM图像。在(a)中CLB电池的螺-MeOTAD HTL中针孔明显存在,而(b)中ClF电池的HTL中针孔存在不明显。如(c)所示,在ClB电池的Au电极中也观察到由下面的针孔引起的空穴,反映了Au电极下方的螺-MeOTAD膜形态。另一方面,在(d)中ClF电池的Au电极中,空隙存在不明显。
图2显示了(a)中ClB电池和(b)中ClF电池的j-V曲线图。具体的层顺序为:FTO/bl-TiO2/mp-TiO2/MAPbI3/螺-MeOTAD/Au。电池在1倍光强(1sun)(AM1.5G)下照射。ClB批次的冠军电池(即表现最好的电池)表现出分别为1.047V、19.7mA/cm2、0.72和14.9%的开路电压(Voc)、短路电流(jsc)、填充因子(FF)和功率转换效率(PCE)。ClF批次的冠军电池表现出分别为1.036V、19.7mA/cm2、0.56和11.4%的Voc、jsc、FF和PCE。具有氯仿制备的HTL的ClF电池的较低填充因子和PCE被认为是由于串联电阻的增加而引起的,这归因于在没有针孔的情况下螺-MeOTAD层的空气诱导掺杂剂再分布较慢。在顶部接触蒸发之前螺-MeOTAD层的旋涂之后的空气暴露步骤被认为对于实现最佳效率是重要的。
在环境空气中监测逾102小时的稳态太阳能电池性能参数的演变。每两个小时测量瞬时光电流信号。这里采用的稳定性测量过程对应于ISOS-L-1协议。应该注意,与钙钛矿太阳能电池相关的常见行为之一是迟滞。也就是说,当电压从高变低相比从低变高时,电流密度水平未处在相同电压。为了考虑到这种迟滞特性,进行正向扫描和反向扫描,其中正向扫描从低到高扫描电压(即在j-V图中从jsc到Voc的方向),并且反向扫描从高到低扫描电压(即,在j-V图中从Voc到jsc的方向)。图3显示了基于(a)中的正向扫描和(b)中的反向扫描的在空气中逾约102小时测量的5个独立CIB电池的PCE、Voc、js和FF值的图。图4显示了基于(a)中的正向扫描和(b)中的反向扫描的在空气中逾约102小时测量的6个独立CIF电池的PCE、jsc、Voc和FF值的图。湿度控制在约42%。通过比较图3和图4,可以清楚地看出,ClB电池的每个太阳能电池参数在空气暴露后立即急剧下降直至10-20小时,之后是长尾的缓慢降低直至测量结束。所有ClB电池在最大功率点连续运行12小时后得到0%的PCE值。另一方面,如图4所示,ClF电池显示出更好的稳定性。对ClF电池的统计分析显示,PCE值在最初的12小时内仅比初始PCE降低约12%。运行约100小时后,ClF电池的PCE降低约50%。PCE曲线被认为反映了jsc、Voc和FF特性的相互作用。由于钙钛矿类太阳能电池结构复杂(FTO/bl-TiO2/mp-TiO2/MAPbI3/螺-MeOTAD/Au),预期各层的复杂物理化学变化会影响整体的jsc、Voc和FF曲线。在ClB电池中观察到的jsc中的衰变可以主要归因于作为运行时间的函数的产生降低的光电流的MAPbI3有源(即吸收)层的降解。
XRD结果也证实了运行约100小时后,钙钛矿结晶峰在ClB电池中消失。据认为通过与空气中的H2O(水分)反应诱导钛矿层的降解,生成作为副产物的MA、MAI、PbI2和氢碘酸(HI)。此外,HI和MA的沸腾温度分别为-35.4℃和-6℃;因此它们在室温下主要以气相形式存在。在监测的ClF电池的约100小时稳定性曲线中观察到缓慢的线性衰减。如上所述,图1(a)和(b)中的AFM图像显示了ClB和ClF电池之间明显不同的形态。这些是未被Au电极覆盖的螺-MeOTAD区域。在ClB电池中观察到高密度的针孔,并且预期其促进存在于环境空气中的H2O和O2气体分子的向内扩散,从而降解MAPbI3有源层,以及促进具有高蒸气压的副产物如MAI和/或HI的向外扩散。
