WO2017141512A1 - 触媒、アミド結合の形成方法、及びアミド化合物の製造方法 - Google Patents

触媒、アミド結合の形成方法、及びアミド化合物の製造方法 Download PDF

Info

Publication number
WO2017141512A1
WO2017141512A1 PCT/JP2016/084517 JP2016084517W WO2017141512A1 WO 2017141512 A1 WO2017141512 A1 WO 2017141512A1 JP 2016084517 W JP2016084517 W JP 2016084517W WO 2017141512 A1 WO2017141512 A1 WO 2017141512A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
added
catalyst
compound
general formula
Prior art date
Application number
PCT/JP2016/084517
Other languages
English (en)
French (fr)
Inventor
直哉 熊谷
秀俊 野田
信 古舘
康子 朝田
柴崎 正勝
Original Assignee
公益財団法人微生物化学研究会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016223551A external-priority patent/JP6778588B2/ja
Application filed by 公益財団法人微生物化学研究会 filed Critical 公益財団法人微生物化学研究会
Publication of WO2017141512A1 publication Critical patent/WO2017141512A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/05Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/12Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • C07C233/13Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/16Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms
    • C07C233/24Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/29Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by singly-bound oxygen atoms with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/57Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C233/59Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of rings other than six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/65Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/34Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/192Radicals derived from carboxylic acids from aromatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/38Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/02Boron compounds
    • C07F5/05Cyclic compounds having at least one ring containing boron but no carbon in the ring

