WO2017138306A1 - 信号処理回路 - Google Patents

信号処理回路 Download PDF

Info

Publication number
WO2017138306A1
WO2017138306A1 PCT/JP2017/001273 JP2017001273W WO2017138306A1 WO 2017138306 A1 WO2017138306 A1 WO 2017138306A1 JP 2017001273 W JP2017001273 W JP 2017001273W WO 2017138306 A1 WO2017138306 A1 WO 2017138306A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
sspds
signal processing
processing circuit
information generation
Prior art date
Application number
PCT/JP2017/001273
Other languages
English (en)
French (fr)
Inventor
茂人 三木
寺井 弘高
山下 太郎
茂之 宮嶋
Original Assignee
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人情報通信研究機構 filed Critical 国立研究開発法人情報通信研究機構
Priority to EP17750031.1A priority Critical patent/EP3415880B1/en
Priority to US16/076,791 priority patent/US20190049294A1/en
Priority to CN201780009389.8A priority patent/CN108496065B/zh
Publication of WO2017138306A1 publication Critical patent/WO2017138306A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/195Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using superconductive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4413Type
    • G01J2001/442Single-photon detection or photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode

Definitions

  • This disclosure relates to a signal processing circuit.
  • Superconducting single photon detector has higher detection efficiency, higher time resolution (timing jitter), and lower dark count rate than conventional single photon detector (eg, avalanche photodiode detector). It is expected to be used in various fields such as quantum information communication.
  • the superconducting single photon detection system can be provided with, for example, a spatial resolution function and a photon number identification function.
  • timing jitter time resolution
  • the timing jitter refers to the time fluctuation of the timing at which the superconducting single photon detection system generates an output signal in response to photon incidence.
  • An aspect of the present disclosure provides a signal processing circuit that can suppress deterioration in timing jitter of a superconducting single-photon detection system as compared with the related art even when the number of pixels of a multi-pixel SSPD increases.
  • a signal processing circuit is a circuit that is used to process detection signals output from a plurality of superconducting single photon detectors (hereinafter referred to as SSPD) and is configured by a superconducting digital logic circuit.
  • SSPD superconducting single photon detectors
  • a plurality of transmission paths connected to each of the plurality of SSPDs; a branching unit that branches each of the transmission paths into a first transmission path and a second transmission path; and connected to the first transmission path.
  • a time information generation circuit connected to the second transmission path, and the time information generation circuit generates photons from the plurality of SSPDs based on detection signals of the plurality of SSPDs.
  • FIG. 1 is a diagram illustrating an example of a signal processing circuit for a multi-pixel SSPD according to the embodiment.
  • FIG. 2 is a diagram illustrating an example of the signal processing circuit according to the first example of the embodiment.
  • FIG. 3 is a diagram used for explaining the operation of the signal processing circuit according to the first example of the embodiment.
  • FIG. 4 is a diagram illustrating an example of the output of the signal processing circuit according to the first example of the embodiment.
  • FIG. 5 is a diagram illustrating an example of the signal processing circuit according to the second example of the embodiment.
  • FIG. 6 is a diagram illustrating an example of the output of the signal processing circuit according to the second example of the embodiment.
  • FIG. 7 is a diagram illustrating an example of a superconducting single photon detection system including a signal processing circuit according to a modification of the embodiment.
  • FIG. 8 is a diagram illustrating an example of a conventional signal processing circuit for multi-pixel SSPD.
  • FIG. 8 is a diagram showing an example of a conventional signal processing circuit for multi-pixel SSPD.
  • the signal processing circuit 1 in FIG. 8 is a processing circuit for a multi-pixel SSPD that can identify a pixel in which a photon is detected.
  • a block diagram and an operation sequence of the signal processing circuit 1 in the case of using a multi-pixel SSPD having 64 pixels are shown.
  • the signal processing circuit 1 includes a counter circuit composed of 64 T-type flip-flops T1 (hereinafter referred to as T1 cells) and a shift circuit composed of 64 D-type flip-flops DFF (hereinafter referred to as DFF cells). And a register circuit.
  • T1 cells T-type flip-flops
  • DFF cells D-type flip-flops
  • register circuit 64 D-type flip-flops
  • these T1 cell and DFF cell are comprised by the single magnetic flux element (henceforth, SFQ) etc., for example.
  • detection signals of 64 SSPDs are held in each of the T1 cells. Then, the internal information of each T1 cell is transferred to each DFF cell by an external reset signal. Next, the internal information of the DFF cell is read out serially as an out signal from the shift register circuit using an external clock signal, so that the pixel in which the photon is detected can be determined.
  • the signal processing circuit 1 since the signal processing circuit 1 uses a single magnetic flux element as an information carrier, the signal processing circuit 1 can be operated at a high speed with a minute signal and the power consumption of the signal processing circuit 1 can be reduced.
  • the 64 output signal cables that are originally required can be reduced to three of reset, clock, and out, it is possible to suppress an increase in thermal load in the signal processing of the multi-pixel SSPD.
  • the inventors have found that when the signal processing circuit 1 is used, an increase in the number of pixels of the multi-pixel SSPD causes a deterioration in timing jitter (time resolution) of the superconducting single photon detection system.
  • the minimum unit of timing jitter in the conventional superconducting single photon detection system is limited to the time interval T calculated by the number of pixels (bit number) / clock frequency.
  • the clock frequency is 1 GHz and the number of pixels of the multi-pixel SSPD is 64 (64 bits)
  • the time interval T is about 64 nsec. In this case, even if a plurality of photons are incident on the multi-pixel SSPD within a time of about 64 nsec, the time information of these photons cannot be distinguished and acquired.
  • the inventors separately generate address information and time information of the multi-pixel SSPD in order to suppress deterioration of timing jitter in the superconducting single photon detection system even when the number of pixels of the multi-pixel SSPD increases. I arrived at the idea.
  • the first aspect of the present disclosure is a signal processing circuit that is used for processing of detection signals output from a plurality of superconducting single photon detectors (hereinafter referred to as SSPD) and is configured by a superconducting digital logic circuit.
  • SSPD superconducting single photon detectors
  • a plurality of transmission paths connected to each of the plurality of SSPDs; a branching unit that branches each of the transmission paths into a first transmission path and a second transmission path; and a first transmission path.
  • the address information generation circuit outputs a time information signal for specifying, and the address information generation circuit specifies an address for specifying the SSPD on which the photons of the plurality of SSPDs are incident based on the detection signals of the plurality of SSPDs. To provide a signal processing circuit for outputting the information signal.
  • the signal processing circuit when considering that the timing jitter of the SSPD is 100 psec or less and the timing jitter of the SFQ circuit is several psec, the signal processing circuit according to this aspect of the present invention has a practical use of timing jitter of 100 psec or less in the superconducting single photon detection system. Can also contribute to
  • the signal processing circuit according to the second aspect of the present disclosure is the signal processing circuit according to the first aspect.
  • the time information generation circuit outputs a time information signal by calculating a logical sum of detection signals of a plurality of SSPDs. .
  • the time when the photons are incident on the multi-pixel SSPD can be appropriately acquired as the time information signal of the time information generation circuit.
  • FIG. 1 is a diagram illustrating an example of a signal processing circuit for a multi-pixel SSPD according to the embodiment.
  • the number of pixels and the arrangement of the multi-pixel SSPD 11 are arbitrary.
  • An example is shown.
  • eight transmission paths corresponding to each of the eight SSPDs (S 11 ... S 18 ) in the first column of the multi-pixel SSPD 11 are used. Only 25 is illustrated, and the signal processing will be described below. The same applies to the SSPD signal processing in the second and subsequent columns.
  • the signal processing circuit 10 includes a transmission path 25, a branching unit 26, a time information generation circuit 20, and an address information generation circuit 21.
  • the signal processing circuit 10 is used to process detection signals output from eight SSPDs (S 11 ... S 18 ), and is composed of a superconducting digital logic circuit.
  • the superconducting digital logic circuit may have any configuration as long as it is a logic circuit that functions in a superconducting state.
  • Examples of the superconducting digital logic circuit include an SFQ circuit, an adiabatic operation magnetic flux quantum parametron (QFP) circuit, a superconducting nanowire cryotron circuit, a Reciprocal Quantum Logic (RQL) circuit, and the like.
  • the transmission path 25 is connected to each of eight SSPDs (S 11 ... S 18 ).
  • the transmission path 25 may have any configuration as long as it can transmit the detection signal (pulse) of SSPD (S 11 ... S 18 ).
  • An example of the transmission path 25 is a coaxial cable.
  • the branching unit 26 branches each of the eight transmission paths 25 into a first transmission path 25A and a second transmission path 25B.
  • the time information generation circuit 20 is connected to the first transmission path 25A. Then, the time information generation circuit 20 outputs a time (timing) information signal for specifying the time when the photon is incident on the multi-pixel SSPD 11 based on the detection signal of the multi-pixel SSPD 11.
  • the time information generation circuit 20 may have any configuration as long as it can output such a time information signal.
  • the time information generation circuit 20 may be a circuit configured to output a time information signal by taking a logical sum of detection signals of the multi-pixel SSPD 11.
  • a pulse signal is always output from the time information generation circuit 20. Therefore, the time when the photons are incident on the multi-pixel SSPD 11 is specified by the pulse signal, and the time when the photons are incident on the multi-pixel SSPD 11 can be appropriately acquired as the time information signal of the time information generation circuit 20.
  • the address information generation circuit 21 is connected to the second transmission path 25B. Then, the address information generating circuit 21 based on the detection signal of SSPD (S 11 ⁇ S 18), the address for the photons to identify the SSPD incident of SSPD (S 11 ⁇ S 18) Output information signal.
  • the address information generation circuit 21 may have any configuration as long as it can output such an address information signal. A specific example of the address information generation circuit 21 will be described in the first and second embodiments.
  • the time information generation circuit 20 and the address information generation circuit 21 described above use SFQ as an information carrier instead of using a conventional semiconductor element (for example, a CMOS transistor), for example. Since the operation principle of the SFQ circuit is known, the description thereof is omitted. As a result, the signal processing circuit 10 can operate at a high speed and has advantageous features compared to a conventional signal processing circuit formed of a semiconductor element that consumes less power.
  • a conventional semiconductor element for example, a CMOS transistor
  • the signal processing circuit 10 can suppress the deterioration of the timing jitter of the superconducting single photon detection system as compared with the conventional case. Specifically, in the signal processing circuit 10, address information and time information are generated separately. Therefore, by optimizing the address information generation circuit 21 in accordance with the number of pixels (scale) of the multi-pixel SSPD 11, the timing jitter of the superconducting single photon detection system can be improved as compared with the conventional case.
  • the signal processing circuit 10 is put to practical use of the timing jitter of 100 psec or less in the superconducting single photon detection system. Can also contribute.
  • FIG. 2 is a diagram illustrating an example of the signal processing circuit according to the first example of the embodiment.
  • the signal processing circuit 10A includes a transmission path 25, a branching unit 26, a time information generation circuit 20, an encoder circuit 21A, and a delay circuit 22A. Since the transmission path 25, the branch unit 26, and the time information generation circuit 20 are the same as those in the embodiment, description thereof is omitted.
  • the signal processing circuit 10A includes an encoder circuit 21A as the address information generation circuit 21. That is, the encoder circuit 21A is connected to the second transmission path 25B.
  • the encoder circuit 21A is configured to convert the detection signal data of the multi-pixel SSPD 11 into a binary code having a predetermined number of bits and generate a pulse train corresponding to the binary code.
  • the encoder circuit 21A may have any configuration as long as the pulse train can be generated. For example, in this example, as shown in the truth table of FIG. 3, when a photon is incident on any one of eight SSPDs (S 11 ... S 18 ), the value input to the encoder circuit 21A is Assuming that "1" is taken, 3-bit output pulses (A2, A1, A0) corresponding to these binary numbers are generated by the encoder circuit 21A.
  • the delay circuit 22A is a circuit that delays the output timing of the pulse train of the encoder circuit 21A with respect to the pulse of the time information signal. That is, the output of the encoder circuit 21A is transmitted to the output unit of the time information generation circuit 20 via the delay circuit 22A. Specifically, the delay circuit 22A delays the output timing of the pulse train by a time interval ( ⁇ x) with respect to the pulse of the time information signal.
  • FIG. 4 is a diagram illustrating an example of the output of the signal processing circuit according to the first example of the embodiment.
  • FIG. 4 shows a binary code pulse train when a photon is incident on SSPD (S 16 ) out of eight SSPDs (S 11 ... S 18 ).
  • an address information signal for specifying the SSPD on which the photons are incident among the eight SSPDs (S 11 ... S 18 ).
  • the address information signal can be specified with less information by 5 bits than when the encoder circuit 21A is not used.
  • the signal processing circuit 10A can obtain the address information signal without serially reading out the number of pulses corresponding to the number of pixels of the multi-pixel SSPD. System timing jitter can be improved.
  • the delay circuit 22A the output (time information signal) of the time information generation circuit 20 and the output (address information signal) of the encoder circuit 21A can be clearly distinguished.
  • the signal processing circuit 10C of the present embodiment may be configured in the same manner as the signal processing circuit 10 of the embodiment except for the above feature points.
  • FIG. 5 is a diagram illustrating an example of the signal processing circuit according to the second example of the embodiment.
  • the signal processing circuit 10B includes a transmission path 25, a branching unit 26, a time information generation circuit 20, a pulse position modulation circuit 21B, and a delay circuit 22B. Since the transmission path 25, the branch unit 26, and the time information generation circuit 20 are the same as those in the embodiment, description thereof is omitted.
  • the signal processing circuit 10B includes a pulse position modulation circuit 21B as the address information generation circuit 21. That is, the pulse position modulation circuit 21B is connected to the second transmission path 25B.
  • the pulse position modulation circuit 21B is configured to vary the delay time of the detection signal transmitted through the second transmission path 25B for each second transmission path 25B.
  • the pulse position modulation circuit 21B may have any configuration as long as the delay time of the detection signal transmitted through the second transmission path 25B can be varied for each second transmission path 25B.
  • the pulse position modulation circuit 21B may be configured by seven delay circuits ( ⁇ t delay) and seven OR circuits (OR).
  • the delay circuit 22B is a circuit that delays the output timing of the pulse from the pulse position modulation circuit 21B with respect to the pulse of the time information signal. For example, when a photon is incident on SSPD (S 18 ) by the delay circuit 22B, the pulse output timing from the pulse position modulation circuit 21B is delayed by a time interval ( ⁇ x) with respect to the pulse of the time information signal.
  • FIG. 6 is a diagram illustrating an example of the output of the signal processing circuit according to the second example of the embodiment.
  • an address for specifying the SSPD on which the photons are incident among the eight SSPDs (S 11 ... S 18 ).
  • the information signal can be expressed by the pulse output timing of the pulse position modulation circuit 21B.
  • the pulse of the pulse position modulation circuit 21B in the case where a photon is incident on SSPD (S 17 ) out of the eight SSPDs (S 11 ... S 18 ) in the first column is illustrated.
  • the pulse of the pulse position modulation circuit 21B is output through the delay circuit 22B and one delay circuit ( ⁇ t delay). Therefore, the output timing of this pulse is delayed by the time interval ( ⁇ x + ⁇ t) compared to the output timing of the pulse of the time information signal. That is, by knowing the pulse output timing of the pulse position modulation circuit 21B, the SSPD on which the photons are incident among the eight SSPDs (S 11 ... S 18 ) in the first column is specified.
  • the signal processing circuit 10B can obtain the above address information signal without serially reading out the number of pulses corresponding to the number of pixels of the multi-pixel SSPD. System timing jitter can be improved.
  • the delay circuit 22B the output of the time information generation circuit 20 (time information signal) and the output of the pulse position modulation circuit 21B (address information signal) can be clearly distinguished.
  • the signal processing circuit 10B of the present embodiment may be configured in the same manner as the signal processing circuit 10 of the embodiment except for the above feature points.
  • FIG. 7 is a diagram illustrating an example of a superconducting single photon detection system including a signal processing circuit according to a modification of the embodiment.
  • the signal processing circuit 10C of the superconducting single photon detection system 100 includes a transmission path 25, a branch unit 26, a time information generation circuit 20, an address information generation circuit 21, and a bit string integration circuit 27. And comprising. Since the transmission path 25, the branching unit 26, the time information generation circuit 20, and the address information generation circuit 21 are the same as those in the embodiment, description thereof is omitted.
  • the bit string integration circuit 27 outputs a transmission path for transmitting time information signals and a transmission path (in this example, 8 lines) for transmitting a plurality of address information signals through a single transmission path.
  • the signal processing circuit 10C Since the signal processing circuit 10C operates in a superconducting state, it is cooled to a cryogenic temperature by a refrigerator 28 (for example, a GM refrigerator) together with the multi-pixel SSPD11. For this reason, when the bit string integration circuit 27 is not used, the number of coaxial cables constituting the transmission path increases due to the increase in the number of pixels of the multi-pixel SSPD 11, and as a result, the heat load (heat penetration amount) on the refrigerator 28 increases. growing. Therefore, in this case, it may be difficult to mount the signal processing circuit on the refrigerator 28. However, the signal processing circuit 10C of the present modified example has a single coaxial cable only outside the room temperature region due to the above configuration. Such a possibility can be reduced.
  • a refrigerator 28 for example, a GM refrigerator
  • the signal processing circuit 10C of the present modification may be configured in the same manner as the signal processing circuit 10 of the embodiment except for the above feature points.
  • One embodiment of the present disclosure can be used as a signal processing circuit for multi-pixel SSPD, for example.
  • signal processing circuit 10A signal processing circuit 10B: signal processing circuit 10C: signal processing circuit 20: time information generation circuit 21: address information generation circuit 21A: encoder circuit 21B: pulse position modulation circuit 22A: delay circuit 22B: delay circuit 25: transmission path 25A: first transmission path 25B: second transmission path 26: branching unit 27: bit string integration circuit 28: refrigerator 100: superconducting single photon detection system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Logic Circuits (AREA)

Abstract

信号処理回路は、複数の超伝導単一光子検出器(以下、SSPD)から出力される検出信号の処理に用いられ、超伝導デジタル論理回路により構成される回路であって、複数のSSPDのそれぞれに接続されている複数の伝送経路と、伝送経路のそれぞれを第1伝送経路と第2伝送経路とに分岐する分岐部と、第1伝送経路に接続されている時間情報生成回路と、第2伝送経路に接続されているアドレス情報生成回路と、を備え、時間情報生成回路は、複数のSSPDの検出信号に基づいて、複数のSSPDへ光子が入射した時間を特定するための時間情報信号を出力し、アドレス情報生成回路は、複数のSSPDの検出信号に基づいて、複数のSSPDのうちの光子が入射したSSPDを特定するためのアドレス情報信号を出力する。

Description

信号処理回路
 本開示は信号処理回路に関する。
 超伝導単一光子検出器(以下、SSPD)は、従来の単一光子検知器(例えば、アバランシェ・フォトダイオード検出器)に比べ、高い検出効率、高い時間分解能(タイミングジッタ)、低い暗計数率等の優れた性能を備え、量子情報通信等の様々な分野への利用が期待されている。
 このような超伝導単一光子検出システムでは、1個の受光部を備える超伝導単一光子検出器の開発がこれまで行われてきたが、近年、複数の受光部(ピクセル)を備える超伝導単一光子検出器(以下、「多ピクセルSSPD」という場合がある)が提案されている(例えば、特許文献1及び特許文献2参照)。
 かかる多ピクセルSSPDの開発により、超伝導単一光子検出システムが、例えば、空間分解能機能及び光子数識別機能を備え得る等、システムの更なる高機能化が図れ、その利用範囲が拡大する。
特開2009-232311号公報 特開2013-19777号公報
 しかし、従来例は、多ピクセルSSPDのピクセル数増加に伴うタイミングジッタ(時間分解能)の悪化については十分に検討されていない。なお、タイミングジッタとは、超伝導単一光子検出システムが光子入射に対して出力信号を発生するタイミングの時間揺らぎでことをいう。
 本開示の一態様(aspect)は、多ピクセルSSPDのピクセル数が増加する場合でも、従来に比べ超伝導単一光子検出システムのタイミングジッタの悪化が抑制され得る信号処理回路を提供する。
 本開示の一態様の信号処理回路は、複数の超伝導単一光子検出器(以下、SSPD)から出力される検出信号の処理に用いられ、超伝導デジタル論理回路により構成される回路であって、前記複数のSSPDのそれぞれに接続されている複数の伝送経路と、前記伝送経路のそれぞれを第1伝送経路と第2伝送経路とに分岐する分岐部と、前記第1伝送経路に接続されている時間情報生成回路と、前記第2伝送経路に接続されているアドレス情報生成回路と、を備え、前記時間情報生成回路は、前記複数のSSPDの検出信号に基づいて、前記複数のSSPDへ光子が入射した時間を特定するための時間(タイミング)情報信号を出力し、前記アドレス情報生成回路は、前記複数のSSPDの検出信号に基づいて、前記複数のSSPDのうちの光子が入射したSSPDを特定するためのアドレス情報信号を出力する。
 本開示の一態様の信号処理回路は、多ピクセルSSPDのピクセル数が増加する場合でも、従来に比べ超伝導単一光子検出システムのタイミングジッタの悪化が抑制され得る。
図1は、実施形態の多ピクセルSSPD用の信号処理回路の一例を示す図である。 図2は、実施形態の第1実施例による信号処理回路の一例を示す図である。 図3は、実施形態の第1実施例による信号処理回路の動作の説明に用いる図である。 図4は、実施形態の第1実施例による信号処理回路の出力の一例を示す図である。 図5は、実施形態の第2実施例による信号処理回路の一例を示す図である。 図6は、実施形態の第2実施例による信号処理回路の出力の一例を示す図である。 図7は、実施形態の変形例による信号処理回路を備える超伝導単一光子検出システムの一例を示す図である。 図8は、従来の多ピクセルSSPD用の信号処理回路の一例を示す図である。
 多ピクセルSSPDのピクセル数と超伝導単一光子検出システムのタイミングジッタとの関係について鋭意検討が行われ、以下の知見が得られた。
 図8は、従来の多ピクセルSSPD用の信号処理回路の一例を示す図である。図8の信号処理回路1は、光子が検出されたピクセルを識別可能な多ピクセルSSPD用の処理回路である。ここでは、64個のピクセル数を備える多ピクセルSSPDを用いる場合の信号処理回路1のブロック図及び動作シーケンスが示されている。
 図8に示すように、信号処理回路1は、64個のT型フリップフロップT1(以下、T1セル)からなるカウンタ回路と、64個のD型フリップフロップDFF(以下、DFFセル)からなるシフトレジスタ回路とを備える。なお、これらのT1セル及びDFFセルは、例えば、単一磁束素子(以下、SFQ)等で構成されている。
 図8のカウンタ回路では、64個のSSPD(図示せず)のそれぞれの検出信号が、T1セルのそれぞれに保持される。そして、外部からのリセット信号でT1セルのそれぞれの内部情報が、DFFセルのそれぞれへと受け渡される。次いで、外部からのクロック信号でシフトレジスタ回路からDFFセルの内部情報を、アウト信号としてシリアルに読み出すことで、光子が検出されたピクセルを判別することができる。
 以上により、光子が検出された多ピクセルSSPDの位置情報を得ることで、例えば、超伝導単一光子検出システムの高感度イメージングへの応用展開が可能となる。
 また、信号処理回路1では、単一磁束素子を情報担体として用いているので、信号処理回路1を微小信号で高速に動作できるとともに、信号処理回路1の消費電力を低減できる。
 更に、本来64本必要な出力信号ケーブルを、リセット、クロック及びアウトの3本に削減できるので、多ピクセルSSPDの信号処理における熱負荷増大を抑制できる。
 しかし、発明者らは、信号処理回路1を用いる場合、多ピクセルSSPDのピクセル数増加が、超伝導単一光子検出システムのタイミングジッタ(時間分解能)の悪化を招くという問題を見出した。具体的には、図8に示すように、従来の超伝導単一光子検出システムのタイミングジッタの最小単位は、ピクセル数(ビット数)/クロック周波数で算出される時間区間Tに制約される。例えば、クロック周波数が1GHz、多ピクセルSSPDのピクセル数が64個(64ビット)であると、この時間区間Tは、約64nsec程度である。この場合、約64nsecの時間内に、仮に多ピクセルSSPDに複数の光子が入射しても、これらの光子の時間情報を区別して取得することができない。
 そして、このような事実は、SSPDのタイミングジッタが100psec以下、SFQ回路のタイミングジッタが数psecであることを考慮する場合、従来の超伝導単一光子検出システムが、これらの素子の性能を十分に活かせていないことを意味する。
 そこで、発明者らは、多ピクセルSSPDのピクセル数が増加する場合でも超伝導単一光子検出システムにおけるタイミングジッタの悪化を抑制すべく、多ピクセルSSPDのアドレス情報と時間情報とを別々に生成するという着想に到達した。
 すなわち、本開示の第1の態様は、複数の超伝導単一光子検出器(以下、SSPD)から出力される検出信号の処理に用いられ、超伝導デジタル論理回路により構成される信号処理回路であって、複数のSSPDのそれぞれに接続されている複数の伝送経路と、伝送経路のそれぞれを第1伝送経路と第2伝送経路とに分岐する分岐部と、第1伝送経路に接続されている時間情報生成回路と、第2伝送経路に接続されているアドレス情報生成回路と、を備え、時間情報生成回路は、複数のSSPDの検出信号に基づいて、複数のSSPDへ光子が入射した時間を特定するための時間情報信号を出力し、アドレス情報生成回路は、複数のSSPDの検出信号に基づいて、複数のSSPDのうちの光子が入射したSSPDを特定するためのアドレス情報信号を出力する信号処理回路を提供する。
 かかる構成によると、多ピクセルSSPDのピクセル数が増加する場合でも、従来に比べ超伝導単一光子検出システムのタイミングジッタの悪化が抑制され得る。具体的には、本態様の信号処理回路では、アドレス情報と時間情報とが別々に生成される。よって、多ピクセルSSPDのピクセル数(規模)に応じてアドレス情報生成回路の最適化を図ることにより、従来に比べ、超伝導単一光子検出システムのタイミングジッタを向上させ得る。
 特に、本態様の信号処理回路は、SSPDのタイミングジッタが100psec以下、SFQ回路のタイミングジッタが数psecであることを考慮する場合、超伝導単一光子検出システムにおいて、100psec以下のタイミングジッタの実用化にも寄与できる。
 また、本開示の第2の態様の信号処理回路は、第1の態様の信号処理回路において、時間情報生成回路は、複数のSSPDの検出信号の論理和を取ることで時間情報信号を出力する。
 かかる構成によると、多ピクセルSSPDへ光子が入射した時間を、時間情報生成回路の時間情報信号として適切に取得することができる。
 以下、本開示の実施形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施形態は、いずれも包括的又は具体的な例を示すものである。以下の実施形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態等は、一例であり、本開示を限定する主旨ではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施形態)
 図1は、実施形態の多ピクセルSSPD用の信号処理回路の一例を示す図である。多ピクセルSSPD11のピクセル数及び配列は任意であるが、図1では、多ピクセルSSPD11中の64個のSSPD(SNM:N=1~8、M=1~8)がマトリクス状に配列されている例が示されている。なお、信号処理回路10の構成を簡略化する趣旨で、図1において、多ピクセルSSPD11の第1列の8個のSSPD(S11・・・S18)のそれぞれに対応する8本の伝送経路25のみを図示し、以下、これらの信号処理について説明する。なお、第2列以降のSSPDの信号処理についても同様である。
 図1に示すように、信号処理回路10は、伝送経路25と、分岐部26と、時間情報生成回路20と、アドレス情報生成回路21と、を備える。
 信号処理回路10は、8個のSSPD(S11・・・S18)から出力される検出信号の処理に用いられ、超伝導デジタル論理回路で構成されている。
 SSPDの内部の構成及び動作は公知であるので説明を省略する。また、超伝導デジタル論理回路は、超伝導状態で機能する論理回路であれば、どのような構成であっても構わない。超伝導デジタル論理回路として、例えば、SFQ回路、断熱動作磁束量子パラメトロン(QFP)回路、超伝導ナノワイヤクライオトロン回路、Reciprocal Quantum Logic(RQL)回路等を挙げることができる。
 伝送経路25は、8個のSSPD(S11・・・S18)のそれぞれに接続されている。伝送経路25は、SSPD(S11・・・S18)の検出信号(パルス)を伝えることができれば、どのような構成であっても構わない。伝送経路25として、例えば、同軸ケーブルを例示できる。
 分岐部26は、8本の伝送経路25のそれぞれを第1伝送経路25Aと第2伝送経路25Bとに分岐する。
 時間情報生成回路20は、第1伝送経路25Aに接続されている。そして、時間情報生成回路20は、多ピクセルSSPD11の検出信号に基づいて、多ピクセルSSPD11へ光子が入射した時間を特定するための時間(タイミング)情報信号を出力する。時間情報生成回路20は、このような時間情報信号を出力できれば、どのような構成であっても構わない。
 例えば、時間情報生成回路20は、多ピクセルSSPD11の検出信号の論理和を取ることで時間情報信号を出力するように構成された回路であってもよい。これにより、多ピクセルSSPD11中のSSPD(S11・・・S18)のいずか一つに光子が入射した場合、必ず、時間情報生成回路20からパルス信号が出力される。よって、本パルス信号により、多ピクセルSSPD11へ光子が入射した時間が特定され、多ピクセルSSPD11へ光子が入射した時間を、時間情報生成回路20の時間情報信号として適切に取得することができる。
 アドレス情報生成回路21は、第2伝送経路25Bに接続されている。そして、アドレス情報生成回路21は、SSPD(S11・・・S18)の検出信号に基づいて、SSPD(S11・・・S18)のうちの光子が入射したSSPDを特定するためのアドレス情報信号を出力する。アドレス情報生成回路21は、このようなアドレス情報信号を出力できれば、どのような構成であっても構わない。アドレス情報生成回路21の具体例については第1実施例及び第2実施例で説明する。
 なお、ここで、上記の時間情報生成回路20及びアドレス情報生成回路21は、例えば、従来の半導体素子(例えば、CMOSトランジスタ)を用いる代わりに、SFQを情報担体として用いている。SFQ回路の動作原理は公知なので説明を省略する。これにより、信号処理回路10は、高速に動作できるとともに、消費電力が小さいという半導体素子で構成された従来の信号処理回路と比較した有利な特徴を備える。
 以上により、信号処理回路10は、多ピクセルSSPD11のピクセル数が増加する場合でも、従来に比べ超伝導単一光子検出システムのタイミングジッタの悪化が抑制され得る。具体的には、信号処理回路10では、アドレス情報と時間情報とが別々に生成される。よって、多ピクセルSSPD11のピクセル数(規模)に応じてアドレス情報生成回路21の最適化を図ることにより、従来に比べ、超伝導単一光子検出システムのタイミングジッタを向上させ得る。
 特に、信号処理回路10は、SSPDのタイミングジッタが100psec以下、SFQ回路のタイミングジッタが数psecであることを考慮する場合、超伝導単一光子検出システムにおいて、100psec以下のタイミングジッタの実用化にも寄与できる。
 (第1実施例)
 図2は、実施形態の第1実施例による信号処理回路の一例を示す図である。
 図2に示すように、信号処理回路10Aは、伝送経路25と、分岐部26と、時間情報生成回路20と、エンコーダ回路21Aと、遅延回路22Aと、を備える。伝送経路25、分岐部26及び時間情報生成回路20については実施形態と同様であるので説明を省略する。
 信号処理回路10Aは、アドレス情報生成回路21として、エンコーダ回路21Aを備える。つまり、エンコーダ回路21Aは、第2伝送経路25Bに接続されている。そして、エンコーダ回路21Aは、多ピクセルSSPD11の検出信号のデータを所定ビット数のバイナリコードに変換し、このバイナリコードに対応するパルス列を生成するように構成されている。
 エンコーダ回路21Aは、上記のパルス列を生成できれば、どのような構成であっても構わない。例えば、本例では、図3の真理値表に示すように、8個のSSPD(S11・・・S18)のいずれか一つに光子が入射する場合にエンコーダ回路21Aに入力する値が「1」を取るものとして、これらの2進数に対応する3ビットの出力パルス(A2、A1、A0)が、エンコーダ回路21Aで生成されている。
 遅延回路22Aは、エンコーダ回路21Aのパルス列の出力タイミングを時間情報信号のパルスに対して遅延させる回路である。つまり、エンコーダ回路21Aの出力が遅延回路22Aを経て時間情報生成回路20の出力部に伝送されている。具体的には、遅延回路22Aにより、上記パルス列の出力タイミングが、時間情報信号のパルスに対して時間区間(Δx)だけ遅延する。
 図4は、実施形態の第1実施例による信号処理回路の出力の一例を示す図である。なお、図4では、8個のSSPD(S11・・・S18)のうちのSSPD(S16)に光子が入射する場合のバイナリコードのパルス列が図示されている。
 図4に示すように、アドレス情報生成回路21としてエンコーダ回路21Aを用いることで、8個のSSPD(S11・・・S18)のうちの光子が入射したSSPDを特定するためのアドレス情報信号が、エンコーダ回路21Aの3ビットの出力パルス(A2、A1、A0)で表現され得る。つまり、エンコーダ回路21Aを使用しない場合に比べ、アドレス情報信号を5ビット分少ない情報で特定できる。
 以上により、本実施例の信号処理回路10Aは、多ピクセルSSPDのピクセル数に相当する個数のパルスをシリアルに読み出さずに、上記のアドレス情報信号を得ることができるので、超伝導単一光子検出システムのタイミングジッタを向上させ得る。
 また、遅延回路22Aを用いることで、時間情報生成回路20の出力(時間情報信号)とエンコーダ回路21Aの出力(アドレス情報信号)とを明確に区別させ得る。
 本実施例の信号処理回路10Cは、上記特徴点以外は、実施形態の信号処理回路10と同様に構成してもよい。
 (第2実施例)
 図5は、実施形態の第2実施例による信号処理回路の一例を示す図である。
 図5に示すように、信号処理回路10Bは、伝送経路25と、分岐部26と、時間情報生成回路20と、パルス位置変調回路21Bと、遅延回路22Bと、を備える。伝送経路25、分岐部26及び時間情報生成回路20については実施形態と同様であるので説明を省略する。
 信号処理回路10Bは、アドレス情報生成回路21として、パルス位置変調回路21Bを備える。つまり、パルス位置変調回路21Bは、第2伝送経路25Bに接続されている。そして、パルス位置変調回路21Bは、第2伝送経路25B毎に、第2伝送経路25Bを伝わる検出信号の遅延時間を異ならせるように構成されている。
 パルス位置変調回路21Bは、第2伝送経路25B毎に、第2伝送経路25Bを伝わる検出信号の遅延時間を異ならせることができれば、どのような構成であってもよい。例えば、図5に示すように、パルス位置変調回路21Bは、7個の遅延回路(Δt遅延)及び7個の論理和回路(OR)により構成されていてもよい。
 遅延回路22Bは、パルス位置変調回路21Bからのパルスの出力タイミングを時間情報信号のパルスに対して遅延させる回路である。例えば、遅延回路22Bにより、SSPD(S18)に光子が入射する場合、パルス位置変調回路21Bからのパルスの出力タイミングが、時間情報信号のパルスに対して時間区間(Δx)だけ遅延する。
 図6は、実施形態の第2実施例による信号処理回路の出力の一例を示す図である。
 図6に示すように、アドレス情報生成回路21としてパルス位置変調回路21Bを用いることで、8個のSSPD(S11・・・S18)のうちの光子が入射したSSPDを特定するためのアドレス情報信号が、パルス位置変調回路21Bのパルスの出力タイミングで表現され得る。
 図6では、第1列の8個のSSPD(S11・・・S18)のうちのSSPD(S17)に光子が入射する場合におけるパルス位置変調回路21Bのパルスが図示されている。第1列のSSPD(S17)に光子が入射する場合、パルス位置変調回路21Bのパルスは、遅延回路22B及び1個の遅延回路(Δt遅延)を経て出力される。よって、本パルスの出力タイミングは、時間情報信号のパルスの出力タイミングに比べ、時間区間(Δx+Δt)だけ遅延する。つまり、パルス位置変調回路21Bのパルスの出力タイミングを知ることで、第1列の8個のSSPD(S11・・・S18)のうちの光子が入射したSSPDが特定される。
 以上により、本実施例の信号処理回路10Bは、多ピクセルSSPDのピクセル数に相当する個数のパルスをシリアルに読み出さずに、上記のアドレス情報信号を得ることができるので、超伝導単一光子検出システムのタイミングジッタを向上させ得る。
 また、遅延回路22Bを用いることで、時間情報生成回路20の出力(時間情報信号)とパルス位置変調回路21Bの出力(アドレス情報信号)とを明確に区別させ得る。
 本実施例の信号処理回路10Bは、上記特徴点以外は、実施形態の信号処理回路10と同様に構成してもよい。
 (変形例)
 図7は、実施形態の変形例による信号処理回路を備える超伝導単一光子検出システムの一例を示す図である。
 図7に示すように、超伝導単一光子検出システム100の信号処理回路10Cは、伝送経路25と、分岐部26と、時間情報生成回路20と、アドレス情報生成回路21と、ビット列統合回路27と、を備える。伝送経路25、分岐部26、時間情報生成回路20及びアドレス情報生成回路21については実施形態と同様であるので説明を省略する。
 ビット列統合回路27は、時間情報信号を伝える伝送経路と複数のアドレス情報信号を伝える伝送経路(本例では、8本)とを単一の伝送経路で出力する。
 信号処理回路10Cは、超伝導状態において動作するので、多ピクセルSSPD11とともに、冷凍機28(例えば、GM冷凍機)によって極低温に冷却されている。このため、ビット列統合回路27を用いない場合は、多ピクセルSSPD11のピクセル数増加により、伝送経路を構成する同軸ケーブルの本数が増え、その結果、冷凍機28への熱負荷(熱侵入量)が大きくなる。よって、この場合、信号処理回路の冷凍機28への実装が困難となる可能性があるが、本変形例の信号処理回路10Cは、上記構成により、単一の同軸ケーブルのみが外部の室温領域へ延伸するので、このような可能性を低減できる。
 本変形例の信号処理回路10Cは、上記特徴点以外は、実施形態の信号処理回路10と同様に構成してもよい。
 なお、実施形態、第1実施例、第2実施例及び変形例は、互いに相手を排除しない限り、互いに組み合わせても構わない。また、上記説明から、当業者にとっては、本開示の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本開示を実行する最良の態様を当業者に教示する目的で提供されたものである。本開示の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本開示の一態様は、例えば、多ピクセルSSPD用の信号処理回路として利用できる。
10     :信号処理回路
10A    :信号処理回路
10B    :信号処理回路
10C    :信号処理回路
20     :時間情報生成回路
21     :アドレス情報生成回路
21A    :エンコーダ回路
21B    :パルス位置変調回路
22A    :遅延回路
22B    :遅延回路
25     :伝送経路
25A    :第1伝送経路
25B    :第2伝送経路
26     :分岐部
27     :ビット列統合回路
28     :冷凍機
100    :超伝導単一光子検出システム

Claims (4)

  1.  複数の超伝導単一光子検出器(以下、SSPD)から出力される検出信号の処理に用いられ、超伝導デジタル論理回路により構成される信号処理回路であって、
     前記複数のSSPDのそれぞれに接続されている複数の伝送経路と、
     前記伝送経路のそれぞれを第1伝送経路と第2伝送経路とに分岐する分岐部と、
     前記第1伝送経路に接続されている時間情報生成回路と、
     前記第2伝送経路に接続されているアドレス情報生成回路と、
     を備え、
     前記時間情報生成回路は、前記複数のSSPDの検出信号に基づいて、前記複数のSSPDへ光子が入射した時間を特定するための時間(タイミング)情報信号を出力し、
     前記アドレス情報生成回路は、前記複数のSSPDの検出信号に基づいて、前記複数のSSPDのうちの光子が入射したSSPDを特定するためのアドレス情報信号を出力する信号処理回路。
  2.  前記時間情報生成回路は、前記複数のSSPDの検出信号の論理和を取ることで前記時間情報信号を出力するように構成された回路である請求項1に記載の信号処理回路。
  3.  前記アドレス情報生成回路として、前記複数のSSPDの検出信号を所定ビット数のバイナリコードに変換し、前記バイナリコードに対応するパルス列を生成するように構成されたエンコーダ回路を備える請求項1又は2に記載の信号処理回路。
  4.  前記アドレス情報生成回路として、前記第2伝送経路毎に、前記第2伝送経路を伝わる検出信号の遅延時間を異ならせるように構成されたパルス位置変調回路を備える請求項1又は2に記載の信号処理回路。
PCT/JP2017/001273 2016-02-10 2017-01-16 信号処理回路 WO2017138306A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17750031.1A EP3415880B1 (en) 2016-02-10 2017-01-16 Signal processing circuit
US16/076,791 US20190049294A1 (en) 2016-02-10 2017-01-16 Signal processing circuit
CN201780009389.8A CN108496065B (zh) 2016-02-10 2017-01-16 信号处理电路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-023303 2016-02-10
JP2016023303A JP6598302B2 (ja) 2016-02-10 2016-02-10 信号処理回路

Publications (1)

Publication Number Publication Date
WO2017138306A1 true WO2017138306A1 (ja) 2017-08-17

Family

ID=59563762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001273 WO2017138306A1 (ja) 2016-02-10 2017-01-16 信号処理回路

Country Status (5)

Country Link
US (1) US20190049294A1 (ja)
EP (1) EP3415880B1 (ja)
JP (1) JP6598302B2 (ja)
CN (1) CN108496065B (ja)
WO (1) WO2017138306A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656122B2 (en) 2019-03-01 2023-05-23 National University Corporation Yokohama National University Photon detection device
EP4379332A1 (en) 2021-07-30 2024-06-05 National Institute of Information and Communications Technology Superconducting single photon detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257453A (ja) * 2004-03-11 2005-09-22 Mitsui Eng & Shipbuild Co Ltd 微弱光検出方法および装置
JP2009232311A (ja) * 2008-03-25 2009-10-08 National Institute Of Information & Communication Technology 信号処理回路およびインターフェイス回路
JP2013019777A (ja) * 2011-07-12 2013-01-31 National Institute Of Information & Communication Technology 超伝導単一光子検出システムおよび超伝導単一光子検出方法
US20150355019A1 (en) * 2014-06-09 2015-12-10 Kiskeya Microsystems Llc Systems and methods for readout of event-driven pixels
US20160003672A1 (en) * 2014-07-25 2016-01-07 Varun Verma Multiplexer for single photon detector, process for making and use of same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8139050B2 (en) * 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US6812464B1 (en) * 2000-07-28 2004-11-02 Credence Systems Corporation Superconducting single photon detector
US7638751B2 (en) * 2007-05-09 2009-12-29 Massachusetts Institute Of Technology Multi-element optical detectors with sub-wavelength gaps
US8405038B2 (en) * 2009-12-30 2013-03-26 General Electric Company Systems and methods for providing a shared charge in pixelated image detectors
CN102538988B (zh) * 2012-02-08 2014-05-07 南京邮电大学 一种单光子雪崩二极管成像器件的淬灭与读出电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257453A (ja) * 2004-03-11 2005-09-22 Mitsui Eng & Shipbuild Co Ltd 微弱光検出方法および装置
JP2009232311A (ja) * 2008-03-25 2009-10-08 National Institute Of Information & Communication Technology 信号処理回路およびインターフェイス回路
JP2013019777A (ja) * 2011-07-12 2013-01-31 National Institute Of Information & Communication Technology 超伝導単一光子検出システムおよび超伝導単一光子検出方法
US20150355019A1 (en) * 2014-06-09 2015-12-10 Kiskeya Microsystems Llc Systems and methods for readout of event-driven pixels
US20160003672A1 (en) * 2014-07-25 2016-01-07 Varun Verma Multiplexer for single photon detector, process for making and use of same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ADAM MCCAUGHAN ET AL.: "Superconducting- nanowire single-photon-detector linear array", APPL. PHYS. LETT., vol. 103, 2013, pages 142602, XP012175489 *
JOSEPH C. BARDIN ET AL.: "Cryogenic SiGe Integrated Circuits for Superconducting Nanowire Single Photon Detector Readout", P ROC. OF SPIE, vol. 9114, 2014, pages 911404, XP060037744 *
M. S. ALLMAN ET AL.: "A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout", APPL. PHYS. LETT., vol. 106, 2015, pages 192601, XP012197475 *
See also references of EP3415880A4 *

Also Published As

Publication number Publication date
CN108496065A (zh) 2018-09-04
JP2017142146A (ja) 2017-08-17
EP3415880B1 (en) 2020-12-30
EP3415880A4 (en) 2019-12-04
CN108496065B (zh) 2020-04-28
US20190049294A1 (en) 2019-02-14
JP6598302B2 (ja) 2019-10-30
EP3415880A1 (en) 2018-12-19

Similar Documents

Publication Publication Date Title
JP5419122B2 (ja) 信号処理およびインターフェイス回路
EP2740262B1 (en) Position-sensitive readout modes for digital silicon photomultiplier arrays
Miyajima et al. High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector
Verma et al. A four-pixel single-photon pulse-position array fabricated from WSi superconducting nanowire single-photon detectors
JP4952461B2 (ja) 乱数生成装置および乱数生成方法
JP6894298B2 (ja) 非同期マルチモード焦点面アレイ
CN112019777B (zh) 基于时间延迟积分(tdi)的图像传感器及其成像方法
WO2017138306A1 (ja) 信号処理回路
JP2020524258A (ja) 光測距システム用シストリックプロセッサシステム
Acconcia et al. High-efficiency integrated readout circuit for single photon avalanche diode arrays in fluorescence lifetime imaging
TWI521891B (zh) 高速串列化器
Fahim et al. A low-power, high-speed readout for pixel detectors based on an arbitration tree
US10356871B2 (en) Method and system for implementing transient state computing with optics
CN103529382A (zh) 检测红外焦平面阵列读出电路的行控制电路的电路和方法
CN110044479A (zh) 一种基于无时钟电流舵dac结构的硅光电倍增管
US10356872B2 (en) Method and system for implementing data transmission utilizing techniques used for transient state computing with optics
US20210072360A1 (en) Photon detecting 3d imaging sensor device
WO2023008523A1 (ja) 超伝導単一光子検出システム
Mink et al. Programmable instrumentation and gigahertz signaling for single-photon quantum communication systems
TWI547170B (zh) 影像感測器
Cominelli et al. Highly efficient readout integrated circuit for dense arrays of SPAD detectors in time-correlated measurements
Bruschini et al. A sensor network architecture for digital SiPM-based PET systems
CN114935886B (zh) 两段式超导时间数字转换器及超导探测器成像系统
CN115996325B (zh) 一种基于希尔伯特曲线的spad阵列及成像方法
CN117516732A (zh) 基于光子计数的开窗时间可调硅光电倍增器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017750031

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017750031

Country of ref document: EP

Effective date: 20180910