WO2017138602A1 - スロットルバルブの異常判定装置 - Google Patents
スロットルバルブの異常判定装置 Download PDFInfo
- Publication number
- WO2017138602A1 WO2017138602A1 PCT/JP2017/004711 JP2017004711W WO2017138602A1 WO 2017138602 A1 WO2017138602 A1 WO 2017138602A1 JP 2017004711 W JP2017004711 W JP 2017004711W WO 2017138602 A1 WO2017138602 A1 WO 2017138602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- throttle valve
- intake air
- air amount
- acquisition unit
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
- F02D41/064—Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
- F02D2009/0201—Arrangements; Control features; Details thereof
- F02D2009/0213—Electronic or electric governor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
- F02D2009/0201—Arrangements; Control features; Details thereof
- F02D2009/022—Throttle control function parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
- F02D2009/0201—Arrangements; Control features; Details thereof
- F02D2009/0225—Intake air or mixture temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
- F02D2009/0201—Arrangements; Control features; Details thereof
- F02D2009/0281—Arrangements; Control features; Details thereof with means for detecting malfunction of one throttle and actuating only the correctly working throttle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
- F02D2009/0201—Arrangements; Control features; Details thereof
- F02D2009/0294—Throttle control device with provisions for actuating electric or electronic sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
- F02D2011/108—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type with means for detecting or resolving a stuck throttle, e.g. when being frozen in a position
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0414—Air temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an abnormality determination device for a throttle valve that determines whether there is an abnormality in a throttle valve disposed in an intake passage through which air taken in by an engine flows.
- Patent Document 1 discloses a technique for controlling the throttle valve to be open when the engine is stopped so that intake air at the time of starting the engine is secured even if the engine is frozen.
- the freezing of the throttle valve is not an abnormality that requires replacement of parts because the frozen part melts as the ambient temperature rises as the engine is driven.
- the actual opening does not follow the instruction opening, there is a possibility that the abnormality determination device erroneously determines that an abnormality has occurred in the throttle valve.
- An object of the present invention is to provide an abnormality determination device for a throttle valve that can reduce erroneous determination caused by freezing of the throttle valve.
- An abnormality determination device for a throttle valve that solves the above problem includes a first temperature acquisition unit configured to acquire a first temperature that is a temperature in a passage through which intake air flows, and a second that is a temperature in the passage.
- a second temperature acquisition unit configured to acquire a temperature; an air amount acquisition unit configured to acquire an intake air amount that is a mass flow rate of the intake air; the first temperature; the second temperature;
- a permission / rejection determination unit configured to determine whether or not the throttle valve sticking determination is permitted based on the intake air amount, wherein the permission / rejection determination unit determines whether the first temperature is the throttle when the engine is started.
- the sticking determination is prohibited when the temperature is below the freezing temperature at which the valve may freeze, and after the sticking determination is prohibited, the second temperature is equal to or higher than the melting temperature at which the frozen portion of the throttle valve melts.
- the second temperature is configured as an integrated value of heat quantity converted value based on said intake air quantity and the second temperature to allow the anchoring determined to exceed the threshold value.
- the schematic block diagram which shows schematic structure of the engine system carrying one Embodiment of the abnormality determination apparatus of a throttle valve.
- the functional block diagram which shows schematic structure of the abnormality determination apparatus of FIG.
- the flowchart which shows an example of the procedure of the permission determination processing performed by the abnormality determination apparatus of FIG.
- the figure which shows typically an example of the calorie
- the timing chart which shows an example of the relationship between inflow temperature and the integrated value of a calorie
- FIGS. An embodiment of a throttle valve abnormality determination device will be described with reference to FIGS. With reference to FIG. 1, an outline of an engine system on which a throttle valve abnormality determination device is mounted will be described.
- the engine system includes a water-cooled engine 10.
- a plurality of cylinders 12 are formed in the cylinder block 11. Fuel is injected into each cylinder 12 from an injector 13. Connected to the cylinder block 11 are an intake manifold 14 for supplying a working gas to each cylinder 12 and an exhaust manifold 15 into which exhaust gas from each cylinder 12 flows.
- an air cleaner 16A In the intake passage 16 connected to the intake manifold 14, an air cleaner 16A, a compressor 18, which is a component of the turbocharger 17, an intercooler 19, and a throttle valve 21 are provided in this order from the upstream side.
- the intercooler 19 is a cooler that cools intake air whose temperature has been increased by being supercharged by a turbocharger 17 that is a supercharger.
- the throttle valve 21 receives a signal indicating the indicated opening degree from the opening degree control unit 40 that controls the opening degree of the throttle valve 21, and changes the cross-sectional area of the intake air in the intake passage 16. It is.
- a turbine 22 that is a component of the turbocharger 17 is provided in the exhaust passage 20 connected to the exhaust manifold 15.
- the engine system includes an EGR device 23.
- the EGR device 23 includes an EGR passage 25 that connects the exhaust manifold 15 and the intake passage 16.
- An EGR cooler 26 is installed in the EGR passage 25, and an EGR valve 27 is installed closer to the intake passage 16 than the EGR cooler 26.
- EGR valve 27 When the EGR valve 27 is in an open state, a part of the exhaust gas is introduced into the intake passage 16 as EGR gas, and a mixed gas of the exhaust gas and the intake air is supplied to the cylinder 12 as a working gas.
- the passage through which the intake air flows is composed of the intake passage 16 and the intake manifold 14.
- the engine system is equipped with various sensors.
- the intake air amount sensor 31 and the intake air temperature sensor 32 are located between the air cleaner 16 ⁇ / b> A and the compressor 18 in the intake passage 16.
- the intake air amount sensor 31 detects an intake air amount Ga that is a mass flow rate of the intake air immediately after passing through the air cleaner 16A.
- the intake air temperature sensor 32 detects an intake air temperature Ta that is the temperature of intake air immediately after passing through the air cleaner 16A.
- the inflow temperature sensor 33 is located between the intercooler 19 and the throttle valve 21 and detects an inflow temperature Ttv that is the temperature of the intake air flowing into the throttle valve 21.
- the first working gas temperature sensor 35 is located between the connection portion of the EGR passage 25 with respect to the intake passage 16 and the intake manifold 14 and detects the first working gas temperature Tip which is the temperature of the working gas flowing through the intake passage 16.
- the boost pressure sensor 36 is located between the connection portion of the EGR passage 25 with respect to the intake passage 16 and the intake manifold 14, and detects the boost pressure Pb that is the pressure of the working gas flowing through the intake passage 16.
- the second working gas temperature sensor 37 is attached to the intake manifold 14 and detects a second working gas temperature Tim that is the temperature of the working gas flowing into the cylinder 12.
- the engine speed sensor 38 detects an engine speed Ne that is the speed of the crankshaft 30.
- An opening degree sensor 39 disposed on the throttle valve 21 detects the opening degree of the throttle valve 21.
- a throttle valve abnormality determination device 60 (hereinafter simply referred to as an abnormality determination device 60) is configured around a microcomputer, and for example, a circuit, that is, one such as an ASIC. It can be realized by the above-described dedicated hardware circuit, one or more processing circuits that operate according to a computer program (software), or a combination of both.
- the processing circuit includes a CPU and a memory 76 (ROM, RAM, and the like) that stores programs executed by the CPU.
- Memory 76 or computer readable media includes any available media that can be accessed by a general purpose or special purpose computer.
- the abnormality determination device 60 receives a signal indicating the indicated opening of the throttle valve 21 from the opening controller 40.
- the abnormality determination device 60 determines whether or not the throttle valve 21 is abnormal.
- the abnormality determination device 60 turns on MIL65 (Malfunction Indication Lamp) to inform the driver of the abnormality of the engine system. Notice.
- MIL65 Metal Function Indication Lamp
- the opening degree control unit 40 controls the throttle valve 21 to an open state with a predetermined opening degree when the engine 10 is stopped so that intake air at the time of starting the engine 10 is secured even if the throttle valve 21 is frozen. .
- the abnormality determination device 60 includes a determination unit 71, a permission / rejection determination unit 72, a first temperature acquisition unit 73, a second temperature acquisition unit 74, an air amount acquisition unit 75, and a memory 76 as various functional units.
- the determination unit 71 determines whether the throttle valve 21 is abnormal. For example, when the opening degree detected by the opening degree sensor 39 does not follow the instruction opening degree of the opening degree control part 40, the determination part 71 uses a sticking judgment indicating that the throttle valve 21 is stuck as a judgment result. obtain.
- the permission / rejection determination unit 72 determines whether or not the sticking determination by the determination unit 71 is permitted.
- the permission / refusal determination unit 72 determines permission / refusal of the sticking determination by the determination unit 71 based on the acquired values of the first temperature acquisition unit 73, the second temperature acquisition unit 74, and the air amount acquisition unit 75. Execute.
- the first temperature acquisition unit 73 acquires the intake air temperature Ta, which is a detection value of the intake air temperature sensor 32, from among various temperature sensors as the first temperature T1.
- the 2nd temperature acquisition part 74 acquires inflow temperature Ttv which is the detected value of the inflow temperature sensor 33 from 2nd temperature sensors as 2nd temperature T2.
- the air amount acquisition unit 75 acquires an intake air amount Ga that is a detection value of the intake air amount sensor 31, and the memory 76 stores a heat amount conversion map 77 that is used in the permission determination process.
- the permission / refusal determination processing will be described with reference to FIG.
- the permission / rejection determination process is started when the engine 10 is started.
- the permission / refusal determination unit 72 first acquires the intake air temperature Ta, which is a detection value of the intake air temperature sensor 32, through the first temperature acquisition unit 73 as the first temperature T1 (step S101).
- the permission / refusal determination unit 72 determines whether or not the acquired first temperature T1 is equal to or lower than a freezing temperature Tfr (for example, “0 ° C.”) that is a temperature at which the throttle valve 21 may be frozen. Judgment is made (step S102).
- a freezing temperature Tfr for example, “0 ° C.”
- step S102 If the first temperature T1 is higher than the freezing temperature Tfr (step S102: NO), the permission / refusal determination unit 72 ends the permission / rejection determination process assuming that there is no possibility that the throttle valve 21 is frozen. On the other hand, when the first temperature T1 is equal to or lower than the freezing temperature Tfr (step S102: YES), the permission / refusal determination unit 72 prohibits the sticking determination on the assumption that the throttle valve 21 is frozen (step S103).
- the permission determination unit 72 acquires the inflow temperature Ttv, which is the detection value of the inflow temperature sensor 33, as the second temperature T2 through the second temperature acquisition unit 74, and the intake air, which is the detection value of the intake air amount sensor 31.
- the amount Ga is acquired (step S104).
- the permission / refusal determination unit 72 determines whether or not the acquired second temperature T2 is equal to or higher than a melting temperature Ttha (for example, “5 ° C.”) at which the frozen portion of the throttle valve 21 melts (step S105).
- the permission / refusal determination unit 72 is based on the heat amount conversion map 77 held in the memory 76, and the amount of heat transferred from the intake air to the throttle valve 21.
- a calorific value conversion value Q that is a conversion value of is calculated (step S106).
- the heat amount conversion map 77 is data in which a heat amount conversion value Q corresponding to the intake air amount Ga and the second temperature T2 is defined.
- the permission / refusal determination unit 72 calculates a calorie conversion value Q by selecting a value corresponding to the intake air amount Ga and the second temperature T2 from the calorie conversion map 77.
- the heat amount conversion map 77 has a plurality of regions A, B, C, and D corresponding to the second temperature T2 and the intake air amount Ga in a range equal to or higher than the melting temperature Ttha.
- a separate heat quantity conversion value Q is defined for each of the areas A to D.
- the heat conversion value QA corresponding to the region A is a value lower than both the heat conversion value QB corresponding to the region B and the heat conversion value QC corresponding to the region C.
- the calorie conversion value QD corresponding to the region D is higher than both the calorie conversion value QB and the calorie conversion value QC.
- the permission / refusal determination unit 72 calculates the integrated value Qs of the heat conversion value Q in the next step S107, and determines whether or not the integrated value Qs is larger than the threshold value Qth in the next step S108.
- the threshold value Qth is a value set based on the results of experiments and simulations performed in advance, and is an integrated value Qs that can be determined that the frozen portion of the throttle valve 21 has melted.
- step S108: NO When the integrated value Qs is less than or equal to the threshold value Qth (step S108: NO), the permission / refusal determination unit 72 returns to step S104 and returns to the second temperature T2 (inflow) assuming that the frozen portion of the throttle valve 21 has not melted.
- the temperature Ttv) and the intake air amount Ga are acquired.
- the permission / refusal determination unit 72 returns to step S104 again while holding the integrated value Qs.
- the permission / refusal determination unit 72 executes the processes of steps S106 to S108.
- step S108 YES
- the permission / refusal determination unit 72 permits the determination of the sticking to the throttle valve 21 assuming that the frozen portion of the throttle valve 21 has melted (step S109). Then, after resetting the integrated value Qs, the permission / rejection determination process is terminated.
- the throttle valve abnormality determination device of the above embodiment the following effects can be obtained.
- the first temperature T1 intake air temperature Ta
- the freezing temperature Tfr when the engine 10 is started (step S102: YES)
- the permission determination unit 72 fixes the determination unit 71. Determination is prohibited (step S103).
- the erroneous determination resulting from the freezing of the throttle valve 21 immediately after the engine 10 is started can be reduced.
- the frozen portion of the throttle valve 21 is more greatly affected by the heat of the intake air passing through the throttle valve 21 than the radiant heat from other parts such as the engine 10.
- the abnormality determination device 60 described above when the second temperature T2 is equal to or higher than the melting temperature Ttha, the integrated value Qs of the calorie conversion value Q based on the second temperature T2 and the intake air amount Ga exceeds the threshold value Qth. Thus, it is possible to determine the melting of the frozen portion with high reliability. Thereby, the erroneous determination resulting from the freezing of the throttle valve 21 can be reduced even after the adhering determination is permitted. That is, according to the abnormality determination device 60 described above, it is possible to reduce erroneous determination of sticking determination due to freezing of the throttle valve 21.
- the permission / refusal determination unit 72 calculates a heat amount conversion value Q by selecting a value corresponding to the second temperature T2 and the intake air amount Ga from the heat amount conversion map 77 held in the memory 76. According to such a configuration, for example, the calculation of the heat quantity conversion value Q is performed by the permission / refusal determination unit 72 as compared to the case where the heat quantity conversion value Q is calculated using an arithmetic expression including the second temperature T2 and the intake air amount Ga as parameters. The load can be reduced.
- the second temperature acquisition unit 74 acquires the inflow temperature Ttv, which is the temperature of the intake air flowing into the throttle valve 21, as the second temperature T2. According to such a configuration, it is possible to reduce an error between the second temperature T2 used for the permission determination process and the actual temperature of the intake air flowing into the throttle valve 21. As a result, it is possible to determine the melting of the frozen portion of the throttle valve 21 with higher reliability. That is, the reliability of the determination result regarding the freezing of the throttle valve 21 can be increased.
- the first temperature acquisition unit 73 acquires the intake air temperature Ta, which is a detection value of the intake air temperature sensor 32, as the first temperature T1. Unlike the inflow temperature Ttv, the first working gas temperature Tip, and the second working gas temperature Tim, the intake air temperature Ta is always close to the outside air temperature even after the engine is driven. By determining whether or not the throttle valve 21 is frozen at the intake air temperature Ta, it is possible to reliably detect the freezing of the throttle valve 21.
- the air amount acquisition unit 75 acquires the detected value of the intake air amount sensor 31 as the intake air amount. Therefore, compared with the case where the intake air amount Ga is calculated by an arithmetic expression including the pressure in the intake manifold 14, the engine speed Ne, and the like as parameters, the load of the air amount acquisition unit 75 is reduced for acquiring the intake air amount Ga. can do.
- the air amount acquisition unit 75 is not limited to the configuration in which the detection value of the intake air amount sensor 31 is acquired as the intake air amount Ga, but the value calculated by arithmetic expressions using the detection values of various sensors is used as the intake air amount Ga.
- the structure acquired as follows may be sufficient.
- the air amount acquisition unit 75 may acquire a value obtained by subtracting the amount of EGR gas recirculated to the intake passage 16 from the amount of working gas sucked by the engine 10 as the intake air amount Ga. Good.
- the air amount acquisition unit 75 can calculate the working gas amount from a state equation based on the boost pressure Pb, the second working gas temperature Tim, the engine speed Ne, the exhaust amount of the engine 10, and the like.
- the air amount acquisition unit 75 can calculate the EGR gas amount from the flow rate calculation formula of the compressible fluid based on the opening degree of the EGR valve 27, the pressure difference in the EGR valve 27, the first working gas temperature Tip, and the like. It is.
- the air amount acquisition unit 75 can calculate the intake air amount Ga from a state equation based on the boost pressure Pb, the second working gas temperature Tim, the engine speed Ne, and the like. Is possible.
- the second temperature acquisition unit may be configured to acquire the temperature in the passage formed by the intake passage 16 and the intake manifold 14 as the second temperature in determining whether the frozen portion of the throttle valve 21 is thawed. .
- the temperature of the intake air flowing into the throttle valve 21 is determined from the first working gas temperature Tip based on information about the operating state of the engine 10 such as the intake temperature Ta, the intake air amount Ga, the EGR gas amount, the fuel injection amount, and the like. It is possible to calculate backward. Therefore, the second temperature acquisition unit may acquire the first working gas temperature Tip, which is a detection value of the first working gas temperature sensor 35, as the second temperature in step S104. In this case, the melting temperature Ttha is set to a value of the first working gas temperature Tip that can determine that the frozen portion is melted by the intake air flowing into the throttle valve 21. This value is set based on the results of experiments and simulations performed in advance. Similarly, the second temperature acquisition unit 74 may acquire the second working gas temperature Tim, which is a detection value of the second working gas temperature sensor 37, as the second temperature.
- step S104 the second temperature acquisition unit 74 calculates the intake air flowing into the throttle valve 21 by calculation based on various temperatures of the inflow temperature Ttv, the first working gas temperature Tip, and the second working gas temperature Tim.
- the configuration may be such that the temperature at which the temperature becomes highest is acquired as the second temperature.
- the second temperature acquisition unit 74 may be configured to acquire each of the inflow temperature Ttv, the first working gas temperature Tip, and the second working gas temperature Tim as the second temperature in step S104.
- the permission / refusal determination unit 72 compares the various temperatures with the melting temperatures Ttha set for the various temperatures, and converts the calorific value on the condition that at least one second temperature is equal to or higher than the melting temperature Ttha. Q is calculated.
- the permission / refusal determination unit 72 calculates a heat conversion value Q using a second temperature equal to or higher than the melting temperature Ttha, and the memory 76 stores a heat conversion map of various temperatures.
- the second temperature acquisition unit 74 calculates the temperature of the intake air flowing into the throttle valve 21 based on each of the inflow temperature Ttv, the first working gas temperature Tip, and the second working gas temperature Tim, You may acquire the average value of the calculation result as 2nd temperature. According to such a configuration, it can be determined with high accuracy that the frozen portion of the throttle valve 21 has melted.
- the first temperature acquisition unit 73 may acquire the temperature in the passage constituted by the intake passage 16 and the intake manifold 14 as the first temperature in determining the possibility of the throttle valve 21 being frozen. Therefore, the first temperature acquisition unit 73 is configured to acquire each of the intake air temperature Ta, the inflow temperature Ttv, the first working gas temperature Tip, and the second working gas temperature Tim as the first temperature in step S101. Also good. In this case, the permission / refusal determination unit 72 compares the various temperatures with the freezing temperatures Tfr set for the various temperatures, and prohibits the sticking determination when at least one first temperature is equal to or lower than the freezing temperature Tfr. .
- the first temperature acquisition unit 73 may acquire the average temperature of the intake air temperature Ta, the inflow temperature Ttv, the first working gas temperature Tip, and the second working gas temperature Tim as the first temperature.
- the temperature acquired by the first temperature acquisition unit 73 as the first temperature and the temperature acquired by the second temperature acquisition unit 74 as the second temperature may be the same temperature, for example, the inflow temperature Ttv.
- the first temperature acquisition unit 73 and the second temperature acquisition unit 74 acquire the temperature of the intake air flowing into the intercooler 19 and the temperature immediately after passing through the throttle valve 21 as the temperature in the intake passage 16 to obtain the first temperature. You may utilize for the calculation of T1 and 2nd temperature T2.
- the permission / rejection determination unit 72 sets the intake air amount Ga and the second temperature T2, for example, when returning to step S104, when the second temperature T2 is lower than the melting temperature Ttha (step S105: NO). You may perform the process which subtracts integrated value Qs by the value based on. According to such a configuration, the integrated value Qs of the integrated value Qs can be increased or decreased in accordance with changes in the intake air amount Ga and the second temperature T2.
- the heat amount conversion map 77 defines a heat amount conversion value Q for subtraction in a region where the second temperature T2 is equal to or lower than the melting temperature Ttha.
- the integrated value according to the second temperature T2 and the intake air amount Ga at time t1, t2, t3, t4. Qs increases.
- the second temperature T2 is lower than the melting temperature Ttha as at times t5 and t6, the second temperature T2 and the intake air at times t5 and t6 are not held at the value at time t4 as shown by the two-dot chain line.
- the integrated value Qs is subtracted by an amount corresponding to the amount Ga.
- the integrated value Qs increases by an amount corresponding to the second temperature T2 and the intake air amount Ga. According to such a configuration, the accuracy regarding the melting time of the throttle valve 21 is further increased.
- the heat amount conversion map 77 is not limited to the configuration in which the heat amount conversion value Q is defined for each of the plurality of regions as described above, and the heat amount conversion value Q is separately defined according to the second temperature T2 and the intake air amount Ga. It may be configured. Further, the heat amount conversion map 77 may be a value that increases as the intake air amount Ga increases, regardless of the second temperature T2. That is, the heat quantity conversion value Q may be a value that depends only on the intake air amount Ga on condition that the second temperature T2 is equal to or higher than the melting temperature Ttha.
- the abnormality determination device 60 may be incorporated in a control device having an opening degree control unit 40 that controls the opening degree of the throttle valve 21.
- the abnormality determination device 60 may be incorporated in a control device that performs overall control of the throttle valve 21, or may be incorporated in a control device that performs overall control of the engine 10 including control of the throttle valve 21.
- the supercharger may be configured to supercharge intake air, and is not limited to a turbocharger that uses exhaust gas such as the turbocharger 17, but may be a mechanical supercharger that uses, for example, rotation of the crankshaft 30. It may be a feeder.
- the engine 10 may be an engine provided with the throttle valve 21 and may be a diesel engine or a gasoline engine. A natural gas engine may also be used. Further, the engine 10 may be an engine that does not include the EGR device 23 or may be an engine that does not include a supercharger.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
スロットルバルブの異常判定装置は、吸入空気が流れる通路内の温度である第1温度を取得するように構成された第1温度取得部と、上記通路内の温度である第2温度を取得するように構成された第2温度取得部と、吸入空気の質量流量である吸入空気量を取得するように構成された空気量取得部と、第1温度、第2温度、および、吸入空気量に基づいてスロットルバルブの固着判定についての許否を判断するように構成された許否判断部とを備える。許否判断部は、エンジンの始動時に第1温度がスロットルバルブの凍結の可能性のある凍結温度以下である場合に固着判定を禁止し、固着判定の禁止後、第2温度がスロットルバルブの凍結部分が融解する融解温度以上のときに、第2温度と吸入空気量とに基づく熱量換算値の積算値が閾値を超えると固着判定を許可するように構成されている。
Description
本発明は、エンジンが吸入する空気が流れる吸気通路に配設されるスロットルバルブの異常の有無を判定するスロットルバルブの異常判定装置に関する。
エンジンの吸気通路に配設されるスロットルバルブは、エンジンの停止中に外気温が氷点下まで低下すると、結露によって付着した空気中の水分が凍結することでエンジン停止時の位置で固着してしまうことがある。そのため、特許文献1には、たとえ凍結したとしてもエンジン始動時の吸入空気が確保されるように、エンジン停止時にスロットルバルブを開状態に制御する技術が開示されている。
ところで、スロットルバルブの凍結は、エンジンの駆動にともなって周辺温度が上昇することにより凍結部分が融解するため、部品の交換が必要となるような異常ではない。しかしながら、指示開度に対して実際の開度が追従しないため、異常判定装置によってスロットルバルブに異常が生じていると誤判定されてしまうおそれがある。
本発明の目的は、スロットルバルブの凍結に起因した誤判定を低減することのできるスロットルバルブの異常判定装置を提供するである。
上記課題を解決するスロットルバルブの異常判定装置は、吸入空気が流れる通路内の温度である第1温度を取得するように構成された第1温度取得部と、前記通路内の温度である第2温度を取得するように構成された第2温度取得部と、前記吸入空気の質量流量である吸入空気量を取得するように構成された空気量取得部と、前記第1温度、前記第2温度、および、前記吸入空気量に基づいてスロットルバルブの固着判定についての許否を判断するように構成された許否判断部とを備え、前記許否判断部は、エンジンの始動時に前記第1温度が前記スロットルバルブの凍結の可能性のある凍結温度以下である場合に前記固着判定を禁止し、前記固着判定の禁止後、前記第2温度が前記スロットルバルブの凍結部分が融解する融解温度以上のときに、前記第2温度と前記吸入空気量とに基づく熱量換算値の積算値が閾値を超えると前記固着判定を許可するように構成されている。
図1~図4を参照してスロットルバルブの異常判定装置の一実施形態について説明する。図1を参照して、スロットルバルブの異常判定装置が搭載されるエンジンシステムの概要について説明する。
図1に示すように、エンジンシステムは、水冷式のエンジン10を備える。シリンダーブロック11には、複数のシリンダー12が形成されている。各シリンダー12には、インジェクター13から燃料が噴射される。シリンダーブロック11には、各シリンダー12に作動ガスを供給するインテークマニホールド14と、各シリンダー12からの排気ガスが流入するエキゾーストマニホールド15とが接続されている。
インテークマニホールド14に接続される吸気通路16には、上流側から順に、エアクリーナー16A、ターボチャージャー17の構成要素であるコンプレッサー18、インタークーラー19、スロットルバルブ21が設けられている。インタークーラー19は、過給機であるターボチャージャー17によって過給されることにより温度が上昇した吸入空気を冷却する冷却器である。スロットルバルブ21は、スロットルバルブ21の開度を制御する開度制御部40から指示開度を示す信号を受けて、吸気通路16における吸入空気の流路断面積を変更する電子制御式のスロットルバルブである。エキゾーストマニホールド15に接続される排気通路20には、ターボチャージャー17の構成要素であるタービン22が設けられている。
エンジンシステムは、EGR装置23を備える。EGR装置23は、エキゾーストマニホールド15と吸気通路16とを接続するEGR通路25を備える。EGR通路25には、EGRクーラー26が設置され、また、EGRクーラー26よりも吸気通路16に近い位置にEGR弁27が設置されている。EGR弁27が開状態にあるとき、排気ガスの一部がEGRガスとして吸気通路16に導入され、シリンダー12には、排気ガスと吸入空気との混合気体が作動ガスとして供給される。なお、吸入空気が流れる通路は、吸気通路16とインテークマニホールド14とで構成される。
エンジンシステムは、各種センサーを備える。吸入空気量センサー31および吸気温度センサー32は、吸気通路16におけるエアクリーナー16Aとコンプレッサー18との間に位置する。吸入空気量センサー31は、エアクリーナー16Aを通過した直後の吸入空気の質量流量である吸入空気量Gaを検出する。吸気温度センサー32は、エアクリーナー16Aを通過した直後の吸入空気の温度である吸気温度Taを検出する。流入温度センサー33は、インタークーラー19とスロットルバルブ21との間に位置し、スロットルバルブ21に流入する吸入空気の温度である流入温度Ttvを検出する。第1作動ガス温度センサー35は、吸気通路16に対するEGR通路25の接続部分とインテークマニホールド14との間に位置し、吸気通路16を流れる作動ガスの温度である第1作動ガス温度Tipを検出する。ブースト圧センサー36は、吸気通路16に対するEGR通路25の接続部分とインテークマニホールド14との間に位置し、吸気通路16を流れる作動ガスの圧力であるブースト圧Pbを検出する。第2作動ガス温度センサー37は、インテークマニホールド14に取り付けられ、シリンダー12に流入する作動ガスの温度である第2作動ガス温度Timを検出する。エンジン回転数センサー38は、クランクシャフト30の回転数であるエンジン回転数Neを検出する。スロットルバルブ21に配設された開度センサー39は、スロットルバルブ21の開度を検出する。
図2~図4を参照して、スロットルバルブの異常判定装置について説明する。
図2に示すように、スロットルバルブの異常判定装置60(以下、単に異常判定装置60という)は、マイクロコンピューターを中心に構成されており、たとえば回路(circuitry)、すなわち、ASICのような1つ以上の専用のハードウェア回路、コンピュータプログラム(ソフトウェア)に従って動作する1つ以上の処理回路、或いは両者の組み合わせによって実現することができる。処理回路は、CPUと、CPUによって実行されるプログラム等を記憶したメモリ76(ROM及びRAM等)とを有する。メモリ76すなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。異常判定装置60は、各センサーからの信号の他、開度制御部40からスロットルバルブ21の指示開度を示す信号が入力される。異常判定装置60は、スロットルバルブ21の異常の有無を判定し、スロットルバルブ21に異常が生じていると判定した場合にはMIL65(Malfunction Indication Lamp)を点灯し、エンジンシステムの異常を運転者に通知する。なお、開度制御部40は、スロットルバルブ21が凍結したとしてもエンジン10の始動時の吸入空気が確保されるように、エンジン10の停止時にスロットルバルブ21を所定開度の開状態に制御する。
図2に示すように、スロットルバルブの異常判定装置60(以下、単に異常判定装置60という)は、マイクロコンピューターを中心に構成されており、たとえば回路(circuitry)、すなわち、ASICのような1つ以上の専用のハードウェア回路、コンピュータプログラム(ソフトウェア)に従って動作する1つ以上の処理回路、或いは両者の組み合わせによって実現することができる。処理回路は、CPUと、CPUによって実行されるプログラム等を記憶したメモリ76(ROM及びRAM等)とを有する。メモリ76すなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。異常判定装置60は、各センサーからの信号の他、開度制御部40からスロットルバルブ21の指示開度を示す信号が入力される。異常判定装置60は、スロットルバルブ21の異常の有無を判定し、スロットルバルブ21に異常が生じていると判定した場合にはMIL65(Malfunction Indication Lamp)を点灯し、エンジンシステムの異常を運転者に通知する。なお、開度制御部40は、スロットルバルブ21が凍結したとしてもエンジン10の始動時の吸入空気が確保されるように、エンジン10の停止時にスロットルバルブ21を所定開度の開状態に制御する。
異常判定装置60は、各種機能部として、判定部71、許否判断部72、第1温度取得部73、第2温度取得部74、空気量取得部75、および、メモリ76を備えている。
判定部71は、スロットルバルブ21の異常の有無を判定する。判定部71は、例えば、開度制御部40の指示開度に対して開度センサー39の検出する開度が追従しないときには、スロットルバルブ21が固着していることを示す固着判定を判定結果として得る。
判定部71は、スロットルバルブ21の異常の有無を判定する。判定部71は、例えば、開度制御部40の指示開度に対して開度センサー39の検出する開度が追従しないときには、スロットルバルブ21が固着していることを示す固着判定を判定結果として得る。
許否判断部72は、判定部71による固着判定の許否を判断する。許否判断部72は、第1温度取得部73、第2温度取得部74、および、空気量取得部75の各々の取得値に基づいて、判定部71による固着判定の許否を判断する許否判断処理を実行する。この許否判断処理において、第1温度取得部73は、各種温度センサーのなかから、吸気温度センサー32の検出値である吸気温度Taを第1温度T1として取得する。また、第2温度取得部74は、各種温度センサーのなかから、流入温度センサー33の検出値である流入温度Ttvを第2温度T2として取得する。また、空気量取得部75は、吸入空気量センサー31の検出値である吸入空気量Gaを取得し、メモリ76は、許否判断処理において利用される熱量換算マップ77を格納している。
図3を参照して許否判断処理について説明する。なお、許否判断処理は、エンジン10が始動すると開始される。
図3に示すように、許否判断部72は、まず、第1温度取得部73を通じて吸気温度センサー32の検出値である吸気温度Taを第1温度T1として取得する(ステップS101)。次に、許否判断部72は、その取得した第1温度T1が、スロットルバルブ21が凍結している可能性のある温度である凍結温度Tfr(例えば「0℃」)以下であるか否かを判断する(ステップS102)。第1温度T1が凍結温度Tfrよりも高い場合(ステップS102:NO)、許否判断部72は、スロットルバルブ21が凍結している可能性がないものとして許否判断処理を終了する。一方、第1温度T1が凍結温度Tfr以下である場合(ステップS102:YES)、許否判断部72は、スロットルバルブ21が凍結しているものとして固着判定を禁止する(ステップS103)。
図3に示すように、許否判断部72は、まず、第1温度取得部73を通じて吸気温度センサー32の検出値である吸気温度Taを第1温度T1として取得する(ステップS101)。次に、許否判断部72は、その取得した第1温度T1が、スロットルバルブ21が凍結している可能性のある温度である凍結温度Tfr(例えば「0℃」)以下であるか否かを判断する(ステップS102)。第1温度T1が凍結温度Tfrよりも高い場合(ステップS102:NO)、許否判断部72は、スロットルバルブ21が凍結している可能性がないものとして許否判断処理を終了する。一方、第1温度T1が凍結温度Tfr以下である場合(ステップS102:YES)、許否判断部72は、スロットルバルブ21が凍結しているものとして固着判定を禁止する(ステップS103)。
次に、許否判断部72は、第2温度取得部74を通じて流入温度センサー33の検出値である流入温度Ttvを第2温度T2として取得するとともに、吸入空気量センサー31の検出値である吸入空気量Gaを取得する(ステップS104)。そして許否判断部72は、その取得した第2温度T2がスロットルバルブ21の凍結部分が融解する融解温度Ttha(例えば、「5℃」)以上であるか否かを判断する(ステップS105)。第2温度T2が融解温度Tthaよりも高い場合(ステップS105:YES)、許否判断部72は、メモリ76に保持している熱量換算マップ77に基づいて、吸入空気からスロットルバルブ21に移動した熱量の換算値である熱量換算値Qを演算する(ステップS106)。熱量換算マップ77は、吸入空気量Gaおよび第2温度T2に対応する熱量換算値Qが規定されたデータである。許否判断部72は、吸入空気量Gaおよび第2温度T2に対応する値を熱量換算マップ77から選択することにより熱量換算値Qを演算する。
例えば、図4に示すように、熱量換算マップ77は、融解温度Ttha以上の範囲に、第2温度T2と吸入空気量Gaとに応じた複数の領域A,B,C,Dを有しており、領域A~Dごとに各別の熱量換算値Qが規定されている。例えば、領域Aに対応する熱量換算値QAは、領域Bに対応する熱量換算値QBおよび領域Cに対応する熱量換算値QCの双方よりも低い値である。また、領域Dに対応する熱量換算値QDは、熱量換算値QBおよび熱量換算値QCの双方よりも高い値である。
図3に戻って、許否判断部72は、次のステップS107で熱量換算値Qの積算値Qsを演算し、その次のステップS108で積算値Qsが閾値Qthよりも大きいか否かを判断する。閾値Qthは、予め行った実験やシミュレーションの結果に基づき設定される値であり、スロットルバルブ21の凍結部分が融解したと判断できる積算値Qsである。
積算値Qsが閾値Qth以下であった場合(ステップS108:NO)、許否判断部72は、スロットルバルブ21の凍結部分が融解していないものとして、ステップS104に戻って再び第2温度T2(流入温度Ttv)および吸入空気量Gaを取得する。取得した第2温度T2が融解温度Ttha未満である場合(ステップS105:NO)、許否判断部72は、積算値Qsを保持したままで再びステップS104に戻る。一方、第2温度T2が融解温度Tthaよりも高い場合(ステップS105:YES)、許否判断部72は、ステップS106~ステップS108の処理を実行する。
そして、許否判断部72は、積算値Qsが閾値Qthよりも大きくなると(ステップS108:YES)、スロットルバルブ21の凍結部分が融解したものとして、スロットルバルブ21に対する固着判定を許可し(ステップS109)、積算値Qsをリセットしたうえで許否判断処理を終了する。
上記実施形態のスロットルバルブの異常判定装置によれば、以下に記載する作用効果が得られる。
(1)上述した異常判定装置60では、エンジン10の始動時に第1温度T1(吸気温度Ta)が凍結温度Tfr以下である場合(ステップS102:YES)、許否判断部72によって判定部71による固着判定が禁止される(ステップS103)。これにより、エンジン10の始動直後におけるスロットルバルブ21の凍結に起因した誤判定を低減することができる。また、スロットルバルブ21の凍結部分は、エンジン10等の他の部位からの輻射熱よりもスロットルバルブ21を通過する吸入空気の熱の影響を多大に受ける。そのため、上述した異常判定装置60のように、第2温度T2が融解温度Ttha以上であるときに第2温度T2と吸入空気量Gaとに基づく熱量換算値Qの積算値Qsが閾値Qthを超えることによって、凍結部分の融解を高い信頼度のもとで判断することができる。これにより、固着判定の許可後もスロットルバルブ21の凍結に起因した誤判定を低減することができる。すなわち、上述した異常判定装置60によれば、スロットルバルブ21の凍結に起因した固着判定の誤判定を低減することができる。
(1)上述した異常判定装置60では、エンジン10の始動時に第1温度T1(吸気温度Ta)が凍結温度Tfr以下である場合(ステップS102:YES)、許否判断部72によって判定部71による固着判定が禁止される(ステップS103)。これにより、エンジン10の始動直後におけるスロットルバルブ21の凍結に起因した誤判定を低減することができる。また、スロットルバルブ21の凍結部分は、エンジン10等の他の部位からの輻射熱よりもスロットルバルブ21を通過する吸入空気の熱の影響を多大に受ける。そのため、上述した異常判定装置60のように、第2温度T2が融解温度Ttha以上であるときに第2温度T2と吸入空気量Gaとに基づく熱量換算値Qの積算値Qsが閾値Qthを超えることによって、凍結部分の融解を高い信頼度のもとで判断することができる。これにより、固着判定の許可後もスロットルバルブ21の凍結に起因した誤判定を低減することができる。すなわち、上述した異常判定装置60によれば、スロットルバルブ21の凍結に起因した固着判定の誤判定を低減することができる。
(2)仮に、例えばエンジン10の冷却水温度等に基づいて凍結部分の融解を判断する場合、凍結部分の融解を高い信頼度のもとで判断するためには、十分な余裕を有した判断条件を設定することが求められる。この点、上述した熱量換算値Qに基づいて凍結部分の融解を判断することにより、判定部71による固着判定を早期に許可することができる。
(3)許否判断部72は、メモリ76に保持している熱量換算マップ77から第2温度T2と吸入空気量Gaとに応じた値を選択することにより熱量換算値Qを演算する。こうした構成によれば、例えば第2温度T2と吸入空気量Gaとをパラメーターに含む演算式を用いて熱量換算値Qを演算する場合に比べて、熱量換算値Qの演算について許否判断部72の負荷を軽減することができる。
(4)第2温度取得部74は、スロットルバルブ21に流入する吸入空気の温度である流入温度Ttvを第2温度T2として取得する。こうした構成によれば、許否判断処理に用いる第2温度T2とスロットルバルブ21に流入する吸入空気の実際の温度との誤差を小さくすることができる。その結果、スロットルバルブ21の凍結部分の融解をさらに高い信頼度のもとで判断することができる。すなわち、スロットルバルブ21の凍結についての判断結果に対する信頼度を高めることができる。
(5)第1温度取得部73は、吸気温度センサー32の検出値である吸気温度Taを第1温度T1として取得する。吸気温度Taは、流入温度Ttv、第1作動ガス温度Tip、および、第2作動ガス温度Timとは異なり、エンジンの駆動後も常に外気温に近い値である。こうした吸気温度Taでスロットルバルブ21が凍結しているか否かを判断することにより、スロットルバルブ21の凍結を確実に検出することができる。
(6)空気量取得部75は、吸入空気量センサー31の検出値を吸入空気量として取得する。そのため、インテークマニホールド14内の圧力やエンジン回転数Ne等をパラメーターに含む演算式によって吸入空気量Gaが演算される場合に比べて、吸入空気量Gaの取得について空気量取得部75の負荷を軽減することができる。
なお、上記実施形態は、以下のように適宜変更して実施することもできる。
・空気量取得部75は、吸入空気量センサー31の検出値を吸入空気量Gaとして取得する構成に限らず、各種のセンサーの検出値を用いた演算式によって演算される値を吸入空気量Gaとして取得する構成であってもよい。例えば、EGR装置を備えるエンジン10において、空気量取得部75は、エンジン10が吸入する作動ガス量から吸気通路16に還流されたEGRガス量を減算した値を吸入空気量Gaとして取得してもよい。この構成において、空気量取得部75は、ブースト圧Pb、第2作動ガス温度Tim、エンジン回転数Ne、エンジン10の排気量等に基づく状態方程式から作動ガス量を演算することが可能である。また空気量取得部75は、EGR弁27の開度、EGR弁27における圧力差、および、第1作動ガス温度Tip等に基づく圧縮性流体の流量演算式からEGRガス量を演算することが可能である。また例えば、EGR装置を備えていないエンジン10において、空気量取得部75は、ブースト圧Pbや第2作動ガス温度Tim、エンジン回転数Ne等に基づく状態方程式から吸入空気量Gaを演算することが可能である。
・空気量取得部75は、吸入空気量センサー31の検出値を吸入空気量Gaとして取得する構成に限らず、各種のセンサーの検出値を用いた演算式によって演算される値を吸入空気量Gaとして取得する構成であってもよい。例えば、EGR装置を備えるエンジン10において、空気量取得部75は、エンジン10が吸入する作動ガス量から吸気通路16に還流されたEGRガス量を減算した値を吸入空気量Gaとして取得してもよい。この構成において、空気量取得部75は、ブースト圧Pb、第2作動ガス温度Tim、エンジン回転数Ne、エンジン10の排気量等に基づく状態方程式から作動ガス量を演算することが可能である。また空気量取得部75は、EGR弁27の開度、EGR弁27における圧力差、および、第1作動ガス温度Tip等に基づく圧縮性流体の流量演算式からEGRガス量を演算することが可能である。また例えば、EGR装置を備えていないエンジン10において、空気量取得部75は、ブースト圧Pbや第2作動ガス温度Tim、エンジン回転数Ne等に基づく状態方程式から吸入空気量Gaを演算することが可能である。
・第2温度取得部は、スロットルバルブ21の凍結部分の融解を判断するうえで、吸気通路16およびインテークマニホールド14とで構成される通路内の温度を第2温度として取得する構成であればよい。
スロットルバルブ21に流入する吸入空気の温度は、例えば、吸気温度Ta、吸入空気量Ga、EGRガス量、燃料噴射量等といったエンジン10の運転状態に関する情報に基づいて、第1作動ガス温度Tipから逆算することが可能である。そのため、第2温度取得部は、ステップS104において、第1作動ガス温度センサー35の検出値である第1作動ガス温度Tipを第2温度として取得してもよい。この場合、融解温度Tthaには、スロットルバルブ21に流入する吸入空気によって凍結部分が融解すると判断できる第1作動ガス温度Tipの値が設定される。この値は、予め行った実験やシミュレーションの結果に基づいて設定される。同様に、第2温度取得部74は、第2作動ガス温度センサー37の検出値である第2作動ガス温度Timを第2温度として取得してもよい。
また、第2温度取得部74は、ステップS104において、流入温度Ttv、第1作動ガス温度Tip、および、第2作動ガス温度Timの各種温度に基づく演算によって、スロットルバルブ21に流入する吸入空気の温度が最も高くなる温度を第2温度として取得する構成であってもよい。
また、第2温度取得部74は、ステップS104において、流入温度Ttv、第1作動ガス温度Tip、および、第2作動ガス温度Timの各々を第2温度として取得する構成であってもよい。この場合、許否判断部72は、例えば、各種温度と各種温度に各別に設定された融解温度Tthaとを比較し、少なくとも1つの第2温度が融解温度Ttha以上であることを条件に熱量換算値Qを演算する。また、許否判断部72は、融解温度Ttha以上の第2温度を用いて熱量換算値Qを演算し、メモリ76には、各種温度の熱量換算マップが格納される。
また、第2温度取得部74は、流入温度Ttv、第1作動ガス温度Tip、および、第2作動ガス温度Timの各々に基づいてスロットルバルブ21に流入する吸入空気の温度を各別に演算し、その演算結果の平均値を第2温度として取得してもよい。こうした構成によれば、スロットルバルブ21の凍結部分が融解していることを高い確度のもとで判断することができる。
・第1温度取得部73は、スロットルバルブ21の凍結の可能性を判断するうえで、吸気通路16およびインテークマニホールド14とで構成される通路内の温度を第1温度として取得すればよい。そのため、第1温度取得部73は、ステップS101において、吸気温度Ta、流入温度Ttv、第1作動ガス温度Tip、および、第2作動ガス温度Timの各々を第1温度として取得する構成であってもよい。この場合、許否判断部72は、各種温度と各種温度に対して各別に設定された凍結温度Tfrとを比較し、少なくとも1つの第1温度が凍結温度Tfr以下である場合に固着判定を禁止する。
また、第1温度取得部73は、吸気温度Ta、流入温度Ttv、第1作動ガス温度Tip、および、第2作動ガス温度Timの平均温度を第1温度として取得してもよい。
・第1温度取得部73が第1温度として取得する温度と第2温度取得部74が第2温度として取得する温度とが同じ温度、例えば流入温度Ttvであってもよい。
・第1温度取得部73が第1温度として取得する温度と第2温度取得部74が第2温度として取得する温度とが同じ温度、例えば流入温度Ttvであってもよい。
・第1温度取得部73および第2温度取得部74は、吸気通路16内の温度としてインタークーラー19に流入する吸入空気の温度やスロットルバルブ21を通過した直後の温度を取得して、第1温度T1および第2温度T2の演算に利用してもよい。
・許否判断処理において、許否判断部72は、第2温度T2が融解温度Ttha未満であった場合(ステップS105:NO)、ステップS104に戻る際に、例えば吸入空気量Gaおよび第2温度T2に基づく値で積算値Qsを減算する処理を行ってもよい。こうした構成によれば、吸入空気量Gaおよび第2温度T2の変化に応じて積算値Qsの積算値Qsを増減させることが可能である。この場合、熱量換算マップ77には、第2温度T2が融解温度Ttha以下である領域に減算用の熱量換算値Qが規定される。
例えば、図5に示すように、時刻t0においてエンジン10が始動して固着判定が禁止されると、時刻t1,t2,t3,t4において第2温度T2と吸入空気量Gaとに応じて積算値Qsが増加する。そして、時刻t5,t6のように第2温度T2が融解温度Ttha未満のときには、二点鎖線のように時刻t4の値に保持されることなく、時刻t5,t6における第2温度T2と吸入空気量Gaとに応じた分だけ積算値Qsが減算される。次の時刻t7以降の期間では、第2温度T2が融解温度Tthaよりも高いため、第2温度T2と吸入空気量Gaに応じた分だけ積算値Qsが増加する。こうした構成によれば、スロットルバルブ21の融解時期に関する精度がさらに高まる。
・熱量換算マップ77は、上述したように複数の領域ごとに熱量換算値Qが規定される構成に限らず、第2温度T2と吸入空気量Gaとに応じて各別に熱量換算値Qが規定される構成であってもよい。また、熱量換算マップ77は、第2温度T2にかかわらず吸入空気量Gaが多いほど高くなる値であってもよい。すなわち、熱量換算値Qは、第2温度T2が融解温度Ttha以上であることを条件として吸入空気量Gaにのみに依存する値であってもよい。
・異常判定装置60は、スロットルバルブ21の開度を制御する開度制御部40を有する制御装置に組み込まれていてもよい。例えば、異常判定装置60は、スロットルバルブ21を統括制御する制御装置に組み込まれてもよいし、スロットルバルブ21の制御を含めてエンジン10を統括制御する制御装置に組み込まれていてもよい。
・過給機は、吸入空気を過給する構成であればよく、ターボチャージャー17のような排気ガスを利用したターボ式過給機に限らず、例えばクランクシャフト30の回転を利用した機械式過給機であってもよい。
・エンジン10は、スロットルバルブ21を備えているエンジンであればよく、ディーゼルエンジンであってもよいし、ガソリンエンジンであってもよい。また、天然ガスエンジンであってもよい。また、エンジン10は、EGR装置23を備えていないエンジンであってもよいし、過給機を備えていないエンジンであってもよい。
Claims (5)
- 吸入空気が流れる通路内の温度である第1温度を取得するように構成された第1温度取得部と、
前記通路内の温度である第2温度を取得するように構成された第2温度取得部と、
前記吸入空気の質量流量である吸入空気量を取得するように構成された空気量取得部と、
前記第1温度、前記第2温度、および、前記吸入空気量に基づいてスロットルバルブの固着判定についての許否を判断するように構成された許否判断部とを備え、
前記許否判断部は、
エンジンの始動時に前記第1温度が前記スロットルバルブの凍結の可能性のある凍結温度以下である場合に前記固着判定を禁止し、
前記固着判定の禁止後、前記第2温度が前記スロットルバルブの凍結部分が融解する融解温度以上であるときに、前記第2温度と前記吸入空気量とに基づく熱量換算値の積算値が閾値を超えると前記固着判定を許可するように構成されている
スロットルバルブの異常判定装置。 - 前記許否判断部は、前記第2温度と前記吸入空気量とに対応する前記熱量換算値を規定した熱量換算マップを保持し、前記第2温度と前記吸入空気量とに対応する値を前記熱量換算マップから選択することにより前記熱量換算値を演算するように構成されている
請求項1に記載のスロットルバルブの異常判定装置。 - 前記エンジンは、前記吸入空気を過給する過給機と前記過給機によって過給された吸入空気を冷却する冷却器とを前記スロットルバルブの上流に備え、
前記第2温度取得部は、前記冷却器と前記スロットルバルブとの間における温度を前記第2温度として取得するように構成されている
請求項1または2に記載のスロットルバルブの異常判定装置。 - 前記第1温度取得部は、前記過給機を構成するコンプレッサーの上流側における温度を前記第1温度として取得するように構成されている
請求項3に記載のスロットルバルブの異常判定装置。 - 前記空気量取得部は、吸入空気量センサーの検出値を前記吸入空気量として取得するように構成されている
請求項1~4のいずれか一項に記載のスロットルバルブの異常判定装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780010137.7A CN108603447A (zh) | 2016-02-12 | 2017-02-09 | 节流阀的异常判定装置 |
US16/077,009 US10738713B2 (en) | 2016-02-12 | 2017-02-09 | Throttle valve abnormality determination device |
EP17750323.2A EP3415742A4 (en) | 2016-02-12 | 2017-02-09 | THROTTLE ANOMALY DETERMINATION DEVICE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016024531A JP6625893B2 (ja) | 2016-02-12 | 2016-02-12 | スロットルバルブの異常判定装置 |
JP2016-024531 | 2016-02-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017138602A1 true WO2017138602A1 (ja) | 2017-08-17 |
Family
ID=59563348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/004711 WO2017138602A1 (ja) | 2016-02-12 | 2017-02-09 | スロットルバルブの異常判定装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10738713B2 (ja) |
EP (1) | EP3415742A4 (ja) |
JP (1) | JP6625893B2 (ja) |
CN (1) | CN108603447A (ja) |
WO (1) | WO2017138602A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10738713B2 (en) | 2016-02-12 | 2020-08-11 | Hino Motors, Ltd. | Throttle valve abnormality determination device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111267897B (zh) * | 2020-01-02 | 2021-03-26 | 中车株洲电力机车有限公司 | 一种液压制动系统节流阀故障判断方法和装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617718A (ja) * | 1992-07-02 | 1994-01-25 | Nippondenso Co Ltd | 内燃機関のスロットルボディ加熱装置 |
JP2001227362A (ja) | 2000-02-21 | 2001-08-24 | Aisan Ind Co Ltd | 内燃機関のスロットル制御装置 |
JP2001295670A (ja) * | 2000-04-14 | 2001-10-26 | Denso Corp | ディーゼルエンジンの吸気絞り弁故障判定装置 |
JP2003129869A (ja) * | 2001-10-22 | 2003-05-08 | Honda Motor Co Ltd | 内燃機関のスロットル制御装置 |
JP2006249952A (ja) * | 2005-03-08 | 2006-09-21 | Denso Corp | 車両用内燃機関の電子スロットル制御装置 |
WO2008004421A1 (fr) * | 2006-06-14 | 2008-01-10 | Toyota Jidosha Kabushiki Kaisha | Dispositif pour commander le chauffage du papillon des gaz d'un moteur à combustion interne |
JP2009156228A (ja) * | 2007-12-27 | 2009-07-16 | Toyota Industries Corp | 内燃機関 |
JP2015178812A (ja) * | 2014-03-19 | 2015-10-08 | マツダ株式会社 | エンジンの制御装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4158679B2 (ja) * | 2003-10-29 | 2008-10-01 | 日産自動車株式会社 | エンジンの吸入ガス温度推定装置 |
US9175619B2 (en) * | 2013-07-11 | 2015-11-03 | Ford Global Technologies, Llc | Method of inferring start-up misfires due to the build-up of ice and melt water in the intake system of a vehicle engine |
JP6625893B2 (ja) | 2016-02-12 | 2019-12-25 | 日野自動車株式会社 | スロットルバルブの異常判定装置 |
-
2016
- 2016-02-12 JP JP2016024531A patent/JP6625893B2/ja active Active
-
2017
- 2017-02-09 US US16/077,009 patent/US10738713B2/en not_active Expired - Fee Related
- 2017-02-09 WO PCT/JP2017/004711 patent/WO2017138602A1/ja active Application Filing
- 2017-02-09 EP EP17750323.2A patent/EP3415742A4/en not_active Withdrawn
- 2017-02-09 CN CN201780010137.7A patent/CN108603447A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0617718A (ja) * | 1992-07-02 | 1994-01-25 | Nippondenso Co Ltd | 内燃機関のスロットルボディ加熱装置 |
JP2001227362A (ja) | 2000-02-21 | 2001-08-24 | Aisan Ind Co Ltd | 内燃機関のスロットル制御装置 |
JP2001295670A (ja) * | 2000-04-14 | 2001-10-26 | Denso Corp | ディーゼルエンジンの吸気絞り弁故障判定装置 |
JP2003129869A (ja) * | 2001-10-22 | 2003-05-08 | Honda Motor Co Ltd | 内燃機関のスロットル制御装置 |
JP2006249952A (ja) * | 2005-03-08 | 2006-09-21 | Denso Corp | 車両用内燃機関の電子スロットル制御装置 |
WO2008004421A1 (fr) * | 2006-06-14 | 2008-01-10 | Toyota Jidosha Kabushiki Kaisha | Dispositif pour commander le chauffage du papillon des gaz d'un moteur à combustion interne |
JP2009156228A (ja) * | 2007-12-27 | 2009-07-16 | Toyota Industries Corp | 内燃機関 |
JP2015178812A (ja) * | 2014-03-19 | 2015-10-08 | マツダ株式会社 | エンジンの制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3415742A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10738713B2 (en) | 2016-02-12 | 2020-08-11 | Hino Motors, Ltd. | Throttle valve abnormality determination device |
Also Published As
Publication number | Publication date |
---|---|
JP6625893B2 (ja) | 2019-12-25 |
CN108603447A (zh) | 2018-09-28 |
EP3415742A4 (en) | 2019-10-30 |
EP3415742A1 (en) | 2018-12-19 |
US20190032578A1 (en) | 2019-01-31 |
US10738713B2 (en) | 2020-08-11 |
JP2017141764A (ja) | 2017-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6049577B2 (ja) | 過給機付きエンジンの排気還流装置 | |
KR101897888B1 (ko) | 과급식 내연기관 | |
JP5222715B2 (ja) | センサの異常検出装置 | |
JP4582231B2 (ja) | 吸気温センサの異常診断装置 | |
US8266905B2 (en) | System for limiting engine output power by controlling fueling | |
US7007664B2 (en) | Fuel injection control system of internal combustion engine | |
WO2014020982A1 (ja) | 内燃機関の制御装置 | |
JP5282848B2 (ja) | Egr装置の異常検出装置 | |
JPWO2013080353A1 (ja) | Egrシステムの異常診断装置 | |
US20200263625A1 (en) | Control Device for Internal Combustion Engine | |
EP2562406B1 (en) | Abnormality detection device and abnormality detection method for egr system | |
WO2017138602A1 (ja) | スロットルバルブの異常判定装置 | |
JP6860313B2 (ja) | エンジンの制御方法、及び、エンジン | |
JP5538712B2 (ja) | 内燃機関のegr装置 | |
JP4556800B2 (ja) | エンジンの背圧制御装置 | |
JP5056953B2 (ja) | 内燃機関の制御装置 | |
WO2015141756A1 (en) | Internal combustion engine | |
JP2010138788A (ja) | 内燃機関のegr装置 | |
JP2017227148A (ja) | 内燃機関の制御装置 | |
JP2010190176A (ja) | 内燃機関の異常判定装置 | |
JP7243648B2 (ja) | 内燃機関制御システム | |
JP5245885B2 (ja) | ブローバイガス処理システムの異常判定装置 | |
EP3382175A2 (en) | Cooling apparatus of internal combustion engine | |
JP2011127545A (ja) | 内燃機関の制御装置 | |
JP2015055236A (ja) | Egrガス温度推定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17750323 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017750323 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017750323 Country of ref document: EP Effective date: 20180912 |