Definitions

  • the present invention relates to a novel catalyst, a method for forming an amide bond using the same, and a method for producing an amide compound using the same.
  • the amide bond is a basic structural unit of biopolymers such as proteins and synthetic polymers such as nylon, and is included in 25% of synthetic drugs. Therefore, the amide bond forming reaction has very high industrial utility (see Non-Patent Document 1).
  • the amide bond forming reaction is usually performed using a stoichiometric activator. Therefore, while a desired amide is produced, there is a problem that a large amount of waste is by-produced. Therefore, a working group consisting of a number of pharmaceutical companies belonging to the American Chemical Society Green Chemistry Committee selected the “amide bond-forming reaction with low waste” as the most desired reaction in 2006 (Non-Patent Documents). 2).
  • Non-Patent Document 3 For example, a reaction using an enzyme catalyst has been proposed. However, this reaction has a problem that the range of application of the substrate to the enzyme is limited. For example, a reaction using a metal catalyst has been proposed. However, this reaction has a problem that a high temperature of about 150 ° C. is required. For example, a reaction using boric acid, aromatic boronic acid, or aromatic borinic acid as a catalyst has been proposed (see Non-Patent Document 4). However, in this method, about 10 mol% of the catalyst is used with respect to the substrate, and the yield is about 50% to 60%. In particular, there is a problem in that the application range of the substrate is limited, specifically, in that it is not suitable for the reaction of a substrate having a sterically bulky group.
  • the present invention provides a catalyst that can be used in an amide bond forming reaction, does not require a reaction at a high temperature, and has a wide substrate application range, and a method for forming an amide bond using the catalyst, and It aims at providing the manufacturing method of the amide compound using a catalyst.
  • the catalyst of the present invention is represented by the following general formula (1).
  • R 1 to R 16 each independently represents a hydrogen atom or a substituent.
  • the method for forming an amide bond of the present invention is characterized in that an amide bond is formed by reacting a carboxyl group of a carboxylic acid compound with an amino group of an amine compound in the presence of the catalyst of the present invention.
  • the method for producing an amide compound of the present invention is characterized in that an amide compound is obtained by reacting a carboxylic acid compound and an amine compound in the presence of the catalyst of the present invention.
  • a catalyst that can solve the conventional problems, achieve the object, can be used for an amide bond forming reaction, does not require a reaction at a high temperature, and has a wide substrate application range. And a method for forming an amide bond using the catalyst, and a method for producing an amide compound using the catalyst.
  • the catalyst of the present invention is represented by the following general formula (1).
  • R 1 to R 16 each independently represents a hydrogen atom or a substituent.
  • Electron donating group examples include an alkyl group, hydroxyl group, mercapto group, alkyloxy group, acyloxy group, sulfonyloxy group, alkoxycarbonyloxy group, aryloxycarbonyloxy group, alkylthio group, amino group, mono or di group. Examples include substituted amino groups.
  • the alkyl group is preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, and particularly preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, hexyl, decyl, dodecyl, tetradecyl, and hexadecyl groups.
  • the alkyloxy group is preferably an alkyloxy group having 1 to 20 carbon atoms, more preferably an alkyloxy group having 1 to 12 carbon atoms, and particularly preferably an alkyloxy group having 1 to 6 carbon atoms.
  • Examples of the alkyloxy group include a methoxy group, an ethoxy group, an isopropoxy group, a butoxy group, a t-butoxy group, a hexyloxy group, an octyloxy group, a decyloxy group, a dodecyloxy group, a tetradecyloxy group, and an octadecyloxy group.
  • the acyloxy group is preferably an acyloxy group having 1 to 20 carbon atoms, more preferably an acyloxy group having 1 to 12 carbon atoms, and particularly preferably an acyloxy group having 1 to 6 carbon atoms.
  • Examples of the acyloxy group include formyloxy group, acetyloxy group, propionyloxy group, and benzoyloxy group.
  • sulfonyloxy group examples include a benzenesulfonyloxy group and a p-toluenesulfonyloxy group.
  • the alkoxycarbonyloxy group is preferably an alkoxycarbonyloxy group having 2 to 21 carbon atoms, more preferably an alkoxycarbonyloxy group having 2 to 13 carbon atoms, and particularly preferably an alkoxycarbonyloxy group having 2 to 7 carbon atoms.
  • aryloxycarbonyloxy group examples include a phenyloxycarbonyloxy group.
  • the alkylthio group is preferably an alkylthio group having 1 to 20 carbon atoms, more preferably an alkylthio group having 1 to 12 carbon atoms, and particularly preferably an alkylthio group having 1 to 6 carbon atoms.
  • Examples of the mono- or di-substituted amino group include a mono- or dialkylamino group, an acylamino group, and a sulfonylamino group.
  • Electron withdrawing group examples include a halogen atom, a haloalkyl group, an aryl group, a carboxyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, an acyl group, a cyano group, a nitro group, a sulfo group, and an alkyl group.
  • An oxysulfonyl group etc. are mentioned.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the haloalkyl group is preferably a haloalkyl group having 1 to 20 carbon atoms, more preferably a haloalkyl group having 1 to 12 carbon atoms, and particularly preferably a haloalkyl group having 1 to 6 carbon atoms.
  • the haloalkyl group include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a chloromethyl group, a dichloromethyl group, a trichloromethyl group, and a bromomethyl group.
  • aryl group examples include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
  • the alkyloxycarbonyl group is preferably an alkyloxycarbonyl group having 1 to 20 carbon atoms, more preferably an alkyloxycarbonyl group having 1 to 12 carbon atoms, and particularly preferably an alkyloxycarbonyl group having 1 to 6 carbon atoms.
  • Examples of the alkyloxycarbonyl group include methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, t-butoxycarbonyl group, hexyloxycarbonyl group and the like.
  • the aryloxycarbonyl group is preferably an aryloxycarbonyl group having 6 to 20 carbon atoms.
  • Examples of the aryloxycarbonyl group include a phenyloxycarbonyl group and a naphthyloxycarbonyl group.
  • the aralkyloxycarbonyl group is preferably an aralkyloxycarbonyl group having 7 to 21 carbon atoms.
  • Examples of the aralkyloxycarbonyl group include a benzyloxycarbonyl group.
  • the acyl group is preferably an acyl group having 1 to 20 carbon atoms, more preferably an acyl group having 1 to 12 carbon atoms, and particularly preferably an acyl group having 1 to 6 carbon atoms.
  • the acyl group include aliphatic acyl groups and aromatic acyl groups.
  • the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, pivaloyl group, hexanoyl group, benzoyl group, and naphthoyl group.
  • the alkyloxysulfonyl group is preferably an alkyloxysulfonyl group having 1 to 20 carbon atoms, more preferably an alkyloxysulfonyl group having 1 to 12 carbon atoms, and particularly preferably an alkyloxysulfonyl group having 1 to 6 carbon atoms.
  • Examples of the alkyloxysulfonyl group include a methoxysulfonyl group and an ethoxysulfonyl group.
  • any of R 12 and R 16 may be a group represented by the following general formula (2) as an electron withdrawing group, or represented by the following general formula (3) as an electron withdrawing group. It may be a group.
  • R 21 to R 27 each independently represents a hydrogen atom or a substituent.
  • the substituent illustrated by description of the substituent in the said General formula (1) is mentioned, for example.
  • R 21 to R 27 and R 31 to R 35 each independently represent any of a hydrogen atom and a substituent.
  • the substituent illustrated by description of the substituent in the said General formula (1) is mentioned, for example.
  • R 21 to R 27 include the following groups.
  • R 21 is the same group as R 1 .
  • R 22 is the same group as R 2 .
  • R 23 is the same group as R 3 .
  • R 24 is the same group as R 4 .
  • R 25 is the same group as R 5 .
  • R 26 is the same group as R 6 .
  • R 27 is the same group as R 7 .
  • Examples of the catalyst represented by the general formula (1) include a catalyst represented by the following general formula (1A), a catalyst represented by the following general formula (1B), and the following general formula (1C). A catalyst etc. are mentioned. Of course, the catalyst of the present invention is not limited to the following general formula.
  • R 6 and R 14 are respectively the same as the general formula (1) R 6 and R 14 in.
  • R 6 is the same as R 6 in the general formula (1)
  • R 26 is the same as R 26 in the general formula (2).
  • R 6 is the same as R 6 in the general formula (1)
  • R 26 is the same as R 26 in formula (3).
  • the compound obtained by the production method of the following scheme has an unstable B-Ph (phenyl) azaborine structure, but has no problem when used as a catalyst.
  • Method for forming an amide bond of the present invention a carboxyl group of a carboxylic acid compound and an amino group of an amine compound are reacted in the presence of the catalyst of the present invention to form an amide bond.
  • a carboxylic acid compound and an amine compound are reacted in the presence of the catalyst of the present invention to obtain an amide compound.
  • the carboxylic acid compound is not particularly limited as long as it is a compound having a carboxyl group, and can be appropriately selected according to the purpose. .
  • the carboxylic acid compound may be a monocarboxylic acid compound or a polyvalent carboxylic acid compound.
  • the monocarboxylic acid compound is a compound having one carboxyl group in the molecule.
  • the polyvalent carboxylic acid compound is a compound having two or more carboxyl groups in the molecule.
  • the carboxylic acid compound is the polyvalent carboxylic acid compound, the amide bond forming reaction may be controlled by utilizing the difference in reactivity of the carboxyl groups.
  • R a represents an organic group.
  • the molecular weight of the carboxylic acid compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the molecular weight is preferably 1,000 or less, and more preferably 500 or less.
  • carboxylic acid compound examples are illustrated below.
  • carboxylic acid compound in the present invention is not limited to the following specific examples.
  • the amine compound is not particularly limited as long as it is a compound having an amino group, and can be appropriately selected according to the purpose.
  • R b represents an organic group
  • R c represents a hydrogen atom or an organic group
  • R b and R c may form a ring structure together. Good.
  • the molecular weight of the amine compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the molecular weight is preferably 1,000 or less, and more preferably 500 or less.
  • the amine compound may be a monoamine compound or a polyvalent amine compound.
  • the amine compound is a compound having one amino group in the molecule.
  • the polyvalent amine compound is a compound having two or more amino groups in the molecule.
  • the amide bond forming reaction may be controlled using the difference in reactivity of each amino group.
  • the amino group in the amine compound may be a primary amino group or a secondary amino group.
  • the amide compound is not particularly limited as long as it is a compound having an amide bond, and can be appropriately selected according to the purpose.
  • Examples thereof include compounds represented by the following general formula (C).
  • General formula (C) R a and R b each independently represent an organic group, R C represents a hydrogen atom or an organic group, and R b and R c are combined together.
  • a ring structure may be formed.
  • the amount of the catalyst to be used is not particularly limited and can be appropriately selected according to the purpose.
  • the reaction can be allowed to proceed with a use amount smaller than the use amount of the boron catalyst.
  • the amount of the catalyst used is preferably 1 mol% to 10 mol%, more preferably 1 mol% to 8 mol%, and particularly preferably 2 mol% to 7 mol% with respect to the substrate (for example, the carboxylic acid compound). .
  • reaction temperature is high temperature (for example, 150 degreeC).
  • the reaction temperature is preferably 30 ° C. to 120 ° C., more preferably 40 ° C. to 100 ° C.
  • the reaction time is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include 1 hour to 48 hours.
  • the reaction in the method for forming an amide bond and the method for producing the amide compound is preferably performed in the presence of an organic solvent.
  • organic solvent include benzene, toluene, xylene, and the like.
  • the reaction in the method for forming the amide bond and the method for producing the amide compound is preferably performed in an inert atmosphere.
  • the inert atmosphere include a nitrogen atmosphere and an argon atmosphere.
  • 2,6-dibromoaniline (3.00 g, 11.9 mmol), phenylboronic acid (1.45 g, 11.9 mmol), sodium carbonate (7.60 g, 71.7 mmol), and tetrakis (triphenylphosphine) palladium ( 0) (691 mg, 0.598 mmol) in toluene (120 mL) was added ethanol (30 mL) and distilled water (30 mL) at room temperature, and the mixture was stirred for 24 hours under reflux under heating in an argon atmosphere. Was cooled to room temperature.
  • the concentrated solution thus obtained is purified by flash column chromatography (silica gel, n-hexane / ethyl acetate), and the solid obtained after concentration under reduced pressure is dissolved in ethyl acetate at room temperature, followed by addition of n-hexane. A solid was precipitated. The solid was collected by filtration and dried under reduced pressure to give (2- (6-hydroxy-5,6-dihydrodibenzo [c, e] [1,2] azaborin-4-yl) phenyl) boronic acid 1,8 -The protected diaminonaphthalene was obtained as a gray solid (1.4 g, 3.2 mmol, 57% yield).
  • Example 1 (2- (6-hydroxy-5,6-dihydrodibenzo [c, e] [1,2] azaborin-4-yl) phenyl) boronic acid 1,8-diaminonaphthalene protector (0. 343 mmol) protected from (2- (6-hydroxy-2-fluoro-5,6-dihydrodibenzo [c, e] [1,2] azaborin-4-yl) phenyl) boronic acid 1,8-diaminonaphthalene (Fluoro-4- (2- (9-fluoro-1,3-dioxa-3a 1 ) 1) in the same manner as in Example 1, except that the amount of the compound obtained in Synthesis Example 3B (0.343 mmol) was changed.
  • Example 1 (2- (6-hydroxy-5,6-dihydrodibenzo [c, e] [1,2] azaborin-4-yl) phenyl) boronic acid 1,8-diaminonaphthalene protector (0. 343 mmol) protected from (2- (6-hydroxy-2-methyl-5,6-dihydrodibenzo [c, e] [1,2] azaborin-4-yl) phenyl) boronic acid 1,8-diaminonaphthalene (Methyl 4- (2- (9-methyl-1,3-dioxa-3a 1 ) 1) in the same manner as in Example 1 except that the compound was changed to (Compound obtained in Synthesis Example 3C, 0.343 mmol).
  • Example 4 2- (4-fluorophenyl) -1 was changed in the same manner as in Example 4 except that phenylboronic acid (2.36 mmol) was changed to 4-fluorophenylboronic acid (2.36 mmol). , 3-Dioxa-3a 1 -aza-2,3a, 14b-triboradibenzo [fg, op] tetracene was obtained (yield 70%).
  • Example 4 2- (4-methoxyphenyl) -1 was changed in the same manner as in Example 4 except that phenylboronic acid (2.36 mmol) was changed to 4-methoxyphenylboronic acid (2.36 mmol). , 3-dioxa-3a 1 -aza-2,3a, 14b-triboradibenzo [fg, op] tetracene was obtained (yield 76%).
  • Example 7A ⁇ Synthesis of N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 1, N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 7B ⁇ Synthesis of N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 2, N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 7C ⁇ Synthesis of N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 3, N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 7D ⁇ Synthesis of N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 4, N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 7E ⁇ Synthesis of N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 5, N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 7F ⁇ Synthesis of N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 6, N- (4-fluorobenzyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 8A ⁇ Synthesis of N- (4-fluorobenzyl) adamantane-1-carboxamide> Using the catalyst obtained in Example 1, N- (4-fluorobenzyl) adamantane-1-carboxamide was synthesized.
  • Example 8B ⁇ Synthesis of N- (4-fluorobenzyl) -3-methylthiophene-2-carboxamide> Using the catalyst obtained in Example 1, N- (4-fluorobenzyl) -3-methylthiophene-2-carboxamide was synthesized.
  • Example 8C ⁇ Synthesis of (E) -N- (4-fluorobenzyl) -2-methylbutene-2-enamide> Using the catalyst obtained in Example 1, synthesis of (E) -N- (4-fluorobenzyl) -2-methylbutene-2-enamide was performed.
  • Example 8D ⁇ Synthesis of N- (cyclopropylmethyl) -2,4,6-trimethylbenzamide> Using the catalyst obtained in Example 1, N- (cyclopropylmethyl) -2,4,6-trimethylbenzamide was synthesized.
  • Example 8E ⁇ Synthesis of N- (2- (1H-indol-3-yl) ethyl) benzamide> Using the catalyst obtained in Example 1, N- (2- (1H-indol-3-yl) ethyl) benzamide was synthesized.
  • Example 8F ⁇ Synthesis of N- (4-methoxyphenyl) -2-methyl-2-phenylpropanamide> Using the catalyst obtained in Example 1, N- (4-methoxyphenyl) -2-methyl-2-phenylpropanamide was synthesized.
  • Example 8G ⁇ Synthesis of N-benzylheptanamide> Using the catalyst obtained in Example 1, N-benzylheptanamide was synthesized.
  • Example 9 In addition to the above Examples 8A to 8G, an amide bond forming reaction for synthesizing the following amide from the following carboxylic acid and amine was performed using the catalyst obtained in Example 1. The yield of amide is shown in Table 1.
  • Example 4 phenylboronic acid (2.36 mmol) was converted to (2- (6-phenyl-5,6-dihydrodibenzo [c, e] [1,2] azaborin-4-yl) phenyl) boronic acid ( 2- (4-fluorophenyl) -1,3-dioxa-3a1-aza-2,3a, the same as in Example 4 except that the compound obtained in Synthesis Example 4A was changed to 0.68 mmol). 14b-Triboradibenzo [fg, op] tetracene was obtained (yield 95%).
  • the catalyst of the present invention can be used for reactions for synthesizing amide compounds from various carboxylic acid compounds and various amine compounds.
  • the amide bond formation reaction can be performed even when a sterically bulky carboxylic acid compound is used.
  • the superiority of the catalyst of the present invention which is not found in the conventional amide bond formation reaction using a boron catalyst, One of the points. From the above results, the catalyst represented by the general formula (1) is useful as a catalyst regardless of whether the substituent of the benzene ring is an electron donating group or an electron withdrawing group. It could be confirmed. In Example 7E, the yield of the amide compound was 9%.
  • the catalyst of the present invention can be suitably used for an amide bond forming reaction.
  • a catalyst represented by the following general formula (1) A catalyst represented by the following general formula (1).
  • R 1 to R 16 each independently represents a hydrogen atom or a substituent.
  • R 2> The catalyst according to ⁇ 1>, wherein the substituent is an electron donating group or an electron withdrawing group.
  • ⁇ 3> The catalyst according to any one of ⁇ 1> to ⁇ 2>, which is represented by any one of the following general formula (1A) and the following general formula (1B).
  • R ⁇ 6 > and R ⁇ 14 > represents either a hydrogen atom, an electron-donating group, and an electron withdrawing group each independently.
  • R 6 and R 26 represent any of a hydrogen atom, an electron donating group, and an electron withdrawing group.
  • R ⁇ 6 > and R ⁇ 26 > represents either a hydrogen atom, an electron-donating group, and an electron withdrawing group each independently.
  • ⁇ 5> A carboxyl group of a carboxylic acid compound and an amino group of an amine compound are reacted in the presence of the catalyst according to any one of ⁇ 1> to ⁇ 4> to form an amide bond. This is a method for forming an amide bond.
  • a method for producing an amide compound comprising: reacting a carboxylic acid compound with an amine compound in the presence of the catalyst according to any one of ⁇ 1> to ⁇ 4> to obtain an amide compound. is there.

