WO2017139989A1 - Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre - Google Patents
Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre Download PDFInfo
- Publication number
- WO2017139989A1 WO2017139989A1 PCT/CN2016/074184 CN2016074184W WO2017139989A1 WO 2017139989 A1 WO2017139989 A1 WO 2017139989A1 CN 2016074184 W CN2016074184 W CN 2016074184W WO 2017139989 A1 WO2017139989 A1 WO 2017139989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene
- titanium dioxide
- composite material
- suspension
- sulfur
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to the synthesis of nano materials, in particular to a preparation method of a cathode material for a lithium sulfur battery.
- the lithium-sulfur battery is a battery system in which lithium metal is used as a negative electrode and elemental sulfur is used as a positive electrode.
- Lithium-sulfur batteries have two discharge platforms (about 2.4V and 2.1V), but their electrochemical reaction mechanism is complicated. Lithium-sulfur batteries have the advantages of high specific energy (2600Wh/kg), high specific capacity (1675mAh/g), low cost, etc., and are considered to be promising new generation batteries.
- problems such as low utilization rate of active materials, low cycle life and poor safety, which seriously restricts the development of lithium-sulfur batteries.
- Elemental sulfur is an electron and ion insulator, and the room temperature conductivity is low (5 ⁇ 10 -30 S ⁇ cm -1 ). Since there is no ionic sulfur, it is used as The activation of the positive electrode material is difficult; (2) the high polylithium polysulfide Li 2 S n (8>n ⁇ 4) generated during the electrode reaction is easily dissolved in the electrolyte, forming a concentration difference between the positive and negative electrodes. Under the action of the concentration gradient, it migrates to the negative electrode, and the high poly lithium polysulfide is reduced by the lithium metal to the oligomeric lithium polysulfide.
- the oligomeric lithium polysulfide aggregates at the negative electrode, eventually forming a concentration difference between the two electrodes, and then migrating to the positive electrode to be oxidized to a highly polylithium polysulfide.
- This phenomenon is known as the shuttle effect, which reduces the utilization of sulfur active substances.
- insoluble Li 2 S and Li 2 S 2 are deposited on the surface of the lithium negative electrode, which further deteriorates the performance of the lithium-sulfur battery;
- the final product of the reaction, Li 2 S is also an electronic insulator, which is deposited on the sulfur electrode, and lithium
- the migration speed of ions in solid lithium sulfide is slow, which makes the electrochemical reaction kinetics slower.
- the technical problem to be solved by the present invention is to provide a graphene/titanium dioxide hollow sphere/sulfur composite material, which has a simple preparation method, and a conductive conductive graphene provides a conductive network, and the hollow structure of titanium dioxide is coated with a sulfur-based material to prevent discharge.
- the invention provides a preparation process of a graphene/titanium dioxide hollow sphere/sulfur composite material as follows:
- Graphene is added to an aqueous solution to be ultrasonically dispersed to form a suspension.
- Titanium sulphate and ammonium chloride are sequentially added to the above suspension and stirred uniformly, and then added to a hydrothermal kettle for hydrothermal reaction. After the reaction is completed, the mixture is naturally cooled, filtered, washed with water, washed with ethanol, and dried to obtain hollow titanium dioxide graphite. Aene composite.
- the concentration of the graphene suspension in the step (1) is 1-10 g / L, and the ultrasonic time is 20-60 minutes;
- the mass ratio of ammonium chloride: titanium sulfate: graphite oxide in the step (2) is 1:5-10:0.5-1, the temperature of the hydrothermal reaction is 160-200 ° C, and the reaction time is 3-10 hours.
- the invention has the following beneficial effects: (1) graphene has ultra-high electrical conductivity, and the graphene/titanium dioxide hollow sphere/sulfur composite material prepared by the method can effectively improve the electronic conductivity and ions of the lithium sulfur battery cathode material. Conductivity; (2) Graphene/titanium dioxide hollow sphere/sulfur composite material The titanium dioxide hollow sphere is coated with a sulfur-based material, which can inhibit the dissolution of the polysulfide of the discharge product and alleviate the volume expansion and improve its electrochemical performance.
- Figure 1 is an SEM image of a graphene/titanium dioxide hollow sphere/sulfur composite prepared in accordance with the present invention.
- Electrode preparation and performance test electrode material, acetylene black and PVDF were mixed in NMP at a mass ratio of 80:10:10, coated on aluminum foil as electrode film, lithium metal plate as counter electrode, CELGARD 2400 as separator, 1 mol /L LiTFSI/DOL-DME (volume ratio 1:1) is an electrolyte, 1mol/L LiNO3 is an additive, assembled into a button-type battery in a filled glove box, and a constant current charge and discharge test is performed using a Land battery test system. .
- the charge and discharge voltage range is 1-3V
- the current density is 1C
- performance is shown in Table 1.
- FIG. 1 is an SEM image of a positive electrode material prepared by the present invention. It can be seen from the figure that the titanium oxide-coated lithium sulfide particles are uniformly distributed on the surface of the graphene, which is beneficial to improving the electrochemical performance of the material.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
La présente invention concerne un procédé de préparation d'un matériau composite graphène/sphères creuses de dioxyde de titane/soufre, comprenant les étapes suivantes : (1) ajout de graphène à une solution aqueuse et réalisation d'une dispersion par ultrasons pour former une suspension ; (2) ajout de sulfate de titane et de chlorure d'ammonium à la suspension tour à tour et mélange uniforme, ajout du mélange à une bouilloire hydrothermique pour réaliser une réaction hydrothermique, et après achèvement de la réaction, refroidissement naturel, filtrage, lavage à l'eau, lavage à l'éthanol et séchage pour obtenir un matériau composite dioxyde de titane creux/graphène ; et (3) ajout du matériau composite dioxyde de titane creux/graphène et de soufre élémentaire à du disulfure de carbone, réalisation d'une dispersion par ultrasons pour former une suspension, et ensuite évaporation du solvant pour obtenir un matériau composite graphène/sphères creuses de dioxyde de titane/soufre. Les sphères creuses de dioxyde de titane dans le matériau composite graphène/sphères creuses de dioxyde de titane/soufre sont recouvertes d'un matériau à base de soufre, et peuvent empêcher la dissolution de polysulfures à partir du produit de décharge et atténuer la dilatation volumique, améliorant les performances électrochimiques.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/074184 WO2017139989A1 (fr) | 2016-02-21 | 2016-02-21 | Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/074184 WO2017139989A1 (fr) | 2016-02-21 | 2016-02-21 | Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017139989A1 true WO2017139989A1 (fr) | 2017-08-24 |
Family
ID=59625556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/074184 WO2017139989A1 (fr) | 2016-02-21 | 2016-02-21 | Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017139989A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767228A (zh) * | 2018-05-30 | 2018-11-06 | 天津巴莫科技股份有限公司 | 一种双碳基单钛基硫复合正极材料及其制备方法 |
CN109037657A (zh) * | 2018-08-18 | 2018-12-18 | 复旦大学 | 一种锂硫电池正极材料及其制备方法 |
CN110993905A (zh) * | 2019-11-16 | 2020-04-10 | 北方奥钛纳米技术有限公司 | 一种锂硫电池正极材料及其制备方法 |
CN113823919A (zh) * | 2021-09-24 | 2021-12-21 | 中南大学 | 一种轻质镍/氧化镍组装石墨烯基复合低频吸波泡沫及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110121240A1 (en) * | 2009-11-23 | 2011-05-26 | Khalil Amine | Coated electroactive materials |
CN104143630A (zh) * | 2013-05-09 | 2014-11-12 | 中国科学院大连化学物理研究所 | 石墨烯-纳米金属氧化物复合材料在锂硫电池中应用 |
CN104785235A (zh) * | 2015-03-25 | 2015-07-22 | 中南大学 | 一种改性石墨烯负载二氧化钛复合光催化剂的制备方法 |
CN105056929A (zh) * | 2015-07-20 | 2015-11-18 | 重庆文理学院 | 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法 |
-
2016
- 2016-02-21 WO PCT/CN2016/074184 patent/WO2017139989A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110121240A1 (en) * | 2009-11-23 | 2011-05-26 | Khalil Amine | Coated electroactive materials |
CN104143630A (zh) * | 2013-05-09 | 2014-11-12 | 中国科学院大连化学物理研究所 | 石墨烯-纳米金属氧化物复合材料在锂硫电池中应用 |
CN104785235A (zh) * | 2015-03-25 | 2015-07-22 | 中南大学 | 一种改性石墨烯负载二氧化钛复合光催化剂的制备方法 |
CN105056929A (zh) * | 2015-07-20 | 2015-11-18 | 重庆文理学院 | 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108767228A (zh) * | 2018-05-30 | 2018-11-06 | 天津巴莫科技股份有限公司 | 一种双碳基单钛基硫复合正极材料及其制备方法 |
CN108767228B (zh) * | 2018-05-30 | 2021-03-05 | 天津巴莫科技股份有限公司 | 一种双碳基单钛基硫复合正极材料及其制备方法 |
CN109037657A (zh) * | 2018-08-18 | 2018-12-18 | 复旦大学 | 一种锂硫电池正极材料及其制备方法 |
CN110993905A (zh) * | 2019-11-16 | 2020-04-10 | 北方奥钛纳米技术有限公司 | 一种锂硫电池正极材料及其制备方法 |
CN113823919A (zh) * | 2021-09-24 | 2021-12-21 | 中南大学 | 一种轻质镍/氧化镍组装石墨烯基复合低频吸波泡沫及其制备方法 |
CN113823919B (zh) * | 2021-09-24 | 2023-01-03 | 中南大学 | 一种轻质镍/氧化镍组装石墨烯基复合低频吸波泡沫及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104362296B (zh) | 一种新型硫基材料电极及其制备方法与应用 | |
Su et al. | A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium–sulfur batteries | |
WO2017139991A1 (fr) | Procédé de préparation de matériau d'électrode positive de batterie lithium-soufre à sphères creuses de dioxyde de manganèse | |
Yuan et al. | Facile synthesis of CuS/rGO composite with enhanced electrochemical lithium-storage properties through microwave-assisted hydrothermal method | |
Lin et al. | A facile synthesis of three dimensional graphene sponge composited with sulfur nanoparticles for flexible Li–S cathodes | |
CN110247047B (zh) | 一种锂硫电池正极材料及其制备方法 | |
WO2017139983A1 (fr) | Procédé pour préparer un matériau d'électrode positive ayant une structure dopée à l'azote tridimensionnelle destiné à être utilisé dans une batterie au lithium-soufre | |
Sun et al. | Specially designed carbon black nanoparticle-sulfur composite cathode materials with a novel structure for lithium–sulfur battery application | |
WO2017139938A1 (fr) | Procédé de préparation de matériau d'électrode positive composite graphène/polypyrrole/soufre | |
Wan et al. | Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? | |
CN105609707A (zh) | 一种二氧化锰空心球锂硫电池正极材料的制备方法 | |
WO2017139984A1 (fr) | Procédé de préparation d'un matériau de cathode de batterie lithium-soufre dopé au soufre ayant une structure tridimensionnelle | |
WO2017139939A1 (fr) | Procédé de préparation d'un matériau d'électrode positive composite graphène/polyaniline/soufre | |
CN105609776B (zh) | 一种石墨烯/二氧化钛空心球/硫复合材料的制备方法 | |
CN108172406B (zh) | 一种以FeS2-xSex材料为负极材料的钠离子电容器 | |
WO2017139989A1 (fr) | Procédé de préparation de matériau composite graphène/sphères creuses de dioxyde de titane/soufre | |
WO2017139941A1 (fr) | Procédé de préparation d'un matériau d'anode composite de graphène/polyanthraquinone thioéther/sulfure | |
CN106450423B (zh) | 一种高比能柔性一体化电极及其制备方法 | |
Xu et al. | MOF-derived NiO–NiCo 2 O 4@ PPy hollow polyhedron as a sulfur immobilizer for lithium–sulfur batteries | |
CN105047861A (zh) | 一种硫碳复合材料及其制备方法 | |
WO2017139985A1 (fr) | Procédé de préparation d'un matériau d'anode de batterie au lithium-soufre dopé au fluor ayant une structure tridimensionnelle | |
WO2017139982A1 (fr) | Procédé de préparation pour un matériau d'électrode positive de batterie au lithium-soufre ayant une structure tridimensionnelle, codopé au bore et à l'azote | |
WO2017139986A1 (fr) | Procédé de préparation d'un matériau d'anode de batterie lithium-soufre dopé au phosphore ayant une structure tridimensionnelle | |
CN105720250A (zh) | 一种石墨烯/二氧化锆空心球/硫复合材料的制备方法 | |
WO2017139997A1 (fr) | Procédé de fabrication de matériau anodique dopé avec une structure de noyau-enveloppe de sulfure de lithium-carbone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16890222 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16890222 Country of ref document: EP Kind code of ref document: A1 |