WO2017139989A1 - Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre - Google Patents

Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre Download PDF

Info

Publication number
WO2017139989A1
WO2017139989A1 PCT/CN2016/074184 CN2016074184W WO2017139989A1 WO 2017139989 A1 WO2017139989 A1 WO 2017139989A1 CN 2016074184 W CN2016074184 W CN 2016074184W WO 2017139989 A1 WO2017139989 A1 WO 2017139989A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
titanium dioxide
composite material
suspension
sulfur
Prior art date
Application number
PCT/CN2016/074184
Other languages
English (en)
Chinese (zh)
Inventor
肖丽芳
钟玲珑
Original Assignee
肖丽芳
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 肖丽芳 filed Critical 肖丽芳
Priority to PCT/CN2016/074184 priority Critical patent/WO2017139989A1/fr
Publication of WO2017139989A1 publication Critical patent/WO2017139989A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
  • the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
  • Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
  • problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
  • Elemental sulfur is an electron and ion insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it is used as The activation of the positive electrode material is difficult; (2) the high polylithium polysulfide Li 2 S n (8>n ⁇ 4) generated during the electrode reaction is easily dissolved in the electrolyte, forming a concentration difference between the positive and negative electrodes. Under the action of the concentration gradient, it migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
  • the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide.
  • This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
  • insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery;
  • the final product of the reaction, Li 2 S is also an electronic insulator, which is deposited on the sulfur electrode, and lithium
  • the migration speed of ions in solid lithium sulfide is slow, which makes the electrochemical reaction kinetics slower.
  • the technical problem to be solved by the present invention is to provide a graphene/titanium dioxide hollow sphere/sulfur composite material, which has a simple preparation method, and a conductive conductive graphene provides a conductive network, and the hollow structure of titanium dioxide is coated with a sulfur-based material to prevent discharge.
  • the invention provides a preparation process of a graphene/titanium dioxide hollow sphere/sulfur composite material as follows:
  • Graphene is added to an aqueous solution to be ultrasonically dispersed to form a suspension.
  • Titanium sulphate and ammonium chloride are sequentially added to the above suspension and stirred uniformly, and then added to a hydrothermal kettle for hydrothermal reaction. After the reaction is completed, the mixture is naturally cooled, filtered, washed with water, washed with ethanol, and dried to obtain hollow titanium dioxide graphite. Aene composite.
  • the concentration of the graphene suspension in the step (1) is 1-10 g / L, and the ultrasonic time is 20-60 minutes;
  • the mass ratio of ammonium chloride: titanium sulfate: graphite oxide in the step (2) is 1:5-10:0.5-1, the temperature of the hydrothermal reaction is 160-200 ° C, and the reaction time is 3-10 hours.
  • the invention has the following beneficial effects: (1) graphene has ultra-high electrical conductivity, and the graphene/titanium dioxide hollow sphere/sulfur composite material prepared by the method can effectively improve the electronic conductivity and ions of the lithium sulfur battery cathode material. Conductivity; (2) Graphene/titanium dioxide hollow sphere/sulfur composite material The titanium dioxide hollow sphere is coated with a sulfur-based material, which can inhibit the dissolution of the polysulfide of the discharge product and alleviate the volume expansion and improve its electrochemical performance.
  • Figure 1 is an SEM image of a graphene/titanium dioxide hollow sphere/sulfur composite prepared in accordance with the present invention.
  • Electrode preparation and performance test electrode material, acetylene black and PVDF were mixed in NMP at a mass ratio of 80:10:10, coated on aluminum foil as electrode film, lithium metal plate as counter electrode, CELGARD 2400 as separator, 1 mol /L LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte, 1mol/L LiNO3 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge test is performed using a Land battery test system. .
  • the charge and discharge voltage range is 1-3V
  • the current density is 1C
  • performance is shown in Table 1.
  • FIG. 1 is an SEM image of a positive electrode material prepared by the present invention. It can be seen from the figure that the titanium oxide-coated lithium sulfide particles are uniformly distributed on the surface of the graphene, which is beneficial to improving the electrochemical performance of the material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

La présente invention concerne un procédé de préparation d'un matériau composite graphène/sphères creuses de dioxyde de titane/soufre, comprenant les étapes suivantes : (1) ajout de graphène à une solution aqueuse et réalisation d'une dispersion par ultrasons pour former une suspension ; (2) ajout de sulfate de titane et de chlorure d'ammonium à la suspension tour à tour et mélange uniforme, ajout du mélange à une bouilloire hydrothermique pour réaliser une réaction hydrothermique, et après achèvement de la réaction, refroidissement naturel, filtrage, lavage à l'eau, lavage à l'éthanol et séchage pour obtenir un matériau composite dioxyde de titane creux/graphène ; et (3) ajout du matériau composite dioxyde de titane creux/graphène et de soufre élémentaire à du disulfure de carbone, réalisation d'une dispersion par ultrasons pour former une suspension, et ensuite évaporation du solvant pour obtenir un matériau composite graphène/sphères creuses de dioxyde de titane/soufre. Les sphères creuses de dioxyde de titane dans le matériau composite graphène/sphères creuses de dioxyde de titane/soufre sont recouvertes d'un matériau à base de soufre, et peuvent empêcher la dissolution de polysulfures à partir du produit de décharge et atténuer la dilatation volumique, améliorant les performances électrochimiques.
PCT/CN2016/074184 2016-02-21 2016-02-21 Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre WO2017139989A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074184 WO2017139989A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074184 WO2017139989A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre

Publications (1)

Publication Number Publication Date
WO2017139989A1 true WO2017139989A1 (fr) 2017-08-24

Family

ID=59625556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074184 WO2017139989A1 (fr) 2016-02-21 2016-02-21 Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre

Country Status (1)

Country Link
WO (1) WO2017139989A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767228A (zh) * 2018-05-30 2018-11-06 天津巴莫科技股份有限公司 一种双碳基单钛基硫复合正极材料及其制备方法
CN109037657A (zh) * 2018-08-18 2018-12-18 复旦大学 一种锂硫电池正极材料及其制备方法
CN110993905A (zh) * 2019-11-16 2020-04-10 北方奥钛纳米技术有限公司 一种锂硫电池正极材料及其制备方法
CN113823919A (zh) * 2021-09-24 2021-12-21 中南大学 一种轻质镍/氧化镍组装石墨烯基复合低频吸波泡沫及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121240A1 (en) * 2009-11-23 2011-05-26 Khalil Amine Coated electroactive materials
CN104143630A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 石墨烯-纳米金属氧化物复合材料在锂硫电池中应用
CN104785235A (zh) * 2015-03-25 2015-07-22 中南大学 一种改性石墨烯负载二氧化钛复合光催化剂的制备方法
CN105056929A (zh) * 2015-07-20 2015-11-18 重庆文理学院 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110121240A1 (en) * 2009-11-23 2011-05-26 Khalil Amine Coated electroactive materials
CN104143630A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 石墨烯-纳米金属氧化物复合材料在锂硫电池中应用
CN104785235A (zh) * 2015-03-25 2015-07-22 中南大学 一种改性石墨烯负载二氧化钛复合光催化剂的制备方法
CN105056929A (zh) * 2015-07-20 2015-11-18 重庆文理学院 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767228A (zh) * 2018-05-30 2018-11-06 天津巴莫科技股份有限公司 一种双碳基单钛基硫复合正极材料及其制备方法
CN108767228B (zh) * 2018-05-30 2021-03-05 天津巴莫科技股份有限公司 一种双碳基单钛基硫复合正极材料及其制备方法
CN109037657A (zh) * 2018-08-18 2018-12-18 复旦大学 一种锂硫电池正极材料及其制备方法
CN110993905A (zh) * 2019-11-16 2020-04-10 北方奥钛纳米技术有限公司 一种锂硫电池正极材料及其制备方法
CN113823919A (zh) * 2021-09-24 2021-12-21 中南大学 一种轻质镍/氧化镍组装石墨烯基复合低频吸波泡沫及其制备方法
CN113823919B (zh) * 2021-09-24 2023-01-03 中南大学 一种轻质镍/氧化镍组装石墨烯基复合低频吸波泡沫及其制备方法

Similar Documents

Publication Publication Date Title
CN104362296B (zh) 一种新型硫基材料电极及其制备方法与应用
Su et al. A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries
WO2017139991A1 (fr) Procédé de préparation de matériau d'électrode positive de batterie lithium-soufre à sphères creuses de dioxyde de manganèse
Yuan et al. Facile synthesis of CuS/rGO composite with enhanced electrochemical lithium-storage properties through microwave-assisted hydrothermal method
Lin et al. A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes
CN110247047B (zh) 一种锂硫电池正极材料及其制备方法
WO2017139983A1 (fr) Procédé pour préparer un matériau d'électrode positive ayant une structure dopée à l'azote tridimensionnelle destiné à être utilisé dans une batterie au lithium-soufre
Sun et al. Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium–sulfur battery application
WO2017139938A1 (fr) Procédé de préparation de matériau d'électrode positive composite graphène/polypyrrole/soufre
Wan et al. Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties?
CN105609707A (zh) 一种二氧化锰空心球锂硫电池正极材料的制备方法
WO2017139984A1 (fr) Procédé de préparation d'un matériau de cathode de batterie lithium-soufre dopé au soufre ayant une structure tridimensionnelle
WO2017139939A1 (fr) Procédé de préparation d'un matériau d'électrode positive composite graphène/polyaniline/soufre
CN105609776B (zh) 一种石墨烯/二氧化钛空心球/硫复合材料的制备方法
CN108172406B (zh) 一种以FeS2-xSex材料为负极材料的钠离子电容器
WO2017139989A1 (fr) Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre
WO2017139941A1 (fr) Procédé de préparation d'un matériau d'anode composite de graphène/polyanthraquinone thioéther/sulfure
CN106450423B (zh) 一种高比能柔性一体化电极及其制备方法
Xu et al. MOF-derived NiO–NiCo 2 O 4@ PPy hollow polyhedron as a sulfur immobilizer for lithium–sulfur batteries
CN105047861A (zh) 一种硫碳复合材料及其制备方法
WO2017139985A1 (fr) Procédé de préparation d'un matériau d'anode de batterie au lithium-soufre dopé au fluor ayant une structure tridimensionnelle
WO2017139982A1 (fr) Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote
WO2017139986A1 (fr) Procédé de préparation d'un matériau d'anode de batterie lithium-soufre dopé au phosphore ayant une structure tridimensionnelle
CN105720250A (zh) 一种石墨烯/二氧化锆空心球/硫复合材料的制备方法
WO2017139997A1 (fr) Procédé de fabrication de matériau anodique dopé avec une structure de noyau-enveloppe de sulfure de lithium-carbone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890222

Country of ref document: EP

Kind code of ref document: A1