在诸如图1(a)和(b)中的AFM图像中显而易见的是,ClF电池具有非常均匀和高覆盖度的表面,其与ClB电池相比在品质上不同,其中可以容易地识别针孔。这些观察结果也被XPS测量证实。图5显示了在102小时的稳定性测试后测量的对应于ClB和ClF电池的I 3d核心电平的事后XPS图。通常,XPS测量是表面敏感的,并且可以检测距顶表面深达约10nm的元件的存在。如图5所示,对于ClB电池,与I 3d核心电平相关联的XPS峰值非常强,这清楚地表明具有高蒸气压的副产物如MAI和/或HI向外扩散到HTL的顶表面。如图5所示,在ClB电池的顶表面上,通过XPS检测到大量含碘化合物(最可能的MAI)。ClF电池也显示在顶部表面存在一些碘物质,这意味着无针孔的螺-MeOTAD层仍然不能完全停止扩散。
基于AFM、SEM和XPS的综合结果,得出结论,每个ClF电池相比CIB电池在HTL中具有显著更少数量的针孔。针孔形成的基本方面和机制是复杂的,可能涉及多个因素。HTL制备中使用的溶剂的性质被认为可影响制造的膜的结晶度和形态。为了阐明针孔形成的基本机制,测试了不同的溶剂和HTM。下面描述了一些实例。
制备螺-MeOTAD和二氯甲烷(CH2Cl2)作为溶剂的溶液,并将其旋涂在Si基材上以形成厚度为约400nm的HTL层。图6显示了用CH2Cl2制备的旋涂的螺-MeOTAD膜的AFM图像(5×5μm2)。观察到非常低密度的直径小的针孔。统计分析结果表明,针孔的直径为107±2nm,密度为0.5个针孔/μm2,均小于在ClB电池中观察到的那些。
通过使用聚苯乙烯而不是螺-MeOTAD形成HTL以进行类似的实验。聚苯乙烯是与小分子材料如螺-MeOTAD不同的聚合物。图7显示了使用(a)中的氯仿和(b)中的氯苯制备的旋涂聚苯乙烯膜的AFM图像(4×4μm2)。当使用氯苯溶剂时,观察到针孔,如(b)所示。在使用诸如P3HT、PTAA、氧化石墨烯、氧化镍、PEDOT:PSS、CuSCN、CuI、Cs2SnI6、α-NPD、Cu2O、CuO、亚酞菁、TIPS-并五苯、PCPDTBT、PCDTBT、OMeTPA-FA、OMeTPA-TPA和喹嗪并吖啶等不同类型的HTM时,可以预期由溶剂选择引起的对针孔形成的类似影响。
根据本发明制造具有最小密度和针孔尺寸的HTL的方法,选择用于溶解HTM的溶剂起着重要作用。所制备的膜的结晶度和形态可能受溶剂的物理性质的影响,例如沸点、偶极矩、粘度和溶解度等。应注意,氯苯(132℃)的沸点明显高于氯仿(61.2℃)和二氯甲烷(39.6°)的沸点。考虑到低沸点溶剂的蒸发速度较快,可以帮助固化HTL薄膜,同时产生最少的针孔。本方法涉及在钙钛矿有源层上形成具有减少的针孔的高品质HTL,从而提高了器件的稳定性和长寿命。因此,可以适用于制造任何钙钛矿类光电器件,包括太阳能电池、LED和激光器等。
虽然本文件包含许多细节,但是这些不应被解释为对发明的范围或所要求保护的范围的限制,而是对本发明的特定实施例特有的特征的描述。在单独实施方式的上下文中描述的本文档中的某些特征也可以在单个实施方式中组合地实现。相反,在单个实施方式的上下文中描述的各种特征也可以分开地或以任何合适的子组合在多个实施方式中实现。此外,尽管上述功能可以以某些组合的形式进行描述,并且甚至最初以此要求保护,但是在某些情况下,可以从组合中实施所要求保护的组合的一个或多个特征,并且所要求保护的组合可以针对子组合或子组合的变化。

Claims (7)

1.一种制造钙钛矿类光电器件的方法,所述方法包括:
形成包含有机金属卤化物钙钛矿的有源层;
制造包含空穴输送材料(HTM)和溶剂的溶液,所述溶剂的沸点低于氯苯的沸点;以及
通过在所述有源层上旋涂所述溶液形成空穴输送层(HTL)。
2.如权利要求1所述的方法,其中,所述溶剂是氯仿。
3.如权利要求1所述的方法,其中,所述溶剂是二氯甲烷。
4.如权利要求1所述的方法,其中,所述HTM选自螺-MeOTAD、聚苯乙烯、P3HT、PTAA、氧化石墨烯、氧化镍、PEDOT:PSS、CuSCN、CuI、Cs2SnI6、α-NPD、Cu2O、CuO、亚酞菁、TIPS-并五苯、PCPDTBT、PCDTBT、OMeTPA-FA、OMeTPA-TPA和喹嗪并吖啶。
5.一种钙钛矿类太阳能电池,其通过使用以下方法制造,所述方法包括:形成包含有机金属卤化物钙钛矿的有源层;制造包含空穴输送材料(HTM)和溶剂的溶液,所述溶剂的沸点低于氯苯的沸点;以及通过在所述有源层上旋涂所述溶液形成空穴输送层(HTL),所述钙钛矿类太阳能电池包括:
通过使用氯仿或二氯甲烷作为溶剂形成的HTL,所述HTL与通过使用氯苯作为溶剂形成的HTL相比具有更小的密度和更小的针孔尺寸。
6.如权利要求5所述的钙钛矿类太阳能电池,其中,相比于包含通过使用氯苯作为溶剂形成的HTL的钙钛矿类太阳能电池,包含通过使用氯仿或二氯甲烷作为溶剂形成的HTL的钙钛矿类太阳能电池更稳定且寿命更长。
7.如权利要求5所述的钙钛矿类太阳能电池,其中,所述HTM选自螺-MeOTAD、聚苯乙烯、P3HT、PTAA、氧化石墨烯、氧化镍、PEDOT:PSS、CuSCN、CuI、Cs2SnI6、α-NPD、Cu2O、CuO、亚酞菁、TIPS-并五苯、PCPDTBT、PCDTBT、OMeTPA-FA、OMeTPA-TPA和喹嗪并吖啶。
CN201680028153.4A 2015-05-22 2016-05-06 稳定的钙钛矿类光电器件的制造 Active CN107615507B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562165575P 2015-05-22 2015-05-22
US62/165,575 2015-05-22
PCT/JP2016/002250 WO2016189802A1 (en) 2015-05-22 2016-05-06 Fabrication of stable perovskite-based optoelectronic devices

Publications (2)

Publication Number Publication Date
CN107615507A true CN107615507A (zh) 2018-01-19
CN107615507B CN107615507B (zh) 2021-02-02

Family

ID=57392657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680028153.4A Active CN107615507B (zh) 2015-05-22 2016-05-06 稳定的钙钛矿类光电器件的制造

Country Status (6)

Country Link
US (2) US20180114648A1 (zh)
EP (1) EP3298637A4 (zh)
JP (1) JP2018515919A (zh)
KR (1) KR20170141729A (zh)
CN (1) CN107615507B (zh)
WO (1) WO2016189802A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11335514B2 (en) * 2017-09-21 2022-05-17 Sekisui Chemical Co., Ltd. Solar cell
CN109545972B (zh) * 2018-11-23 2022-12-02 浙江昱辉阳光能源江苏有限公司 一种高稳定性钙钛矿太阳能电池及制备方法
CN109768164A (zh) * 2018-12-18 2019-05-17 杭州电子科技大学 一种柔性光探测器的制备方法
KR102172962B1 (ko) * 2019-01-16 2020-11-02 인천대학교 산학협력단 물을 포함하는 2상 딥코팅용 조성물 및 이를 이용한 고분자 박막의 형성 방법
KR102434775B1 (ko) * 2020-08-21 2022-08-19 성균관대학교산학협력단 에너지 하베스팅 시스템 및 이의 제조 방법
CN114203902B (zh) * 2020-09-16 2022-09-20 南开大学 一种利用钙钛矿微米晶实现室温下负微分电阻的方法
EP4300815A1 (en) 2022-06-30 2024-01-03 Sociedad Anónima Minera Catalano-Aragonesa Photovoltaic panel on ceramic support

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711000A (zh) * 2005-07-19 2005-12-21 天津理工大学 柔性白色有机电致发光器件及其制备方法
CN102460765A (zh) * 2009-06-19 2012-05-16 大日本印刷株式会社 有机电子器件及其制造方法
CN102742354A (zh) * 2010-02-05 2012-10-17 住友化学株式会社 有机电致发光元件、其制造方法及制造装置
CN103928633A (zh) * 2013-01-16 2014-07-16 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法
WO2014111365A1 (en) * 2013-01-15 2014-07-24 Basf Se Triangulene oligomers and polymers and their use as hole conducting material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696528B1 (ko) * 2005-07-22 2007-03-19 삼성에스디아이 주식회사 트리아릴아민계 화합물, 그 제조방법 및 이를 이용한 유기발광 표시 소자
US9252374B2 (en) * 2013-01-10 2016-02-02 Korea Research Institute Of Chemical Technology Method for manufacturing high-efficiency inorganic-organic hybrid solar cell
GB201404840D0 (en) * 2014-03-18 2014-04-30 Isis Innovation Hole conduction layer
JP6732405B2 (ja) * 2015-02-24 2020-07-29 大阪瓦斯株式会社 ペロブスカイト型太陽電池及びその製造方法
JP6486719B2 (ja) * 2015-03-03 2019-03-20 株式会社東芝 光電変換素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1711000A (zh) * 2005-07-19 2005-12-21 天津理工大学 柔性白色有机电致发光器件及其制备方法
CN102460765A (zh) * 2009-06-19 2012-05-16 大日本印刷株式会社 有机电子器件及其制造方法
CN102742354A (zh) * 2010-02-05 2012-10-17 住友化学株式会社 有机电致发光元件、其制造方法及制造装置
WO2014111365A1 (en) * 2013-01-15 2014-07-24 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
CN103928633A (zh) * 2013-01-16 2014-07-16 海洋王照明科技股份有限公司 一种有机电致发光器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGRU LI等: "Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix", 《NANO LETTERS》 *
JIANPU WANG等: "Interfacial Control Toward Effi cient and Low-Voltage Perovskite Light-Emitting Diode", 《ADVANCED MATERIALS》 *

Also Published As

Publication number Publication date
EP3298637A1 (en) 2018-03-28
CN107615507B (zh) 2021-02-02
US20180114648A1 (en) 2018-04-26
EP3298637A4 (en) 2019-01-23
US20200203083A1 (en) 2020-06-25
WO2016189802A1 (en) 2016-12-01
KR20170141729A (ko) 2017-12-26
JP2018515919A (ja) 2018-06-14

Similar Documents

Publication Publication Date Title
JP7245527B2 (ja) 光電子素子
Meng et al. Tailored phase conversion under conjugated polymer enables thermally stable perovskite solar cells with efficiency exceeding 21%
JP6517884B2 (ja) 混合アニオンを有する有機金属ペロブスカイトを有する光電子デバイス
KR102164354B1 (ko) 광기전 디바이스
Park et al. Effect of rubidium incorporation on the structural, electrical, and photovoltaic properties of methylammonium lead iodide-based perovskite solar cells
KR102160348B1 (ko) 납이 없는 페로브스카이트 필름의 형성
CN107615507A (zh) 稳定的钙钛矿类光电器件的制造
Behrouznejad et al. Interfacial investigation on printable carbon-based mesoscopic perovskite solar cells with NiO x/C back electrode
Zhao Interface Engineering for Improving the Stability and Efficiency of Perovskite Solar Cells
SALA Hybrid perovskite-based solar cells: photoactive layer morphology optimization towards printed devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant