WO2017141400A1 - 水処理装置及び逆洗方法 - Google Patents

水処理装置及び逆洗方法 Download PDF

Info

Publication number
WO2017141400A1
WO2017141400A1 PCT/JP2016/054722 JP2016054722W WO2017141400A1 WO 2017141400 A1 WO2017141400 A1 WO 2017141400A1 JP 2016054722 W JP2016054722 W JP 2016054722W WO 2017141400 A1 WO2017141400 A1 WO 2017141400A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
flow rate
filter medium
medium layer
flow
Prior art date
Application number
PCT/JP2016/054722
Other languages
English (en)
French (fr)
Inventor
竹内 和久
鵜飼 展行
田畑 雅之
嘉晃 伊藤
古川 誠治
英夫 鈴木
英夫 岩橋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2016/054722 priority Critical patent/WO2017141400A1/ja
Publication of WO2017141400A1 publication Critical patent/WO2017141400A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a water treatment apparatus and a backwash method.
  • a water treatment system for desalinating seawater includes a desalination apparatus using a reverse osmosis membrane or the like.
  • the water treatment system uses biological membranes that filter particulate matter, biofilms, bacteria, etc. in seawater in front of the desalination treatment device in order to suppress degradation of treatment performance due to contamination of the reverse osmosis membrane of the desalination treatment device. Is provided as a pretreatment unit.
  • Patent Document 1 discloses a configuration in which so-called backwashing, in which washing water is supplied from the downstream side to the upstream side of the filter medium layer of the filtration device, removes contaminants attached to the biofilm.
  • backwashing in which washing water is supplied from the downstream side to the upstream side of the filter medium layer of the filtration device, removes contaminants attached to the biofilm.
  • it is necessary to flow the filter medium such as sand constituting the filter medium layer when the washing water is poured.
  • the properties of the water to be treated may vary.
  • the viscosity and density of seawater vary depending on the water temperature.
  • the flow rate of the washing water necessary for causing flow in the filter medium of the filtration device also changes.
  • An object of this invention is to provide the water treatment apparatus and backwashing method which can backwash a filter medium efficiently, even if the property of to-be-processed water arises.
  • the water treatment device includes a filter device having a filter medium layer for performing a filtration process on the water to be treated supplied from the upstream side, and the filter medium layer for the filter device.
  • a washing water supply unit capable of supplying washing water from the downstream side, a flow rate adjusting unit for adjusting the flow rate of the washing water supplied to the filtration device by the washing water supply unit, and the washing water flow rate
  • a control device having a flow rate control unit that controls the flow rate adjustment unit so that water is equal to or higher than a minimum backwash flow rate at which water can flow through the filter medium layer from the downstream side toward the upstream side.
  • the flow rate adjustment unit is controlled by the flow rate control unit of the control device so that the washing water becomes equal to or higher than the minimum backwash flow rate at which the filter medium layer can flow from the downstream side toward the upstream side.
  • the flow rate of washing water can be adjusted.
  • the apparatus may further include a detection unit that acquires a value related to the viscosity
  • the control device may include a speed calculation unit that calculates the minimum backwash flow rate based on the density or the value related to the viscosity.
  • the flow rate control unit performs the washing at the calculated minimum backwash flow rate or higher.
  • the flow rate adjusting unit can be controlled so that water flows. Accordingly, the flow rate of the wash water can be adjusted so that the wash water becomes equal to or higher than the minimum backwash flow rate at which the wash water can flow through the filter medium layer from the downstream side toward the upstream side.
  • the value relating to the density or viscosity is the temperature of at least one of the wash water and the treated water in the filtration apparatus. You may make it be.
  • the temperature of washing water or water to be treated changes, its viscosity changes. Therefore, by detecting the temperature of the washing water or the water to be treated, the filter medium layer can be backwashed efficiently at a flow rate equal to or higher than the minimum backwashing flow rate according to the viscosity of the washing water or the water to be treated.
  • the value relating to the density or the viscosity is at least one salinity of the wash water and the treated water in the filtration apparatus. You may make it a density
  • concentration concentration of salinity may fluctuate when rainwater, which is fresh water, is mixed due to rainfall.
  • the salt concentration of seawater varies relative to the surrounding region. When the salinity concentration of seawater changes in this way, its viscosity changes.
  • the filter medium layer can be backwashed at a flow rate equal to or higher than the minimum backwash flow rate according to the viscosity of the wash water or the water to be treated by detecting the salinity concentration of the wash water or the water to be treated.
  • the water treatment device has a flow of the filter medium layer in the filtration device when the wash water is supplied from the downstream side of the filtration device.
  • a flow detection unit that detects the flow rate of the washing water at which the flow of the filter medium is detected by the flow detection unit as a flow rate equal to or higher than the minimum backwash flow rate. You may make it have.
  • the flow detection unit detects the flow of the filter medium layer when the wash water is supplied from the downstream side of the filtration device, and the flow rate of the wash water when the flow of the filter medium is detected is equal to or higher than the minimum backwash flow rate. By determining the flow rate, the filter medium layer can be backwashed while confirming the flow of the filter medium.
  • the filter medium layer of the filtration apparatus includes a biofilm on the surface. Good.
  • a so-called biofilm filtration device provided with a biofilm on the surface of the filter medium layer, if the flow rate of the washing water is too high, the biofilm is destroyed. Therefore, the filter medium layer can be reliably backwashed by circulating the wash water at a flow rate that is higher than the minimum backwash flow rate and can maintain the biofilm.
  • the water treatment system includes a filter device having a filter medium layer that performs a filtration process on the water to be treated supplied from the upstream side, and a downstream of the filter medium layer with respect to the filter device.
  • a washing water supply part capable of supplying washing water from the side
  • a detection part for detecting the flow state of the filter medium layer and the density or viscosity of at least one of the water to be treated
  • Based on an operation signal sent by an operation of the operation unit made in accordance with the information displayed on the display unit a display unit for displaying information, an operation unit that can be operated by an operator, and the washing water
  • a flow rate adjusting unit that adjusts the flow rate of the washing water supplied to the filtration device by the supply unit.
  • the detection unit detects a value relating to the flow state of the filter medium layer and the density or viscosity of at least one of the water to be treated.
  • Information based on the detected value relating to density or viscosity is displayed on the display unit.
  • the operator looks at information displayed on the display unit, and the operator inputs a predetermined operation to the operation unit. Then, an operation part sends out the operation signal according to operation by an operator.
  • the flow rate adjustment unit distributes the flow rate of the cleaning water supplied to the filtration device by the cleaning water supply unit based on the operation signal sent by the operation of the operation unit, and the cleaning water flows through the filter material layer from the downstream side to the upstream side. It can be adjusted to be above the lowest possible backwash flow rate.
  • the washing water flows from the downstream side to the upstream side through the filtering medium layer, so that the filtering medium layer can be backwashed efficiently. it can.
  • the backwashing method is a backwashing method for a filtration device having a filter medium layer that performs filtration treatment on the water to be treated supplied from the upstream side, and the flow of the filter medium layer A flow rate at which at least one of the state and the density or viscosity of the water to be treated is detected, and based on the value of the density or viscosity, the washing water can flow through the filter medium layer from the downstream side toward the upstream side.
  • the flow rate at which the wash water can flow through the filter medium layer from the downstream side to the upstream side is calculated. be able to. Furthermore, after starting the supply of the wash water to the filter medium layer, the flow rate of the wash water is increased to a flow rate at which the wash water can flow through the filter medium layer from the downstream side toward the upstream side. Even if the properties of the water to be treated and the washing water vary, the washing water flows through the filter medium layer from the downstream side toward the upstream side, so that the filter medium layer can be backwashed reliably.
  • the backwashing method is the backwashing method of the eighth aspect, wherein the value relating to the density or viscosity is the temperature of at least one of the wash water and the treated water in the filtration device. You may make it be.
  • the temperature of washing water or water to be treated changes, its viscosity changes.
  • the filter medium layer can be backwashed efficiently at a flow rate set according to the viscosity of the wash water or the water to be treated.
  • the value related to the density or viscosity is the salinity of at least one of the washing water and the water to be treated in the filtration device. You may make it a density
  • the backwashing method is the backwashing method of the eighth aspect, wherein the washing water is supplied from the downstream side of the filtration device, and the flow of the filter medium layer in the filtration device. And a step of determining the flow rate of the washing water when the flow of the filter medium layer is detected as the flow rate at which the flow is possible. In this way, by detecting the flow of the filter medium layer when the wash water is supplied from the downstream side of the filtration device, the flow rate of the wash water when the flow of the filter medium is detected, and by performing the backwash of the filter medium layer, While confirming the flow of the filter medium, the filter medium layer can be backwashed efficiently.
  • the filter medium can be backwashed efficiently even if the properties of the water to be treated vary.
  • FIG. 1 is a diagram showing the overall configuration of the water treatment system of this embodiment.
  • the water treatment system 10 of this embodiment includes a pretreatment unit 20, a cartridge filter 30, a high-pressure pump 40, a desalination treatment unit 50, and an energy recovery device 60. .
  • the pretreatment unit 20 is fed with seawater (water to be treated) W taken by a water intake pump (not shown) through a water intake pipe P1.
  • the pretreatment unit 20 filters the fed seawater W before (in the preceding stage) the desalination treatment unit 50 to remove suspended substances and the like in the seawater W.
  • a sand filtration device (filtration device) 21 is used as the pretreatment unit 20.
  • the sand filtration device 21 includes a filter medium layer 21f.
  • the filter medium layer 21f includes a predetermined amount of sand (not shown) as a filter medium and a biofilm (not shown) grown and maintained on the surface of the sand.
  • the filter medium layer 21f removes an SDI (Silt Density Index) component that contaminates the desalination processing unit 50, a BOD (Biological Oxygen Demand) component that causes biofouling, and the like by using a biofilm. Moreover, the filter medium layer 21f removes the fine particle component contained in the seawater W with sand. A flocculant, a pH adjuster, etc. can also be supplied from the inlet P2 connected to the intake pipe P1 before the seawater W is sent to the pretreatment unit 20.
  • SDI Silicon St Density Index
  • BOD Biological Oxygen Demand
  • the cartridge filter 30 is connected to the rear stage side of the pretreatment unit 20 via a connection pipe P3.
  • the cartridge filter 30 removes foreign matters having a predetermined diameter or more so that fine foreign matters having a size of, for example, about 1 to 5 ⁇ m, which could not be removed by the pretreatment unit 20, do not enter the high-pressure pump 40.
  • the high-pressure pump 40 is connected to the rear stage side of the cartridge filter 30 via a connection pipe P4.
  • the high-pressure pump 40 increases the seawater W that has passed through the cartridge filter 30 to a predetermined pressure, and sends the seawater W to the desalination processing unit 50 through the connection pipe P5.
  • the desalination processing unit 50 uses, for example, a reverse osmosis membrane F to remove ionic components from the seawater W.
  • a reverse osmosis membrane F to remove ionic components from the seawater W.
  • the seawater reverse osmosis membrane (Sea Water Reverse Osmosis Membrane) treatment device 51 and a brackish water reverse osmosis membrane treatment device 52 are provided as the desalination treatment unit 50.
  • the reverse osmosis membrane treatment apparatus 51 for seawater is connected to the rear stage side of the high-pressure pump 40 via a connection pipe P5.
  • the seawater reverse osmosis membrane treatment apparatus 51 obtains the permeated water W2 from which the salt content (ionic component) has been removed by passing the seawater W pressurized by the high-pressure pump 40 through the reverse osmosis membrane F through the connection pipe P5. .
  • the obtained permeated water W2 is sent to the brackish water reverse osmosis membrane treatment device 52 through the connecting pipe P6.
  • the concentrated water W3 containing the ion component removed by the seawater reverse osmosis membrane treatment device 51 is sent to the energy recovery device 60 via the connection pipe P7.
  • the concentrated water W3 that has passed through the energy recovery device 60 is drained to the outside (the sea) through the drain pipe P8.
  • the brackish water reverse osmosis membrane treatment device 52 is connected to the rear stage side of the seawater reverse osmosis membrane treatment device 51 via a connecting pipe P6.
  • the brackish water reverse osmosis membrane treatment device 52 passes the permeated water W2 passed through the seawater reverse osmosis membrane treatment device 51 through the reverse osmosis membrane F, thereby further removing ionic components and obtaining pure water W2 '.
  • the obtained pure water W2 ' is supplied to a water tank (not shown) or the like via the supply pipe P9.
  • minerals are added through a charging portion P10 provided in the supply pipe P9.
  • the concentrated water W3 'containing the ionic component removed by the brackish water reverse osmosis membrane treatment apparatus 52 is discharged to the drain pipe P8 through the drain pipe P11 and drained to the outside (the sea).
  • the energy recovery device 60 recovers energy from the concentrated water W3 discharged from the seawater reverse osmosis membrane treatment device 51.
  • the concentrated water W3 discharged from the seawater reverse osmosis membrane treatment apparatus 51 is pressurized by the high-pressure pump 40.
  • the energy recovery device 60 includes a rotor (water wheel) 61 that is rotated by the water flow of the concentrated water W3 fed from the connection pipe P7.
  • the rotor 61 obtains rotational energy from the pressurized concentrated water W ⁇ b> 3 and rotates the rotor 62 connected integrally with the rotor 61.
  • a branch pipe P12 branched from the connection pipe P4 is provided on the rear stage side of the cartridge filter 30.
  • a portion of the seawater W that has passed through the cartridge filter 30 passes through the branch pipe P12, passes through the energy recovery device 60, and is sent to the seawater reverse osmosis membrane treatment device 51 by the rotor 62.
  • the energy of the concentrated water W3 recovered by the energy recovery device 60 can be used as part of the energy for sending the seawater W to the seawater reverse osmosis membrane treatment device 51.
  • FIG. 2 is a diagram illustrating a configuration of a pretreatment unit of the water treatment system.
  • the pretreatment unit 20 includes a sand filtration device 21.
  • the sand filtration device 21 passes the seawater W from the intake pipe P1, and filters the seawater W.
  • the sand filtration device 21 sends the seawater W after filtration from the connection pipe P3.
  • the pretreatment unit 20 includes a backwash processing unit 80 that backwashes the filter medium constituting the filter medium layer 21f of the sand filtration device 21.
  • the backwash processing unit 80 includes a washing water tank 81, a flow rate adjustment unit 82, an on-off valve 83, a detection unit 84, and a control device 85.
  • the washing water tank 81 stores seawater or fresh water as the washing water Ws in order to backwash the filter medium layer 21f of the sand filtration device 21.
  • the washing water tank 81 is connected to the downstream side of the sand filtration device 21 via a backwash pipe P20.
  • the flow rate adjusting unit 82 is provided in the backwash pipe P20, and pumps the wash water Ws in the wash water tank 81 from the downstream side of the sand filter 21 into the sand filter 21 through the backwash pipe P20.
  • the flow rate adjustment unit 82 adjusts the flow rate of the washing water Ws supplied to the sand filtration device 21.
  • Such a flow rate adjusting unit 82 is composed of, for example, a pump, and adjusts the flow rate of the washing water Ws supplied to the sand filtration device 21 by changing the operating rotational speed. Further, the flow rate adjustment unit 82 can finely adjust the flow rate with the adjustment valve while operating the pump at a constant rotational speed, for example.
  • the on-off valve 83 opens and closes the backwash pipe P20.
  • the detection unit 84 acquires a value related to the density or viscosity of at least one of the washing water Ws and the seawater W in the sand filtration device 21.
  • the temperature of the cleaning water Ws is detected as a value related to the density or viscosity. Therefore, the detection unit 84 can use a temperature sensor.
  • a temperature sensor can be provided in the backwash pipe P20 to detect the temperature of the cleaning water Ws.
  • the detection unit 84 is provided in the filter medium layer 21f of the sand filtration device 21, and the temperature of the seawater W in the sand filtration device 21 before the backwashing treatment or the washing water Ws in the sand filtration device 21 during the backwashing treatment is detected. The temperature of the injected seawater W may be detected.
  • the control device 85 includes a speed calculation unit 87 and a flow rate control unit 86.
  • the speed calculation unit 87 calculates the minimum backwash flow rate based on a value related to the density or viscosity of at least one of the washing water Ws and the seawater W in the sand filtration device 21.
  • the minimum backwash flow rate is the lowest flow rate at which the filter medium constituting the filter medium layer 21f flows by the injection of the wash water Ws.
  • the flow rate control unit 86 controls the rotation speed of the flow rate adjustment unit 82 so that the flow rate of the washing water Ws becomes equal to or higher than the minimum backwash flow rate that can flow through the filter medium layer 21f from the downstream side toward the upstream side.
  • the speed calculation unit 87 obtains the minimum backwash flow rate (also referred to as fluidization speed) ⁇ f by the following equation [1].
  • is the fluid viscosity
  • ⁇ F is the fluid density
  • D is the average particle diameter of the filter medium
  • Ga is the Galileo number. Fluid viscosity and fluid density are correlated with temperature and salinity.
  • the Galileo number Ga is obtained by the following equation [2].
  • ⁇ S filter medium density
  • g gravitational acceleration
  • fluid viscosity ⁇ is, for example, as described in “Thermophysical properties of seawater: a review of existing correlations and data”, Desalination and Water Treatment 16 (2010) P354-P380 by MH Sharqawy et al.
  • equation [3] can be obtained.
  • t temperature.
  • the salinity concentration can be obtained using a salinometer (for example, a salinometer OPS manufactured by OPTIMARE).
  • FIG. 3 is a map showing an example of the correlation of the minimum backwash flow velocity with respect to the seawater temperature. Further, as shown in FIG. 3, the correlation of the minimum backwash flow rate with respect to the temperature is obtained from simulation, experiment, etc., and is set in advance as a map, a table, a mathematical expression, or the like. From this correlation, the minimum backwash flow rate corresponding to the temperature detection value detected by the detection unit 84 can be determined.
  • the backwash processing unit 80 further includes a display unit 84v that displays a temperature detection value that is a detection result in the detection unit 84, and an operation unit 85c that operates the backwash processing unit 80 from the outside. be able to.
  • the operation unit 85c includes various switches that can be operated by the operator.
  • the operator operates the operation unit 85c according to the temperature detection values of the washing water Ws and the seawater W displayed on the display unit 84v.
  • the operation unit 85c sends a predetermined operation signal to the control device 85 according to the operation of the operator.
  • FIG. 4 is a diagram showing the flow of the backwashing method.
  • the detection part 84 measures the temperature of the wash water Ws and the seawater W, and acquires a measured value (step S1).
  • the acquired measurement value in the detection unit 84 is displayed on the display unit 84v.
  • the operator inputs the acquired measured value of temperature through the operation unit 85c.
  • the operation unit 85c sends a predetermined operation signal by the operation of the operation unit 85c to the control device 85.
  • the control device 85 Based on the operation signal (temperature measurement value) sent from the operation unit 85c by the speed calculation unit 87, the control device 85 uses the above equation [1] or a map based on the correlation as shown in FIG. The minimum backwash flow rate corresponding to the temperature measurement value is determined (step S2).
  • the control device 85 operates the flow rate adjustment unit 82 and switches the on-off valve 83 from the closed state to the open state.
  • the cleaning water Ws is supplied from the cleaning water tank 81 through the backwashing pipe P20 to the upstream side from the downstream side of the filter medium layer 21f, and the backwashing process is started (step S3).
  • the flow rate control unit 86 increases the rotation speed until the flow rate of the cleaning water Ws becomes equal to or higher than the minimum backwash flow rate calculated by the speed calculation unit 87. Thereby, the flow rate of the cleaning water Ws is increased to a flow rate at which the cleaning water Ws can flow through the filter medium layer 21f from the downstream side toward the upstream side.
  • the flow rate of the wash water Ws is preferably as low as possible while being equal to or higher than the minimum backwash flow rate calculated by the speed calculation unit 87. This is because if the flow rate of the washing water Ws is too high, the biofilm (not shown) of the filter medium layer 21f is peeled off.
  • step S4 When a predetermined time elapses after the start of the backwashing process and the conditions for terminating the backwashing process are satisfied (step S4), the flow rate adjusting unit 82 is stopped and the on-off valve 83 is closed to perform the backwashing process. Is stopped (step S5).
  • the wash water Ws can flow through the filter medium layer 21f from the downstream side toward the upstream side.
  • the flow rate of the wash water Ws can be adjusted so that the flow rate is equal to or higher than the minimum backwash flow rate.
  • the filter medium layer 21f can be properly backwashed by allowing the wash water Ws to flow at a flow rate at which the biofilm can be maintained while suppressing the flow rate as much as possible while being at least the minimum backwash rate.
  • the speed calculation unit 87 of the control device 85 calculates the minimum backwash speed based on the temperature measurement value detected by the detection unit 84, so that the cleaning water Ws moves the filter medium layer 21f from the downstream side to the upstream side. Therefore, it is possible to easily and reliably determine the minimum backwashing speed that can be distributed.
  • the filter medium layer 21f is surely backwashed at a flow rate equal to or higher than the minimum backwashing speed according to the viscosity of the washing water Ws and the seawater W. Can do.
  • the backwashing method of the sand filtration device 21 described above after the supply of the cleaning water Ws to the filter medium layer 21f is started, the flow rate at which the cleaning water Ws can flow through the filter medium layer 21f from the downstream side toward the upstream side.
  • the flow rate of the washing water Ws was increased.
  • the washing water Ws flows through the filter medium layer 21f from the downstream side to the upstream side, so that the filter medium layer 21f is backwashed. It can be done reliably.
  • the minimum backwash flow rate corresponding to the temperature measurement value is calculated and determined by the speed calculation unit 87 based on the temperature measurement value detected by the detection unit 84.
  • the operator may determine the minimum backwash flow rate by looking at information such as a table as shown in FIG.
  • the flow rate adjusting unit 82 can be operated at the minimum backwash flow rate by inputting the minimum backwash flow rate determined by the operator through the operation unit 85c.
  • the temperature of the wash water Ws and the seawater W is measured by the detection unit 84 when determining the minimum backwash flow velocity.
  • the present invention is not limited to this.