Abstract

下記一般式(1)で表される触媒である。ただし、前記一般式(1)中、R~R16は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。

Description

触媒、アミド結合の形成方法、及びアミド化合物の製造方法
 本発明は、新規な触媒、並びにそれを用いたアミド結合の形成方法、及びそれを用いたアミド化合物の製造方法に関する。
 アミド結合は、タンパク質等の生体高分子やナイロン等の合成高分子の基本構成単位であるほか、合成医薬品の25%に含まれる。そのため、アミド結合形成反応は、産業上の有用性が非常に高い(非特許文献1参照)。
 アミド結合形成反応は、通常、化学量論上の活性化剤を用いて実施される。そのため、所望のアミドが生成する一方で、廃棄物を大量に副生するという問題がある。
 そこで、アメリカ化学会グリーンケミストリー部会に所属する複数の製薬会社からなるワーキンググループは、2006年に「廃棄物の少ないアミド結合形成反応」をもっとも開発の望まれる反応に選定している(非特許文献2参照)。
 そこで、近年、触媒的アミド結合形成反応が検討され、提案されている(非特許文献3参照)。
 例えば、酵素触媒を用いる反応が提案されている。しかし、この反応では、酵素に対する基質の適用範囲が限定的であるという問題がある。
 例えば、金属触媒を用いる反応が提案されている。しかし、この反応では、150℃程度の高温を要するという問題がある。
 例えば、ホウ酸、芳香族ボロン酸、又は芳香族ボリン酸を触媒として用いる反応が提案されている(非特許文献4参照)。しかし、この方法では、触媒を基質に対して10mol%程度使用し、収率が50%~60%程度である。特に、基質の適用範囲が限定的である点、具体的には、立体的に嵩高い基を有する基質の反応には適さない点で問題がある。
 したがって、アミド結合形成反応に使用でき、高温での反応を要さず、かつ基質の適用範囲が広い触媒が求められているのが現状である。
J. Med. Chem., 2011, 54, 3451. Green Chem., 2007, 5, 411. Chem. Soc. Rev., 2014, 43, 2714. J. Org. Chem., 2012, 77, 8386.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、アミド結合形成反応に使用でき、高温での反応を要さず、かつ基質の適用範囲が広い触媒を提供すること、並びにその触媒を用いたアミド結合の形成方法、及びその触媒を用いたアミド化合物の製造方法を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 本発明の触媒は、下記一般式(1)で表される。
 ただし、前記一般式(1)中、R~R16は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。
 本発明のアミド結合の形成方法は、カルボン酸化合物のカルボキシル基と、アミン化合物のアミノ基とを本発明の前記触媒の存在下で反応させてアミド結合を形成することを特徴とする。
 本発明のアミド化合物の製造方法は、カルボン酸化合物と、アミン化合物とを、本発明の前記触媒の存在下で反応させてアミド化合物を得ることを特徴とする。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、アミド結合形成反応に使用でき、高温での反応を要さず、かつ基質の適用範囲が広い触媒を提供すること、並びにその触媒を用いたアミド結合の形成方法、及びその触媒を用いたアミド化合物の製造方法を提供することができる。
(触媒)
 本発明の触媒は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
 ただし、前記一般式(1)中、R~R16は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。
<置換基>
 前記置換基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子供与性基、電子吸引性基などが挙げられる。
 前記触媒は、後述の実施例からも理解されるように、前記一般式(1)において、R~R16に電子供与性基、又は電子吸引性基を有していても、アミド結合形成反応における触媒として機能する。
<<電子供与性基>>
 前記電子供与性基としては、例えば、アルキル基、ヒドロキシル基、メルカプト基、アルキルオキシ基、アシルオキシ基、スルホニルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アルキルチオ基、アミノ基、モノ又はジ置換アミノ基などが挙げられる。
 前記アルキル基としては、炭素数1~20のアルキル基が好ましく、炭素数1~12のアルキル基がより好ましく、炭素数1~6のアルキル基が特に好ましい。
 前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ヘキシル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基などが挙げられる。
 前記アルキルオキシ基としては、炭素数1~20のアルキルオキシ基が好ましく、炭素数1~12のアルキルオキシ基がより好ましく、炭素数1~6のアルキルオキシ基が特に好ましい。
 前記アルキルオキシ基としては、例えば、メトキシ基、エトキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ヘキシルオキシ基、オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、オクタデシルオキシ基などが挙げられる。
 前記アシルオキシ基としては、炭素数1~20のアシルオキシ基が好ましく、炭素数1~12のアシルオキシ基がより好ましく、炭素数1~6のアシルオキシ基が特に好ましい。
 前記アシルオキシ基としては、例えば、ホルミルオキシ基、アセチルオキシ基、プロピオニルオキシ基、ベンゾイルオキシ基などが挙げられる。
 前記スルホニルオキシ基としては、例えば、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基などが挙げられる。
 前記アルコキシカルボニルオキシ基としては、炭素数2~21のアルコキシカルボニルオキシ基が好ましく、炭素数2~13のアルコキシカルボニルオキシ基がより好ましく、炭素数2~7のアルコキシカルボニルオキシ基が特に好ましい。
 前記アリールオキシカルボニルオキシ基としては、例えば、フェニルオキシカルボニルオキシ基などが挙げられる。
 前記アルキルチオ基としては、炭素数1~20のアルキルチオ基が好ましく、炭素数1~12のアルキルチオ基がより好ましく、炭素数1~6のアルキルチオ基が特に好ましい。
 前記モノ又はジ置換アミノ基としては、モノ又はジアルキルアミノ基、アシルアミノ基、スルホニルアミノ基などが挙げられる。
<<電子吸引性基>>
 前記電子吸引性基としては、例えば、ハロゲン原子、ハロアルキル基、アリール基、カルボキシル基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基、アシル基、シアノ基、ニトロ基、スルホ基、アルキルオキシスルホニル基などが挙げられる。
 前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。
 前記ハロアルキル基としては、炭素数1~20のハロアルキル基が好ましく、炭素数1~12のハロアルキル基がより好ましく、炭素数1~6のハロアルキル基が特に好ましい。
 前記ハロアルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基などが挙げられる。
 前記アリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基などが挙げられる。
 前記アルキルオキシカルボニル基としては、炭素数1~20のアルキルオキシカルボニル基が好ましく、炭素数1~12のアルキルオキシカルボニル基がより好ましく、炭素数1~6のアルキルオキシカルボニル基が特に好ましい。
 前記アルキルオキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、t-ブトキシカルボニル基、ヘキシルオキシカルボニル基などが挙げられる。
 前記アリールオキシカルボニル基としては、炭素数6~20のアリールオキシカルボニル基が好ましい。
 前記アリールオキシカルボニル基としては、例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基などが挙げられる。
 前記アラルキルオキシカルボニル基としては、炭素数7~21のアラルキルオキシカルボニル基が好ましい。
 前記アラルキルオキシカルボニル基としては、例えば、ベンジルオキシカルボニル基などが挙げられる。
 前記アシル基としては、炭素数1~20のアシル基が好ましく、炭素数1~12のアシル基がより好ましく、炭素数1~6のアシル基が特に好ましい。
 前記アシル基としては、脂肪族アシル基、芳香族アシル基などが挙げられる。
 前記アシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基、ベンゾイル基、ナフトイル基などが挙げられる。
 前記アルキルオキシスルホニル基としては、炭素数1~20のアルキルオキシスルホニル基が好ましく、炭素数1~12のアルキルオキシスルホニル基がより好ましく、炭素数1~6のアルキルオキシスルホニル基が特に好ましい。
 前記アルキルオキシスルホニル基としては、例えば、メトキシスルホニル基、エトキシスルホニル基などが挙げられる。
-R12及びR16
 更に、R12及びR16のいずれかは、電子吸引性基としての下記一般式(2)で表される基であってもよいし、電子吸引性基としての下記一般式(3)で表される基であってもよい。
Figure JPOXMLDOC01-appb-C000006
 ただし、前記一般式(2)中、R21~R27は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。
 前記置換基としては、例えば、前記一般式(1)における置換基の説明で例示した置換基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 ただし、前記一般式(3)中、R21~R27、及びR31~R35は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。
 前記置換基としては、例えば、前記一般式(1)における置換基の説明で例示した置換基が挙げられる。
 例えば、R21~R27は、以下の基が挙げられる。
 R21は、Rと同じ基である。
 R22は、Rと同じ基である。
 R23は、Rと同じ基である。
 R24は、Rと同じ基である。
 R25は、Rと同じ基である。
 R26は、Rと同じ基である。
 R27は、Rと同じ基である。
 前記一般式(1)で表される触媒としては、例えば、下記一般式(1A)で表される触媒、下記一般式(1B)で表される触媒、下記一般式(1C)で表される触媒などが挙げられる。もちろん、本発明の触媒は下記一般式に限定されない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 ただし、前記一般式(1A)中、R及びR14は、前記一般式(1)中のR及びR14とそれぞれ同じである。
 ただし、前記一般式(1B)中、Rは、前記一般式(1)中のRと同じであり、R26は、前記一般式(2)中のR26と同じである。
 ただし、前記一般式(1C)中、Rは、前記一般式(1)中のRと同じであり、R26は、前記一般式(3)中のR26と同じである。
<触媒の製造方法>
 本発明の触媒の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、以下の反応スキームで例示される方法が挙げられる。より具体的な製造方法は、後述の実施例に記載されている。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 なお、下記スキームの製造方法において得られる化合物は、不安定なB-Ph(フェニル)アザボリン構造を有するものの、触媒として使用するには問題のないものである。
Figure JPOXMLDOC01-appb-C000012
(アミド結合の形成方法、アミド化合物の製造方法)
 本発明のアミド結合の形成方法では、カルボン酸化合物のカルボキシル基と、アミン化合物のアミノ基とを本発明の前記触媒の存在下で反応させてアミド結合を形成する。
 本発明のアミド化合物の製造方法では、カルボン酸化合物と、アミン化合物とを、本発明の前記触媒の存在下で反応させてアミド化合物を得る。
<カルボン酸化合物>
 従来のホウ素触媒を用いたアミド結合形成反応では、立体的に嵩高いカルボン酸化合物は基質として使用できない。
 一方、本発明の前記触媒は、アミド結合形成反応に使用される従来のホウ素触媒と異なり、立体的に嵩高いカルボン酸化合物であっても、アミド結合形成反応の基質として使用することができる。
 そのため、前記アミド結合の形成方法、及び前記アミド化合物の製造方法においては、前記カルボン酸化合物としては、カルボキシル基を有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記カルボン酸化合物は、モノカルボン酸化合物であってもよいし、多価カルボン酸化合物であってもよい。前記モノカルボン酸化合物とは、分子中に1つのカルボキシル基を有する化合物である。前記多価カルボン酸化合物とは、分子中に2つ以上のカルボキシル基を有する化合物である。
 前記カルボン酸化合物が前記多価カルボン酸化合物である場合、各カルボキシル基の反応性の違いを利用して、アミド結合形成反応を制御すればよい。
 前記カルボン酸化合物としては、例えば、下記一般式(A)で表される化合物が挙げられる。
  R-COOH  ・・・一般式(A)
 ただし、前記一般式(A)中、Rは、有機基を表す。
 前記カルボン酸化合物の分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、分子量1,000以下が好ましく、分子量500以下がより好ましい。
 前記カルボン酸化合物の具体例を以下に例示する。もちろん、本発明における前記カルボン酸化合物は、以下の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000013
<アミン化合物>
 前記アミン化合物としては、アミノ基を有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記アミン化合物としては、例えば、下記一般式(B)で表される化合物が挙げられる。
  R-NRH  ・・・一般式(B)
 ただし、前記一般式(B)中、Rは、有機基を表し、Rは、水素原子又は有機基を表し、RとRとは一緒になって環構造を形成していてもよい。
 前記アミン化合物の分子量としては、特に制限はなく、目的に応じて適宜選択することができるが、分子量1,000以下が好ましく、分子量500以下がより好ましい。
 前記アミン化合物は、モノアミン化合物であってもよいし、多価アミン化合物であってもよい。前記アミン化合物とは、分子中に1つのアミノ基を有する化合物である。前記多価アミン化合物とは、分子中に2つ以上のアミノ基を有する化合物である。
 前記アミン化合物が前記多価アミン化合物である場合、各アミノ基の反応性の違いを利用して、アミド結合形成反応を制御すればよい。
 前記アミン化合物におけるアミノ基は、1級アミノ基であっても、2級アミノ基であってもよい。
 前記アミン化合物の具体例を以下に例示する。もちろん、本発明における前記アミン化合物は、以下の具体例に限定されない。
Figure JPOXMLDOC01-appb-C000014
<アミド化合物>
 前記アミド化合物としては、アミド結合を有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、下記一般式(C)で表される化合物が挙げられる。
  R-CONR-R  ・・・一般式(C)
 ただし、前記一般式(A)中、R及びRは、それぞれ独立して、有機基を表し、Rは、水素原子又は有機基を表し、RとRとは一緒になって環構造を形成していてもよい。
<反応条件>
<<触媒の使用量>>
 前記アミド結合の形成方法、及び前記アミド化合物の製造方法において、前記触媒の使用量としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明の前記触媒は、従来のホウ素触媒の使用量よりも少ない使用量で反応を進行させることができる。その点で、前記触媒の使用量としては、基質(例えば、前記カルボン酸化合物)に対して、1mol%~10mol%が好ましく、1mol%~8mol%がより好ましく、2mol%~7mol%が特に好ましい。
<<反応温度、反応時間>>
 前記アミド結合の形成方法、及び前記アミド化合物の製造方法における反応温度としては、特に制限はなく、目的に応じて適宜選択することができるが、本発明の前記触媒は、高温(例えば、150℃)を要せずに反応を進行させることができる。その点で、前記反応温度としては、30℃~120℃が好ましく、40℃~100℃がより好ましい。
 前記反応時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1時間~48時間が挙げられる。
<<その他の条件>>
 前記カルボン酸化合物と、前記アミン化合物との使用量比としては、特に制限はなく、目的に応じて適宜選択することができるが、廃棄物が少ない点で、当量比が好ましい。
 前記アミド結合の形成方法、及び前記アミド化合物の製造方法における反応は、有機溶媒存在下で行うことが好ましい。前記有機溶媒としては、例えば、ベンゼン、トルエン、キシレンなどが挙げられる。
 前記アミド結合の形成方法、及び前記アミド化合物の製造方法における反応は、不活性雰囲気下で行うことが好ましい。前記不活性雰囲気としては、例えば、窒素雰囲気、アルゴン雰囲気などが挙げられる。
 以下に本発明の実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 以下の実施例において、「Ph」は、フェニル基を表す。
(合成例1A)
<2-ブロモ-6-フェニルアニリンの合成>
Figure JPOXMLDOC01-appb-C000015
 2,6-ジブロモアニリン(3.00g、11.9mmol)、フェニルボロン酸(1.45g、11.9mmol)、炭酸ナトリウム(7.60g、71.7mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム(0)(691mg、0.598mmol)のトルエン(120mL)溶液にエタノール(30mL)、及び蒸留水(30mL)を室温にて加え、アルゴン雰囲気下にて加熱還流条件にて24時間撹拌した後に反応液を室温まで冷却した。蒸留水(50mL)を加えて撹拌し、分離した水層をn-ヘキサン(50mL)にて3回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(50mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。こうして得られた濃縮液をフラッシュカラムクロマトグラフィー(シリカゲル、n-ヘキサン/クロロホルム)で精製し、2-ブロモ-6-フェニルアニリンを白色個体として得た(1.66g、6.69mmol、収率56%)。
 H-NMR (400MHz, CDCl) δ: 7.48-7.33 (m, 6H), 7.05 (dd, J = 1.5, 7.6 Hz, 1H), 6.68 (dd, J = 7.6, 7.8 Hz, 1H), 4.19 (s, 2H).
(合成例1B)
<2-ブロモ-4-フルオロ-6-フェニルアニリンの合成>
Figure JPOXMLDOC01-appb-C000016
 合成例1Aにおいて、2,6-ジブロモアニリン(11.9mmol)を、2,6-ジブロモ-4-フルオロアニリン(11.9mmol)に変えた以外は、合成例1Aと同様にして、2-ブロモ-4-フルオロ-6-フェニルアニリンを合成した(収率56%)。
 H-NMR (400MHz, CDCl) δ: 7.51-7.44 (m, 2H), 7.44-7.34 (m, 3H), 7.20 (dd, J = 2.9, 7.9 Hz, 1H), 6.85 (dd, J = 2.9, 8.8 Hz, 1H), 4.02 (s, 2H).
(合成例1C)
<2-ブロモ-4-メチル-6-フェニルアニリンの合成>
Figure JPOXMLDOC01-appb-C000017
 合成例1Aにおいて、2,6-ジブロモアニリン(11.9mmol)を、2,6-ジブロモ-4-メチルアニリン(11.9mmol)に変えた以外は、合成例1Aと同様にして、2-ブロモ-4-メチル-6-フェニルアニリンを合成した(収率61%)。
 H-NMR (400MHz, CDCl) δ: 7.47-7.34 (m, 4H), 7.39-7.34 (m, 1H), 7.27-7.26 (m, 1H), 6.88 (d, J = 2.0 Hz, 1H), 3.87 (s, 2H), 2.26 (s, 3H).
(合成例2A)
<4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールの合成>
Figure JPOXMLDOC01-appb-C000018
 2-ブロモ-6-フェニルアニリン(合成例1Aで得られた化合物、1.64g、6.61mmol)のジクロロメタン(83.0mL)溶液を0℃に冷却して撹拌した。三臭化ホウ素(1.0Mジクロロメタン溶液;16.5mL、16.5mmol)をゆっくりと滴下した後に、反応溶液を室温にて24時間撹拌した。その後0℃にて蒸留水(5mL)、飽和炭酸水素ナトリウム水溶液(30mL)、及びジエチルエーテル(250mL)を加えて20分間撹拌し、分離した水層をジエチルエーテル(80mL)にて3回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(30mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮し、4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを白色固体として得た(1.75g、6.39mmol、収率97%)。
 H-NMR (400MHz, d-DMSO) δ: 8.43 (dd, J = 0.9, 8.3 Hz, 1H), 8.39 (d, J = 8.0 Hz, 1H), 8.30 (s, 1H), 8.09 (dd, J = 1.2, 7.5 Hz, 1H), 7.76-7.67 (m, 2H), 7.64 (s, 1H), 7.49 (ddd, J = 0.9, 7.4, 7.5 Hz, 1H), 7.02 (dd, J = 7.9, 8.0 Hz, 1H).
(合成例2B)
<4-ブロモ-2-フルオロジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールの合成>
Figure JPOXMLDOC01-appb-C000019
 合成例2Aにおいて、2-ブロモ-6-フェニルアニリン(6.61mmol)を、2-ブロモ-4-フルオロ-6-フェニルアニリン(合成例1Bで得られた化合物、6.61mmol)に変えた以外は、合成例2Aと同様にして、4-ブロモ-2-フルオロジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを合成した(収率100%)。
 H-NMR (400MHz, d-DMSO) δ: 8.45 (dd, J = 0.9, 8.4 Hz, 1H), 8.33-8.25 (m, 2H), 8.10 (dd, J = 1.3, 7.6 Hz, 1H), 7.75-7.67 (m, 2H), 7.61 (s, 1H), 7.53 (ddd, J = 0.9, 7.3, 7.6 Hz, 1H).
(合成例2C)
<4-ブロモ-2-メチルジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールの合成>
Figure JPOXMLDOC01-appb-C000020
 合成例2Aにおいて、2-ブロモ-6-フェニルアニリン(6.61mmol)を、2-ブロモ-4-メチル-6-フェニルアニリン(合成例1Cで得られた化合物、6.61mmol)に変えた以外は、合成例2Aと同様にして、4-ブロモ-2-メチルジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを合成した(収率98%)。
 H-NMR (400MHz, d-DMSO) δ: 8.42 (dd, J = 0.8, 8.4 Hz, 1H), 8.21-8.19 (m, 2H), 8.07 (dd, J = 1.6, 7.4 Hz, 1H), 7.69 (ddd, J = 1.6, 7.2, 8.4 Hz, 1H), 7.57-7.51 (m, 2H), 7.47 (ddd, J = 0.8, 7.2, 7.4 Hz, 1H), 2.38 (s, 3H).
(合成例3A)
<(2-(6-ヒドロキシ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体の合成>
Figure JPOXMLDOC01-appb-C000021
 4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(合成例2Aで得られた化合物、1.55g、5.67mmol)、o-ベンゼンジボロン酸 ピナコールエステル 1,8-ジアミノナフタレン保護体(CAS:950511-18-9、2.10g、5.67mmol)、及びリン酸三カリウム(3.61g、17.0mmol)を加えた反応容器にビス(トリ-tert-ブチルホスフィン)パラジウム(0)(528mg、1.03mmol)をグローブボックス内で加えた。反応容器にアルゴンを封入した後、ジオキサン(28mL)及び蒸留水(2.8mL)を加え、60℃にて4時間撹拌した。反応液を室温まで冷却した後に、蒸留水及びクロロホルムを加えて撹拌し、分離した水層をクロロホルムにて3回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。こうして得られた濃縮液をフラッシュカラムクロマトグラフィー(シリカゲル、n-ヘキサン/酢酸エチル)で精製し、減圧濃縮後に得られた固体を室温にて酢酸エチルに溶解させ、続いてn-ヘキサンを加えることで固体を析出させた。この固体を濾取し、減圧下乾燥させることにより(2-(6-ヒドロキシ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体を灰色個体として得た(1.4g、3.2mmol、収率57%)。
 H-NMR (400MHz, d-DMSO) δ: 8.42 (d, J = 8.4 Hz, 1H), 8.35 (dd, J = 1.4, 8.2 Hz, 1H), 8.09-7.99 (m, 2H), 7.86 (dd, J = 1.4, 7.4 Hz, 1H), 7.71-7.52 (m, 3H), 7.47-7.38 (m, 2H), 7.34 (s, 2H), 7.32 (dd, J = 1.4, 7.4 Hz, 1H), 7.11 (dd, J = 7.4, 8.1 Hz, 1H), 6.7-6.87 (m, 3H), 6.78 (dd, J = 1.1, 8.2 Hz, 2H), 6.12 (dd, J = 1.1, 7.3 Hz, 2H).
(合成例3B)
<(2-(6-ヒドロキシ-2-フルオロ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体の合成>
Figure JPOXMLDOC01-appb-C000022
 合成例3Aにおいて、4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(5.67mmol)を、4-ブロモ-2-フルオロジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(合成例2Bで得られた化合物、5.67mmol)に変えた以外は、合成例3Aと同様にして、(2-(6-ヒドロキシ-2-フルオロ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体を得た(収率40%)。
 H-NMR (400MHz, d-DMSO) δ: 8.40 (d, J = 8.3 Hz, 1H), 8.15 (dd, J = 2.9, 11.2 Hz, 1H), 8.04 (dd, J = 1.5, 7.6 Hz, 1H), 7.81 (dd, J = 1.5, 7.3 Hz, 1H), 7.71-7.55 (m, 4H), 7.52 (s, 2H), 7.48-7.36 (m, 2H), 7.21 (dd, J = 2.8, 8.7 Hz, 1H), 6.93 (dd, J = 7.4, 8.3 Hz, 2H), 6.87 (s, 1H), 6.79 (dd, J = 1.1, 8.3 Hz, 2H), 6.18 (dd, J = 1.1, 7.4 Hz, 2H).
(合成例3C)
<(2-(6-ヒドロキシ-2-メチル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体の合成>
Figure JPOXMLDOC01-appb-C000023
 合成例3Aにおいて、4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(5.67mmol)を、4-ブロモ-2-メチルジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(合成例2Cで得られた化合物、5.67mmol)に変えた以外は、合成例3Aと同様にして、(2-(6-ヒドロキシ-2-メチル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体を得た(収率48%)。
 H-NMR (400MHz, d-DMSO) δ: 8.42 (d, J = 8.4 Hz, 1H), 8.17 (s, 1H), 8.01 (dd, J = 1.4, 7.5 Hz, 1H), 7.94-7.83 (m, 2H), 7.67-7.55 (m, 3H), 7.45-7.34 (m, 2H), 7.30 (s, 2H), 7.18 (d, J = 1.9 Hz, 1H), 6.92 (dd, J = 7.4, 8.2 Hz, 2H), 6.79-6.76 (m, 3H), 6.11 (dd, J = 1.1, 7.4 Hz, 2H), 2.39 (s, 3H).
(実施例1)
<4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールの合成>
Figure JPOXMLDOC01-appb-C000024
 (2-(6-ヒドロキシ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(合成例3Aで得られた化合物、150mg、0.343mmol)のテトラヒドロフラン(3.4mL)溶液に5N塩酸水溶液(0.41mL)を加え、アルゴン雰囲気下にて50℃にて4時間撹拌した後に反応液を室温まで冷却し、反応溶液を氷冷した蒸留水へとゆっくりと滴下した。析出した固体をメタノールで3回洗浄し、室温にて乾燥させることにより4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを白色固体として得た(75mg、0.13mmol、収率76%)。
 H-NMR (400MHz, d-DMSO) δ: 8.40 (d, J = 8.0 Hz, 2H), 8.30-8.27 (m, 3H), 8.08 (dd, J = 1.6, 7.4 Hz, 1H), 8.04 (dd, J = 1.4, 8.1 Hz, 1H), 7.93 (dd, J = 1.6, 7.5 Hz, 1H), 7.78 (dd, J = 1.6, 7.3 Hz, 2H), 7.64 (ddd, J = 1.6, 7.1, 8.5 Hz, 1H), 7.53 (ddd, J = 1.6, 7.1, 8.4 Hz, 1H), 7.43-7.29 (m, 5H), 7.17 (dd, J = 1.4, 7.2 Hz, 1H), 7.09 (dd, J = 1.4, 7.3 Hz, 1H), 7.04 (ddd, J = 0.8, 7.1, 7.3 Hz, 2H), 6.81 (dd, J = 7.2, 8.1 Hz, 1H), 6.60 (s, 1H).
(実施例2)
<2-フロオロ-4-(2-(9-フルオロ-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールの合成>
Figure JPOXMLDOC01-appb-C000025
 実施例1において、(2-(6-ヒドロキシ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(0.343mmol)を、(2-(6-ヒドロキシ-2-フルオロ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(合成例3Bで得られた化合物、0.343mmol)に変えた以外は、実施例1と同様にして、2-フロオロ-4-(2-(9-フルオロ-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを得た(収率70%)。
 H-NMR (400MHz, d-DMSO) δ: 8.25 (d, J = 8.5 Hz, 2H), 8.21-8.15 (m, 3H), 8.05 (dd, J = 1.6, 7.4 Hz, 1H), 7.86 (dd, J = 1.6, 7.4 Hz, 1H), 7.76 (dd, J = 1.6, 7.4 Hz, 2H), 7.73-7.66 (m, 2H), 7.61 (ddd, J = 1.6, 7.4, 8.5 Hz, 1H), 7.51 (ddd, J = 1.6, 7.4, 8.5 Hz, 2H), 7.45-7.32 (m, 3H), 7.09-7.05 (m, 3H), 6.90 (dd, J = 1.6, 8.5 Hz, 1H), 6.50 (s, 1H).
(実施例3)
<2-メチル-4-(2-(9-メチル-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールの合成>
Figure JPOXMLDOC01-appb-C000026
 実施例1において、(2-(6-ヒドロキシ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(0.343mmol)を、(2-(6-ヒドロキシ-2-メチル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(合成例3Cで得られた化合物、0.343mmol)に変えた以外は、実施例1と同様にして、2-メチル-4-(2-(9-メチル-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを得た(収率68%)。
 H-NMR (400MHz, d-DMSO) δ: 8.25 (d, J = 8.4 Hz, 2H), 8.20 (s, 2H), 8.10 (d, J = 8.3 Hz, 1H), 8.03 (dd, J = 1.6, 7.4 Hz, 1H), 7.85 (dd, J = 1.6, 7.3 Hz, 1H), 7.78 (dd, J = 1.6, 7.3 Hz, 2H), 7.64 (d, J = 1.8 Hz, 1H), 7.55 (ddd, J = 1.6, 7.4, 8.5 Hz, 1H), 7.49 (ddd, J = 1.6, 7.1, 8.4 Hz, 2H), 7.41-7.28 (m, 3H), 7.11-7.00 (m, 3H), 6.88 (d, J = 1.8 Hz, 1H), 6.44 (s, 1H), 2.53 (s, 3H), 1.95 (s, 3H).
(実施例4)
<2-フェニル-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンの合成>
Figure JPOXMLDOC01-appb-C000027
 (2-(6-ヒドロキシ-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(合成例3Aで得られた化合物、103mg、0.236mmol)、及びフェニルボロン酸(288mg、2.36mmol)のテトラヒドロフラン(2.40mL)溶液に5N塩酸水溶液(0.284mL)を加え、アルゴン雰囲気下にて50℃にて4時間撹拌した後に反応液を室温まで冷却した。2N塩酸水溶液(1.00mL)を加えた後、反応溶液を氷冷した蒸留水へとゆっくりと滴下した。析出した固体をメタノールで3回洗浄し、室温にて乾燥させることにより2-フェニル-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンを白色固体として得た(54.8mg、0.143mmol、収率61%)。
 H-NMR (400MHz, d-DMSO) δ: 8.55 (d, J = 7.9 Hz, 2H), 8.50 (d, J = 8.3 Hz, 2H), 8.32 (dd, J = 1.5, 7.5 Hz, 2H), 7.78-7.74 (m, 4H), 7.55 (ddd, J = 0.9, 7.3, 7.5 Hz, 2H), 7.41 (t, J = 7.9 Hz, 1H), 7.30-7.24 (m, 2H), 7.22-7.18 (m, 1H).
(実施例5)
<2-(4-フルオロフェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンの合成>
Figure JPOXMLDOC01-appb-C000028
 実施例4において、フェニルボロン酸(2.36mmol)を、4-フルオロフェニルボロン酸(2.36mmol)に変えた以外は、実施例4と同様にして、2-(4-フルオロフェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンを得た(収率70%)。
 H-NMR (400MHz, d-DMSO) δ: 8.54 (d, J = 8.0 Hz, 2H), 8.49 (d, J = 8.2 Hz, 2H), 8.31 (d, J = 1.5, 7.4 Hz, 2H), 7.78-7.73 (m, 4H), 7.55 (dd, J = 7.2, 7.4 Hz, 2H), 7.41 (t, J = 8.0 Hz, 1H), 7.06 (dd, J = 8.5, 9.7 Hz, 2H).
(実施例6)
<2-(4-メトキシフェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンの合成>
Figure JPOXMLDOC01-appb-C000029
 実施例4において、フェニルボロン酸(2.36mmol)を、4-メトキシフェニルボロン酸(2.36mmol)に変えた以外は、実施例4と同様にして、2-(4-メトキシフェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンを得た(収率76%)。
 H-NMR (400MHz, d-DMSO) δ: 8.57 (d, J = 8.0 Hz, 2H), 8.52 (d, J = 8.3, 2H), 8.34 (dd, J = 1.5, 7.4 Hz, 2H), 7.86-7.73 (m, 4H), 7.57 (dd, J = 7.3, 7.4 Hz, 2H), 7.44 (t, J = 8.0 Hz, 1H), 6.94-6.88 (m, 2H), 3.75 (s, 3H).
(実施例7A)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例1で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000030
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて12時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。こうして得られた濃縮液を分取TLC(シリカゲル、n-ヘキサン/酢酸エチル)で精製し、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドを白色個体として得た(21.0mg、77.5μmol、収率95%)。
(実施例7B)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例2で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000031
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2-フロオロ-4-(2-(9-フルオロ-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例2で得られた触媒、2.5mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて4時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの収率は57%であった。
(実施例7C)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例3で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000032
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2-メチル-4-(2-(9-メチル-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例3で得られた触媒、2.5mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて4時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの収率は85%であった。
(実施例7D)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例4で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000033
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2-フェニル-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン(実施例4で得られた触媒、1.6mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて4時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの収率は40%であった。
(実施例7E)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例5で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000034
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2-(4-フルオロフェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン(実施例5で得られた触媒、1.7mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて4時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの収率は9%であった。
(実施例7F)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例6で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000035
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2-(4-メトキシフェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン(実施例6で得られた触媒、1.7mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて4時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの収率は33%であった。
(比較例1A)
 2,4,6-トリフェニルボロキシンを触媒として用いてN-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を試みた。
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2,4,6-トリフェニルボロキシン(1.3mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて18時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの生成は見られなかった。
(比較例1B)
 合成例2Aで得られた分子を触媒として用いてN-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を試みた。
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(合成例2Aで得られた分子、1.1mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて12時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの生成は見られなかった。
(比較例1C)
 合成例2Bで得られた分子を触媒として用いてN-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を試みた。
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び4-ブロモ-2-フルオロジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(合成例2Bで得られた分子、1.8mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて12時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの生成は見られなかった。
(実施例8A)
<N-(4-フルオロベンジル)アダマンタン-1-カルボキサミドの合成>
 実施例1で得られた触媒を用いて、N-(4-フルオロベンジル)アダマンタン-1-カルボキサミドの合成を行った。
Figure JPOXMLDOC01-appb-C000036
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、アダマンタン-1-カルボン酸(14.7mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、加熱還流条件にて14時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)アダマンタン-1-カルボキサミドの収率は90%以上であった。
(実施例8B)
<N-(4-フルオロベンジル)-3-メチルチオフェン-2-カルボキサミドの合成>
 実施例1で得られた触媒を用いて、N-(4-フルオロベンジル)-3-メチルチオフェン-2-カルボキサミドの合成を行った。
Figure JPOXMLDOC01-appb-C000037
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、3-メチルチオフェン-2-カルボン酸(11.6mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて12時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-3-メチルチオフェン-2-カルボキサミドの収率は78%であった。
(実施例8C)
<(E)-N-(4-フルオロベンジル)-2-メチルブテン-2-エナミドの合成>
 実施例1で得られた触媒を用いて、(E)-N-(4-フルオロベンジル)-2-メチルブテン-2-エナミドの合成を行った。
Figure JPOXMLDOC01-appb-C000038
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、チグリン酸(8.2mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて18時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、(E)-N-(4-フルオロベンジル)-2-メチルブテン-2-エナミドの収率は90%以上であった。
(実施例8D)
<N-(シクロプロピルメチル)-2,4,6-トリメチルベンズアミドの合成>
 実施例1で得られた触媒を用いて、N-(シクロプロピルメチル)-2,4,6-トリメチルベンズアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000039
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2,4,6-トリメチル安息香酸(13.4mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。シクロプロピルメチルアミン(7.00μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて18時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(シクロプロピルメチル)-2,4,6-トリメチルベンズアミドの収率は83%であった。
(実施例8E)
<N-(2-(1H-インドール-3-イル)エチル)ベンズアミドの合成>
 実施例1で得られた触媒を用いて、N-(2-(1H-インドール-3-イル)エチル)ベンズアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000040
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、安息香酸(10.0mg、81.6μmol)、トリプタミン(13.1mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。アルゴン雰囲気下、80℃にて17時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(2-(1H-インドール-3-イル)エチル)ベンズアミドの収率は77%であった。
(実施例8F)
<N-(4-メトキシフェニル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例1で得られた触媒を用いて、N-(4-メトキシフェニル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000041
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)、4-メトキシフェノール(10.0mg、81.6μmol)及び4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。アルゴン雰囲気下、80℃にて12時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-メトキシフェニル)-2-メチル-2-フェニルプロパンアミドの収率は90%以上であった。
(実施例8G)
<N-ベンジルヘプタンアミドの合成>
 実施例1で得られた触媒を用いて、N-ベンジルヘプタンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000042
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、4-(2-(1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン-2-イル)フェニル)ジベンゾ[c,e][1,2]アザボリニン-6(5H)-オール(実施例1で得られた触媒、2.4mg、4.16μmol)を加え、トルエン(820μL)溶液とした。ヘプタン酸(11.6μL、81.6μmol)及びベンジルアミン(8.9μL、81.6μmol)を室温にて加え、アルゴン雰囲気下、室温にて24時間撹拌した。その後、蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-ベンジルヘプタンアミドの収率は90%以上であった。
(実施例9)
 上記実施例8A~8Gの他に、実施例1で得られた触媒を用いて、以下のカルボン酸とアミンとから以下のアミドを合成するアミド結合形成反応を行った。アミドの収率を表1に示した。
Figure JPOXMLDOC01-appb-T000043
(合成例2D)
<4-ブロモ-6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニンの合成>
Figure JPOXMLDOC01-appb-C000044
 2-ブロモ-6-フェニルアニリン(合成例1Aで得られた化合物、1.60g、6.44mmol)のo-ジクロロベンゼン(12.0mL)溶液に、ジクロロフェニルボロン(2.35mL、19.3mmol)とトリエチルアミン(5.30mL、38.6mmol)を加えた。得られた溶液を加熱還流条件下、16時間撹拌した。溶液を室温まで冷却した後、蒸留水とクロロホルムを加え、分離した水層をクロロホルムにて3回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮し、シリカゲルカラムクロマトグラフィーにて精製し4-ブロモ-6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニンを白色固体として得た(1.49g、収率69%)。
 H-NMR (400MHz, CDCl) δ: 8.51 (d, J = 8.2 Hz, 1H), 8.48-8.36 (m, 2H), 8.29 (dd, J = 1.5, 7.6 Hz, 1H), 7.90-7.84 (m, 2H),7.79 (ddd, J = 1.5, 7.1, 8.4 Hz, 1H), 7.74 (dd, J = 1.2, 7.8 Hz, 1H), 7.61-7.48 (m, 4H), 7.18 (t, J = 8.0 Hz, 1H).
(合成例3D)
<(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体の合成>
Figure JPOXMLDOC01-appb-C000045
 合成例3Aにおいて、4-ブロモジベンゾ[c,e][1,2]アザボリニン-6(5H)-オールを、4-ブロモ-6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン(合成例2Dで得られた化合物)に変えた以外は、合成例3Aと同様にして、(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体を得た(収率47%)。
 H-NMR (400MHz, CDCl) δ: 8.62-8.53 (m, 2H), 8.17 (dd, J = 1.5, 7.5 Hz, 1H), 7.85-7.74 (m, 3H), 7.65-7.56 (m, 3H), 7.56-7.46 (m, 3H), 7.46-7.35 (m, 5H), 6.95 (dd, J = 7.2, 8.3 Hz, 2H), 6.89 (dd, J = 1.1, 8.3 Hz, 2H), 5.50 (s, 2H).
(合成例4A)
<(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸の合成>
Figure JPOXMLDOC01-appb-C000046
 (2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸 1,8-ジアミノナフタレン保護体(合成例3Dで得られた化合物、500mg、1.0mmol)のテトラヒドロフラン(10.0mL)溶液に5N塩酸水溶液(1.2mL)を加え、アルゴン雰囲気下にて50℃にて3時間撹拌した後に反応液を室温まで冷却した。反応溶液に2N塩酸水溶液(2.5mL)と水(7.5mL)を加えて分離した水層を酢酸エチルにて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮することで、(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸を含む反応混合物(425mg)を得た。得られた反応混合物を精製することなしに、以下の実施例10に使用した。
(実施例10)
<(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)-1,3-ジオキサ-3a-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンの合成>
Figure JPOXMLDOC01-appb-C000047
 実施例4において、フェニルボロン酸(2.36mmol)を、(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)ボロン酸(合成例4Aで得られた化合物、0.68mmol)に変えた以外は、実施例4と同様にして、2-(4-フルオロフェニル)-1,3-ジオキサ-3a1-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセンを得た(収率95%)。
 H-NMR (400MHz, d-DMSO) δ: 8.39-8.37(m, 3H),8.22 (d, J = 8.3 Hz, 1H), 8.09-7.99(m, 2H),7.86 (dd, J = 1.5, 7.6 Hz, 2H), 7.72 (ddd, J = 1.5, 7.2, 8.4 Hz, 1H), 7.65 (dd, J = 1.5, 7.4 Hz, 2H), 7.54-7.22 (m, 13H), 7.15-7.09 (m, 1H), 6.99 (ddd, J = 0.8, 7.4, 7.4 Hz, 2H), 6.84 (dd, J = 7.2, 8.3 Hz, 1H).
(実施例11)
<N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成>
 実施例10で得られた触媒を用いて、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの合成を行った。
Figure JPOXMLDOC01-appb-C000048
 モレキュラーシーブ4A(67mg)を加え減圧下、加熱乾燥した反応容器に、2-メチル-2-フェニルプロパン酸(13.4mg、81.6μmol)及び2-(2-(6-フェニル-5,6-ジヒドロジベンゾ[c,e][1,2]アザボリニン-4-イル)フェニル)-1,3-ジオキサ-3a1-アザ-2,3a,14b-トリボラジベンゾ[fg,op]テトラセン(実施例10で得られた触媒、2.6mg、4.16μmol)を加え、トルエン(820μL)溶液とした。4-フルオロベンジルアミン(9.28μL、81.6μmol)を室温で加え、アルゴン雰囲気下、80℃にて4時間撹拌した後に反応液を室温まで冷却した。蒸留水(0.5mL)を加えて撹拌し、分離した水層を酢酸エチル(1.5mL)にて4回抽出した。その後、有機層を全量合わせ、そこに飽和塩化ナトリウム水溶液(1.5mL)を加えて撹拌して洗浄し、再分離した有機層に無水硫酸ナトリウムを加えて脱水し、濾過後の濾液を減圧濃縮した。反応混合物のH-NMRを分析したところ、N-(4-フルオロベンジル)-2-メチル-2-フェニルプロパンアミドの収率は21%であった。
 以上の結果から、本発明の触媒は、種々のカルボン酸化合物と、種々のアミン化合物とからアミド化合物を合成する反応に使用できることが確認できた。特に、立体的に嵩高いカルボン酸化合物を用いた場合でもアミド結合形成反応を行うことができる点は、従来のホウ素触媒を用いたアミド結合形成反応には見られない、本発明の触媒の優れた点の一つである。
 また、以上の結果から、一般式(1)で表される触媒において、ベンゼン環の置換基が電子供与性基であっても、電子吸引性基であっても、触媒として有用であることが確認できた。
 なお、実施例7Eにおいては、アミド化合物の収率が9%であったが、(1)立体的に嵩高いカルボン酸化合物を用いた場合でもアミド結合形成反応を行うことができた点、及び(2)低温(80℃)で反応を行うことができた点、を踏まえると、従来のアミド結合形成反応よりは優れているということができる。
 本発明の触媒は、アミド結合形成反応に好適に使用できる。
 本発明の態様は、例えば、以下の通りである。
 <1> 下記一般式(1)で表されることを特徴とする触媒である。
Figure JPOXMLDOC01-appb-C000049
 ただし、前記一般式(1)中、R~R16は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。
 <2> 前記置換基が、電子供与性基、又は電子吸引性基である前記<1>に記載の触媒である。
 <3> 下記一般式(1A)及び下記一般式(1B)のいずれかで表される前記<1>から<2>のいずれかに記載の触媒である。
Figure JPOXMLDOC01-appb-C000050
 ただし、前記一般式(1A)中、R及びR14は、それぞれ独立して、水素原子、電子供与性基、及び電子吸引性基のいずれかを表す。
 ただし、前記一般式(1B)中、R及びR26は、水素原子、電子供与性基、及び電子吸引性基のいずれかを表す。
 <4> 下記一般式(1C)で表される前記<1>から<2>のいずれかに記載の触媒である。
Figure JPOXMLDOC01-appb-C000051
 ただし、前記一般式(1C)中、R及びR26は、それぞれ独立して、水素原子、電子供与性基、及び電子吸引性基のいずれかを表す。
 <5> カルボン酸化合物のカルボキシル基と、アミン化合物のアミノ基とを前記<1>から<4>のいずれかに記載の触媒の存在下で反応させてアミド結合を形成することを特徴とするアミド結合の形成方法である。
 <6> カルボン酸化合物と、アミン化合物とを、前記<1>から<4>のいずれかに記載の触媒の存在下で反応させてアミド化合物を得ることを特徴とするアミド化合物の製造方法である。

Claims (6)

  1.  下記一般式(1)で表されることを特徴とする触媒。
    Figure JPOXMLDOC01-appb-C000001
     ただし、前記一般式(1)中、R~R16は、それぞれ独立して、水素原子、及び置換基のいずれかを表す。
  2.  前記置換基が、電子供与性基、又は電子吸引性基である請求項1に記載の触媒。
  3.  下記一般式(1A)及び下記一般式(1B)のいずれかで表される請求項1から2のいずれかに記載の触媒。
    Figure JPOXMLDOC01-appb-C000002
     ただし、前記一般式(1A)中、R及びR14は、それぞれ独立して、水素原子、電子供与性基、及び電子吸引性基のいずれかを表す。
     ただし、前記一般式(1B)中、R及びR26は、水素原子、電子供与性基、及び電子吸引性基のいずれかを表す。
  4.  下記一般式(1C)で表される請求項1から2のいずれかに記載の触媒。
    Figure JPOXMLDOC01-appb-C000003
     ただし、前記一般式(1C)中、R及びR26は、それぞれ独立して、水素原子、電子供与性基、及び電子吸引性基のいずれかを表す。
  5.  カルボン酸化合物のカルボキシル基と、アミン化合物のアミノ基とを請求項1から4のいずれかに記載の触媒の存在下で反応させてアミド結合を形成することを特徴とするアミド結合の形成方法。
  6.  カルボン酸化合物と、アミン化合物とを、請求項1から4のいずれかに記載の触媒の存在下で反応させてアミド化合物を得ることを特徴とするアミド化合物の製造方法。
PCT/JP2016/084517 2016-02-18 2016-11-21 触媒、アミド結合の形成方法、及びアミド化合物の製造方法 WO2017141512A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-028596 2016-02-18
JP2016028596 2016-02-18
JP2016-223551 2016-11-16
JP2016223551A JP6778588B2 (ja) 2016-02-18 2016-11-16 触媒、アミド結合の形成方法、及びアミド化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2017141512A1 true WO2017141512A1 (ja) 2017-08-24

Family

ID=59624925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084517 WO2017141512A1 (ja) 2016-02-18 2016-11-21 触媒、アミド結合の形成方法、及びアミド化合物の製造方法

Country Status (1)

Country Link
WO (1) WO2017141512A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142322A1 (en) * 2011-02-14 2014-05-22 Dennis Hall Boronic Acid Catalysts and Methods of Use Thereof for Activation and Transformation of Carboxylic Acids

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140142322A1 (en) * 2011-02-14 2014-05-22 Dennis Hall Boronic Acid Catalysts and Methods of Use Thereof for Activation and Transformation of Carboxylic Acids

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHARVILLE, H. ET AL.: "The thermal and boron-catalysed direct amide formation reactions:mechanistically understudied yet important processes", CHEMICAL COMMUNICATIONS, vol. 46, no. 11, 9 February 2010 (2010-02-09), pages 1813 - 1823, XP002736817 *
GERNIGON, N. ET AL.: "Direct Amidation of Carboxylic Acids Catalyzed by ortho-Iodo Arylboronic Acids: Catalyst Optimization, Scope, and Preliminary Mechanistic Study Supporting a Peculiar Halogen Acceleration Effect", JOURNAL OF ORGANIC CHEMISTRY, vol. 77, no. 19, 26 September 2012 (2012-09-26), pages 8386 - 8400, XP055600566 *
NODA ET AL, 14TH SYMPOSIUM ON ORGANIC CHEMISTRY-THE NEXT GENERATION, 19 May 2016 (2016-05-19), pages 34 - 35 *
NODA, H. ET AL.: "Unique physicochemical and catalytic properties dictated by the B3NO2 ring system", NATURE CHEMISTRY, vol. 9, no. 6, 30 January 2017 (2017-01-30), pages 1 - 7, XP055577679 *
OESTERLE, R. ET AL.: "Gezielte synthesen fur boroxazine", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 284, no. 3, 9 April 1985 (1985-04-09), pages 281 - 289, XP055600562 *

Similar Documents

Publication Publication Date Title
RU2514935C2 (ru) Способ получения стимулятора апоптоза авт-263
Huh et al. An efficient method for one-carbon elongation of aryl aldehydes via their dibromoalkene derivatives
Yoshioka et al. Insertion of arynes into the carbon–oxygen double bond of amides and its application into the sequential reactions
CN103224436A (zh) 一种邻氨基二芳基甲酮化合物的制备方法
JP6778588B2 (ja) 触媒、アミド結合の形成方法、及びアミド化合物の製造方法
Kojima et al. Stereoselective synthesis of activated cyclopropanes with an α-pyridinium acetamide bearing an 8-phenylmenthyl group as the chiral auxiliary
EP4121408A1 (en) Synthesis of capsaicin derivatives
JP6794041B2 (ja) 芳香族アミンの製造方法
CN115197261B (zh) 噁二氮杂硼衍生物的合成方法
WO2017141512A1 (ja) 触媒、アミド結合の形成方法、及びアミド化合物の製造方法
JP6911062B2 (ja) ベムラフェニブの新規な製造方法
US10974232B2 (en) Catalyst, method for forming amide bond, and method for producing amide compound
JP2018135274A (ja) 多環芳香族炭化水素を光触媒とするフルオロメチル基含有化合物の製造方法
JP5033933B2 (ja) N−置換−2−アミノ−4−(ヒドロキシメチルホスフィニル)−2−ブテン酸の製造法
JP2010120926A (ja) 多環系ペンタフルオロスルファニルベンゼン化合物及びその製造方法
KR101554539B1 (ko) 금속이 배제된 호기성 산화 아민화 반응을 이용한 아마이드 화합물의 제조방법
BR112021011084A2 (pt) Processo para preparar 1-[(3r,4s)-4-cianotetrahidropiran-3-il]-3-[(2-fluoro-6-metoxi-4-piridil)amino]pirazol-4-carboxamida
KR20190116715A (ko) 알킬 2-페닐하이드라진카르복실레이트 유도체의 유산소 탈수소화 반응용 촉매 시스템
JPH0236181A (ja) 不斉ビスオキサゾリルピリジン誘導体およびその製造方法
EP2123648A1 (en) A process for the preparation of Telmisartan.
US20040054185A1 (en) Process for preparing amine-substituted benzofurans
WO2005063678A1 (ja) フェニル酢酸誘導体の製造方法
TW202039430A (zh) 製備磺胺類藥物的方法
JP2022035954A (ja) N-Boc-ラクタム誘導体及びその製造方法、並びに、環状アミン誘導体の製造方法
JP2005538059A (ja) ビフェニルカルボン酸アミド誘導体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890649

Country of ref document: EP

Kind code of ref document: A1