  • the electric conductivity of at least one of the washing water Ws and the seawater W in the sand filtration device 21 is detected by the detection unit 84 as a value related to the density or viscosity of at least one of the washing water Ws and the seawater W in the sand filtration device 21. You may make it do.
  • the salinity concentration S can be determined by, for example, “Algorithms for computation of fundamental properties of seawater”, NP Fofonoff and RC Millard Jr., Unesco Tech. Pap. In Mar. Sci., 38 ( 1983), P99-P188, the following equation [5] can be obtained.
  • ⁇ S is described in, for example, “Algorithms for computation of fundamental properties of seawater” by NP Fofonoff and RC Millard Jr., Unesco Tech. Pap. In Mar. Sci., 38 (1983), P99-P188.
  • equation (2) it can be obtained by the following equation [6].
  • the ratio r t is described, for example, in “Algorithms for computation of fundamental properties of seawater” by NP Fofonoff and RC Millard Jr., Unesco Tech. Pap. In Mar. Sci., 38 (1983), P99-P188. It can obtain
  • R t R / (R p ⁇ r t).
  • R can be expressed as a ratio in which the electric conductivity at a salinity concentration S, a temperature t, and a pressure p is a numerator, and the denominator is an electric conductivity of KCl at a salinity concentration of 35%, a temperature of 15 ° C., and atmospheric pressure. .
  • R p can be expressed as the ratio of salinity S, temperature t, the electrical conductivity of the pressure p as a molecule, and the denominator salinity S, temperature t, the electrical conductivity of KCl at atmospheric pressure .
  • R p is described in, for example, “Algorithms for computation of fundamental properties of seawater” by NP Fofonoff and RC Millard Jr., Unesco Tech. Pap. In Mar. Sci., 38 (1983), P99-P188.
  • equation (4) the following equation [8] can be obtained as a function of temperature t and pressure p within a predetermined temperature range.
  • r t is, for example, due to the NP Fofonoff and RC Millard Jr. "Algorithms for computation of fundamental properties of seawater", Unesco Tech. Pap. In Mar. Sci., 38 (1983), is described in the P99- P 188 As shown in the graph, the electric conductivity at a salinity of 35%, temperature t, and atmospheric pressure is used as a numerator, and the denominator is expressed as a ratio of the electric conductivity of KCl at a salinity of 35%, temperature of 15 ° C. and atmospheric pressure. It is known that it can be. Further, r t can also be obtained from equation [6] as described herein. Furthermore, from the formula [5], the viscosity ⁇ and the density ⁇ F of the washing water Ws and the seawater W can be obtained by the above formulas [3] and [4].
  • the minimum backwash flow rate can be determined based on the above formula [1], a map obtained by a previous experiment, and the like. it can.
  • the seawater W changes in salinity due to rainwater, which is fresh water, mixed in due to rainfall.
  • the seawater W has a salinity concentration that varies in a region where fresh water flows from a river or a lake with respect to the surrounding region.
  • the filter medium layer 21f can be backwashed reliably at a flow rate equal to or higher than the minimum backwashing speed according to the viscosity of the washing water Ws and the seawater W. .
  • FIG. 5 is a diagram illustrating the configuration of the preprocessing unit in the second modification of the first embodiment.
  • the backwashing processing unit 80 includes a cleaning water tank 81, a flow rate adjusting unit 82, an on-off valve 83, a detecting unit 84, and a control device 85B.
  • the backwashing processing unit 80 measures the temperature of the cleaning water Ws and the seawater W by the detection unit 84 when performing the backwashing processing.
  • the control device 85B receives the detection result detected by the detection unit 84 from the detection unit 84 by an electrical signal.
  • the speed calculation unit 87 of the control device 85B indicates the minimum inverse according to the temperature of the washing water Ws and the seawater W detected by the detection unit 84 from the above equation [1] and the correlation shown in FIG. Determine the backwash flow rate above the wash flow rate.
  • the flow rate control unit 86 of the control device 85B operates the flow rate adjustment unit 82 and switches the on-off valve 83 from the closed state to the open state. Accordingly, the cleaning water Ws is supplied from the cleaning water tank 81 through the backwashing pipe P20 to the upstream side from the downstream side of the filter medium layer 21f, and the backwashing process is started. After the operation of the flow rate adjusting unit 82 is started, the flow rate control unit 86 increases the number of rotations until the flow rate of the cleaning water Ws becomes equal to or higher than the minimum backwash flow rate calculated by the speed calculation unit 87. Thereby, the flow rate of the cleaning water Ws is increased to a flow rate at which the cleaning water Ws can flow through the filter medium layer 21f from the downstream side toward the upstream side.
  • the flow rate adjusting unit 82 is stopped and the on-off valve 83 is closed to stop the backwashing process when the conditions for terminating the backwashing process are satisfied.
  • control device 85B detects the temperature of the wash water Ws and the seawater W, calculates the minimum backwash flow rate at which the wash water Ws can flow through the filter medium layer 21f from the downstream side toward the upstream side, By controlling the flow rate adjusting unit 82, the flow rate of the cleaning water Ws can be automatically adjusted. Thereby, even if the properties of the seawater W and the washing water Ws in the sand filtration device 21 fluctuate, the washing water Ws flows through the filter medium layer 21f from the downstream side to the upstream side. It can be done reliably.
  • FIG. 6 is a diagram showing the configuration of the preprocessing unit in the third modification of the first embodiment.
  • the backwash processing unit 80 includes a concentrated water supply pipe P ⁇ b> 21, a flow rate adjustment unit 82, an on-off valve 83, a detection unit 84, and a control device 85.
  • concentrated water W3 containing ion components removed by the seawater reverse osmosis membrane treatment apparatus 51 is used as the washing water Ws.
  • the concentrated water supply pipe P21 is provided to connect the connection pipe P3 and the connection pipe P7.
  • the flow rate adjusting unit 82 and the on-off valve 83 are provided in the concentrated water supply pipe P21.
  • the concentrated water W3 removed by the seawater reverse osmosis membrane treatment device 51 is used as the washing water Ws by controlling the flow rate adjustment unit 82 with the flow rate control unit 86 of the control device 85. it can.
  • the flow rate of the cleaning water Ws is adjusted to be equal to or higher than the minimum backwash flow rate at which the filter medium layer 21f can flow from the downstream side toward the upstream side.
  • FIG. 7 is a diagram illustrating a configuration of a pretreatment unit in the second embodiment of the water treatment apparatus and the backwash method. As shown in FIG.
  • the pretreatment unit 20 of the water treatment system 10 in this embodiment includes a backwash treatment unit 80 ⁇ / b> C that backwashes the filter medium constituting the filter medium layer 21 f of the sand filtration device 21.
  • the backwashing processing unit 80C includes a washing water tank 81, a flow rate adjustment unit 82, an on-off valve 83, a detection unit 84C, and a control device 85C.
  • a flow detection unit that detects the flow of the filter medium (sand) constituting the filter medium layer 21f in the sand filtration device 21 when the cleaning water Ws is supplied from the downstream side of the sand filtration device 21. 84s.
  • the turbidity of the water to be treated W and the cleaning water Ws in the sand filtering device 21 varies due to the sand constituting the filter medium flying by the injection of the cleaning water Ws. Therefore, for example, a turbidimeter can be used as the flow detection unit 84s.
  • the filter medium may be imaged with a camera or the like, and the change in turbidity may be monitored by comparing with a captured image before the start of the backwash process. Further, turbidity may be monitored by the transmittance or the like using an optical sensor using a laser or the like.
  • the flow detection unit 84s is provided to be spaced above the upper surface of the filter medium layer 21f in order to monitor turbidity. More specifically, the flow detection unit 84s is installed at the height of the filter medium during the backwash process. For example, the flow detection unit 84s may be disposed above the space L with a spacing H of 0.05 times (0.05 ⁇ L) or more with respect to the height L of the filter medium layer 21f during filtration.
  • the flow detection unit 84s may extract a part of the water to be treated W from the sand filtration device 21, and monitor the turbidity of the extracted water to be treated W.
  • the control device 85C operates the flow rate adjusting unit 82, opens the on-off valve 83, and injects the wash water Ws into the sand filtration device 21, and then determines whether or not the flow of the filter medium is detected by the flow detection unit 84s. Monitor.
  • the control device 85C includes a backwash speed determination unit 88. When the flow of the filter medium is confirmed by the flow detection unit 84s, the backwash speed determination unit 88 determines the flow rate of the wash water Ws at that time as a flow rate equal to or higher than the minimum backwash flow rate.
  • FIG. 8 is a diagram showing the flow of the backwashing method.
  • the flow rate adjusting unit 82 is operated by the control device 85 ⁇ / b> C and the on-off valve 83 is switched from the closed state to the open state by a predetermined operation by the operator.
  • the cleaning water Ws is supplied from the cleaning water tank 81 through the backwashing pipe P20 to the upstream side from the downstream side of the filter medium layer 21f, and the backwashing process is started (step S11).
  • step S12 the flow state of the filter medium is monitored by the flow detection unit 84s.
  • the flow detection unit 84s detects whether the flow state of the filter medium layer 21f has changed in the filter medium layer 21f of the filter device 21 due to the injection of the washing water Ws, for example, by a change in turbidity (Ste S13). If there is no change in the flow state of the filter medium layer 21f, for example, the turbidity increases to a predetermined threshold value or more in the flow detection unit 84s, the flow rate control unit 86 of the control device 85C sets the rotation speed of the flow rate adjustment unit 82. Then, the rotation speed is increased by a predetermined number, and the process returns to step S12 to continue the control (step S14).
  • the backwash speed determination unit 88 detects the flow of the filter medium by the flow detection unit 84s.
  • the flow rate of the wash water Ws to be performed is determined as a flow rate equal to or higher than the minimum backwash flow rate, and the flow rate control unit 86 stops the increase in the rotational speed of the flow rate adjustment unit 82 (step S15).
  • the flow rate control unit 86 that stopped the increase in the rotation speed of the flow rate adjustment unit in step S15 maintains the flow rate (rotation number) determined by the backwash speed determination unit 88 and performs the backwash process.
  • the flow detection unit 84s when the flow of the filter medium layer 21f when the washing water Ws is supplied from the downstream side of the sand filtration device 21 is detected by the flow detection unit 84s, and the flow of the filter medium is detected.
  • the flow rate of the washing water Ws as a flow rate equal to or higher than the minimum backwash flow rate, it is possible to perform appropriate backwashing of the filter medium layer 21f while confirming the flow of the filter medium.
  • the present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific shapes, configurations, and the like given in the embodiment are merely examples, and can be changed as appropriate.
  • the sand filtration device 21 is taken as an example of the filtration device, but the specific configuration is not limited at all. Furthermore, the sand filtration device 21 may be provided by connecting a plurality of units in series and in parallel.
  • the desalination processing part 50 was set as the structure provided with the reverse osmosis membrane processing apparatus 51 for seawater, and the reverse osmosis membrane processing apparatus 52 for brackish water, it is not restricted to this. Only the seawater reverse osmosis membrane treatment apparatus 51 may be provided in the desalination treatment unit 50.
  • the water treatment system that desalinates the seawater W has been described as an example.
  • the present invention is also effective for water treatment systems for other uses. Can be applied to.
  • the present invention can be applied to a water treatment apparatus for desalinating seawater and a backwash method.
  • the wash water is supplied at a flow rate that is equal to or higher than the minimum backwash flow rate at which the wash water can flow from the downstream side toward the upstream side. Even if fluctuations in properties occur, the filter medium can be backwashed appropriately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Abstract

この水処理装置(10)は、上流側から供給される海水(W)に対してろ過処理を施すろ材層(21f)を有するろ過装置(21)と、ろ過装置(21)に対してろ材層(21f)の下流側から洗浄水(Ws)を供給可能な洗浄水タンク(81)と、洗浄水Wsタンク(81)によって砂ろ過装置(21)に供給される洗浄水(Ws)の流速を調整する流速調整部(82)と、洗浄水(Ws)の流速が、洗浄水(Ws)がろ材層(21f)を下流側から上流側に向かって流通可能な最低逆洗流速以上となるよう、流速調整部(82)を制御する流速制御部(86)を有する制御装置(85)と、を備える。

Description

水処理装置及び逆洗方法
 この発明は、水処理装置及び逆洗方法に関する。
 海水を淡水化処理する水処理システムは、逆浸透膜等を用いた淡水化処理装置を備えている。水処理システムは、淡水化処理装置の逆浸透膜の汚染による処理性能低下を抑えるため、淡水化処理装置の前段に、海水中の粒子状物質、バイオフィルム、細菌等をろ過する生物膜をろ材に備えたろ過装置を前処理部として備えている。
 水処理システムを利用しているうちに、前処理部におけるろ過性能が低下し、ろ過後の被処理水の水質変動が起きてしまうことがある。
 そこで、例えば特許文献1には、ろ過装置のろ材層の下流側から上流側に洗浄水を流す、いわゆる逆洗を実施し、生物膜に付着した混入物を除去する構成が開示されている。
 このようなろ過装置のろ材層の逆洗を確実に行うには、洗浄水を流したときに、ろ材層を構成する砂等のろ材を流動させる必要がある。
特開2015-142885号公報
M.H. Sharqawy、外2名、"Thermophysical properties of seawater: a review of existing correlations and data"、Desalination and Water Treatment、2010年4月16日、P354-P380 N. P. Fofonoff and R.C. Millard Jr.、"Algorithms for computation of fundamental properties of seawater"、Unesco Technical. Papers in Marine Science 44、1983年、P99-P188
 被処理水が海水である場合等には、被処理水の性状が変動することがある。例えば、海水は、水温によってその粘度や密度が変動する。被処理水の粘度や密度が変動すると、ろ過装置のろ材に流動が生じるために必要な、洗浄水の流量も変わる。例えば、被処理水の粘度が高ければ、ろ材を流動させるために、より高い流量で洗浄水を注入する必要がある。そのため、最も条件が悪い場合を想定して洗浄水の流量を決定する必要があり、効率よく逆洗することができないという課題がある。
 この発明は、被処理水の性状の変動が生じても、ろ材を効率よく逆洗することができる水処理装置及び逆洗方法を提供することを目的とする。
 この発明に係る第一態様によれば、水処理装置は、上流側から供給される被処理水に対してろ過処理を施すろ材層を有するろ過装置と、前記ろ過装置に対して前記ろ材層の下流側から洗浄水を供給可能な洗浄水供給部と、前記洗浄水供給部によって前記ろ過装置に供給される前記洗浄水の流速を調整する流速調整部と、前記洗浄水の流速が、前記洗浄水が前記ろ材層を下流側から上流側に向かって流通可能な最低逆洗流速以上となるよう、前記流速調整部を制御する流速制御部を有する制御装置と、を備える。
 このような構成によれば、制御装置の流速制御部で流速調整部を制御することによって、洗浄水がろ材層を下流側から上流側に向かって流通可能となる最低逆洗流速以上となるよう、洗浄水の流速を調整することができる。これにより、ろ過装置内の被処理水や洗浄水の性状が変動しても、洗浄水がろ材層を下流側から上流側に向かって流通するので、ろ材層の逆洗を効率よく行うことができる。
 この発明に係る第二態様によれば、水処理装置は、第一態様の水処理装置において、前記洗浄水供給部における前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の密度又は粘度に関する値を取得する検出部をさらに備え、前記制御装置は、前記密度又は前記粘度に関する値に基づいて前記最低逆洗流速を演算する速度演算部を有するようにしてもよい。
 このように、洗浄水及びろ過装置内の被処理水の少なくとも一方の密度又は粘度に基づいて、最低逆洗流速を演算することで、流速制御部では、演算された最低逆洗流速以上で洗浄水が流通するよう、流速調整部を制御することができる。これにより、洗浄水がろ材層を下流側から上流側に向かって流通可能となる最低逆洗流速以上となるよう、洗浄水の流速を調整できる。
 この発明に係る第三態様によれば、水処理装置は、第二態様の水処理装置において、前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の温度であるようにしてもよい。
 洗浄水や被処理水の温度が変わると、その粘度が変動する。そこで、洗浄水や被処理水の温度を検出することで、洗浄水や被処理水の粘度に応じた最低逆洗流速以上の流速で、ろ材層の逆洗を効率よく行うことができる。
 この発明に係る第四態様によれば、水処理装置は、第二態様の水処理装置において、前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の塩分濃度であるようにしてもよい。
 海水は、降雨によって淡水である雨水が混入することによって、塩分濃度が変動する場合がある。また、海水は、河川や湖沼から淡水が流入する領域では、その周囲の領域に対して塩分濃度が変動する。このようにして海水の塩分濃度が変わると、その粘度が変動する。そこで、洗浄水や被処理水の塩分濃度を検出することで、洗浄水や被処理水の粘度に応じた最低逆洗流速以上の流速で、ろ材層の逆洗を行うことができる。
 この発明に係る第五態様によれば、水処理装置は、第一態様の水処理装置において、前記ろ過装置の下流側から前記洗浄水を供給したときに前記ろ過装置内で前記ろ材層の流動を検出する流動検出部をさらに備え、前記制御装置は、前記流動検出部により前記ろ材の流動が検出される前記洗浄水の流速を前記最低逆洗流速以上の流速として決定する逆洗速度決定部を有するようにしてもよい。
 このように、ろ過装置の下流側から洗浄水を供給したときのろ材層の流動を流動検出部で検出し、ろ材の流動が検出されたときの洗浄水の流速を、最低逆洗流速以上の流速として決定することで、ろ材の流動を確認しながら、ろ材層の逆洗を行うことができる。
 この発明に係る第六態様によれば、水処理装置は、第一から第五態様の何れか一つの水処理装置において、前記ろ過装置の前記ろ材層が、表面に生物膜を備えていてもよい。
 ろ材層の表面に生物膜を備えた、いわゆる生物膜ろ過装置においては、洗浄水の流速が高すぎると、生物膜が破壊されてしまう。そこで、最低逆洗流速以上であるとともに、生物膜を維持できる流速で、洗浄水を流通させることで、ろ材層を確実に逆洗することができる。
 この発明の第七態様によれば、水処理システムは、上流側から供給される被処理水に対してろ過処理を施すろ材層を有するろ過装置と、前記ろ過装置に対して前記ろ材層の下流側から洗浄水を供給可能な洗浄水供給部と、前記ろ材層の流動状態及び前記被処理水の少なくとも一方の密度又は粘度に関する値を検出する検出部と、前記密度又は粘度に関する値に基づいた情報を表示する表示部と、操作者が操作可能な操作部と、前記表示部に表示された前記情報に応じてなされる前記操作部の操作によって送出される操作信号に基づいて、前記洗浄水供給部によって前記ろ過装置に供給される前記洗浄水の流速を調整する流速調整部と、を備える。
 このような構成によれば、検出部により、ろ材層の流動状態及び被処理水の少なくとも一方の密度又は粘度に関する値を検出する。検出された密度又は粘度に関する値に基づいた情報は、表示部に表示される。操作者は、表示部に表示された情報を見て、操作者は、操作部に所定の操作を入力する。すると、操作部は、操作者による操作に応じた操作信号を送出する。流速調整部は、操作部の操作によって送出される操作信号に基づいて、洗浄水供給部によってろ過装置に供給する洗浄水の流速を、洗浄水がろ材層を下流側から上流側に向かって流通可能となる最低逆洗流速以上となるよう調整することができる。これにより、ろ過装置内の被処理水や洗浄水の性状が変動しても、洗浄水がろ材層を下流側から上流側に向かって流通するので、ろ材層の逆洗を効率よく行うことができる。
 この発明の第八態様によれば、逆洗方法は、上流側から供給される被処理水に対してろ過処理を施すろ材層を有するろ過装置の逆洗方法であって、前記ろ材層の流動状態及び前記被処理水の少なくとも一方の密度又は粘度に関する値を検出し、前記密度又は粘度に関する値に基づいて、前記洗浄水が前記ろ材層を下流側から上流側に向かって流通可能となる流速を演算する工程と、前記ろ材層の下流側から上流側に向かって洗浄水の供給を開始する工程と、演算された前記流速まで、前記洗浄水の流速を高める工程と、を含む。
 このようにすることで、洗浄水及びろ過装置内の被処理水の少なくとも一方の密度又は粘度に基づいて、洗浄水がろ材層を下流側から上流側に向かって流通可能となる流速を演算することができる。さらに、ろ材層への洗浄水の供給を開始した後は、洗浄水がろ材層を下流側から上流側に向かって流通可能となる流速まで、洗浄水の流速を高めることによって、ろ過装置内の被処理水や洗浄水の性状が変動しても、洗浄水がろ材層を下流側から上流側に向かって流通するので、ろ材層の逆洗を確実に行うことができる。
 この発明に係る第九態様によれば、逆洗方法は、第八態様の逆洗方法において、前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の温度であるようにしてもよい。
 洗浄水や被処理水の温度が変わると、その粘度が変動する。そこで、洗浄水や被処理水の温度を検出することで、洗浄水や被処理水の粘度に応じて設定した流速で、ろ材層の逆洗を効率よく行うことができる。
 この発明に係る第十態様によれば、逆洗方法は、第八態様の逆洗方法において、前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の塩分濃度であるようにしてもよい。
 海水の塩分濃度が変わると、その粘度が変動する。そこで、洗浄水や被処理水の塩分濃度を検出することで、洗浄水や被処理水の粘度に応じた流速で、ろ材層の逆洗を効率よく行うことができる。
 この発明に係る第十一態様によれば、逆洗方法は、第八態様の逆洗方法において、前記ろ過装置の下流側から前記洗浄水を供給し、前記ろ過装置内で前記ろ材層の流動を検出する工程と、前記ろ材層の流動が検出されたときの前記洗浄水の流速を、前記流通可能となる流速として決定する工程と、を含むようにしてもよい。
 このように、ろ過装置の下流側から洗浄水を供給したときのろ材層の流動を検出し、ろ材の流動が検出されたときの洗浄水の流速で、ろ材層の逆洗を行うことで、ろ材の流動を確認しながら、ろ材層の逆洗を効率よく行うことができる。
 上述した水処理装置及び逆洗方法によれば、被処理水の性状の変動が生じても、ろ材を効率よく逆洗することが可能となる。
この実施形態の水処理システムの全体構成を示す図である。 上記水処理システムの前処理部の構成を示す図である。 海水の温度に対する最低逆洗流速の相関の一例を示すマップである。 逆洗方法の流れを示す図である。 上記第一実施形態の第二変形例における前処理部の構成を示す図である。 上記第一実施形態の第三変形例における前処理部の構成を示す図である。 上記水処理装置及び逆洗方法の第二実施形態における前処理部の構成を示す図である。 逆洗方法の流れを示す図である。
 以下、この発明の実施形態に係る水処理装置及び逆洗方法を図面に基づき説明する。
(第一実施形態)
 図1は、この実施形態の水処理システムの全体構成を示す図である。
 図1に示すように、この実施形態の水処理システム10は、前処理部20と、カートリッジフィルタ30と、高圧ポンプ40と、淡水化処理部50と、エネルギー回収装置60と、を備えている。
 前処理部20は、取水ポンプ(図示無し)で取水した海水(被処理水)Wが取水管P1を通して送り込まれる。前処理部20は、送り込まれた海水Wを、淡水化処理部50よりも前に(前段で)ろ過処理し、海水W中の懸濁物質等を除去する。この実施形態では、前処理部20として、砂ろ過装置(ろ過装置)21を用いる。
 砂ろ過装置21はろ材層21fを備えている。ろ材層21fは、ろ材として、所定量の砂(図示無し)と、砂の表面で成長・維持される生物膜(図示無し)と、を備えている。ろ材層21fは、生物膜により、淡水化処理部50を汚損するSDI(Silt Dencity Index:汚れ指数)成分、バイオファウリングの原因となるBOD(Biological Oxygen Demand)成分等を除去する。また、ろ材層21fは、砂により、海水Wに含まれる微粒子成分を除去する。
 前処理部20に海水Wを送り込む前段で、取水管P1に接続された投入口P2から、凝集剤やpH調整剤等を投入することもできる。
 カートリッジフィルタ30は、前処理部20の後段側に、接続管P3を介して接続されている。カートリッジフィルタ30は、前処理部20で除去しきれなかった、例えば1~5μm程度の微細な異物が高圧ポンプ40内に入り込まないよう、所定径以上の異物を除去する。
 高圧ポンプ40は、カートリッジフィルタ30の後段側に、接続管P4を介して接続されている。高圧ポンプ40は、カートリッジフィルタ30を経た海水Wを、所定圧力に昇圧し、接続管P5を通して淡水化処理部50に送り込む。
 淡水化処理部50は、例えば、逆浸透膜Fを用い、海水Wからイオン成分を除去する。この実施形態では、淡水化処理部50として、海水用逆浸透膜(Sea Water Reverse Osmosis Membrane)処理装置51と、汽水用逆浸透膜(Brackish Water Reverse Osmosis Membrane)処理装置52と、を備える。
 海水用逆浸透膜処理装置51は、高圧ポンプ40の後段側に、接続管P5を介して接続されている。海水用逆浸透膜処理装置51は、高圧ポンプ40で昇圧された海水Wを、接続管P5を介して逆浸透膜Fに通すことで、塩分(イオン成分)が除去された透過水W2を得る。得られた透過水W2は、接続管P6を介して汽水用逆浸透膜処理装置52に送り込まれる。海水用逆浸透膜処理装置51で除去されたイオン成分を含む濃縮水W3は、接続管P7を介してエネルギー回収装置60に送られる。エネルギー回収装置60を経た濃縮水W3は、排水管P8を経て外部(海)に排水される。
 汽水用逆浸透膜処理装置52は、海水用逆浸透膜処理装置51の後段側に、接続管P6を介して接続されている。汽水用逆浸透膜処理装置52は、海水用逆浸透膜処理装置51を経た透過水W2を逆浸透膜Fに通すことで、さらにイオン成分を除去し、純水W2’を得る。得られた純水W2’は、供給管P9を介し、水タンク(図示無し)等に供給される。ここで、得られた純水W2’を飲料用等とする場合には、供給管P9に設けられた投入部P10でミネラルを添加する。汽水用逆浸透膜処理装置52で除去されたイオン成分を含む濃縮水W3’は、排水管P11を介して排水管P8に排出され、外部(海)に排水される。
 エネルギー回収装置60は、海水用逆浸透膜処理装置51から排出される濃縮水W3からエネルギーを回収する。海水用逆浸透膜処理装置51から排出される濃縮水W3は、高圧ポンプ40によって加圧されている。エネルギー回収装置60は、接続管P7から送り込まれる濃縮水W3の水流によって回転するロータ(水車)61を備えている。ロータ61は、加圧された濃縮水W3によって回転エネルギーを得て、ロータ61と一体に連結されたロータ62を回転させる。カートリッジフィルタ30の後段側には、接続管P4から分岐する分岐管P12が設けられている。カートリッジフィルタ30を経た海水Wの一部は、分岐管P12を経てエネルギー回収装置60を通ってロータ62により海水用逆浸透膜処理装置51に送り込まれる。このようにして、海水用逆浸透膜処理装置51に海水Wを送り込むエネルギーの一部として、エネルギー回収装置60で回収した濃縮水W3のエネルギーを用いることができる。
 図2は、上記水処理システムの前処理部の構成を示す図である。
 図2に示すように、前処理部20は、砂ろ過装置21を備える。
 この実施形態において、砂ろ過装置21は、取水管P1から海水Wが通水され、この海水Wをろ過処理する。砂ろ過装置21は、ろ過処理後の海水Wを、接続管P3から送出する。
 前処理部20は、砂ろ過装置21のろ材層21fを構成するろ材を逆洗する逆洗処理部80を備えている。逆洗処理部80は、洗浄水タンク81と、流速調整部82と、開閉弁83と、検出部84と、制御装置85と、を備える。
 洗浄水タンク81は、砂ろ過装置21のろ材層21fを逆洗するため、洗浄水Wsとして、海水又は真水を貯留する。洗浄水タンク81は、砂ろ過装置21の下流側に、逆洗配管P20を介して接続されている。
 流速調整部82は、逆洗配管P20に設けられ、洗浄水タンク81内の洗浄水Wsを、逆洗配管P20を通して砂ろ過装置21の下流側から砂ろ過装置21内に圧送する。流速調整部82は、砂ろ過装置21に供給される洗浄水Wsの流速を調整する。このような流速調整部82は、例えばポンプ等からなり、その作動回転数を変動させることで、砂ろ過装置21に供給される洗浄水Wsの流速を調整する。また、流速調整部82は、例えばポンプを一定回転数で運転しながら、調整弁で流速を微調整することもできる。
 開閉弁83は、逆洗配管P20を開閉する。
 検出部84は、洗浄水Ws及び砂ろ過装置21内の海水Wの少なくとも一方の密度又は粘度に関する値を取得する。この実施形態では、前記密度又は粘度に関する値として、洗浄水Wsの温度を検出する。したがって、検出部84は、温度センサーを用いることができ、例えば、温度センサーを逆洗配管P20内に設けて洗浄水Wsの温度を検出することができる。
 検出部84は、砂ろ過装置21のろ材層21f内に設け、逆洗処理前の砂ろ過装置21内の海水Wの温度、あるいは、逆洗処理中における砂ろ過装置21内で洗浄水Wsが注入された海水Wの温度を検出してもよい。
 制御装置85は、速度演算部87と、流速制御部86と、を備える。
 速度演算部87は、洗浄水Ws及び砂ろ過装置21内の海水Wの少なくとも一方の密度又は粘度に関する値に基づいて、最低逆洗流速を演算する。最低逆洗流速とは、ろ材層21fを構成するろ材が、洗浄水Wsの注入によって流動する最低流速である。
 流速制御部86は、洗浄水Wsの流速がろ材層21fを下流側から上流側に向かって流通可能な最低逆洗流速以上となるよう、流速調整部82の回転数を制御する。
 速度演算部87は、最低逆洗流速(流動化速度ともいう)μfを、次式[1]で求める。
Figure JPOXMLDOC01-appb-M000001
 ここで、μ:流体粘度、ρF:流体密度、D:ろ材の平均粒径、Ga:ガリレオ数である。流体粘度と流体密度とは温度や塩分濃度と相関がある。
 ガリレオ数Gaは、次式[2]で求める。
Figure JPOXMLDOC01-appb-M000002
 ここで、ρ:ろ材密度、g:重力加速度である。
 また、流体粘度μは、M.H. Sharqawyらによる“Thermophysical properties of seawater: a review of existing correlations and data”, Desalination and Water Treatment 16 (2010) P354-P380の式(21)に記載されているとおり、例えば、次式[3]で求めることができる。
Figure JPOXMLDOC01-appb-M000003
 ここで、t:温度である。
 また、流体密度ρFは、M.H. Sharqawyらによる“Thermophysical properties of seawater: a review of existing correlations and data”, Desalination and Water Treatment 16 (2010) P354-P380の式(7)に記載されているとおり、例えば、次式[4]で求めることができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、S:塩分濃度、p:圧力である。
 なお、塩分濃度は、塩分計(例えば、OPTIMARE社製のサリノメーターOPS)を使って求めることも可能である。
 図3は、海水の温度に対する最低逆洗流速の相関の一例を示すマップである。
 また、図3に示すように、温度に対する最低逆洗流速の相関をシミュレーションや実験等から求めて、予めマップ、テーブル、数式等にしておく。この相関から、検出部84で検出した温度検出値に対応した最低逆洗流速を決定することができる。
 図2に示すように、逆洗処理部80は、検出部84における検出結果である温度検出値を表示する表示部84vと、逆洗処理部80を外部から操作する操作部85cと、さらに備えることができる。
 操作部85cは、操作者が操作可能な各種のスイッチ等からなる。操作者は、表示部84vに表示された、洗浄水Wsや海水Wの温度検出値に応じ、操作部85cを操作する。操作部85cは、操作者の操作に応じて所定の操作信号を制御装置85に送出する。
 次に、上述した前処理部20における逆洗方法について説明する。
 図4は、逆洗方法の流れを示す図である。
 図4に示すように、逆洗処理部80においては、逆洗処理を行うに際し、検出部84で、洗浄水Wsや海水Wの温度を計測し、計測値を取得する(ステップS1)。取得された検出部84における計測値は、表示部84vに表示される。
 操作者は、取得した温度の計測値を、操作部85cにより入力する。すると、操作部85cは、操作部85cの操作による所定の操作信号を制御装置85に送出する。
 制御装置85は、速度演算部87で、操作部85cから送出される操作信号(温度計測値)に基づいて、上記の式[1]や、図3に示したような相関に基づくマップ等から、温度計測値に対応する最低逆洗流速を決定する(ステップS2)。
 制御装置85は、流速調整部82を作動させるとともに開閉弁83を閉塞状態から開放状態に切り替える。これにより、洗浄水Wsが、洗浄水タンク81から逆洗配管P20を通して、ろ材層21fの下流側から上流側に向かって洗浄水Wsが供給され、逆洗処理が開始される(ステップS3)。
 流速制御部86は、流速調整部82の作動開始後、その回転数を、洗浄水Wsの流速が、速度演算部87で算出された最低逆洗流速以上となるまで、上昇させていく。これにより、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通可能となる流速まで、洗浄水Wsの流速が高められる。
 ここで、洗浄水Wsの流速は、速度演算部87で算出された最低逆洗流速以上でありながら、なるべく低い流速とするのが好ましい。洗浄水Wsの流速が高すぎると、ろ材層21fの生物膜(図示無し)が剥離等してしまうためである。
 逆洗処理の開始後、所定時間経過する等して、逆洗処理を終了する条件を満足した時点で(ステップS4)、流速調整部82を停止させるとともに、開閉弁83を閉じ、逆洗処理を停止させる(ステップS5)。
 したがって、上述した第一実施形態によれば、制御装置85の流速制御部86で流速調整部82を制御することによって、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通可能となる最低逆洗流速以上となるよう、洗浄水Wsの流速を調整することができる。これにより、砂ろ過装置21内の海水Wや洗浄水Wsの性状が変動しても、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通するので、ろ材層21fの逆洗を確実に行うことができる。
 特に、ろ材層21fに生物膜を備えた、いわゆる生物膜砂ろ過装置21においては、洗浄水Wsの流速が高すぎると、生物膜が破壊されてしまう。そこで、最低逆洗速度以上であるとともに、流速をなるべく抑え、生物膜を維持できる流速で洗浄水Wsを流通させることで、ろ材層21fを適切に逆洗することができる。
 また、制御装置85の速度演算部87で、検出部84で検出した温度計測値に基づいて、最低逆洗速度を演算することにより、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通可能となる最低逆洗速度を容易かつ確実に求めることができる。
 さらに、洗浄水Wsや海水Wの温度が変わると、その粘度が変動する。検出部84で、洗浄水Wsや海水Wの温度を検出することで、洗浄水Wsや海水Wの粘度に応じた最低逆洗速度以上の流速で、ろ材層21fの逆洗を確実に行うことができる。
 さらに、上述した砂ろ過装置21の逆洗方法では、ろ材層21fへの洗浄水Wsの供給を開始した後、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通可能となる流速まで、洗浄水Wsの流速を高めるようにした。これによって、砂ろ過装置21内の海水Wや洗浄水Wsの性状が変動しても、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通するので、ろ材層21fの逆洗を確実に行うことができる。
 なお、上記第一実施形態では、検出部84で検出された温度計測値に基づいて、速度演算部87で温度計測値に対応する最低逆洗流速を演算して決定するようにしたが、これに限らない。例えば、検出部84で検出された温度計測値に基づいて、操作者が図3に示したようなテーブル等の情報を見て、最低逆洗流速を決定してもよい。この場合、操作者が決定した最低逆洗流速を操作部85cで入力することで、流速調整部82を最低逆洗流速で作動させることができる。
(第一実施形態の第一変形例)
 上記第一実施形態では、最低逆洗流速の決定に際し、検出部84で、洗浄水Wsや海水Wの温度を計測するようにしたが、これに限らない。
 例えば、洗浄水Ws及び砂ろ過装置21内の海水Wの少なくとも一方の密度又は粘度に関する値として、洗浄水Ws及び砂ろ過装置21内の海水Wの少なくとも一方の電気伝導度を検出部84で検出するようにしてもよい。
 検出部84で検出した電気伝導度から、塩分濃度Sを、例えば、N. P. Fofonoff and R.C. Millard Jr.による “Algorithms for computation of fundamental properties of seawater”, Unesco Tech. Pap. in Mar. Sci., 38(1983), P99- P 188に記載された式(1)のとおり、次式[5]で求めることができる。
Figure JPOXMLDOC01-appb-M000005
 ここで、ΔSは、例えば、N. P. Fofonoff and R.C. Millard Jr.による “Algorithms for computation of fundamental properties of seawater”, Unesco Tech. Pap. in Mar. Sci., 38(1983), P99- P 188に記載された式(2)のとおり、次式[6]により求めることができる。
Figure JPOXMLDOC01-appb-M000006
 比rは、例えば、N. P. Fofonoff and R.C. Millard Jr.による “Algorithms for computation of fundamental properties of seawater”, Unesco Tech. Pap. in Mar. Sci., 38(1983), P99- P 188に記載された式(3)のように、次式[7]により求めることができる。
Figure JPOXMLDOC01-appb-M000007
 ここで、Rtは、R=R・R・rtより、Rt=R/(R・rt)として求めることができる。
 Rは、塩分濃度S、温度t、圧力pでの電気伝導度を分子とし、分母を塩分濃度35%、温度15℃、大気圧のときのKClの電気伝導度とした比で表すことができる。
 また、Rは塩分濃度S、温度t、圧力pでの電気伝導度を分子とし、分母を塩分濃度S、温度t、大気圧のときのKClの電気伝導度とした比で表すことができる。
 また、Rは、例えば、N. P. Fofonoff and R.C. Millard Jr.による “Algorithms for computation of fundamental properties of seawater”, Unesco Tech. Pap. in Mar. Sci., 38(1983), P99- P 188に記載された式(4)のように、次式[8]により、所定の温度範囲であれば、温度t、圧力pの関数として求めることもできる。
Figure JPOXMLDOC01-appb-M000008
 さらに、rtは、例えば、N. P. Fofonoff and R.C. Millard Jr.による “Algorithms for computation of fundamental properties of seawater”, Unesco Tech. Pap. in Mar. Sci., 38(1983), P99- P 188に記載されているように、塩分濃度35%、温度t、大気圧での電気伝導度を分子とし、分母を塩分濃度35%、温度15℃、大気圧のときのKClの電気伝導度とした比で表すことができることが知られている。また、rtは、本明細書に記載した式[6]より求めることもできる。
 
 さらに、式[5]から、洗浄水Wsや海水Wの粘度μ、密度ρを、上式[3]、[4]で求めることができる。
 このようにして得た洗浄水Wsや海水Wの粘度μ、密度ρから、上記式[1]や、予め行った実験によって得たマップ等に基づいて、最低逆洗流速を決定することができる。
 海水Wは、降雨によって淡水である雨水が混入することによって、塩分濃度が変動する。また、海水Wは、河川や湖沼から淡水が流入する領域では、その周囲の領域に対して塩分濃度が変動する。このようにして海水Wの塩分濃度が変わると、その粘度が変動する。そこで、洗浄水Wsや海水Wの塩分濃度を検出することで、洗浄水Wsや海水Wの粘度に応じた最低逆洗速度以上の流速で、ろ材層21fの逆洗を確実に行うことができる。
(第一実施形態の第二変形例)
 図5は、上記第一実施形態の第二変形例における前処理部の構成を示す図である。
 この図5に示すように、逆洗処理部80は、洗浄水タンク81と、流速調整部82と、開閉弁83と、検出部84と、制御装置85Bと、を備える。
 この変形例において、逆洗処理部80においては、逆洗処理を行うに際し、検出部84で、洗浄水Wsや海水Wの温度を計測する。
 制御装置85Bは、検出部84で検出した検出結果を、電気的な信号により検出部84から受け取る。制御装置85Bの速度演算部87は、上記の式[1]、図3に示したような相関を示す等から、検出部84で検出した洗浄水Wsや海水Wの温度に応じた、最低逆洗流速以上の逆洗流速を決定する。
 制御装置85Bの流速制御部86は、流速調整部82を作動させるとともに開閉弁83を閉塞状態から開放状態に切り替える。これにより、洗浄水Wsが、洗浄水タンク81から逆洗配管P20を通して、ろ材層21fの下流側から上流側に向かって洗浄水Wsが供給され、逆洗処理が開始される。
 流速制御部86は、流速調整部82の作動開始後、その回転数を、洗浄水Wsの流速が、速度演算部87で算出した最低逆洗流速以上となるまで、上昇させていく。これにより、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通可能となる流速まで、洗浄水Wsの流速が高められる。
 逆洗処理の開始後、所定時間経過する等して、逆洗処理を終了する条件を満足した時点で、流速調整部82を停止させるとともに、開閉弁83を閉じ、逆洗処理を停止させる。
 このようにして、制御装置85Bでは、洗浄水Wsや海水Wの温度を検出し、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通可能となる最低逆洗流速を演算し、流速調整部82を制御することで、洗浄水Wsの流速を自動的に調整することができる。これにより、砂ろ過装置21内の海水Wや洗浄水Wsの性状が変動しても、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通するので、ろ材層21fの逆洗を確実に行うことができる。
(第一実施形態の第三変形例)
 図6は、上記第一実施形態の第三変形例における前処理部の構成を示す図である。
 この図6に示すように、逆洗処理部80は、濃縮水送給管P21と、流速調整部82と、開閉弁83と、検出部84と、制御装置85と、を備える。
 この第三変形例では、洗浄水Wsとして、海水用逆浸透膜処理装置51で除去されたイオン成分を含む濃縮水W3を用いる。このため、濃縮水送給管P21は、接続管P3と接続管P7とを連結するよう設けられている。
 流速調整部82及び開閉弁83は、濃縮水送給管P21に設けられている。
 このような構成によれば、制御装置85の流速制御部86で流速調整部82を制御することによって、海水用逆浸透膜処理装置51で除去された濃縮水W3を洗浄水Wsとして用いることができる。洗浄水Wsは、ろ材層21fを下流側から上流側に向かって流通可能となる最低逆洗流速以上となるよう流速が調整される。これにより、砂ろ過装置21内の海水Wや洗浄水Wsの性状が変動しても、洗浄水Wsがろ材層21fを下流側から上流側に向かって流通するので、ろ材層21fの逆洗を適切に行うことができる。
(第二実施形態)
 次に、この発明にかかる水処理装置及び逆洗方法の第二実施形態について説明する。以下に説明する第二実施形態においては、第一実施形態と前処理部の構成のみが異なるので、第一実施形態と同一部分に同一符号を付して説明するとともに、水処理システム10の全体構成等、重複説明を省略する。
 図7は、上記水処理装置及び逆洗方法の第二実施形態における前処理部の構成を示す図である。
 図7に示すように、この実施形態における水処理システム10の前処理部20は、砂ろ過装置21のろ材層21fを構成するろ材を逆洗する逆洗処理部80Cを備えている。逆洗処理部80Cは、洗浄水タンク81と、流速調整部82と、開閉弁83と、検出部84Cと、制御装置85Cと、を備える。
 この実施形態では、検出部84Cとして、砂ろ過装置21の下流側から洗浄水Wsを供給したときに砂ろ過装置21内でろ材層21fを構成するろ材(砂)の流動を検出する流動検出部84sを備える。ろ材において、洗浄水Wsの注入によってろ材を構成する砂が舞うことで砂ろ過装置21中の被処理水W及び洗浄水Wsの濁度が変動する。そこで、流動検出部84sとして、例えば、濁度計を用いることができる。
 また、流動検出部84sとして、ろ材をカメラ等で撮像し、濁度の変化を、逆洗処理の開始前の撮像画像と比較することで監視するようにしてもよい。さらに、レーザー等を用いた光学的なセンサーを用いてその透過率等によって濁度の監視等を行ってもよい。
 ここで、逆洗処理時に洗浄水Wsを注入することによって、ろ材層21fは上面レベルが上昇する。そこで、流動検出部84sは、濁度を監視するため、ろ材層21fの上面よりも上方に離間させて設ける。より具体的には、逆洗処理時のろ材高さに流動検出部84sを設置する。例えば、流動検出部84sは、ろ過時のろ材層21fの高さLに対し、0.05倍(0.05×L)以上の間隔Hをあけて上方に配置してもよい。
 流動検出部84sは、砂ろ過装置21から被処理水Wの一部を抽出し、抽出した被処理水Wについて濁度の監視等を行うようにしてもよい。
 制御装置85Cは、流速調整部82を作動させるとともに、開閉弁83を開いて洗浄水Wsを砂ろ過装置21内に注入した後、流動検出部84sによりろ材の流動が検出されるか否かをモニタリングする。
 制御装置85Cは、逆洗速度決定部88を有する。逆洗速度決定部88は、流動検出部84sにより、ろ材の流動が確認された場合、その時点での洗浄水Wsの流速を、最低逆洗流速以上の流速として決定する。
 次に、上述した前処理部20における逆洗方法について説明する。
 図8は、逆洗方法の流れを示す図である。
(水質取得工程)
 図8に示すように、逆洗処理部80においては、操作者の所定の操作により、制御装置85Cで流速調整部82を作動させるとともに開閉弁83を閉塞状態から開放状態に切り替える。これにより、洗浄水Wsが、洗浄水タンク81から逆洗配管P20を通して、ろ材層21fの下流側から上流側に向かって洗浄水Wsが供給され、逆洗処理が開始される(ステップS11)。
 逆洗処理の開始後、流動検出部84sによるろ材の流動状態をモニタリングする(ステップS12)。
 一定時間が経過したら、流動検出部84sで、ろ過装置21のろ材層21fにおいて、洗浄水Wsの注入によってろ材層21fの流動状態が変化したか否かを、例えば濁度の変化により検出する(ステップS13)。
 流動検出部84sで、例えば濁度が所定の閾値以上に高まる等、ろ材層21fの流動状態の変化が認められなければ、制御装置85Cの流速制御部86は、流速調整部82の回転数を、予め定めた回転数だけ上昇させ、ステップS12に戻って制御を続行する(ステップS14)。
 また、流動検出部84sで、例えば濁度が所定の閾値以上に高まる等、ろ材の流動状態の変化が認められた場合、逆洗速度決定部88は、流動検出部84sによりろ材の流動が検出される洗浄水Wsの流速を最低逆洗流速以上の流速として決定し、流速制御部86は流速調整部82の回転数の上昇を停止させる(ステップS15)
 ステップS15で流速調整部の回転数の上昇を停止させた流速制御部86は、逆洗速度決定部88で決定された流速(回転数)を維持し、逆洗処理を行う。
 逆洗処理の開始後、所定時間経過する等して、逆洗処理を終了する条件を満足した時点で(ステップS16)、流速調整部82を停止させるとともに、開閉弁83を閉じ、逆洗処理を停止させる(ステップS17)。
 したがって、上述した第二実施形態によれば、砂ろ過装置21の下流側から洗浄水Wsを供給したときのろ材層21fの流動を流動検出部84sで検出し、ろ材の流動が検出されたときの洗浄水Wsの流速を、最低逆洗流速以上の流速として決定することで、ろ材の流動を確認しながら、ろ材層21fの適切な逆洗を行うことができる。
(その他の変形例)
 この発明は、上述した実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な形状や構成等は一例にすぎず、適宜変更が可能である。
 例えば、上記各実施形態及びその変形例で示した構成は、適宜組み合わせることが可能である。
 上述した各実施形態においては、ろ過装置として砂ろ過装置21を例に挙げたが、その具体的な構成は何ら限定するものではない。さらに、砂ろ過装置21は、直列、並列に複数台を接続して設けてもよい。
 淡水化処理部50を、海水用逆浸透膜処理装置51と、汽水用逆浸透膜処理装置52とを備える構成としたが、これに限らない。海水用逆浸透膜処理装置51のみを淡水化処理部50に備えるようにしてもよい。
 これ以外にも、例えば、上記各実施形態及びその変形例では、海水Wを淡水化する水処理システムを例に挙げたが、それ以外の用途の水処理システムに対しても、本発明を有効に適用することができる。
 この発明は、海水を淡水化処理する水処理装置及び逆洗方法に適用できる。水処理装置及び逆洗方法によれば、洗浄水がろ材層を下流側から上流側に向かって流通可能な最低逆洗流速以上となる流速で、洗浄水を供給するとすることで、被処理水の性状の変動が生じても、ろ材を適切に逆洗することができる。
10 水処理システム(水処理装置)
20 前処理部
21 砂ろ過装置(ろ過装置)
21f ろ材層
30 カートリッジフィルタ
40 高圧ポンプ
50 淡水化処理部
51 海水用逆浸透膜処理装置
52 汽水用逆浸透膜処理装置
60 エネルギー回収装置
61,62 ロータ
80,80C 逆洗処理部
81 洗浄水タンク(洗浄水供給部)
82 流速調整部
83 開閉弁
84,84C 検出部
84s 流動検出部
84v 表示部
85,85B,85C 制御装置
85c 操作部
86 流速制御部
87 速度演算部
88 逆洗速度決定部
F 逆浸透膜
H 間隔
P1 取水管
P2 投入口
P3~P7 接続管
P8 排水管
P9 供給管
P10 投入部
P11 排水管
P12 分岐管
P20 逆洗配管
P21 濃縮水送給管
S1~S5 ステップ
S11~S17 ステップ
W 海水
W2 透過水
W3 濃縮水
Ws 洗浄水

Claims (11)

  1.  上流側から供給される被処理水に対してろ過処理を施すろ材層を有するろ過装置と、
     前記ろ過装置に対して前記ろ材層の下流側から洗浄水を供給可能な洗浄水供給部と、
     前記洗浄水供給部によって前記ろ過装置に供給される前記洗浄水の流速を調整する流速調整部と、
     前記洗浄水の流速が、前記洗浄水が前記ろ材層を下流側から上流側に向かって流通可能な最低逆洗流速以上となるよう、前記流速調整部を制御する流速制御部を有する制御装置と、
    を備える水処理装置。
  2.  前記洗浄水供給部における前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の密度又は粘度に関する値を取得する検出部をさらに備え、
     前記制御装置は、
     前記密度又は前記粘度に関する値に基づいて前記最低逆洗流速を演算する速度演算部を有する請求項1に記載の水処理装置。
  3.  前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の温度であることを特徴とする請求項2に記載の水処理装置。
  4.  前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の塩分濃度であることを特徴とする請求項2に記載の水処理装置。
  5.  前記ろ過装置の下流側から前記洗浄水を供給したときに前記ろ過装置内で前記ろ材層の流動を検出する流動検出部をさらに備え、
     前記制御装置は、前記流動検出部により前記ろ材の流動が検出される前記洗浄水の流速を前記最低逆洗流速以上の流速として決定する逆洗速度決定部を有する請求項1に記載の水処理装置。
  6.  前記ろ過装置の前記ろ材層が、生物膜を備える請求項1から5の何れか一項に記載の水処理装置。
  7.  上流側から供給される被処理水に対してろ過処理を施すろ材層を有するろ過装置と、
     前記ろ過装置に対して前記ろ材層の下流側から洗浄水を供給可能な洗浄水供給部と、
     前記ろ材層の流動状態及び前記被処理水の少なくとも一方の密度又は粘度に関する値を検出する検出部と、
     前記密度又は粘度に関する値に基づいた情報を表示する表示部と、
     操作者が操作可能な操作部と、
     前記表示部に表示された前記情報に応じてなされる前記操作部の操作によって送出される操作信号に基づいて、前記洗浄水供給部によって前記ろ過装置に供給される前記洗浄水の流速を調整する流速調整部と、
    を備える水処理システム。
  8.  上流側から供給される被処理水に対してろ過処理を施すろ材層を有するろ過装置の逆洗方法であって、
     前記ろ材層の流動状態及び前記被処理水の少なくとも一方の密度又は粘度に関する値を検出し、前記密度又は粘度に関する値に基づいて、前記洗浄水が前記ろ材層を下流側から上流側に向かって流通可能となる流速を演算する工程と、
     前記ろ材層の下流側から上流側に向かって洗浄水の供給を開始する工程と、
     演算された前記流速まで、前記洗浄水の流速を高める工程と、
    を含む逆洗方法。
  9.  前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の温度である請求項8に記載の逆洗方法。
  10.  前記密度又は粘度に関する値が前記洗浄水及び前記ろ過装置内の前記被処理水の少なくとも一方の塩分濃度である請求項8に記載の逆洗方法。
  11.  前記ろ過装置の下流側から前記洗浄水を供給し、前記ろ過装置内で前記ろ材層の流動を検出する工程と、
     前記ろ材層の流動が検出されたときの前記洗浄水の流速を、前記流通可能となる流速として決定する工程と、を含む請求項8に記載の逆洗方法。
PCT/JP2016/054722 2016-02-18 2016-02-18 水処理装置及び逆洗方法 WO2017141400A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054722 WO2017141400A1 (ja) 2016-02-18 2016-02-18 水処理装置及び逆洗方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054722 WO2017141400A1 (ja) 2016-02-18 2016-02-18 水処理装置及び逆洗方法

Publications (1)

Publication Number Publication Date
WO2017141400A1 true WO2017141400A1 (ja) 2017-08-24

Family

ID=59624873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054722 WO2017141400A1 (ja) 2016-02-18 2016-02-18 水処理装置及び逆洗方法

Country Status (1)

Country Link
WO (1) WO2017141400A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983308A (en) * 1989-12-18 1991-01-08 Zimpro/Passavant Inc. Automatic chemical cleaning of granular medium filters
JPH09122671A (ja) * 1995-10-31 1997-05-13 Meidensha Corp 濁色度計及び紫外線吸光光度計を用いた濾過池洗浄制御装置
JP2003010873A (ja) * 2001-07-03 2003-01-14 Sumitomo Heavy Ind Ltd 逆洗方法
JP2003299911A (ja) * 2002-04-11 2003-10-21 Japan Water Works Association 濾材洗浄システムおよび水処理システム
JP2014151278A (ja) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd 砂ろ過装置の洗浄方法
JP2014181941A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 観測システム、観測装置および観測方法
JP2015142885A (ja) * 2014-01-31 2015-08-06 三菱重工業株式会社 生物膜濾過装置、淡水化システム、及び、生物膜濾過装置の洗浄方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4983308A (en) * 1989-12-18 1991-01-08 Zimpro/Passavant Inc. Automatic chemical cleaning of granular medium filters
JPH09122671A (ja) * 1995-10-31 1997-05-13 Meidensha Corp 濁色度計及び紫外線吸光光度計を用いた濾過池洗浄制御装置
JP2003010873A (ja) * 2001-07-03 2003-01-14 Sumitomo Heavy Ind Ltd 逆洗方法
JP2003299911A (ja) * 2002-04-11 2003-10-21 Japan Water Works Association 濾材洗浄システムおよび水処理システム
JP2014151278A (ja) * 2013-02-08 2014-08-25 Mitsubishi Heavy Ind Ltd 砂ろ過装置の洗浄方法
JP2014181941A (ja) * 2013-03-18 2014-09-29 Fujitsu Ltd 観測システム、観測装置および観測方法
JP2015142885A (ja) * 2014-01-31 2015-08-06 三菱重工業株式会社 生物膜濾過装置、淡水化システム、及び、生物膜濾過装置の洗浄方法

Similar Documents

Publication Publication Date Title
AU2015301791B2 (en) Intelligent fluid filtration management system
Alventosa-deLara et al. Ultrafiltration ceramic membrane performance during the treatment of model solutions containing dye and salt
JP5941629B2 (ja) 水浄化システム及び水浄化方法
US20120205307A1 (en) Fluid treatment apparatus and method
JP5587240B2 (ja) 海水淡水化システムの制御装置及びその制御方法
JP6269241B2 (ja) 正浸透処理システム
Gao et al. Novel design and operational control of integrated ultrafiltration—Reverse osmosis system with RO concentrate backwash
JP2015042385A (ja) 淡水化システム
JP2007245078A (ja) 水処理装置及び水処理方法
JP2015009174A (ja) 水処理システムおよび水処理システムの水処理方法
Gu et al. Fouling indicators for field monitoring the effectiveness of operational strategies of ultrafiltration as pretreatment for seawater desalination
JP2016016384A (ja) 浸透膜モジュールの評価装置及び評価方法
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
JPH11319516A (ja) 水ろ過処理装置およびその運転方法
US20160130155A1 (en) Water treatment system
JP2012130823A (ja) 淡水化装置、膜の監視方法および淡水化装置の運転方法
JP6441712B2 (ja) 被処理水の膜閉塞度評価方法
WO2017141400A1 (ja) 水処理装置及び逆洗方法
WO2016111370A1 (ja) 水処理方法
JP2007203249A (ja) 水処理装置及び水処理方法
JP7033841B2 (ja) 逆浸透膜供給水の膜閉塞性評価方法及びその膜閉塞性評価方法を用いた水処理装置の運転管理方法
JP4033094B2 (ja) 膜ろ過装置の膜損傷検知方法およびそのための装置
TW201838709A (zh) 逆滲透膜裝置的運轉管理方法以及逆滲透膜處理系統
KR101968525B1 (ko) 역삼투막의 역세척 방법 및 그 시스템
WO2019180788A1 (ja) 塩分濃縮装置及び塩分濃縮装置のスケール検知方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP