WO2017131345A1 - 무선 전력 공급 방법 및 그를 위한 장치 - Google Patents
무선 전력 공급 방법 및 그를 위한 장치 Download PDFInfo
- Publication number
- WO2017131345A1 WO2017131345A1 PCT/KR2016/014973 KR2016014973W WO2017131345A1 WO 2017131345 A1 WO2017131345 A1 WO 2017131345A1 KR 2016014973 W KR2016014973 W KR 2016014973W WO 2017131345 A1 WO2017131345 A1 WO 2017131345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless power
- electrically connected
- state
- signal
- coil
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00045—Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00304—Overcurrent protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00309—Overheat or overtemperature protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
Definitions
- the present invention relates to charging technology, and more particularly, to a wireless power transmission method and apparatus therefor for maximizing cost reduction, simplification of structure, and maximizing power efficiency.
- Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
- energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
- the electromagnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows in one coil. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
- the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
- the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
- This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
- the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
- Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
- power can be transmitted by using a transmission coil selectively by switching directly from the control unit without a plurality of amplifiers, but there is a problem in that the power loss is increased because the applied power is lost by the switch.
- the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a wireless power transmission control method and apparatus therefor.
- the present invention relates to a wireless power transmission method and apparatus therefor that can reduce costs and simplify the structure in a wireless power transmission apparatus provided with a plurality of transmission coils.
- the present invention relates to a wireless power transmission method and apparatus therefor capable of maximizing power efficiency in a wireless power transmission apparatus provided with a plurality of transmission coils.
- the present invention can provide a wireless power transmission method and apparatus therefor.
- the present invention is to solve the above problems, n transmission coil for transmitting a magnetic field, a frequency generator for supplying an AC signal having a predetermined operating frequency, n inverter buffer for shifting the phase of the AC signal, the inverter A main controller for activating or deactivating a buffer, n + 1 amplifiers for amplifying the AC signal, and n + 1 gate drivers for controlling the amplifier based on a phase of the input AC signal. It is a solution to the problem to provide a wireless power supply.
- the amplification unit is to provide a wireless power supply device including at least one MOSFET (Metal Oxide Semiconductor Field Effect Transistor) to solve the problem.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- one end of the gate driver is provided to be electrically connected to the inverter buffer, the other end of the gate driver is to provide a wireless power supply device is provided to be electrically connected to the amplification unit to solve the problem.
- n-2 amplification unit is to provide a wireless power supply device characterized in that it is electrically connected to two or more different transmission coils as a means of solving the problem.
- a plurality of transmission coils for transmitting a magnetic field
- a frequency generator for supplying an AC signal having a predetermined operating frequency
- a plurality of inverter buffers for shifting the phase of the AC signal
- a main controller for activating or deactivating the inverter buffer.
- a plurality of amplifiers for amplifying the AC signal and a plurality of gate drivers for controlling the amplifier based on a phase of the input AC signal, wherein at least one of the amplifiers is electrically connected to the plurality of transmission coils.
- the transmission coil may include first to second transmission coils
- the amplifier may include first to third amplifiers, and one end of the first transmission coil and one end of the second transmission coil may be the second current. It is a solution to the problem to provide a wireless power supply, characterized in that it is electrically connected to the amplifier.
- one end of the first transmitting coil is electrically connected to the first current amplifier
- the other end of the first transmitting coil is provided to be electrically connected to the second current amplifier
- one end of the second transmitting coil is The technical solution of the present invention. is to provide a wireless power supply device which is provided to be electrically connected to the second current amplifier, and the other end of the second transmission coil is electrically connected to the third current amplifier.
- the amplification unit is to provide a wireless power supply device including at least one MOSFET (Metal Oxide Semiconductor Field Effect Transistor) to solve the problem.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- the gate driver is to provide a wireless power supply device characterized in that provided with the same number as the current amplifier as a solution to the problem.
- the gate driver may include first to third gate drivers, one end of the first gate driver may be electrically connected to the first inverter buffer, and the other end of the first gate driver may be connected to the first current. It is provided to be electrically connected to the amplifier, one end of the second gate driver is provided to be electrically connected to the current supply, the other end of the second gate driver is provided to be electrically connected to the second current amplifier, One end of a third gate driver is provided to be electrically connected to the second inverter buffer, and the other end of the third gate driver is provided to a wireless power supply device is provided to be electrically connected to a third current amplifier.
- three first to third transmission coils for transmitting a magnetic field
- a frequency generator for supplying an AC signal having a predetermined operating frequency
- three first to third inverter buffer for shifting the phase of the AC signal
- a main controller for activating or deactivating the inverter buffer
- four first to fourth amplifiers for amplifying the AC signal
- four first to fourth gates for controlling the amplifier based on a phase of the input AC signal.
- the driver includes a driver, and at least one of the amplifiers is provided to be electrically connected to the plurality of transmission coils.
- Another object of the present invention is to provide a wireless power supply device in which one end of the nth transmission coil is electrically connected to the nth amplifier and the other end of the nth transmission coil is electrically connected to the n + 1th amplifier.
- the n th amplification part may be electrically connected to the n th gate driver, one end of the n th inverter buffer may be electrically connected to the n th gate driver, and the other end of the n th inverter buffer may be the n th +1 th. It is a solution to the problem to provide a wireless power supply device electrically connected to a gate driver.
- the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention can provide a wireless power transmission control method and apparatus therefor.
- the present invention can provide a wireless power transmission method and apparatus therefor that can reduce costs and simplify the structure in a wireless power transmission device having a plurality of transmission coils.
- the present invention can provide a wireless power transmission method and apparatus therefor capable of maximizing power efficiency in a wireless power transmission apparatus provided with a plurality of transmission coils.
- FIG. 1 is a block diagram illustrating a structure of a wireless power transmission system according to an embodiment of the present invention.
- FIG. 2 is a view for explaining the type and characteristics of a wireless power transmitter according to an embodiment of the present invention.
- FIG 3 is a view for explaining the type and characteristics of a wireless power receiver according to an embodiment of the present invention.
- FIG. 4 is an equivalent circuit diagram of a wireless power transmission system according to an embodiment of the present invention.
- FIG. 5 is a state transition diagram for explaining a state transition procedure in the wireless power transmitter according to an embodiment of the present invention.
- FIG. 6 is a state transition diagram of a wireless power receiver according to an embodiment of the present invention.
- FIG. 7 is a diagram illustrating an operation region of a wireless power receiver based on V RECT according to an embodiment of the present invention.
- FIG. 8 is a block diagram of a wireless power transmission system according to an embodiment of the present invention.
- FIG. 9 is a flowchart illustrating a wireless charging procedure according to an embodiment of the present invention.
- FIG. 10 illustrates a block diagram of a wireless power transmitter according to an embodiment of the present invention.
- FIG. 11 is a circuit diagram of a wireless power transmitter according to an embodiment of the present invention.
- FIG. 12 is a circuit diagram of a wireless power transmitter according to another embodiment of the present invention.
- FIG. 13 is a circuit diagram of a wireless power transmitter according to another embodiment of the present invention.
- 14A and 14B illustrate the operation of the transmission resonator coil under the control of the main controller.
- a wireless power supply apparatus including n transmit coils for transmitting a magnetic field, a frequency generator for supplying an AC signal having a predetermined operating frequency, n inverter buffers for shifting a phase of the AC signal, And a main controller for activating or deactivating the inverter buffer, n + 1 amplifiers for amplifying the AC signal, and n + 1 gate drivers for controlling the amplifier based on a phase of the input AC signal.
- n transmit coils for transmitting a magnetic field
- a frequency generator for supplying an AC signal having a predetermined operating frequency
- n inverter buffers for shifting a phase of the AC signal
- main controller for activating or deactivating the inverter buffer
- n + 1 amplifiers for amplifying the AC signal
- n + 1 gate drivers for controlling the amplifier based on a phase of the input AC signal.
- the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
- a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
- Wireless power transmitter may be configured in the form of a pad, a cradle, an access point (AP), a small base station, a stand, a ceiling buried, a wall, etc., one transmitter receives a plurality of wireless power Power can also be sent to the device.
- the wireless power transmitter may comprise at least one wireless power transmission means.
- the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
- the electromagnetic induction wireless power transmission means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which are wireless charging technology standard organizations.
- WPC Wireless Power Consortium
- PMA Power Matters Alliance
- the wireless resonant wireless power transmission standard may include a resonant wireless charging technology defined in A4WP (Alliance for Wireless Power).
- the wireless power transmitter according to another embodiment of the present invention may support both the above-described electromagnetic induction method and electromagnetic resonance method.
- the wireless integrated charger or the wireless power transmission control apparatus may not only support at least one of the above-described electromagnetic induction and electromagnetic resonance methods but also at least one of the chargers. You can also supply power to the electronic device through the charging terminal of.
- the wireless power receiver may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
- the wireless power receiving means is an electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are the standard standards for wireless charging technology, and a wireless charging technology of the electromagnetic induction method defined by the Alliance for Wireless Power (A4WP). It may include.
- An electronic device capable of receiving power from a wireless integrated charger includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, PDA (Personal Digital Assistants), Portable multimedia player (PMP), navigation, MP3 player, electric toothbrush, electronic tag, lighting device, remote control, fishing bobber, small electronic devices such as wearable devices such as smart watches, but is not limited thereto, and the like according to the present invention
- PDA Personal Digital Assistants
- PMP Portable multimedia player
- navigation MP3 player
- electric toothbrush electronic tag
- lighting device remote control
- fishing bobber small electronic devices
- Any device capable of charging a battery by receiving power through a wireless power transmission method installed in a wireless integrated charger or a wireless power transmission control device and an attached wired charging connection terminal is sufficient.
- a charger having both wired charging means and wireless charging means and capable of supplying wireless integrated power will be referred to as a wireless integrated charger or a wireless power transmission control device.
- FIG. 1 is a block diagram illustrating a structure of a wireless power transmission system according to an embodiment of the present invention.
- the wireless power transmission system may include a wireless power transmitter 100 and a wireless power receiver 200.
- FIG. 1 illustrates that the wireless power transmitter 100 transmits wireless power to one wireless power receiver 200, this is only one embodiment, and wireless power according to another embodiment of the present invention.
- the transmitter 100 may transmit wireless power to the plurality of wireless power receivers 200.
- the wireless power receiver 200 according to another embodiment may simultaneously receive wireless power from the plurality of wireless power transmitters 100.
- the wireless power transmitter 100 may generate a magnetic field using a specific power transmission frequency to transmit power to the wireless power receiver 200.
- the wireless power receiver 200 may receive power by tuning to the same frequency as that used by the wireless power transmitter 100.
- the frequency for power transmission may be a 6.78MHz band, but is not limited thereto.
- the power transmitted by the wireless power transmitter 100 may be transmitted to the wireless power receiver 200 which is in resonance with the wireless power transmitter 100.
- the maximum number of wireless power receivers 200 that can receive power from one wireless power transmitter 100 is the maximum transmit power level of the wireless power transmitter 100, the maximum power reception level of the wireless power receiver 200, the wireless It may be determined based on the physical structures of the power transmitter 100 and the wireless power receiver 200.
- the wireless power transmitter 100 and the wireless power receiver 200 may perform bidirectional communication in a frequency band different from a frequency band for transmitting wireless power, that is, a resonant frequency band.
- the bidirectional communication may use a half-duplex Bluetooth Low Energy (BLE) communication protocol.
- BLE Bluetooth Low Energy
- the wireless power transmitter 100 and the wireless power receiver 200 may exchange characteristic and state information, that is, power negotiation information, with each other through the bidirectional communication.
- the wireless power receiver 200 may transmit predetermined power reception state information for controlling the power level received from the wireless power transmitter 100 to the wireless power transmitter 100 through bidirectional communication.
- 100 may dynamically control the transmit power level based on the received power reception state information.
- the wireless power transmitter 100 may not only optimize power transmission efficiency, but also prevent load damage due to over-voltage, and prevent unnecessary waste of power due to under-voltage. It can provide a function to.
- the wireless power transmitter 100 performs a function of authenticating and identifying the wireless power receiver 200 through two-way communication, identifying an incompatible device or an unchargeable object, and identifying a valid load. You may.
- the wireless power transmitter 100 includes a power supplier 110, a power conversion unit 120, a matching circuit 130, a transmission resonator 140, and a main controller. , 150) and a communication unit 160.
- the communication unit may include a data transmitter and a data receiver.
- the power supply unit 110 may supply a specific supply voltage to the power converter 120 under the control of the main controller 150.
- the supply voltage may be a DC voltage or an AC voltage.
- the power converter 120 may convert the voltage received from the power supply unit 110 into a specific voltage under the control of the main controller 150.
- the power converter 210 may include at least one of a DC / DC converter, an AC / DC converter, and a power amplifier.
- the matching circuit 130 is a circuit that matches the impedance between the power converter 210 and the transmission resonator 140 to maximize power transmission efficiency.
- the transmission resonator 140 may wirelessly transmit power using a specific resonance frequency according to the voltage applied from the matching circuit 130.
- the wireless power receiver 100 includes a reception resonator 210, a rectifier 220, a DC-DC converter 230, a load 240, a main controller 250. ) And a communication unit 260.
- the communication unit may include a data transmitter and a data receiver.
- the reception resonator 210 may receive power transmitted by the transmission resonator 140 through a resonance phenomenon.
- the rectifier 210 may perform a function of converting an AC voltage applied from the receiving resonator 210 into a DC voltage.
- the DC-DC converter 230 may convert the rectified DC voltage into a specific DC voltage required for the load 240.
- the main controller 250 controls the operations of the rectifier 220 and the DC-DC converter 230 or generates characteristics and state information of the wireless power receiver 200 and controls the communication unit 260 to control the wireless power transmitter 100.
- the characteristics and state information of the wireless power receiver 200 may be transmitted to the.
- the main controller 250 may control the operation of the rectifier 220 and the DC-DC converter 230 by monitoring the intensity of the output voltage and the current in the rectifier 220 and the DC-DC converter 230. have.
- the intensity information of the monitored output voltage and current may be transmitted to the wireless power transmitter 100 in real time through the communication unit 260.
- the main controller 250 compares the rectified DC voltage with a predetermined reference voltage to determine whether it is an over-voltage state or an under-voltage state, and a system error state is detected according to the determination result. If so, the detection result may be transmitted to the wireless power transmitter 100 through the communication unit 260.
- the main controller 250 when the main controller 250 detects a system error condition, the main controller 250 controls the operation of the rectifier 220 and the DC-DC converter 230 or a predetermined overcurrent including a switch or a zener diode to prevent damage to the load.
- the blocking circuit may be used to control the power applied to the load 240.
- the main controller 150 and 250 and the communication unit 160 and 260 are configured as different modules, but this is only one embodiment, and another embodiment of the present invention is a main controller ( It should be noted that the 150 and 250 and the communication unit 160 and 260 may be configured as one module.
- FIG. 2 is a view for explaining the type and characteristics of a wireless power transmitter according to an embodiment of the present invention.
- types and characteristics may be classified into classes and categories, respectively.
- the type and characteristics of the wireless power transmitter can be largely identified through the following three parameters.
- the wireless power transmitter may be identified by a rating determined according to the strength of the maximum power applied to the transmission resonator 140.
- the rating of the wireless power transmitter is the maximum value of the power (P TX_IN_COIL ) applied to the transmission resonator 140, the predefined maximum input power for each rating specified in the following wireless power transmitter rating table-hereinafter, business card It may be determined by comparing with (P TX _IN_MAX ).
- P TX _IN_COIL may be an average real value calculated by dividing a product of voltage V (t) and current I (t) applied to the transmission resonator 140 for a unit time by a corresponding unit time.
- the grade disclosed in Table 1 is merely an example, and a new grade may be added or deleted.
- the values for the maximum input power for each class, the minimum category support requirement, and the maximum number of devices that can be supported may also change according to the purpose, shape, and implementation of the wireless power transmitter.
- the class of the wireless power transmitter may be determined as class 3.
- the wireless power transmitter may be identified according to Minimum Category Support Requirements corresponding to the identified class.
- the minimum category support requirement may be a supportable number of wireless power receivers corresponding to a category of the highest level among wireless power receiver categories that can be supported by a wireless power transmitter of a corresponding class. That is, the minimum category support requirement may be the minimum number of maximum category devices that the wireless power transmitter can support. In this case, the wireless power transmitter may support all categories of wireless power receivers corresponding to the maximum category or less according to the minimum category requirement.
- the wireless power transmitter can support a wireless power receiver of a category higher than the category specified in the minimum category support requirement, the wireless power transmitter may not be limited to supporting the wireless power receiver.
- a class 3 wireless power transmitter should support at least one category 5 wireless power receiver.
- the wireless power transmitter may support the wireless power receiver 100 corresponding to a category lower than the category level corresponding to the minimum category support requirement.
- the wireless power transmitter may support a wireless power receiver having a higher level category if it is determined that the wireless power transmitter can support a higher level category than the category corresponding to the minimum category support requirement.
- the wireless power transmitter may be identified by the maximum number of devices that can be supported corresponding to the identified class.
- the maximum supportable device number may be identified by the maximum supportable number of wireless power receivers corresponding to the lowest level category among the categories supported in the corresponding class, hereinafter, simply the maximum number of devices that can be supported by a business card. .
- a class 3 wireless power transmitter should be able to support up to two wireless power receivers of at least category 3.
- the wireless power transmitter can support more than the maximum number of devices corresponding to its class, it is not limited to supporting more than the maximum number of devices.
- the wireless power transmitter according to the present invention should perform wireless power transmission at least up to the number defined in Table 1 within the available power, unless there is a special reason for not allowing the power transmission request of the wireless power receiver.
- the wireless power transmitter may not accept the power transmission request of the wireless power receiver.
- power adjustment of the wireless power receiver may be controlled.
- the wireless power transmitter may not accept the power transmission request of the corresponding wireless power receiver.
- the wireless power transmitter may not accept the power transmission request of the corresponding wireless power receiver.
- the wireless power transmitter may not accept the power transmission request of the corresponding wireless power receiver.
- FIG 3 is a view for explaining the type and characteristics of a wireless power receiver according to an embodiment of the present invention.
- the average output voltage P RX _ OUT of the receiving resonator 210 is a voltage V (t) and a current I (t) output by the receiving resonator 210 for a unit time. It may be a real value calculated by dividing the product by the corresponding unit time.
- the category of the wireless power receiver may be defined based on the maximum output voltage P RX_OUT_MAX of the receiving resonator 210, as shown in Table 2 below.
- TBD Bluetooth handset Category 2 3.5 W Feature Phone Category 3 6.5 W Smartphone Category 4 13 W Tablet Category 5 25 W Small laptop Category 6 37.5 W laptop Category 6 50 W TBD
- the category 3 wireless power receiver may supply 5W of power to the charging port of the load.
- FIG. 4 is an equivalent circuit diagram of a wireless power transmission system according to an embodiment of the present invention.
- FIG. 4 shows the interface point on an equivalent circuit in which reference parameters, which will be described later, are measured.
- I TX and I TX _COIL are root mean square (RMS) currents applied to the matching circuit (or matching network) 420 of the wireless power transmitter and RMS currents applied to the transmission resonator coil 425 of the wireless power transmitter, respectively. do.
- RMS root mean square
- Z TX _IN denotes an input impedance after the power supply / amplifier / filter 410 of the wireless power transmitter and an input impedance before the matching circuit 420.
- Z TX _IN_COIL means input impedance after the matching circuit 420 and before the transmission resonator coil 425.
- L1 and L2 mean an inductance value of the transmission resonator coil 425 and an inductance value of the reception resonator coil 427, respectively.
- Z RX _ IN denotes an input impedance at the rear end of the matching circuit 430 of the wireless power receiver and the front end of the filter / rectifier / load 440 of the wireless power receiver.
- the resonance frequency used for the operation of the wireless power transmission system according to an embodiment of the present invention may be 6.78MHz ⁇ 15kHz.
- the wireless power transmission system may provide simultaneous charging of multiple wireless power receivers, i.e., multi-charging, in which case the wireless power receiver remains even if the wireless power receiver is newly added or deleted.
- the amount of change in the received power of can be controlled so as not to exceed a predetermined reference value.
- the amount of change in the received power may be ⁇ 10%, but is not limited thereto.
- the condition for maintaining the received power variation amount should not overlap with the existing wireless power receiver when the wireless power receiver is added to or deleted from the charging area.
- the real part of the Z TX _IN may be inversely related to the load resistance of the rectifier, hereinafter referred to as R RECT . That is, increasing R RECT may decrease Z TX _IN, and decreasing R RECT may increase Z TX _IN .
- Resonator Coupling Efficiency may be the maximum power reception ratio calculated by dividing the power transmitted from the receiver resonator coil to the load 440 by the power carried in the resonant frequency band by the transmitter resonator coil 425. have.
- Resonator matching efficiency between the wireless power transmitter and wireless power receiver can be calculated if the reference port impedance (Z TX_IN) and receiving a reference port impedance (Z _IN RX) of the cavity resonator is a transmission that is perfectly matched.
- Table 3 below is an example of the minimum resonator matching efficiency according to the class of the wireless power transmitter and the class of the wireless power receiver according to an embodiment of the present invention.
- the minimum resonator matching efficiency corresponding to the class and category shown in Table 3 may increase.
- FIG. 5 is a state transition diagram for explaining a state transition procedure in the wireless power transmitter according to an embodiment of the present invention.
- a state of the wireless power transmitter is largely configured as a configuration state 510, a power save state 520, a low power state 530, and a power transfer state. , 540), a local fault state 550, and a locking fault state 560.
- the wireless power transmitter may transition to configuration state 510.
- the wireless power transmitter may transition to the power saving state 520 when the predetermined reset timer expires or the initialization procedure is completed in the configuration state 510.
- the wireless power transmitter may generate a beacon sequence and transmit it through the resonant frequency band.
- the wireless power transmitter may control the beacon sequence to be started within a predetermined time after entering the power saving state 520.
- the wireless power transmitter may control the beacon sequence to be started within 50 ms after the power saving state 520 transition, but is not limited thereto.
- the wireless power transmitter periodically generates and transmits a first beacon sequence for sensing the wireless power receiver, and detects a change in impedance of the reception resonator, that is, a load variation.
- a load variation that is, a load variation.
- the first beacon and the first beacon sequence will be referred to as short beacon and short beacon sequences, respectively.
- the short beacon sequence may be repeatedly generated and transmitted at a predetermined time interval t CYCLE for a short period (t SHORT _ BEACON ) to save standby power of the wireless power transmitter until the wireless power receiver is detected.
- t SHORT _BEACON may be set to 30 ms or less and t CYCLE to 250 ms ⁇ 5 ms.
- the current strength of the short beacon is more than a predetermined reference value, and may increase gradually over a period of time.
- the minimum current strength of the short beacon may be set large enough so that the wireless power receiver of category 2 or more of Table 2 may be detected.
- the wireless power transmitter according to the present invention may be provided with a predetermined sensing means for detecting a change in reactance and resistance in a reception resonator according to a short beacon.
- the wireless power transmitter may periodically generate and transmit a second beacon sequence for supplying sufficient power for booting and responding to the wireless power receiver.
- the second beacon and the second beacon sequence will be referred to as long beacon and long beacon sequences, respectively.
- the wireless power receiver may broadcast a predetermined response signal through the out-of-band communication channel.
- the Long Beacon sequence may be generated and transmitted at a predetermined time interval (t LONG _BEACON_PERIOD ) during a relatively long period (t LONG_BEACON ) compared to the Short Beacon to supply sufficient power for booting the wireless power receiver.
- t LONG _BEACON may be set to 105 ms + 5 ms and t LONG _BEACON_PERIOD may be set to 850 ms, respectively.
- the current strength of the long beacon may be relatively strong compared to the current strength of the short beacon.
- the long beacon may maintain a constant power during the transmission interval.
- the wireless power transmitter may wait to receive a predetermined response signal during the long beacon transmission period.
- the response signal will be referred to as an advertisement signal.
- the wireless power receiver may broadcast the advertisement signal through an out-of-band communication frequency band different from the resonant frequency band.
- the advertisement signal may include message identification information for identifying a message defined in the corresponding out-of-band communication standard, unique service for identifying whether the wireless power receiver is a legitimate or compatible receiver for the wireless power transmitter, or wireless power receiver identification.
- Information, output power information of the wireless power receiver, rated voltage / current information applied to the load, antenna gain information of the wireless power receiver, information for identifying the category of the wireless power receiver, wireless power receiver authentication information, with overvoltage protection Information on whether or not, may include at least one or any one of the software version information mounted on the wireless power receiver.
- the wireless power transmitter may transition from the power saving state 520 to the low power state 530 and then establish an out-of-band communication link with the wireless power receiver. Subsequently, the wireless power transmitter may perform a registration procedure for the wireless power receiver via the established out-of-band communication link. For example, when the out-of-band communication is Bluetooth low power communication, the wireless power transmitter may perform Bluetooth pairing with the wireless power receiver and exchange at least one of state information, characteristic information, and control information with each other through the paired Bluetooth link. have.
- the wireless power transmitter transmits a predetermined control signal to the wireless power transmitter to initiate charging through the out-of-band communication in the low power state 530, that is, the predetermined predetermined control signal that requests the wireless power receiver to deliver power to the load.
- the state of the wireless power transmitter may transition from the low power state 530 to the power transfer state 540.
- the state of the wireless power transmitter may transition to the power saving state 520 in the low power state 530.
- the wireless power transmitter may be driven by a separate Link Expiration Timer for connection with each wireless power receiver, and the wireless power receiver may indicate that the wireless power transmitter is present in the wireless power transmitter at a predetermined time period. Must be sent before the link expiration timer expires.
- the link expiration timer is reset each time the message is received and an out-of-band communication link established between the wireless power receiver and the wireless power receiver may be maintained if the link expiration timer has not expired.
- the state of the wireless power transmitter May transition to a power saving state 520.
- the wireless power transmitter in the low power state 530 may drive a predetermined registration timer when a valid advertisement signal is received from the wireless power receiver. In this case, when the registration timer expires, the wireless power transmitter in the low power state 530 may transition to the power saving state 520. In this case, the wireless power transmitter may output a predetermined notification signal indicating that registration has failed through notification display means provided in the wireless power transmitter, including, for example, an LED lamp, a display screen, a beeper, and the like. have.
- the wireless power transmitter may transition to the low power state 530 when charging of all connected wireless power receivers is completed.
- the wireless power receiver may allow registration of a new wireless power receiver in states other than configuration state 510, local failure state 550, and lock failure state 560.
- the wireless power transmitter may dynamically control the transmission power based on state information received from the wireless power receiver in the power transmission state 540.
- the receiver state information transmitted from the wireless power receiver to the wireless power transmitter is for reporting the required power information, voltage and / or current information measured at the rear of the rectifier, charging state information, overcurrent and / or overvoltage and / or overheating state. It may include at least one of information indicating whether the means for interrupting or reducing the power delivered to the load according to the information, overcurrent or overvoltage is activated.
- the receiver state information may be transmitted at a predetermined cycle or whenever a specific event occurs.
- the means for cutting off or reducing power delivered to the load according to the overcurrent or overvoltage may be provided using at least one of an ON / OFF switch and a zener diode.
- Receiver state information transmitted from a wireless power receiver to a wireless power transmitter is information indicating that an external power source is wired to the wireless power receiver, information indicating that an out-of-band communication scheme has been changed. It may further include at least one of-can be changed from NFC (Near Field Communication) to Bluetooth Low Energy (BLE) communication.
- NFC Near Field Communication
- BLE Bluetooth Low Energy
- a wireless power transmitter may receive power for each wireless power receiver based on at least one of its currently available power, priority for each wireless power receiver, and the number of connected wireless power receivers. May be adaptively determined.
- the power strength for each wireless power receiver may be determined by the ratio of power to the maximum power that can be processed by the rectifier of the wireless power receiver.
- the wireless power transmitter may transmit a predetermined power control command including information about the determined power strength to the corresponding wireless power receiver.
- the wireless power receiver may determine whether power control is possible using the power strength determined by the wireless power transmitter, and transmit the determination result to the wireless power transmitter through a predetermined power control response message.
- the wireless power receiver may transmit predetermined receiver state information indicating whether wireless power control is possible according to the power control command of the wireless power transmitter before receiving the power control command.
- the power transmission state 540 may be any one of a first state 541, a second state 542, and a third state 543 according to the power reception state of the connected wireless power receiver.
- the first state 541 may mean that power reception states of all wireless power receivers connected to the wireless power transmitter are normal voltages.
- the second state 542 may mean that there is no wireless power receiver having a low voltage state and a high voltage state of at least one wireless power receiver connected to the wireless power transmitter.
- the third state 543 may mean that the power reception state of at least one wireless power receiver connected to the wireless power transmitter is a high voltage state.
- the wireless power transmitter may transition to the lock failure state 560 when a system error is detected in the power saving state 520 or the low power state 530 or the power transfer state 540.
- the wireless power transmitter in the lock failure state 560 may transition to the configuration state 510 or the power saving state 520 when it is determined that all connected wireless power receivers have been removed from the charging area.
- the wireless power transmitter may transition to local failure state 550 if a local failure is detected.
- the wireless power transmitter having the local failure state 550 may transition back to the lock failure state 560.
- transition to configuration state 510 in any one of the configuration state 510, power saving state 520, low power state 530, power transmission state 540, the wireless power transmitter has a local failure Once released, transition to configuration state 510 may occur.
- the wireless power transmitter may cut off the power supplied to the wireless power transmitter.
- the wireless power transmitter may transition to a local failure state 550 when a failure such as an overvoltage, an overcurrent, an overheat, or the like is detected, but is not limited thereto.
- the wireless power transmitter may transmit a predetermined power control command to at least one connected wireless power receiver to reduce the strength of the power received by the wireless power receiver.
- the wireless power transmitter may transmit a predetermined control command to the connected at least one wireless power receiver to stop charging of the wireless power receiver.
- the wireless power transmitter can prevent device damage due to overvoltage, overcurrent, overheating, and the like.
- the wireless power transmitter may transition to the lock failure state 560 when the intensity of the output current of the transmission resonator is greater than or equal to the reference value.
- the wireless power transmitter transitioned to the lock failure state 560 may attempt to make the intensity of the output current of the transmission resonator less than or equal to the reference value for a predetermined time.
- the attempt may be repeated for a predetermined number of times. If the lock failure state 560 is not released despite the repetition, the wireless power transmitter transmits a predetermined notification signal indicating that the lock failure state 560 is not released to the user by using a predetermined notification means. can do. In this case, when all the wireless power receivers located in the charging area of the wireless power transmitter are removed from the charging area by the user, the lock failure state 560 may be released.
- the lock failure state 560 is automatically released.
- the state of the wireless power transmitter may automatically transition from the lock failure state 560 to the power saving state 520 to perform the detection and identification procedure for the wireless power receiver again.
- the wireless power transmitter of the power transmission state 540 transmits continuous power and adaptively controls the output power based on the state information of the wireless power receiver and a predefined optimal voltage region setting parameter. have.
- the optimal voltage region setting parameter may include at least one of a parameter for identifying a low voltage region, a parameter for identifying an optimal voltage region, a parameter for identifying a high voltage region, and a parameter for identifying an overvoltage region. It may include.
- the wireless power transmitter may increase the output power if the power reception state of the wireless power receiver is in the low voltage region, and reduce the output power if the wireless power receiver is in the high voltage region.
- the wireless power transmitter may control the transmission power to maximize the power transmission efficiency.
- the wireless power transmitter may control the transmission power so that the deviation of the amount of power required by the wireless power receiver is equal to or less than the reference value.
- the wireless power transmitter may stop power transmission when the rectifier output voltage of the wireless power receiver reaches a predetermined overvoltage region, that is, when an over voltage is detected.
- FIG. 6 is a state transition diagram of a wireless power receiver according to an embodiment of the present invention.
- a state of a wireless power receiver may be classified into a disable state (610), a boot state (620), an enable state (630) (or an on state), and a system error state ( System Error State, 640).
- the state of the wireless power receiver may be determined based on the intensity of the output voltage at the rectifier terminal of the wireless power receiver, hereinafter, referred to as a V RECT business card.
- the activation state 630 may be divided into an optimal voltage state 631, a low voltage state 632, and a high voltage state 633 according to the value of V RECT .
- the wireless power receiver in the inactive state 610 may transition to the boot state 620 if the measured V RECT value is greater than or equal to the predefined V RECT_BOOT value.
- the wireless power receiver establishes an out-of-band communication link with the wireless power transmitter and V RECT Wait until the value reaches the power required by the load stage.
- Wireless power receiver in boot state 620 is V RECT When it is confirmed that the value has reached the power required for the load, the transition to the active state 630 may begin charging.
- the wireless power receiver in the activated state 630 may transition to the boot state 620 when charging is confirmed to be completed or stopped.
- the wireless power receiver in the activated state 630 may transition to the system error state 640.
- the system error may include overvoltage, overcurrent and overheating as well as other predefined system error conditions.
- the wireless power receiver in the activated state 630 is V RECT If the value falls below the V RECT _BOOT value, it may transition to an inactive state 610.
- the wireless power receiver in the boot state 620 or the system error state 640 may transition to an inactive state 610 when the V RECT value falls below the V RECT_BOOT value.
- FIG. 7 is a diagram illustrating an operation region of a wireless power receiver based on V RECT according to an embodiment of the present invention.
- the wireless power receiver is maintained in an inactive state 610.
- the wireless power receiver transitions to the boot state 620 and may broadcast the advertisement signal within a predetermined time. Thereafter, when the advertisement signal is detected by the wireless power transmitter, the wireless power transmitter may transmit a predetermined connection request signal for establishing an out-of-band communication link to the wireless power receiver.
- V RECT_MIN the minimum output voltage at the rectifier for normal charging
- V RECT _ MIN If the V RECT value exceeds V RECT _ MIN , the state of the wireless power receiver transitions from boot state 620 to activation state 630 and may begin charging the load.
- V RECT _ MAX which is a predetermined reference value for determining the overvoltage
- the activation state 630 is divided into a low voltage state 632, an optimum voltage state 631, and a high voltage state 633 according to the value of V RECT . Can be.
- the wireless power receiver transitioned to the high voltage state 633 may suspend the operation of cutting off the power supplied to the load for a predetermined time, which is referred to as a high voltage state holding time for convenience of description below.
- the high voltage state holding time may be predetermined to prevent damage to the wireless power receiver and the load in the high voltage state 633.
- the wireless power receiver may transmit a predetermined message indicating an overvoltage occurrence to the wireless power transmitter through the out-of-band communication link within a predetermined time.
- the wireless power receiver may control the voltage applied to the load by using an overvoltage blocking means provided to prevent damage of the load due to the overvoltage in the system error state 630.
- an ON / OFF switch or a zener diode may be used as the overvoltage blocking means.
- the wireless power receiver may transmit a predetermined message indicating the occurrence of overheating to the wireless power transmitter.
- the wireless power receiver may reduce the heat generated internally by driving the provided cooling fan.
- the wireless power receiver may receive wireless power in cooperation with a plurality of wireless power transmitters.
- the wireless power receiver may transition to the system error state 640 if it is determined that the wireless power transmitter determined to receive the actual wireless power is different from the wireless power transmitter to which the actual out-of-band communication link is established.
- FIG. 8 is a block diagram of a wireless power transmission system according to an embodiment of the present invention.
- the wireless power transmission system may be configured in a star topology, and the wireless power transmitter collects and collects various characteristic information and state information from the wireless power receiver through an out-of-band communication link. Based on the received information, the operation and transmission power of the wireless power receiver can be controlled.
- the wireless power transmitter may transmit its characteristic information and predetermined control signals to the wireless power receiver via an out-of-band communication link.
- the wireless power transmitter may determine the power transmission order for each wireless power receiver of the connected wireless power receiver, and may transmit wireless power according to the determined power transmission order.
- the wireless power transmitter may include at least one of a priority of the wireless power receiver, a power reception efficiency of the wireless power receiver or a power transmission efficiency of the wireless power transmitter, a charging state of the wireless power receiver, and whether a system error occurs for each wireless power receiver. Based on the power transmission order can be determined.
- the wireless power transmitter may determine the amount of power transmitted per connected wireless power receiver. For example, the wireless power transmitter may calculate the amount of power to be transmitted for each wireless power receiver based on the currently available power and the power reception efficiency for each wireless power receiver, and transmit the information about the calculated power to the wireless power receiver through a predetermined control message. You can also send.
- the wireless power transmitter may generate and provide a timing synchronization signal (Tim Synchronization Signal) for acquiring time synchronization with the network-connected wireless power receiver (s).
- the time synchronization signal is a frequency band for transmitting wireless power, i.e., in-band, or a frequency band for performing out-of-band communication, i.e., out-of-band. Can be sent through.
- the wireless power transmitter and the wireless power receiver may manage communication timing and communication sequences of each other based on the time synchronization signal.
- FIG. 8 illustrates a configuration in which a wireless power transmission system including one wireless power transmitter and a plurality of wireless power receivers is connected to a network in a star topology
- a wireless power transmission system including one wireless power transmitter and a plurality of wireless power receivers may be connected to a network to transmit and receive wireless power.
- the wireless power transmitter may exchange its state information through a separate communication channel.
- the wireless power receiver may receive seamless power during movement through handover between the wireless power transmitters.
- the wireless power transmitter also acts as a network coordinator and can exchange information with the wireless power receiver via an out-of-band communication link.
- the wireless power transmitter may receive various information of the wireless power receiver to generate and manage a predetermined device control table, and transmit network management information to the wireless power receiver with reference to the device control table. This allows the wireless power transmitter to create and maintain a wireless power transfer system network.
- FIG. 9 is a flowchart illustrating a wireless charging procedure according to an embodiment of the present invention.
- the wireless power transmitter may generate a beacon sequence when the wireless power transmitter is configured, ie, boot, and transmit the beacon sequence through the transmission resonator (S901).
- the wireless power receiver may broadcast an advertisement signal including its identification information and characteristic information (S903).
- the advertisement signal may be repeatedly transmitted at a predetermined period until the connection request signal, which will be described later, is received from the wireless power transmitter.
- the wireless power transmitter may transmit a predetermined connection request signal for establishing the out-of-band communication link to the wireless power receiver (S905).
- the wireless power receiver may establish an out-of-band communication link and transmit its static state information through the set out-of-band communication link (S907).
- the static state information of the wireless power receiver identifies category information, hardware and software version information, maximum rectifier output power information, initial reference parameter information for power control, information on a required voltage or power, and whether a power regulation function is installed. And at least one of information on supportable out-of-band communication schemes, information on supportable power control algorithms, and information on preferred rectifier stage voltage values initially set in the wireless power receiver.
- the wireless power transmitter may transmit the static state information of the wireless power transmitter to the wireless power receiver through an out-of-band communication link (S909).
- the static state information of the wireless power transmitter may include at least one of transmitter power information, class information, hardware and software version information, information on the maximum number of supported wireless power receivers, and / or information on the number of wireless power receivers currently connected. It can be configured to include one.
- the wireless power receiver monitors its real-time power reception state and charging state, and may transmit dynamic state information to the wireless power transmitter in a periodic or specific event (S911).
- the dynamic state information of the wireless power receiver includes information on the rectifier output voltage and current, information on the voltage and current applied to the load, information on the internal measurement temperature of the wireless power receiver, and change of reference parameters for power control ( It may be configured to include at least one of the rectified voltage minimum value, the rectified voltage maximum value, the initially set preferred rectifier terminal voltage change value), the charging state information, system error information, alarm information.
- the wireless power transmitter may perform power adjustment by changing a setting value included in the existing static state information when receiving reference parameter change information for power control.
- the wireless power transmitter may control the wireless power receiver to start charging by issuing a predetermined control command through the out-of-band communication link (S913).
- the wireless power transmitter may dynamically control the transmission power by receiving the dynamic state information from the wireless power receiver (S915).
- the wireless power receiver may transmit the dynamic state information to the wireless power transmitter including data for identifying the system error and / or data indicating that the charging is completed ( S917).
- the system error may include overcurrent, overvoltage, overheating, and the like.
- the wireless power transmitter when the currently available power does not meet the required power of all connected wireless power receivers, the wireless power transmitter according to another embodiment of the present invention redistributes power to be transmitted to each wireless power receiver and issues a predetermined control command. It can also be transmitted to the corresponding wireless power receiver.
- the wireless power transmitter redistributes power to be received for each connected wireless power receiver based on currently available power, and transmits it to the corresponding wireless power receiver through a predetermined control command.
- the wireless power transmitter may remain when wireless charging of the previously connected wireless power receiver is completed or the out-of-band communication link is released, including, for example, when the wireless power receiver is removed from the charging area.
- the power to be received for each wireless power receiver may be redistributed and transmitted to the corresponding wireless power receiver through a predetermined control command.
- the wireless power transmitter may determine whether the wireless power receiver has a power regulation function through a predetermined control procedure. In this case, when a power redistribution situation occurs, the wireless power transmitter may perform power redistribution only for the wireless power receiver equipped with the power adjustment function.
- the power redistribution situation may receive a valid advertisement signal from an unconnected wireless power receiver to receive a dynamic parameter indicating a new wireless power receiver is added or indicates the current state of the connected wireless power receiver, or a previously connected wireless power receiver is provided. Occurs when an event occurs such that it is confirmed that it no longer exists, the charging of the connected wireless power receiver is completed, or an alarm message indicating a system error state of the connected wireless power receiver is received. have.
- the system error state may include an overvoltage state, an overcurrent state, an overheat state, a network connection state, and the like.
- the wireless power transmitter may transmit power redistribution related information to the wireless power receiver through a predetermined control command.
- the power redistribution related information may include command information for controlling power of a wireless power receiver, information for identifying whether to allow or deny a power transmission request, and a valid load variation of the wireless power receiver. It may include time information for generating a.
- the command for controlling the wireless power receiver power is a first command for controlling the wireless power receiver providing power received to the load, and a second command for allowing the wireless power receiver to indicate that charging is being made.
- the control unit may include a power control command for indicating a ratio of the maximum power provided by the wireless power transmitter to the maximum rectifier power of the wireless power receiver.
- the wireless power transmitter may not transmit the power adjustment command to the corresponding wireless power receiver.
- the wireless power transmitter may determine whether it is possible to provide the amount of power required by the wireless power receiver based on its available power. As a result of determination, when the required amount of power exceeds the available amount of power, the wireless power transmitter may check whether the power control function is installed in the corresponding wireless power receiver. As a result of the check, when the power adjustment function is mounted, the wireless power receiver may determine an amount of power to be received by the wireless power receiver within the amount of available power, and transmit the determined result to the wireless power receiver through a predetermined control command.
- the power redistribution may be performed within a range in which the wireless power transmitter and the wireless power receiver can operate normally and / or a normal charging range.
- the information for identifying whether to allow or deny the power transmission request may include a grant condition and a reason for rejection.
- the grant condition may include a grant subject to a wait for a certain time due to the lack of available power.
- Reasons for rejection may include rejection due to lack of available power, rejection due to exceeding the number of acceptable wireless power receivers, rejection due to overheating of the wireless power transmitter, rejection due to a limited class of wireless power transmitter, and the like.
- the wireless power receiver may support a plurality of out-of-band communication schemes. If it is desired to change the currently set out-of-band communication link in another manner, the wireless power receiver may transmit a predetermined control signal for requesting the out-of-band communication change to the wireless power transmitter. When the out-of-band communication change request signal is received, the wireless power transmitter may release the currently set out-of-band communication link and establish a new out-of-band communication link by the out-of-band communication method requested by the wireless power receiver.
- the out-of-band communication scheme applicable to the present invention may include Near Field Communication (NFC), Radio Frequency Identification (RFID), Bluetooth Low Energy (BLE), Wideband Code Division Multiple Access (WCDMA), and Long LTE.
- NFC Near Field Communication
- RFID Radio Frequency Identification
- BLE Bluetooth Low Energy
- WCDMA Wideband Code Division Multiple Access
- Long LTE Long LTE.
- Term Evolution / LTE-Advance communication and Wi-Fi communication.
- FIG. 10 illustrates a block diagram of a wireless power transmitter according to an embodiment of the present invention.
- the wireless power transmitter receives an initial signal S0 having a predetermined frequency and a predetermined amplitude, and outputs an amplified fourth signal S4 having the same frequency as the initial signal S0. Can be released.
- the frequency of the initial signal S0 may be 6.78 MHz ⁇ 15 kHz.
- the initial signal S0 is supplied to the transmitter of the embodiment to be branched into the first signal S1 whose phase is 180 ° converted by the inverter buffer 141 and the second signal S2 which does not pass through the inverter buffer 141. Can be.
- the first signal S1 and the second signal S2 may be signals having the same amplitude with a phase difference of 180 °.
- the initial signal S0 having a predetermined frequency and a predetermined amplitude may be supplied to the transmitter to generate the first signal S1 and the second signal S2 having opposite phases to each other by the inverter butter 141.
- the first signal S1 and the second signal S2 may be supplied to the amplifier 143, respectively.
- the amplifier 143 may generate a fourth signal S4 having the same frequency by amplifying the first signal S1 and the second signal S2.
- the amplifier 143 may be provided as a circuit including a MOSFET.
- the configuration of the amplifier 143 of the embodiment is shown as a so-called MOSFET circuit for amplifying an input signal using a MOSFET for convenience of description, but the configuration of the amplifier 143 of the embodiment
- the present invention is not limited to an amplifier using a MOSFET, and may be provided to amplify an input signal to a predetermined scale, and may be implemented using various circuit elements according to a user's needs. It does not limit.
- FIG. 11 is a circuit diagram of a wireless power transmitter according to an embodiment of the present invention.
- the wireless power transmitter of the embodiment includes a plurality of inverter buffers 1411 and 1413 controlled by the main controller 150 and the main controller 150 to be transitioned to an enabled or disabled state.
- Magnetic fields are selectively or not generated by the plurality of amplifiers 1431, 1433, 1435, 1437 and the plurality of amplifiers 1431, 1433, 1435, 1437 that amplify a signal by receiving a current having a predetermined frequency.
- the non-state may also include a plurality of coils (L1, L2) to transition.
- the plurality of coils L1 and L2 may include a first coil L1 and a second coil L2.
- the main controller 150 may dynamically select the coil to be used for wireless power transmission by controlling the inverter butters 1411 and 1413.
- one end of the first coil (L1) is provided to be electrically connected to the first amplifier (1431) and the first power supply unit (1441), the other end of the first coil (L1) is the second amplifier (1433) and It may be provided to be electrically connected to the second power supply 1443.
- One end of the second coil L2 is provided to be electrically connected to the third amplifier 1435 and the third power supply 1445, and the other end of the second coil L2 is the fourth amplifier 1437 and the fourth. It may be provided to be electrically connected to the power supply 1447.
- One end of the first amplifier 1431 may be electrically connected to the first power supply 1442 to receive power, and the other end of the first amplifier 1431 may include the first amplifier 1431 as a first power supply ( 1441 may be provided to be electrically connected to the first gate driver 1421 transitioning to or in an electrically connected state.
- One end of the second amplifier 1433 may be electrically connected to the second power supply 1443 to receive power, and the other end of the second amplifier 1433 may include the second amplifier 1433 as the second power supply ( 1443 and the second gate driver 1423 may be electrically connected.
- the first gate driver 1421 and the second gate driver 1423 have a first power supply 1431 and a second amplifier 1435 as described above according to the phase of the input signal. And a transition to a state in which the second power supply unit 1443 is electrically connected or not connected.
- An initial signal having a predetermined frequency and a predetermined amplitude is input to the second gate driver 1423, and a signal whose phase is converted through the first inverter buffer 1411 is input to the first gate driver 1421. Can be entered.
- the first gate driver 1421 and the second gate driver 1423 which receive signals having opposite phases to each other, connect the first amplifier 1431 and the second amplifier 1433 to the first power supply unit at a predetermined frequency.
- the control unit 1441 and the second power supply unit 1443 may be electrically connected or not connected.
- the first gate driver 1421 simultaneously receiving an initial signal controls the first amplifier 1431 to transition to a state electrically connected to the first power supply 1442, and the second gate driver 1423 is controlled by the first gate driver 1421.
- the second amplifier 1433 may be controlled to transition to a state in which the second amplifier 1433 is not electrically connected to the second power supply 1443.
- the first gate driver 1421 receiving the initial signal after a predetermined time passes may control the first amplifier 1431 to transition to a state in which it is not electrically connected to the first power supply 1442.
- the second gate driver 1423 controls the second amplifier 1433 to transition to an electrically connected state with the second power supply 1443 so that current flows from the lower portion of the first coil L1 toward the upper portion. have.
- the lower portion of the first coil L1 may mean a point at which the first coil L1 and the second power supply unit 1443 are electrically connected, and the upper portion of the first coil L1 is the first coil and the first power supply unit. It may mean a point where the (1441) is electrically connected.
- the amplitude of the initial signal input by the first power supply unit 1442 and the second power supply unit 1443 is amplified by a predetermined multiple, and the frequency of the current equal to the frequency of the initial signal flows in the first coil L1. .
- the direction of the current across the first coil L1 may be reversed to a T / 2 period when the period of the initial signal is T.
- the second coil L2 is also the same as the first coil L1 and includes an independent circuit, and is amplified by a predetermined multiple of the amplitude of the initial signal, and the frequency is equal to the current of the initial signal. It may be provided to flow in the two coil (L2).
- a current is selectively applied to the first coil L1 or the second coil L2. It can be controlled to flow.
- the main controller 150 of the embodiment transitions both the first inverter buffer 1411 and the second inverter buffer 1413 to an active state, so that current flows in both the first coil L1 and the second coil L2.
- the first inverter buffer 1411 and the second inverter buffer 1413 are both transitioned to an inactive state so that a current does not flow in both the first coil L1 and the second coil L2.
- the scope of the present invention is not limited to the above-described embodiment.
- the user may include two or more coils and at least two amplifiers for supplying the amplified current as needed, The scope of the invention is not limited thereto.
- Inductors between the power supply unit and the amplification unit in the drawings may be omitted or other configurations may be included.
- the inverter buffers 1411 and 1413, the gate drivers 1423-1427, and the amplifiers 1431-1437 are increased by the number of coils L1 and L2, thereby increasing the volume of the wireless power transmitter of the embodiment.
- capacitors electrically connected to the coils L1 and L2 may be omitted or other components may be included, and this configuration may mean a resonator composed of a coil and a capacitor.
- FIG. 12 is a circuit diagram of a wireless power transmitter according to another embodiment of the present invention.
- the wireless power transmitter of the embodiment includes a plurality of coils L1 and L2 generating magnetic fields, and a plurality of switch parts 1451 and 1453 controlling ON / OFF of currents flowing through the plurality of coils L1 and L2.
- the main controller 150 may control the connection state of the plurality of switch units 1451 and 1453 and the amplifiers 1431 and 1433 to amplify the initial signal.
- Inverter buffer 141 a plurality of gate drivers (1421, 1423), amplifiers (1431, 1433) and power supply (1441, 1443) are the same as the wireless power transmitter of the embodiment shown in FIG. And only describe the differences below.
- the plurality of coils L1 and L2 may include a first coil L1 and a second coil L2.
- One end of the first coil L1 may be provided to be electrically connected to the first switch unit 1451, and the other end thereof may be provided to be electrically connected to the second switch unit 1453.
- One end of the second coil L2 may be provided to be electrically connected to the first switch unit 1451, and the other end thereof may be provided to be electrically connected to the second switch unit 1453.
- the current may be controlled to flow through the first coil L1 or the second coil L2 by the first switch unit 1451 and the second switch unit 1453.
- the main controller 150 transitions the first switch unit 1451 in a state in which one end of the first coil L1 and the first amplifier unit 1431 are electrically connected to each other, and the second switch unit 1453 The other end of the first coil L1 and the second amplifier 1433 may be transitioned to a state in which they are electrically connected.
- the main controller 150 transitions the first switch unit 1451 in a state in which one end of the second coil L2 is electrically connected to the first amplifier unit 1431, and the second switch unit 1453. ) May transition to the state in which the other end of the second coil (L2) and the second amplifier (1433) are electrically connected. In this case, the first coil (L1) does not flow current and the second coil (L2) Only when the current flows.
- the main controller 150 transitions the first inverter buffer 1411 and the second inverter buffer 1413 into an active or inactive state so that current flows simultaneously or selectively to the first coil L1 or the second coil L2.
- the wireless power transmitter of the embodiment illustrated in FIG. 12 includes one inverter buffer 141, and the main controller 150 includes the first switch unit 1451 and the first switch unit 1451. There is a difference in the configuration in that the current is flowed simultaneously or selectively to the first coil L1 or the second coil L2 by controlling the two switch units 1453.
- the main controller 150 supplies the current to the first coil L1 or the second coil L2 to selectively supply current to the first switch unit 1451 and the second switch unit 1453. Since it is necessary to operate the power consumption is increased, there is a problem that energy efficiency is lowered.
- the power consumption is increased by separately operating the switch unit which is a problem of the wireless power transmitter of FIG. 11 and the switch unit which is a problem of the wireless power transmitter of FIG.
- Another example is to propose a wireless power transmitter that solves all of these problems.
- FIG. 13 is a circuit diagram of a wireless power transmitter according to another embodiment of the present invention.
- the wireless power transmitter of the embodiment includes a plurality of coils L1 and L2 for generating a magnetic field and a plurality of amplifiers 1431, 1433 and 1435 for controlling current flowing through the plurality of coils L1 and L2. And a main controller for transitioning the plurality of inverter buffers 1411 and 1413 and the plurality of inverter buffers 1411 and 1413 into an active state or an inactive state to convert phases of currents input to the amplifiers 1431, 1433, and 1435 ( 150).
- the plurality of coils L1 and L2 may include a first coil L1 and a second coil L2.
- One end of the first coil L1 may be electrically connected to the first amplifier 1431 and the first power supply 1442, and the other end of the first coil L1 may be electrically connected to the second amplifier 1433 and the second power supply 1443. It may be provided to be connected.
- One end of the second coil L2 is electrically connected to the second amplifier 1433 and the second power supply 1443, and the other end of the second coil L2 is electrically connected to the third amplifier 1435 and the third power supply 1445. It may be provided to be connected.
- One end of the first amplifier 1431 may be provided to be electrically connected to the first coil L1 and the first power supply 1442, and the other end may be electrically connected to the first gate driver 1421.
- One end of the second amplifier unit 1433 is electrically connected to the second power supply unit 1443, the first coil L1, and the second coil L2, and the other end thereof is electrically connected to the second gate driver 1423.
- the third amplifier 1435 may have one end electrically connected to the third power supply 1445 and the second coil L2, and the other end may be electrically connected to the third gate driver 1425. It may be provided to be connected.
- the main controller 150 may be provided to control the first inverter buffer 1411 and the second inverter buffer 1413 to transition to an active state or an inactive state.
- the main controller 150 controls the first inverter buffer 1411 and the second inverter buffer 1413 to be in an activated and deactivated state to supply current to at least one coil of the first coil L1 or the second coil L2. The operation of controlling the flow will be described in more detail with reference to FIGS. 14A and 14B.
- the wireless power transmitter of the above-described embodiment is illustrated as including two coils corresponding to the first coil L1 and the second coil L2 as shown in FIG. 13, the user is not limited to the illustrated embodiment. And a wireless power transmitter may be configured to include two or more coils, which do not limit the scope of the invention.
- the wireless power transmitter of the embodiment differs from the wireless power transmitter shown in FIG. 11, which requires four amplifiers 143 and gate drivers 142, respectively, to control the current flowing through the two coils.
- the amplifying unit 1431 is provided to be electrically connected to the first coil L1 and the second coil L2 at the same time so that the three amplifying unit 143 and the gate driver 142 are respectively used to control the current flowing through the two coils.
- the wireless power transmitter of the embodiment omits the switch unit that consumes power. There is a technical feature to reduce unnecessary power loss.
- the above-described effects may be more effective when the number of coils disposed in the wireless power transmitter of the embodiment is not limited to two but is extended to two or more.
- the user may extend the present invention to include n coils in addition to the first coil L1 and the second coil L2, and the wireless power transmitter of the embodiment may include the first coils L1 to nth. It may include a coil (Ln).
- the inverter buffer 141 may include n inverter buffers 141 of the first inverter buffer 1411 to the nth inverter buffer 141 (2n-1), and the gate driver 142 is formed of the first and second buffer buffers 141.
- the gate driver 1421 may include n + 1 gate drivers 142 of the n + 1th gate drivers 142 (2n + 1), and the amplifying unit 143 may include the first amplifying unit 1431.
- the n + 1 amplifying units 143 and the power supply unit 144 of the n th to n + 1 amplifying units 143 (2n + 1) are the first power supply unit 1421 to the n th +1 th power supply unit 144 (2n + 1)
- N may include one power supply unit 144.
- n + 1 gate drivers 142 and amplification units 143 are required.
- n coils are arranged in the wireless power transmitter illustrated in FIG. 11, 2n gate drivers 142 and amplification units 143 are required.
- the wireless power transmitter of the embodiment may omit n-1 gate drivers 142 and amplification unit 143, compared to the wireless power transmitter of FIG. 11, and thus n-1 gate drivers 142 and amplification.
- the area occupied by the unit 143 and the costs of the n ⁇ 1 gate drivers 142 and the amplifier 143 may be reduced.
- the main controller 150 controls the first inverter buffer 1411 and the second inverter buffer 1413 to be in an activated and deactivated state, so that the main controller 150 controls at least one coil of the first coil L1 or the second coil L2. The operation of controlling the current to flow will be described.
- 14A and 14B illustrate the operation of the transmission resonator coil under the control of the main controller.
- the main controller 150 of the embodiment activates the first inverter buffer 1411 so that a current flows in the first coil L1, and the second inverter. It may be controlled to deactivate the buffer 1413.
- the main controller 150 activates the first inverter buffer 1411, the phase of the current flowing into the first gate driver 1421 and the phase of the current flowing into the second gate driver 1423 are 180 degrees. It may be different.
- phase difference of the current 180 ° is for explaining the example for convenience of explanation, the user can variously modify the phase difference of the current as needed, the intention to limit the scope of the invention no.
- the first coil L1 Since currents having a 180 ° phase difference from each other flow into the first and second amplifiers 1431 and 1333, the first coil L1 periodically receives a time corresponding to a 180 ° phase difference.
- the current iL1 may flow in a reverse direction.
- the main controller 150 deactivates the second inverter buffer 1423, the phase of the current flowing into the second gate driver 1423 and the phase of the current flowing into the third gate driver 1425 are the same. .
- the main controller 150 deactivates the first inverter buffer 1411 and activates the second inverter buffer 1413 so that the second coil ( The case of controlling the current to flow only in L2) is shown.
- the user may selectively allow a current to flow in the desired coils L1 and L2 by activating or deactivating only the first inverter buffer 1411 or the second inverter buffer 1413 in the main controller 150 as necessary. .
- the wireless power supply of the embodiment includes at least one or more coils L1 and L2, and describes a configuration for selectively or simultaneously supplying current to the at least one or more coils. It was.
- the present invention can be applied to a wireless power transmission apparatus having a plurality of transmission coils.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은 자기장을 전송을 위한 n개의 송신 코일, 소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부, 상기 AC 신호의 위상을 천이시키는 n개의 인버터버퍼, 상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부, 상기 AC 신호를 증폭시키는 n+1개의 증폭부 및 입력되는 상기 AC 신호의 위상에 기반하여 상기 증폭부를 제어하는 n+1개의 게이트드라이버;를 포함하는 것을 특징으로 하는 무선 전력 공급 장치에 관한 것이다.
Description
본 발명은 충전 기술에 관한 것으로서 비용 절감, 구조의 단순화 및 전력 효율을 극대화시키는 무선 전력 전송 방법 및 그를 위한 장치에 관한 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
전자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
하지만, 종래에는 복수 개의 송신코일을 스위칭하는 독립적인 복수 개의 증폭기를 이용하여 전력을 전송하였기 때문에 소자의 개수가 증가하여 비용 및 송신회로의 사이즈가 증가되는 문제가 있었다.
또한, 복수 개의 증폭기를 구비하지 않고 제어부에서 직접 스위칭 하여 송신코일을 선택적으로 이용하여 전력을 전송할 수 있었으나, 인가되는 전력이 스위치에 의해 손실되어 전력손실이 많아지는 문제가 있었다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 전력 전송 제어 방법 및 이를 위한 장치를 제공하는 것이다.
본 발명은 복수의 송신 코일이 구비된 무선 전력 송신 장치에서 비용 절감 및 구조의 단순화가 가능한 무선 전력 전송 방법 및 그를 위한 장치에 관한 것이다.
본 발명은 복수의 송신 코일이 구비된 무선 전력 송신 장치에서 전력 효율을 극대화시키는 것이 가능한 무선 전력 전송 방법 및 그를 위한 장치에 관한 것이다.
본 발명은 무선 전력 전송 방법 및 이를 위한 장치를 제공할 수 있다.
본 발명은 상술한 과제를 해결하기 위하여, 자기장을 전송을 위한 n개의 송신 코일, 소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부, 상기 AC 신호의 위상을 천이시키는 n개의 인버터버퍼, 상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부, 상기 AC 신호를 증폭시키는 n+1개의 증폭부 및 입력되는 상기 AC 신호의 위상에 기반하여 상기 증폭부를 제어하는 n+1개의 게이트드라이버를 포함하는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 증폭부는 적어도 하나 이상의 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)을 포함하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 송신 코일을 가로지르는 전류는 상기 AC 신호의 주기가 T일 때, T/2주기로 반전되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 게이트드라이버의 일단은 상기 인버터버퍼와 전기적으로 연결되도록 구비되고, 상기 게이트드라이버의 타단은 상기 증폭부와 전기적으로 연결되도록 구비되는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 n개의 증폭부 중, n-2개의 증폭부는 둘 이상의 서로 다른 상기 송신 코일과 전기적으로 연결되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 n개의 증폭부 중, 2개의 증폭부는 복수 개의 송신 코일 중 하나의 송신 코일에만 전기적으로 연결되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 자기장을 전송을 위한 복수 개의 송신 코일, 소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부, 상기 AC 신호의 위상을 천이시키는 복수 개의 인버터버퍼, 상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부, 상기 AC 신호를 증폭시키는 복수 개의 증폭부 및 입력되는 상기 AC신호의 위상에 기반하여 상기 증폭부를 제어하는 복수 개의 게이트드라이버를 포함하고, 상기 증폭부 중 적어도 하나는 상기 복수 개의 송신 코일과 전기적으로 연결되도록 구비되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 송신코일은 제1 내지 제2 송신 코일을 포함하고, 상기 증폭부는 제1 내지 제3증폭부를 포함하며, 상기 제1 송신코일의 일단과 상기 제2 송신코일의 일단은 상기 제2 전류증폭기와 전기적으로 연결되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 제1 송신 코일의 일단은 상기 제1 전류증폭기와 전기적으로 연결되고, 상기 제1 송신 코일의 타단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되며, 상기 제2 송신 코일의 일단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되고, 상기 제2 송신 코일의 타단은 상기 제3 전류증폭기와 전기적으로 연결되도록 구비되는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 증폭부는 적어도 하나 이상의 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)을 포함하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 게이트 드라이버는 상기 전류증폭기와 동일한 개수로 구비되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 게이트 드라이버는 제1 내지 제3 게이트 드라이버를 포함하고, 상기 제1 게이트 드라이버의 일단은 상기 제1 인버터버퍼와 전기적으로 연결되도록 구비되고, 상기 제1 게이트 드라이버의 타단은 상기 제1 전류증폭기와 전기적으로 연결되도록 구비되며, 상기 제2 게이트 드라이버의 일단은 상기 전류 공급부와 전기적으로 연결되도록 구비되고, 상기 제2 게이트 드라이버의 타단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되며, 상기 제3 게이트 드라이버의 일단은 상기 제2 인버터버퍼와 전기적으로 연결되도록 구비되고, 상기 제3 게이트 드라이버의 타단은 제3 전류증폭기와 전기적으로 연결되도록 구비되는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 자기장을 전송을 위한 3개의 제1 내지 제3송신 코일, 소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부, 상기 AC 신호의 위상을 천이시키는 3개의 제1 내지 제3인버터버퍼, 상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부, 상기 AC 신호를 증폭시키는 4개의 제1 내지 제4증폭부 및 입력되는 상기 AC신호의 위상에 기반하여 상기 증폭부를 제어하는 4개의 제1 내지 제4게이트드라이버를 포함하고, 상기 증폭부 중 적어도 하나는 상기 복수 개의 송신 코일과 전기적으로 연결되도록 구비되는 것을 특징으로 하는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 제n전송 코일의 일단은 상기 제n증폭부와 전기적으로 연결되고, 상기 제n전송 코일의 타단은 상기 제n+1증폭부와 전기적으로 연결되는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
또한, 상기 제n증폭부는 상기 제n게이트드라이버와 전기적으로 연결되고, 상기 제n인버터버퍼의 일단은 상기 제n게이트드라이버와 전기적으로 연결되고, 상기 제n인버터버퍼의 타단은 상기 제n+1게이트드라이버와 전기적으로 연결되는 무선 전력 공급 장치를 제공하는 것을 과제의 해결 수단으로 한다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법 및 장치에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 전력 전송 제어 방법 및 이를 위한 장치를 제공할 수 있다.
본 발명은 복수의 송신 코일이 구비된 무선 전력 송신 장치에서 비용 절감 및 구조의 단순화가 가능한 무선 전력 전송 방법 및 그를 위한 장치를 제공할 수 있다.
본 발명은 복수의 송신 코일이 구비된 무선 전력 송신 장치에서 전력 효율을 극대화시키는 것이 가능한 무선 전력 전송 방법 및 그를 위한 장치를 제공할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 구조를 설명하기 위한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송신기의 타입 및 특성을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 무선 전력 수신기의 타입 및 특성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 등가 회로도이다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 상태 천이 절차를 설명하기 위한 상태 천이도이다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 수신기의 상태 천이도이다.
도 7은 본 발명의 일 실시예에 따른 VRECT에 따른 무선 전력 수신기의 동작 영역을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 구성도이다.
도 9는 본 발명의 일 실시예에 따른 무선 충전 절차를 설명하기 위한 흐름도이다.
도 10은 본 발명의 일 실시 예에 따른 무선 전력 송신기의 블락도를 도시한 것이다.
도 11은 본 발명의 일 실시 예에 따른 무선 전력 송신기의 회로도를 도시한 것이다.
도 12는 본 발명의 다른 실시 예에 따른 무선 전력 송신기의 회로도를 도시한 것이다.
도 13은 본 발명의 또 다른 다른 실시 예에 따른 무선 전력 송신기의 회로도를 도시한 것이다.
도 14a 및 도 14b는 주제어부의 제어에 따른 송신 공진기 코일의 작동을 도시한 것이다.
본 발명의 일 실시예에 따른 무선 전력 공급 장치는 자기장을 전송을 위한 n개의 송신 코일, 소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부, 상기 AC 신호의 위상을 천이시키는 n개의 인버터버퍼, 상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부, 상기 AC 신호를 증폭시키는 n+1개의 증폭부 및 입력되는 상기 AC 신호의 위상에 기반하여 상기 증폭부를 제어하는 n+1개의 게이트드라이버를 포함하여 구성될 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
이상에서, 본 발명의 실시예를 구성하는 모든 구성 요소들이 하나로 결합되거나 결합되어 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 그 모든 구성 요소들이 각각 하나의 독립적인 하드웨어로 구현될 수 있지만, 각 구성 요소들의 그 일부 또는 전부가 선택적으로 조합되어 하나 또는 복수 개의 하드웨어에서 조합된 일부 또는 전부의 기능을 수행하는 프로그램 모듈을 갖는 컴퓨터 프로그램으로서 구현될 수도 있다. 그 컴퓨터 프로그램을 구성하는 코드들 및 코드 세그먼트들은 본 발명의 기술 분야의 당업자에 의해 용이하게 추론될 수 있을 것이다. 이러한 컴퓨터 프로그램은 컴퓨터가 읽을 수 있는 저장매체(Computer Readable Media)에 저장되어 컴퓨터에 의하여 읽혀지고 실행됨으로써, 본 발명의 실시예를 구현할 수 있다. 컴퓨터 프로그램의 저장매체로서는 자기 기록매체, 광 기록매체, 캐리어 웨이브 매체 등이 포함될 수 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재될 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥 상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
실시예의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 무선 전력 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 무선 전력 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 전자기 유도 방식의 무선파워 전송 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 전자기 공진 방식에 기반한 다양한 무선 전력 전송 표준이 적용될 수도 있다. 일 예로, 전자기 공진 방식의 무선 전력 전송 표준은 A4WP(Alliance for Wireless Power)에서 정의된 공진 방식의 무선 충전 기술을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 상기한 전자기 유도 방식 및 전자기 공진 방식을 모두 지원할 수도 있다.
특히, 본 발명의 일 실시예에 따른 무선 통합 충전기 또는 무선 전력 전송 제어 장치는 상기한 전자기 유도 방식 및 전자기 공진 방식 중 적어도 하나의 무선 전력 전송 방식을 지원할 수 있을 뿐만 아니라 충전기 일측에 구비된 적어도 하나의 충전 단자를 통해 유선으로 전자 기기에 전력을 공급할 수도 있다.
또한, 본 발명의 일 실시예에 따른 무선 전력 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 파워를 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식 및 A4WP(Alliance for Wireless Power)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
본 발명의 일 실시예에 따른 무선 통합 충전기로부터 전력 수신이 가능한 전자 기기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌, 스마트 워치와 같은 웨어러블 디바이스 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 통합 충전기 또는 무선 전력 전송 제어 장치에 탑재된 무선 전력 전송 방식 및 장착된 유선 충전용 접속 단자를 통해 전력을 수신하여 배터리 충전이 가능한 기기라면 족하다.
이하의 설명에서는 유선 충전 수단 및 무선 충전 수단이 모두 구비되어 무선 통합 전력 공급이 가능한 충전기를 무선 통합 충전기 또는 무선 전력 전송 제어 장치라 명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 구조를 설명하기 위한 블록도이다.
도 1을 참조하면, 무선 전력 전송 시스템은 무선 전력 송신기(100)와 무선 전력 수신기(200)를 포함하여 구성될 수 있다.
상기 도 1에는 무선 전력 송신기(100)가 하나의 무선 전력 수신기(200)에 무선 파워를 전송하는 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기(100)는 복수의 무선 전력 수신기(200)에 무선 파워를 전송할 수도 있다. 또 다른 일 실시예에 따른 무선 전련 수신기(200)는 복수의 무선 전력 송신기(100)로부터 동시에 무선 전력을 수신할 수도 있음을 주의해야 한다.
무선 전력 송신기(100)는 특정 전력 전송 주파수를 이용하여 자기장을 발생시켜 무선 전력 수신기(200)에 전력을 송신할 수 있다.
무선 전력 수신기(200)는 무선 전력 송신기(100)에 의해 사용되는 주파수와 동일한 주파수로 동조하여 전력을 수신할 수 있다.
일 예로, 전력 전송을 위한 주파수는 6.78MHz 대역일 수 있으나, 이에 국한되지는 않는다.
즉, 무선 전력 송신기(100)에 의해 전송된 전력은 무선 전력 송신기(100)와 공진을 이루는 무선 전력 수신기(200)에 전달될 수 있다.
하나의 무선 전력 송신기(100)로부터 전력을 수신할 수 있는 무선 전력 수신기(200)의 최대 개수는 무선 전력 송신기(100)의 최대 전송 파워 레벨, 무선 전력 수신기(200)의 최대 전력 수신 레벨, 무선 전력 송신기(100) 및 무선 전력 수신기(200)의 물리적인 구조에 기반하여 결정될 수 있다.
무선 전력 송신기(100)와 무선 전력 수신기(200)는 무선 전력 전송을 위한 주파수 대역-즉, 공진 주파수 대역-과는 상이한 주파수 대역으로 양방향 통신을 수행할 수 있다. 일 예로, 양방향 통신은 반이중 방식의 BLE(Bluetooth Low Energy) 통신 프로토콜이 사용될 수 있다.
무선 전력 송신기(100)와 무선 전력 수신기(200)는 상기 양방향 통신을 통해 서로의 특성 및 상태 정보-즉, 전력 협상 정보-를 교환할 수 있다.
일 예로, 무선 전력 수신기(200)는 무선 전력 송신기(100)로부터 수신되는 전력 레벨을 제어하기 위한 소정 전력 수신 상태 정보를 양방향 통신을 통해 무선 전력 송신기(100)에 전송할 수 있으며, 무선 전력 송신기(100)는 수신된 전력 수신 상태 정보에 기반하여 동적으로 전송 전력 레벨을 제어할 수 있다. 이를 통해, 무선 전력 송신기(100)는 전력 전송 효율을 최적화시킬 수 있을 뿐만 아니라 과전압(Over-Voltage)에 따른 부하 파손을 방지하는 기능, 저전압(Under-Voltage)에 따라 불필요한 전력이 낭비되는 것을 방지하는 기능 등을 제공할 수 있다.
또한, 무선 전력 송신기(100)는 양방향 통신을 통해 무선 전력 수신기(200)에 대한 인증 및 식별하는 기능, 호환되지 않는 장치 또는 충전이 불가능한 물체를 식별하는 기능, 유효한 부하를 식별하는 기능 등을 수행할 수도 있다.
이하에서는, 보다 구체적으로 공진 방식의 무선 전력 전송 과정을 상기 도 1을 참조하여 설명하기로 한다.
무선 전력 송신기(100)는 전원공급부(power supplier, 110), 전력변환부(Power Conversion Unit, 120), 매칭회로(Matching Circuit, 130), 송신공진기(Transmission Resonator, 140), 주제어부(Main Controller, 150) 및 통신부(Communication Unit, 160)를 포함하여 구성될 수 있다. 통신부는 데이터 송신기(Data Transmitter)와 데이터 수신기(Data receiver)를 포함할 수 있다.
전원공급부(110)는 주제어부(150)의 제어에 따라 전력변환부(120)에 특정 공급 전압을 공급할 수 있다. 이때, 공급 전압은 DC 전압 또는 AC 전압일 수 있다.
전력변환부(120)는 주제어부(150)의 제어에 따라 전력공급부(110)로부터 수신된 전압을 특정 전압으로 변환시킬 수 있다. 이를 위해, 전력변환부(210)는 DC/DC 변환기(DC/DC convertor), AC/DC 변환기(AC/DC convertor), 파워 증폭기(Power amplifier) 중 적어도 하나를 포함하여 구성될 수 있다.
매칭회로(130)는 전력 전송 효율을 극대화시키기 위해 전력변환부(210)와 송신공진기(140) 사이의 임피던스를 정합하는 회로이다.
송신공진기(140)는 매칭회로(130)로부터 인가된 전압에 따라 특정 공진 주파수를 이용하여 무선으로 전력을 전송할 수 있다.
무선 전력 수신기(100)는 수신공진기(Reception Resonator, 210), 정류기(Rectifier, 220), DC-DC 변환기(DC-DC Converter, 230), 부하(Load, 240), 주제어부(Main Controller, 250) 및 통신부(Communication Unit, 260)를 포함하여 구성될 수 있다. 통신부는 데이터 송신기(Data Transmitter)와 데이터 수신기(Data receiver)를 포함할 수 있다.
수신공진기(210)는 공진 현상을 통해 송신공진기(140)에 의해 송출된 전력을 수신할 수 있다.
정류기(210)는 수신공진기(210)로부터 인가되는 AC 전압을 DC 전압으로 변환하는 기능을 수행할 수 있다.
DC-DC 변환기(230)는 정류된 DC 전압을 부하(240)에 요구되는 특정 DC 전압으로 변환할 수 있다.
주제어부(250)는 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어하거나 무선 전력 수신기(200)의 특성 및 상태 정보를 생성하고 통신부(260)를 제어하여 무선 전력 송신기(100)에 상기 무선 전력 수신기(200)의 특성 및 상태 정보를 전송할 수 있다. 일 예로, 주제어부(250)는 정류기(220)와 DC-DC 변환기(230)에서의 출력 전압 및 전류의 세기를 모니터링하여 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어할 수 있다.
모니터링된 출력 전압 및 전류의 세기 정보는 통신부(260)를 통해 무선 전력 송신기(100)에 실시간으로 전송될 수 있다.
또한, 주제어부(250)는 정류된 DC 전압을 소정 기준 전압과 비교하여 과전압 상태(Over-Voltage State)인지 저전압 상태(Under-Voltage State)인지를 판단하고, 판단 결과에 따라 시스템 오류 상태가 감지되면, 감지 결과를 통신부(260)를 통해 무선 전력 송신기(100)에 전송할 수도 있다.
또한, 주제어부(250)는 시스템 오류 상태가 감지되면, 부하의 훼손을 방지하기 위해 정류기(220) 및 DC-DC 변환기(230)의 동작을 제어하거나 스위치 또는(및) 제너 다이오드를 포함한 소정 과전류 차단 회로를 이용하여 부하(240)에 인가되는 전력을 제어할 수도 있다.
상기한 도 1에서는 주제어부(150, 250)와 통신부(160, 260)가 서로 다른 모듈로 구성된 것으로 도시되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예는 주제어부(150, 250)와 통신부(160, 260)가 하나의 모듈로 구성될 수도 있음을 주의해야 한다.
도 2는 본 발명의 일 실시예에 따른 무선 전력 송신기의 타입 및 특성을 설명하기 위한 도면이다.
본 발명에 따른 무선 전력 송신기와 무선 전력 수신기는 각각 등급(Class)과 카테고리(Category)로 타입 및 특성이 분류될 수 있다.
무선 전력 송신기의 타입 및 특성은 크게 다음의 3가지 파라메터를 통해 식별될 수 있다.
첫째, 무선 전력 송신기는 송신 공진기(140)에 인가되는 최대 전력의 세기에 따라 결정되는 등급에 의해 식별될 수 있다.
여기서, 무선 전력 송신기의 등급은 송신 공진기(140)에 인가되는 파워(PTX_IN_COIL)의 최대 값을 하기 무선 전력 송신기 등급 표-이하, 표 1이라 명함-에 명기된 등급 별 미리 정의된 최대 입력 파워(PTX
_IN_MAX)와 비교하여 결정될 수 있다. 여기서, PTX
_IN_COIL은 송신공진기(140)에 단위 시간 동안 인가되는 전압(V(t))과 전류(I(t))의 곱을 해당 단위 시간으로 나누어 산출되는 평균 실수 값일 수 있다.
등급(Class) | 최대 입력 파워 | 최소 카테고리지원 요구 조건 | 지원 가능 최대 디바이스의 개수 |
등급 1 | 2W | 1 x 등급1 | 1 x 등급1 |
등급 2 | 10W | 1 x 등급3 | 2 x 등급2 |
등급 3 | 16W | 1 x 등급4 | 2 x 등급3 |
등급 4 | 33W | 1 x 등급5 | 3 x 등급3 |
등급 5 | 50W | 1 x 등급6 | 4 x 등급3 |
등급 6 | 70W | 1 x 등급6 | 5 x 등급3 |
상기 표 1에 개시된 등급은 일 실시예에 불과하며, 새로운 등급이 추가되거나 삭제될 수도 있다. 또한, 등급 별 최대 입력 파워, 최소 카테고리 지원 요구 조건, 지원 가능 최대 디바이스 개수에 대한 값도 무선 전력 송신기의 용도, 형상 및 구현 형태 등에 따라 변경될 수도 있음을 주의해야 한다.
일 예로, 상기 표 1을 참조하면, 송신 공진기(140)에 인가되는 파워(PTX_IN_COIL)의 최대 값이 등급 3에 대응되는 PTX
_IN_MAX 값보다 크거나 같고, 등급 4에 대응되는 PTX
_IN_MAX 값보다 작은 경우, 해당 무선 전력 송신기의 등급은 등급 3으로 결정될 수 있다.
둘째, 무선 전력 송신기는 식별된 등급에 대응되는 최소 카테고리 지원 요구 조건(Minimum Category Support Requirements)에 따라 식별될 수도 있다.
여기서, 최소 카테고리 지원 요구 조건은 해당 등급의 무선 전력 송신기가 지원 가능한 무선 전력 수신기 카테고리 중 가장 높은 수준의 카테고리에 해당되는 무선 전력 수신기의 지원 가능 개수일 수 있다. 즉, 최소 카테고리 지원 요구 조건은 해당 무선 전력 송신기가 지원 가능한 최대 카테고리 디바이스의 최소 개수일 수 있다. 이때, 무선 전력 송신기는 상기 최소 카테고리 요구 조건에 따른 최대 카테고리 이하에 해당하는 모든 카테고리의 무선 전력 수신기를 지원할 수 있다.
다만, 만약, 무선 전력 송신기가 상기 최소 카테고리 지원 요구 조건에 명시된 카테고리보다 더 높은 카테고리의 무선 전력 수신기를 지원할 수 있다면, 무선 전력 송신기가 해당 무선 전력 수신기를 지원하는 것을 제한하지는 않을 수 있다.
일 예로, 상기 표 1을 참조하면, 등급 3인 무선 전력 송신기는 적어도 하나의 카테고리 5인 무선 전력 수신기를 지원해야 한다. 물론, 이 경우, 무선 전력 송신기는 최소 카테고리 지원 요구 조건에 해당되는 카테고리 수준 보다 낮은 수준의 카테고리에 해당되는 무선 전력 수신기(100)를 지원할 수 있다.
또한, 무선 전력 송신기는 최소 카테고리 지원 요구 조건에 대응되는 카테고리보다 더 높은 수준의 카테고리를 지원 가능한 것으로 판단되면, 더 높은 수준의 카테고리를 갖는 무선 전력 수신기를 지원할 수도 있음을 주의해야 한다.
셋째, 무선 전력 송신기는 식별된 등급에 대응되는 지원 가능 최대 디바이스 개수에 의해 식별될 수도 있다. 여기서, 지원 가능 최대 디바이스 개수는 해당 등급에서 지원 가능한 카테고리 중 가장 낮은 수준의 카테고리에 해당되는 무선 전력 수신기의 최대 지원 가능 개수-이하, 간단히 지원 가능 디바이스의 최대 개수라 명함-에 의해 식별될 수도 있다.
일 예로, 상기 표 1을 참조하면, 등급 3의 무선 전력 송신기는 최소 카테고리 3인 무선 전력 수신기를 최대 2개까지 지원할 수 있어야 한다.
다만, 무선 전력 송신기가 자신의 등급에 상응하는 최대 디바이스 개수 이상을 지원할 수 있는 경우, 최대 디바이스 개수 이상을 지원하는 것을 제한하지는 않는다.
본 발명에 따른 무선 전력 송신기는 무선 전력 수신기의 전력 전송 요청을 허락하지 않을 특별한 이유가 없는 경우, 가용한 파워 내에서 적어도 상기 표 1에 정의된 개수까지는 무선 전력 전송을 수행할 있어야 한다.
일 예로, 무선 전력 송신기는 해당 전력 전송 요청을 수용할 정도의 가용한 파워가 남아있지 않는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다. 또는, 무선전력 수신기의 전력 조정을 제어할 수 있다.
다른 일 예로, 무선 전력 송신기는 전력 전송 요청을 수락하면 수용 가능한 무선 전력 수신기의 개수를 초과하는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다.
또 다른 일 예로, 무선 전력 송신기는 전력 전송을 요청한 무선 전력 수신기의 카테고리가 자신의 등급에서 지원 가능한 카테고리 수준을 초과하는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다.
또 다른 일 예로, 무선 전력 송신기는 내부 온도가 기준치 이상을 초과하는 경우, 해당 무선 전력 수신기의 전력 전송 요청을 수락하지 않을 수 있다.
도 3은 본 발명의 일 실시예에 따른 무선 전력 수신기의 타입 및 특성을 설명하기 위한 도면이다.
도 3에 도시된 바와 같이, 수신공진기(210)의 평균 출력 전압(PRX
_OUT)은 단위 시간 동안 수신공진기(210)에 의해 출력되는 전압(V(t))와 전류(I(t))의 곱을 해당 단위 시간으로 나누어 산출되는 실수 값일 수 있다.
무선 전력 수신기의 카테고리는 하기 표 2에 도시된 바와 같이, 수신공진기(210)의 최대 출력 전압(PRX_OUT_MAX)에 기반하여 정의될 수 있다.
카테고리(Category) | 최대 입력 파워 | 응용 예 |
카테고리 1 | TBD | 블루투스 핸드셋 |
카테고리 2 | 3.5W | 피쳐폰 |
카테고리 3 | 6.5W | 스마트폰 |
카테고리 4 | 13W | 테블릿 |
카테고리 5 | 25W | 소형 랩탑 |
카테고리 6 | 37.5W | 랩탑 |
카테고리 6 | 50W | TBD |
일 예로, 부하단에서의 충전 효율이 80%이상인 경우, 카테고리 3의 무선 전력 수신기는 부하의 충전 포트에 5W의 전력을 공급할 수 있다.
상기 표 2에 개시된 카테고리는 일 실시예에 불과하며, 새로운 카테고리가 추가되거나 삭제될 수도 있다. 또한, 상기 표 2에 보여지는 카테고리 별 최대 출력 파워, 응용 어플리케이션의 예도 무선 전력 수신기의 용도, 형상 및 구현 형태 등에 따라 변경될 수도 있음을 주의해야 한다.
도 4는 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 등가 회로도이다.
상세하게, 도 4는 후술할 레퍼런스 파라메터들이 측정되는 등가 회로상에서의 인터페이스 지점을 보여준다.
이하에서는, 상기 도 4에 표시된 레퍼런스 파라메터들의 의미를 간단히 설명하기로 한다.
ITX와 ITX
_COIL은 각각 무선 전력 송신기의 매칭 회로(또는 매칭 네트워크)(420)에 인가되는 RMS(Root Mean Square) 전류와 무선 전력 송신기의 송신 공진기 코일(425)에 인가되는 RMS 전류를 의미한다.
ZTX
_IN 은 무선 전력 송신기의 전원부/증폭기/필터(410) 후단의 입력 임피던스(Input Impedance)와 매칭 회로(420) 전단의 입력 임피던스(Input Impedance)를 의미한다.
ZTX
_IN_COIL은 매칭 회로(420) 후단 및 송신 공진기 코일(425) 전단에서의 입력 임피던스를 의미한다.
L1과 L2는 각각 송신 공진기 코일(425)의 인덕턴스 값과 수신 공진기 코일(427)의 인덕턴스 값을 의미한다.
ZRX
_IN은 무선전력수신기의 매칭 회로(430) 후단과 무선전력수신기의 필터/정류기/부하(440) 전단에서의 입력 임피던스를 의미한다.
본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 동작에 사용되는 공진 주파수는 6.78MHz ± 15㎑일 수 있다.
또한, 일 실시예에 따른 무선 전력 전송 시스템은 복수의 무선 전력 수신기에 대한 동시 충전-즉, 멀티 충전-을 제공할 수 있으며, 이 경우, 무선 전력 수신기가 새로 추가되거나 삭제되더라도 남아 있는 무선 전력 수신기의 수신 파워 변화량은 소정 기준치 이상을 초과하지 않도록 제어될 수 있다. 일 예로, 수신 파워 변화량은 ±10%일 수 있으나 이에 국한되지는 않는다.
상기 수신 파워 변화량을 유지하기 위한 조건은 무선 전력 수신기가 충전 영역에 추가 또는 삭제 시 기존 무선 전력 수신기와 중첩되지 않아야 한다.
무선 전력 수신기의 매칭 회로(430)가 정류기에 연결된 경우, 상기 ZTX
_IN의 실수부(Real Part)는 정류기의 부하 저항-이하, RRECT이라 명함-과 역의 관계일 수 있다. 즉, RRECT의 증가는 ZTX
_IN을 감소시키고, RRECT의 감소는 ZTX
_IN을 증가시킬 수 있다.
본 발명에 따른 공진기 정합 효율(Resonator Coupling Efficiency)은 수신공진기 코일에서 부하(440)로 전달되는 파워를 송신공진기 코일(425)에서 공진 주파수 대역에 실어주는 파워로 나누어 산출되는 최대 파워 수신 비율일 수 있다. 무선 전력 송신기와 무선 전력 수신기 사이의 공진기 정합 효율은 송신공진기의 레퍼런스 포트 임피던스(ZTX_IN)과 수신공진기의 레퍼런스 포트 임피던스(ZRX
_IN)가 완벽하게 매칭되는 경우에 산출될 수 있다.
하기 표 3은 본 발명의 일 실시예에 따른 무선 전력 송신기의 등급 및 무선 전력 수신기의 클래스에 따른 최소 공진기 정합 효율의 예이다.
카테고리 1 | 카테고리 2 | 카테고리 3 | 카테고리 4 | 카테고리 5 | 카테고리 6 | 카테고리 7 | |
등급 1 | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
등급 2 | N/A | 74%(-1.3) | 74%(-1.3) | N/A | N/A | N/A | N/A |
등급 3 | N/A | 74%(-1.3) | 74%(-1.3) | 76%(-1.2) | N/A | N/A | N/A |
등급 4 | N/A | 50%(-3) | 65%(-1.9) | 73%(-1.4) | 76%(-1.2) | N/A | N/A |
등급 5 | N/A | 40%(-4) | 60%(-2.2) | 63%(-2) | 73%(-1.4) | 76%(-1.2) | N/A |
등급 5 | N/A | 30%(-5.2) | 50%(-3) | 54%(-2.7) | 63%(-2) | 73%(-1.4) | 76%(-1.2) |
만약, 복수의 무선 전력 수신기가 사용될 경우, 상기 표 3에 표시된 클래스 및 카테고리에 대응되는 최소 공진기 정합 효율은 증가할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 송신기에서의 상태 천이 절차를 설명하기 위한 상태 천이도이다.
도 5를 참조하면, 무선 전력 송신기의 상태는 크게 구성 상태(Configuration State, 510), 전력 절약 상태(Power Save State, 520), 저전력 상태(Low Power State, 530), 전력 전송 상태(Power Transfer State, 540), 로컬 장애 상태(Local Fault State, 550) 및 잠금 장애 상태(Latching Fault State, 560)을 포함하여 구성될 수 있다.
무선 전력 송신기에 전력이 인가되면, 무선 전력 송신기는 구성 상태(510)로 천이할 수 있다. 무선 전력 송신기는 구성 상태(510)에서 소정 리셋 타이머가 만료되거나 초기화 절차가 완료되면, 전력 절약 상태(520)로 천이할 수 있다.
전력 절약 상태(520)에서, 무선 전력 송신기는 비콘 시퀀스를 생성하여 공진 주파수 대역을 통해 전송할 수 있다.
여기서, 무선 전력 송신기는 전력 절약 상태(520)에 진입한 후 소정 시간 이내에 비콘 시퀀스가 개시될 수 있도록 제어할 수 있다. 일 예로, 무선 전력 송신기는 전력 절약 상태(520) 천이 후 50ms 이내에 비콘 시퀀스가 개시될 수 있도록 제어할 수 있으나, 이에 국한되지는 않는다.
전력 절약 상태(520)에서, 무선 전력 송신기는 무선 전력 수신기를 감지하기 위한 제1 비콘 시퀀스(First Beacon Sequece)를 주기적으로 생성하여 전송하고, 수신 공진기의 임피던스 변화-즉, Load Variation-를 감지할 수 있다. 이하, 설명의 편의를 위해 제1 비콘과 제1 비콘 시퀀스를 각각 Short Beacon과 Short Beacon 시퀀스라 명하기로 한다.
특히, Short Beacon 시퀀스는 무선 전력 수신기가 감지되기 전까지 무선 전력 송신기의 대기 전력이 절약될 수 있도록 짧은 구간 동안(tSHORT
_BEACON) 일정 시간 간격(tCYCLE)으로 반복 생성되어 전송될 수 있다. 일 예로, tSHORT
_BEACON은 30ms이하, tCYCLE은 250ms ±5 ms로 각각 설정될 수 있다. 또한, Short Beacon의 전류 세기는 소정 기준치이상이고, 일정 시간 구간 동안 점증적으로 증가될 수 있다. 일 예로, Short Beacon의 최소 전류 세기는 상기 표 2의 카테고리 2 이상의 무선 전력 수신기가 감지될 수 있도록 충분히 크게 설정될 수 있다.
본 발명에 따른 무선 전력 송신기는 Short Beacon에 따른 수신 공진기에서의 리액턴스(reactance) 및 저항(resistance) 변화를 감지하기 위한 소정 센싱 수단이 구비될 수 있다.
또한, 전력 절약 상태(520)에서, 무선 전력 송신기는 무선 전력 수신기의 부팅(Booting) 및 응답에 필요한 충분한 전력을 공급하기 위한 제2 비콘 시퀀스를 주기적으로 생성하여 전송할 수 있다. 이하, 설명의 편의를 위해 제2 비콘과 제2 비콘 시퀀스를 각각 Long Beacon과 Long Beacon 시퀀스라 명하기로 한다.
즉, 무선 전력 수신기는 제2 비콘 시퀀스를 통해 부팅이 완료되면, 대역외 통신 채널을 통해 소정 응답 신호를 브로드캐스팅할 수 있다.
특히, Long Beacon 시퀀스는 무선 전력 수신기의 부팅에 필요한 충분한 전원을 공급하기 위해 Short Beacon에 비해 상대적으로 긴 구간 동안(tLONG_BEACON)동안 일정 시간 간격(tLONG
_BEACON_PERIOD)으로 생성되어 전송될 수 있다. 일 예로, tLONG
_BEACON은 105 ms+5 ms, tLONG
_BEACON_PERIOD 은 850ms로 각각 설정될 수 있으며, Long Beacon의 전류 세기는 Short Beacon의 전류 세기에 비해 상대적으로 강할 수 있다. 또한, Long Beacon은 전송 구간 동안 일정 세기의 파워가 유지될 수 있다.
이 후, 무선 전력 송신기는 수신 공진기의 임피던스 변화가 감지된 후, 무선 전력 송신기는 Long Beacon 전송 구간 동안 소정 응답 시그널의 수신을 대기할 수 있다. 이하, 설명의 편의를 위해 상기 응답 시그널을 광고 시그널(Advertisement Signal)이라 명하기로 한다. 여기서, 무선 전력 수신기는 공진 주파수 대역과는 상이한 대역외 통신 주파수 대역을 통해 광고 시그널을 브로드캐스팅할 수 있다.
일 예로, 광고 시그널은 해당 대역외 통신 표준에 정의된 메시지를 식별하기 위한 메시지 식별 정보, 무선 전력 수신기가 적법한 또는 해당 무선 전력 송신기에 호환 가능한 수신기인지를 식별하기 위한 고유한 서비스 또는 무선 전력 수신기 식별 정보, 무선 전력 수신기의 출력 파워 정보, 부하에 인가되는 정격 전압/전류 정보, 무선 전력 수신기의 안테나 이득 정보, 무선 전력 수신기의 카테고리를 식별하기 위한 정보, 무선 전력 수신기 인증 정보, 과전압 보호 기능의 탑재 여부에 관한 정보, 무선 전력 수신기에 탑재된 소프트웨어 버전 정보 중 적어도 하나 또는 어느 하나를 포함할 수 있다.
무선 전력 송신기는 광고 시그널이 수신되면, 전력 절약 상태(520)에서 저전력 상태(530)로 천이한 후, 무선 전력 수신기와의 대역외 통신 링크를 설정할 수 있다. 연이어, 무선 전력 송신기는 설정된 대역외 통신 링크를 통해 무선 전력 수신기에 대한 등록 절차를 수행할 수 있다. 일 예로, 대역외 통신이 블루투스 저전력 통신인 경우, 무선 전력 송신기는 무선 전력 수신기와 블루투스 페어링을 수행하고, 페어링된 블루투스 링크를 통해 서로의 상태 정보, 특성 정보 및 제어 정보 중 적어도 하나를 교환할 수 있다.
무선 전력 송신기가 저전력 상태(530)에서 대역외 통신을 통해 충전을 개시하기 위한 소정 제어 신호-즉, 무선 전력 수신기가 부하에 전력을 전달하도록 요청하는 소정 소정 제어 신호-를 무선 전력 송신기에 전송하면, 무선 전력 송신기의 상태는 저전력 상태(530)에서 전력 전송 상태(540)로 천이될 수 있다.
만약, 저전력 상태(530)에서 대역외 통신 링크 설정 절차 또는 등록 절차가 정상적으로 완료되지 않은 경우, 무선 전력 송신기의 상태는 저전력 상태(530)에서 전력 절약 상태(520)에 천이될 수 있다.
무선 전력 송신기는 각 무선 전력 수신기와의 접속을 위한 별도의 분리된 링크 만료 타이머(Link Expiration Timer)가 구동될 수 있으며, 무선 전력 수신기는 소정 시간 주기로 무선 전력 송신기에 자신이 존재함을 알리는 소정 메시지를 링크 만료 타이머가 만료되기 이전에 전송해야 한다. 링크 만료 타이머는 상기 메시지가 수신될 때마다 리셋되며, 링크 만료 타이머가 만료되지 않으면 무선 전력 수신기와 무선 전력 수신기 사이에 설정된 대역외 통신 링크는 유지될 수 있다.
만약, 저전력 상태(530) 또는 전력 전송 상태(540)에서, 무선 전력 송신기와 적어도 하나의 무선 전력 수신기 사이에 설정된 대역외 통신 링크에 대응되는 모든 링크 만료 타이머가 만료된 경우, 무선 전력 송신기의 상태는 전력 절약 상태(520)로 천이될 수 있다.
또한, 저전력 상태(530)의 무선 전력 송신기는 무선 전력 수신기로부터 유효한 광고 시그널이 수신되면 소정 등록 타이머를 구동시킬 수 있다. 이때, 등록 타이머가 만료되면, 저전력 상태(530)의 무선 전력 송신기는 전력 절약 상태(520)로 천이할 수 있다. 이때, 무선 전력 송신기는 등록에 실패하였음을 알리는 소정 알림 신호를 무선 전력 송신기에 구비된 알림 표시 수단-예를 들면, LED 램프, 디스플레이 화면, 비퍼(beeper) 등을 포함함-을 통해 출력할 수도 있다.
또한, 전력 전송 상태(540)에서, 무선 전력 송신기는 접속된 모든 무선 전력 수신기의 충전이 완료되면, 저전력 상태(530)로 천이될 수 있다.
특히, 무선 전력 수신기는 구성 상태(510), 로컬 장애 상태(550) 및 잠금 장애 상태(560)를 제외한 나머지 상태에서 새로운 무선 전력 수신기의 등록을 허용할 수 있다.
또한, 무선 전력 송신기는 전력 전송 상태(540)에서 무선 전력 수신기로부터 수신되는 상태 정보에 기반하여 전송 전력을 동적으로 제어할 수 있다.
이때, 무선 전력 수신기로부터 무선 전력 송신기에 전송되는 수신기 상태 정보는 요구 전력 정보, 정류기 후단에서 측정된 전압 및/또는 전류 정보, 충전 상태 정보, 과전류 및/또는 과전압 및/또는 과열 상태를 통보하기 위한 정보, 과전류 또는 과전압에 따라 부하에 전달되는 전력을 차단하거나 감소시키는 수단이 활성화되었는지 여부를 지시하는 정보 중 적어도 하나를 포함할 수 있다. 이때, 수신기 상태 정보는 미리 지정된 주기로 전송되거나 특정 이벤트가 발생될 때마다 전송될 수 있다. 또한, 상기 과전류 또는 과전압에 따라 부하에 전달되는 전력을 차단하거나 감소시키는 수단은 ON/OFF 스위치, 제너다이오드 중 적어도 하나를 이용하여 제공될 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기로부터 무선 전력 송신기에 전송되는 수신기 상태 정보는 무선 전력 수신기에 유선으로 외부 전원이 연결되었음을 알리는 정보, 대역외 통신 방식이 변경되었음을 알리는 정보-일 예로, NFC(Near Field Communication)에서 BLE(Bluetooth Low Energy) 통신으로 변경될 수 있음- 중 적어도 하나를 더 포함할 수도 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 송신기는 자신의 현재 가용한 전력, 무선 전력 수신기 별 우선 순위, 접속된 무선 전력 수신기의 개수 중 적어도 하나에 기반하여 무선 전력 수신기 별 수신해야 할 파워 세기를 적응적으로 결정할 수도 있다. 여기서, 무선 전력 수신기 별 파워 세기는 해당 무선 전력 수신기의 정류기에서 처리 가능한 최대 파워 대비 얼마의 비율로 파워를 수신해야 하는지로 결정될 수 있다.
이 후, 무선 전력 송신기는 결정된 파워 세기에 관한 정보가 포함된 소정 전력 제어 명령을 해당 무선 전력 수신기에 전송할 수 있다. 이때, 무선 전력 수신기는 무선 전력 송신기에 의해 결정된 파워 세기로 전력 제어가 가능한지 여부를 판단하고, 판단 결과를 소정 전력 제어 응답 메시지를 통해 무선 전력 송신기에 전송할 수 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 무선 전력 송신기의 전력 제어 명령에 따라 무선 전력 제어가 가능한지 여부를 지시하는 소정 수신기 상태 정보를 상기 전력 제어 명령을 수신하기 이전에 전송할 수도 있다.
전력 전송 상태(540)는 접속된 무선 전력 수신기의 전력 수신 상태에 따라 제1 상태(541), 제2 상태(542) 및 제3 상태(543) 중 어느 하나의 상태일 수 있다.
일 예로, 제1 상태(541)는 무선 전력 송신기에 접속된 모든 무선 전력 수신기의 전력 수신 상태가 정상 전압인 상태임을 의미할 수 있다.
제2 상태(542)는 무선 전력 송신기에 접속된 적어도 하나의 무선 전력 수신기의 전력 수신 상태가 저전압 상태이고 고전압 상태인 무선 전력 수신기가 존재하지 않음을 의미할 수 있다.
제3 상태(543)는 무선 전력 송신기에 접속된 적어도 하나의 무선 전력 수신기의 전력 수신 상태가 고전압 상태임을 의미할 수 있다.
무선 전력 송신기는 전력 절약 상태(520) 또는 저전력 상태(530) 또는 전력 전송 상태(540)에서 시스템 오류가 감지되면, 잠금 장애 상태(560)로 천이될 수 있다
잠금 장애 상태(560)의 무선 전력 송신기는 접속된 모든 무선 전력 수신기가 충전 영역에서 제거된 것으로 판단되면, 구성 상태(510) 또는 전력 절약 상태(520)로 천이할 수 있다.
또한, 잠금 장애 상태(560)에서, 무선 전력 송신기는 로컬 장애가 감지되면, 로컬 장애 상태(550)로 천이할 수 있다. 여기서, 로컬 장애 상태(550)인 무선 전력 송신기는 로컬 장애가 해제되면, 다시 잠금 장애 상태(560)로 천이될 수 있다.
반면, 구성 상태(510), 전력 절약 상태(520), 저전력 상태(530), 전력 전송 상태(540) 중 어느 하나의 상태에서 로컬 장애 상태(550)로 천이된 경우, 무선 전력 송신기는 로컬 장애가 해제되면, 구성 상태(510)로 천이될 수 있다.
무선 전력 송신기는 로컬 장애 상태(550)로 천이되면, 무선 전력 송신기에 공급되는 전원을 차단할 수도 있다. 일 예로, 무선 전력 송신기는 과전압, 과전류, 과열 등의 장애가 감지되면 로컬 장애 상태(550)로 천이될 수 있으나 이에 국한되지는 않는다.
일 예로, 무선 전력 송신기는 과전류, 과전압, 과열 등이 감지되면, 무선 전력 수신기에 의해 수신되는 전력의 세기를 감소시키기 위한 소정 전력 제어 명령을 접속된 적어도 하나의 무선 전력 수신기에 전송할 수도 있다.
다른 일 예로, 무선 전력 송신기는 과전류, 과전압, 과열 등이 감지되면, 무선 전력 수신기의 충전을 중단시키기 위한 소정 제어 명령을 접속된 적어도 하나의 무선 전력 수신기에 전송할 수도 있다.
상기와 같은 전력 제어 절차를 통해, 무선 전력 송신기는 과전압, 과전류, 과열 등에 따른 기기 파손을 미연에 방지할 수 있다.
무선 전력 송신기는 송신 공진기의 출력 전류의 세기가 기준치 이상인 경우, 잠금 장애 상태(560)로 천이할 수 있다. 이때, 잠금 장애 상태(560)로 천이된 무선 전력 송신기는 송신 공진기의 출력 전류의 세기를 미리 지정된 시간 동안 기준치 이하가 되도록 시도할 수 있다. 여기서, 상기 시도는 미리 지정된 회수 동안 반복 수행될 수 있다. 만약, 반복 수행에도 불구하고, 잠금 장애 상태(560)가 해제되지 않는 경우, 무선 전력 송신기는 소정 알림 수단을 이용하여 사용자에게 잠금 장애 상태(560)가 해제되지 않음을 지시하는 소정 알림 신호를 송출할 수 있다. 이때, 무선 전력 송신기의 충전 영역에 위치한 모든 무선 전력 수신기가 사용자에 의해 충전 영역에서 제거되면, 잠금 장애 상태(560)가 해제될 수 있다.
반면, 송신 공진기의 출력 전류의 세기가 미리 지정된 시간 이내에 기준치 이하로 떨어지거나 상기 미리 지정된 반복 수행 동안 송신 공진기의 출력 전류의 세기가 기준치 이하로 떨어지는 경우, 잠금 장애 상태(560)는 자동으로 해제될 수 있으며, 이때, 무선 전력 송신기의 상태는 잠금 장애 상태(560)에서 전력 절약 상태(520)로 자동 천이되어 무선 전력 수신기에 대한 감지 및 식별 절차를 다시 수행할 수 있다.
전력 전송 상태(540)의 무선 전력 송신기는 연속된 전력을 송출하고, 무선 전력 수신기의 상태 정보 및 미리 정의된 최적 전압 영역(Optimal Voltage Region) 설정 파라메터에 기반하여 적응적으로 송출 전력을 제어할 수 있다.
일 예로, 최적 전압 영역(Optimal Voltage Region) 설정 파라메터는 저전압 영역을 식별하기 위한 파라메터, 최적 전압 영역을 식별하기 위한 파라메터, 고전압 영역을 식별하기 위한 파라메터, 과전압 영역을 식별하기 위한 파라메터 중 적어도 하나를 포함할 수 있다.
무선 전력 송신기는 무선 전력 수신기의 전력 수신 상태가 저전압 영역에 있으면, 송출 전력을 증가시키고, 고전압 영역에 있으면, 송출 전력을 감소시킬 수 있다.
또한, 무선 전력 송신기는 전력 전송 효율이 최대화되도록 송출 전력을 제어할 수도 있다.
또한, 무선 전력 송신기는 무선 전력 수신기에 의해 요구된 전력량의 편차가 기준치 이하가 되도록 송출 전력을 제어할 수도 있다.
또한, 무선 전력 송신기는 무선 전력 수신기의 정류기 출력 전압이 소정 과전압 영역에 도달한 경우-즉, Over Voltage가 감지된 경우-, 전력 전송을 중단할 수도 있다.
도 6은 본 발명의 일 실시예에 따른 무선 전력 수신기의 상태 천이도이다.
도 6을 참조하면, 무선 전력 수신기의 상태는 크게 비활성화 상태(Disable State, 610), 부트 상태(Boot State, 620), 활성화 상태(Enable State, 630)(또는, On state) 및 시스템 오류 상태(System Error State, 640)을 포함하여 구성될 수 있다.
이때, 무선 전력 수신기의 상태는 무선 전력 수신기의 정류기단에서의 출력 전압의 세기-이하, 설명의 편의를 위해 VRECT이라 명함-에 기반하여 결정될 수 있다.
활성화 상태(630)는 VRECT의 값에 따라 최적 전압 상태(Optimum Voltage State, 631), 저전압 상태(Low Voltage State, 632) 및 고전압 상태(High Voltage State, 633)로 구분될 수 있다.
비활성화 상태(610)의 무선 전력 수신기는 측정된 VRECT 값이 미리 정의된 VRECT_BOOT 값보다 크거나 같으면, 부트 상태(620)로 천이할 수 있다.
부트 상태(620)에서, 무선 전력 수신기는 무선 전력 송신기와의 대역외 통신 링크를 설정하고 VRECT
값이 부하단에 요구되는 전력에 도달할 때까지 대기할 수 있다.
부트 상태(620)의 무선 전력 수신기는 VRECT
값이 부하단에 요구되는 전력에 도달된 것이 확인되면, 활성화 상태(630)로 천이하여 충전을 시작할 수 있다.
활성화 상태(630)의 무선 전력 수신기는 충전이 완료되거나 충전이 중단된 것이 확인되면, 부트 상태(620)로 천이될 수 있다.
또한, 활성화 상태(630)의 무선 전력 수신기는 소정 시스템 오류가 감지되면, 시스템 오류 상태(640)로 천이할 수 있다. 여기서, 시스템 오류는 과전압, 과전류 및 과열뿐만 아니라 미리 정의된 다른 시스템 오류 조건이 포함될 수 있다.
또한, 활성화 상태(630)의 무선 전력 수신기는 VRECT
값이 VRECT
_BOOT 값 이하로 떨어지면, 비활성화 상태(610)로 천이될 수도 있다.
또한, 부트 상태(620) 또는 시스템 오류 상태(640)의 무선 전력 수신기는 VRECT 값이 VRECT_BOOT 값 이하로 떨어지면, 비활성화 상태(610)로 천이될 수도 있다.
이하에서는, 활성화 상태(630)내에서의 무선 전력 수신기의 상태 천이를 후술할 도 7을 참조하여 상세히 설명하기로 한다.
도 7은 본 발명의 일 실시예에 따른 VRECT에 따른 무선 전력 수신기의 동작 영역을 설명하기 위한 도면이다.
도 7을 참조하면, VRECT 값이 소정 VRECT
_
BOOT 보다 작으면, 무선 전력 수신기는 비활성화 상태(610)에 유지된다.
이 후, VRECT 값이 VRECT
_BOOT 이상으로 증가되면, 무선 전력 수신기는 부트 상태(620)로 천이되며, 미리 지정된 시간 이내에 광고 시그널을 브로드캐스팅할 수 있다. 이 후, 광고 시그널이 무선 전력 송신기에 의해 감지되면, 무선 전력 송신기는 대역외 통신 링크 설정을 위한 소정 연결 요청 시그널을 무선 전력 수신기에 전송할 수 있다.
무선 전력 수신기는 대역외 통신 링크가 정상적으로 설정되고, 등록에 성공한 경우, VRECT 값이 정상적인 충전을 위한 정류기에서의 최소 출력 전압-이하, 설명의 편의를 위해 VRECT_MIN이라 명함-에 도달할 때까지 대기할 수 있다.
VRECT 값이 VRECT
_MIN을 초과하면, 무선 전력 수신기의 상태는 부트 상태(620)에서 활성화 상태(630)로 천이되며 부하에 충전을 시작할 수 있다.
만약, 활성화 상태(630)에서 VRECT 값이 과전압을 판단하기 위한 소정 기준치인 VRECT
_MAX을 초과하면, 무선 전력 수신기는 활성화 상태(630)에서 시스템 오류 상태(640)로 천이될 수 있다.
도 7를 참조하면, 활성화 상태(630)는 VRECT의 값에 따라 저전압 상태(Low Voltage State, 632), 최적 전압 상태(Optimum Voltage State, 631) 및 고전압 상태(High Voltage State, 633)로 구분될 수 있다.
저전압 상태(632)는 VRECT
_BOOT <= VRECT <= VRECT
_
MIN인 상태를 의미하고, 최적 전압 상태(631)은 VRECT
_MIN < VRECT <=VRECT
_
HIGH인 상태를 의미하고, 고전압 상태(633)는 VRECT_HIGH < VRECT <=VRECT_MAX인 상태를 의미할 수 있다.
특히, 고전압 상태(633)로 천이된 무선 전력 수신기는 부하에 공급되는 전력을 차단하는 동작을 미리 지정된 시간-이하 설명의 편의를 위해 고전압 상태 유지 시간이라 명함- 동안 유보시킬 수도 있다. 이때, 고전압 상태 유지 시간은 고전압 상태(633)에서 무선 전력 수신기 및 부하에 피해가 발생되지 않도록 미리 결정될 수 있다.
무선 전력 수신기는 시스템 오류 상태(640)로 천이되면, 과전압 발생을 지시하는 소정 메시지를 미리 지정된 시간 이내에 대역외 통신 링크를 통해 무선 전력 송신기에 전송할 수 있다.
또한, 무선 전력 수신기는 시스템 오류 상태(630)에서 과전압에 따른 부하의 피해를 방지하기 위해 구비된 과전압 차단 수단을 이용하여 부하에 인가되는 전압을 제어할 수도 있다. 여기서, 과전압 차단 수단으로 ON/OFF 스위치 또는/및 제너다이오드 등이 사용될 수 있다.
상기 실시예에서는 무선 전력 수신기에 과전압이 발생되어 시스템 오류 상태(640)로 천이된 경우, 무선 전력 수신기에서의 시스템 오류 대응 방법 및 수단을 설명하고 있으나 이는 하나의 실시예에 불과하며, 본 발명의 다른 실시예는 무선 전력 수신기에 과열, 과전류 등에 의해서도 시스템 오류 상태로 천이될 수도 있다.
일 예로, 과열에 따라 시스템 오류 상태로 천이된 경우, 무선 전력 수신기는 과열 발생을 알리는 소정 메시지를 무선 전력 송신기에 전송할 수 있다. 이때, 무선 전력 수신기는 구비된 냉각팬 등을 구동하여 내부 발생된 열을 감소시킬 수도 있다.
본 발명의 다른 일 실시예에 따른 무선 전력 수신기는 복수의 무선 전력 송신기와 연동하여 무선 전력을 수신할 수도 있다. 이 경우, 무선 전력 수신기는 실제 무선 전력을 수신하기로 결정된 무선 전력 송신기와 실제 대역외 통신 링크가 설정된 무선 전력 송신기가 서로 상이한 것으로 판단되면, 시스템 오류 상태(640)로 천이할 수도 있다.
이하에서는 본 발명에 따른 무선 전력 송신기와 무선 전력 수신기 사이의 시그널링 절차를 후술할 도면을 참조하여 상세히 설명하기로 한다.
도 8은 본 발명의 일 실시예에 따른 무선 전력 전송 시스템의 구성도이다.
도 8에 도시된 바와 같이, 무선 전력 전송 시스템은 스타 토폴로지(Star Topology)로 구성될 수 있으며, 무선 전력 송신기는 대역외 통신 링크를 통해 무선 전력 수신기로부터 각종 특성 정보 및 상태 정보를 수집하고, 수집된 정보에 기반하여 무선 전력 수신기의 동작 및 송출 전력을 제어할 수 있다.
또한, 무선 전력 송신기는 자신의 특성 정보 및 소정 제어 신호를 대역외 통신 링크를 통해 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 접속된 무선 전력 수신기의 무선 전력 수신기 별 전력 전송 순서를 결정할 수 있으며, 결정된 전력 전송 순서에 따라 무선 전력을 송출할 수도 있다. 일 예로, 무선 전력 송신기는 무선 전력 수신기의 우선 순위, 무선 전력 수신기의 전력 수신 효율 또는 무선 전력 송신기에서의 전력 전송 효율, 무선 전력 수신기의 충전 상태, 무선 전력 수신기 별 시스템 오류 발생 여부 중 적어도 하나에 기반하여 전력 전송 순서를 결정할 수 있다.
또한, 무선 전력 송신기는 접속된 무선 전력 수신기 별 전송되는 전력량을 결정할 수도 있다. 일 예로, 무선 전력 송신기는 현재 가용한 전력량 및 무선 전력 수신기 별 전력 수신 효율 등에 기반하여 무선 전력 수신기 별 전송할 전력량을 산출할 수 있으며, 산출된 전력량에 관한 정보를 소정 제어 메시지를 통해 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 네트워크 연결된 무선 전력 수신기(들)과의 시간 동기를 획득하기 위한 시간 동기 신호(Tim Synchronization Signal)를 생성하여 무선 전력 수신기에 제공할 수도 있다. 여기서, 시간 동기 신호는 무선 전력을 전송하기 위한 주파수 대역-즉, 인밴드(In-Bnad)- 또는 대역외 통신을 수행하기 위한 주파수 대역-즉, 아웃오브밴드(Out-Of-Band)-을 통해 전송될 수 있다. 무선 전력 송신기와 무선 전력 수신기는 시간 동기 신호에 기반하여 서로의 통신 타이밍 및 통신 시퀀스를 관리할 수 있다.
이상의 도 8에서는 하나의 무선 전력 송신기와 복수의 무선 전력 수신기로 구성된 무선 전력 전송 시스템이 스타 토폴로지로 네트워크 연결된 구성을 설명하고 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예에 따른 무선 전력 전송 시스템은 복수의 무선 전력 송신기 및 복수의 무선 전력 수신기가 네트워크 연결되어 무선 전력을 송수신할 수 있다. 이 경우, 무선 전력 송신기는 별도의 통신 채널을 통해 자신의 상태 정보를 교환할 수 있다. 또한, 무선 전력 수신기가 이동 가능한 장치인 경우, 무선 전력 수신기는 무선 전력 송신기 사이의 핸드오버를 통해 이동 중 끊김 없는 전력을 수신할 수도 있다.
또한, 무선 전력 송신기는 네트워크 조정자(Network Coordinator)로서 동작하며 대역외 통신 링크를 통해 무선 전력 수신기와 정보를 교환할 수 있다. 일 예로, 무선 전력 송신기는 무선 전력 수신기의 각종 정보를 수신하여 소정 디바이스 제어 표(Device Control Table)을 생성 및 관리하고, 디바이스 제어 표을 참조하여 네트워크 관리 정보를 무선 전력 수신기에 전송할 수 있다. 이를 통해, 무선 전력 송신기는 무선 전력 전송 시스템 네트워크의 생성하고 이를 유지할 수 있다.
도 9는 본 발명의 일 실시에에 따른 무선 충전 절차를 설명하기 위한 흐름도이다.
도 9를 참조하면, 무선 전력 송신기는 전원 인가에 따라 무선 전력 송신기 구성, 즉, 부팅이 완료되면, 비콘 시퀀스를 생성하여 송신 공진기를 통해 전송할 수 있다(S901).
무선 전력 수신기는 비콘 시퀀스가 감지되면 자신의 식별 정보 및 특성 정보가 포함된 광고 시그널을 브로드캐스팅할 수 있다(S903). 이때, 광고 시그널은 후술할 연결 요청 신호가 무선 전력 송신기로부터 수신되기 이전까지 소정 주기로 반복 전송될 수 있음을 주의해야 한다.
무선 전력 송신기는 광고 시그널이 수신되면, 대역외 통신 링크를 설정하기 위한 소정 연결 요청 신호를 무선 전력 수신기에 전송할 수 있다(S905).
무선 전력 수신기는 연결 요청 신호가 수신되면, 대역외 통신 링크를 설정하고, 설정된 대역외 통신 링크를 통해 자신의 정적 상태 정보를 전송할 수 있다(S907).
여기서, 무선 전력 수신기의 정적 상태 정보는 카테고리 정보, 하드웨어 및 소프트웨어 버전 정보, 최대 정류기 출력 파워 정보, 전력 제어를 위한 초기 기준 파라메터 정보, 요구 전압 또는 전력에 관한 정보, 전력 조절 기능 탑재 여부를 식별하기 위한 정보, 지원 가능한 대역외 통신 방식에 관한 정보, 지원 가능한 전력 제어 알고리즘에 관한 정보, 무선전력수신기에 초기 설정된 선호 정류기단 전압값 정보 중 적어도 하나를 포함할 수 있다.
무선 전력 송신기는 무선 전력 수신기의 정적 상태 정보가 수신되면, 무선 전력 송신기의 정적 상태 정보를 대역외 통신 링크를 통해 무선 전력 수신기에 전송할 수 있다(S909).
여기서, 무선 전력 송신기의 정적 상태 정보는 송신기 전력 정보, 클래스 정보, 하드웨어 및 소프트웨어 버전 정보, 지원 가능한 무선 전력 수신기의 최대 개수에 관한 정보 및/또는 현재 접속된 무선 전력 수신기의 개수에 관한 정보 중 적어도 하나를 포함하여 구성될 수 있다.
이 후, 무선 전력 수신기는 자신의 실시간 전력 수신 상태 및 충전 상태를 모니터링하며, 주기적 또는 특정 이벤트 발생 시 동적 상태 정보를 무선 전력 송신기에 전송할 수 있다(S911).
여기서, 무선 전력 수신기의 동적 상태 정보는 정류기 출력 전압 및 전류에 관한 정보, 부하에 인가되는 전압 및 전류에 관한 정보, 무선 전력 수신기의 내부 측정 온도에 관한 정보, 전력 제어를 위한 기준 파라메터 변경 정보(정류 전압 최소 값, 정류 전압 최대 값, 초기 설정된 선호 정류기단 전압 변경 값), 충전 상태 정보, 시스템 오류 정보, 경보 정보 중 적어도 하나를 포함하여 구성될 수 있다. 무선 전력 송신기는 상기 전력 제어를 위한 기준 파라메터 변경 정보 수신시 기존 정적 상태 정보에 포함된 설정 값을 변경하여 전력 조절을 수행할 수 있다.
또한, 무선 전력 송신기는 무선 전력 수신기를 충전하기 위한 충분한 전력이 준비되면, 대역외 통신 링크를 통해 소정 제어 명령을 송출하여 무선 전력 수신기가 충전을 개시하도록 제어할 수 있다(S913).
이 후, 무선 전력 송신기는 무선 전력 수신기로부터 동적 상태 정보를 수신하여 송출 전력을 동적으로 제어할 수 있다(S915).
또한, 무선 전력 수신기는 내부 시스템 오류가 감지되거나 충전이 완료된 경우, 동적 상태 정보에 해당 시스템 오류를 식별하기 위한 데이터 및/또는 충전이 완료되었음을 지시하는 데이터를 포함하여 무선 전력 송신기에 전송할 수도 있다(S917). 여기서, 시스템 오류는 과전류, 과전압, 과열 등을 포함할 수 있다.
또한, 본 발명의 다른 일 실시예에 따른 무선 전력 송신기는 현재 가용한 전력이 접속된 모든 무선 전력 수신기의 요구 전력을 충족하지 못하는 경우, 각 무선 전력 수신기에 전송할 전력을 재분배하고 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 무선 충전 중 새로운 무선 전력 수신기가 등록된 경우, 현재 가용한 전력에 기반하여 접속된 무선 전력 수신기 별 수신할 전력을 재분배하고, 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다
또한, 무선 전력 송신기는 무선 충전 중 기존 접속된 무선 전력 수신기의 충전이 완료되거나 대역외 통신 링크가 해제-예를 들면, 무선 전력 수신기가 충전 영역에서 제거된 경우를 포함함-되는 경우, 남아있는 무선 전력 수신기 별 수신할 전력을 재분배하고 이를 소정 제어 명령을 통해 해당 무선 전력 수신기에 전송할 수도 있다.
또한, 무선 전력 송신기는 소정 제어 절차를 통해 무선 전력 수신기가 전력 조절 기능이 탑재되었는지 여부를 확인할 수도 있다. 이 경우, 무선 전력 송신기는 전력 재분배 상황이 발생된 경우, 전력 조절 기능이 탑재된 무선 전력 수신기에 대해서만 전력 재분배를 수행할 수도 있다.
일 예로, 전력 재분배 상황은 연결되지 않은 무선 전력 수신기로부터 유효한 광고 시그널을 수신하여 새로운 무선 전력 수신기가 추가되거나 연결된 무선 전력 수신기의 현재 상태 등을 지시하는 동적 파라메터가 수신되거나, 기 연결된 무선 전력 수신기가 더 이상 존재하지 않음이 확인되거나, 기 연결된 무선 전력 수신기의 충전이 완료되거나, 기 연결된 무선 전력 수신기의 시스템 오류 상태를 지시하는 알람(Alert) 메시지가 수신되는 등의 이벤트가 발생된 경우 발생될 수 있다.
여기서, 시스템 오류 상태는 과전압 상태, 과전류 상태, 과열 상태, 네트워크 연결 상태 등을 포함할 수 있다.
일 예로, 무선 전력 송신기는 소정 제어 명령을 통해 전력 재분배 관련 정보를 무선 전력 수신기에 전송할 수 있다.
여기서, 전력 재분배 관련 정보는 무선 전력 수신기 전력 제어를 위한 명령 정보, 전력 전송 요청에 대한 허여(Permission) 또는 거절(deny) 여부를 식별하기 위한 정보, 무선 전력 수신기가 유효한 부하 변화(Valid Load Variation)을 생성하는 시간 정보 등을 포함할 수 있다.
여기서, 무선 전력 수신기 전력 제어를 위한 명령은 무선 전력 수신기가 부하에 수신된 전력을 제공하는 것을 제어하기 위한 제1 명령, 무선 전력 수신기가 충전이 이루어지고 있음을 지시하는 것을 허여하기 위한 제2 명령, 무선 전력 수신기의 최대 정류기 파워 대비 무선 전력 송신기에 의해 제공 가능한 최대 파워의 비율을 지시하는 파워 조절 명령(Adjust Power Command) 등을 포함할 수 있다.
만약, 무선 전력 수신기가 상기 파워 조절 명령을 지원하지 않는 경우, 무선 전력 송신기는 파워 조절 명령을 해당 무선 전력 수신기에 전송하지 않을 수도 있다.
일 예로, 무선 전력 송신기는 새로운 무선 전력 수신기가 등록되면, 자신의 가용한 전력량에 기반하여 무선 전력 수신기에 의해 요구된 전력량을 제공 가능한지 여부를 판단할 수 있다. 판단 결과, 요구된 전력량이 가용한 전력량을 초과하는 경우, 무선 전력 송신기는 해당 무선 전력 수신기에 전력 조절 기능이 탑재되었는지 여부를 확인할 수 있다. 확인 결과, 전력 조절 기능이 탑재된 경우, 무선 전력 수신기는 가용한 전력량 내에서 무선 전력 수신기가 수신할 전력의 양을 결정하고, 결정된 결과를 소정 제어 명령을 통해 무선 전력 수신기에 전송할 수도 있다.
물론, 상기 전력 재분배는 무선 전력 송신기 및 무선 전력 수신기가 정상적으로 동작 가능한 범위 및/또는 정상적인 충전이 가능한 범위 내에서 수행될 수 있다.
또한, 상기 전력 전송 요청에 대한 허여(Permission) 또는 거절(deny) 여부를 식별하기 위한 정보는 허여 조건 및 거절 이유가 포함될 수 있다.
일 예로, 허여 조건은 가용한 파워 부족으로 인한 일정 시간 동안의 대기를 조건으로 한 허여가 포함될 수 있다. 거절 이유는 가용한 파워 부족으로 인한 거절, 수용 가능한 무선 전력 수신기 개수의 초과로 인한 거절, 무선 전력 송신기의 과열로 인한 거절, 무선 전력 송신기의 제한된 등급에 따른 거절 등을 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력 수신기는 복수의 대역외 통신 방식을 지원할 수 있다. 만약, 현재 설정된 대역외 통신 링크를 다른 방식으로 변경하고자 하는 경우, 무선 전력 수신기는 대역외 통신 변경을 요청하는 소정 제어 신호를 무선 전력 송신기에 전송할 수 있다. 무선 전력 송신기는 대역외 통신 변경 요청 신호가 수신되면, 현재 설정된 대역외 통신 링크를 해제하고, 무선 전력 수신기에 의해 요청된 대역외 통신 방식으로 새로운 대역외 통신 링크를 설정할 수 있다.
일 예로, 본 발명에 적용 가능한 대역외 통신 방식에는 NFC(Near Field Communication) 통신, RFID(Radio Frequency Identification) 통신, BLE(Bluetooth Low Energy) 통신, WCDMA(Wideband Code Division Multiple Access) 통신, LTE(Long Term Evolution)/LTE-Advance 통신, Wi-Fi 통신 중 적어도 하나를 포함할 수 있다.
도 10은 본 발명의 일 실시 예에 따른 무선 전력 송신기의 블락도를 도시한 것이다.
도 10을 참조하면, 실시 예의 무선 전력 송신기는 소정의 주파수 및 소정의 진폭을 갖는 초기 신호(S0)를 공급받아, 상기 초기 신호(S0)와 동일한 주파수를 갖고 증폭된 제4 신호(S4)를 방출할 수 있다.
일 실시 예에 따른 상기 초기 신호(S0)의 주파수는 6.78MHz ± 15㎑ 일 수 있다.
초기 신호(S0)는 실시 예의 송신기로 공급되어, 인버터 버퍼(141)에 의해 위상이 180°변환된 제1 신호(S1) 및 인버터버퍼(141)을 거치지 않은 제2 신호(S2)로 분기 될 수 있다.
제1 신호(S1) 및 제2 신호(S2)는 위상차이가 180°인 동일한 진폭을 갖는 신호일 수 있다.
소정의 주파수 및 소정의 진폭을 갖는 초기 신호(S0)는 송신기로 공급되어 인버터버터(141)에 의해 서로 반대 위상을 갖는 제1 신호(S1) 및 제2 신호(S2)로 생성될 수 있다.
제1 신호(S1)와 제2 신호(S2)는 각각 증폭부(143)에 공급될 수 있다.
증폭부(143)는 제1 신호(S1) 및 제2 신호(S2)를 증폭하여 동일한 주파수를 갖는 제4 신호(S4)를 생성할 수 있다.
증폭부(143)는 모스펫(MOSFET)을 포함한 회로로 구비될 수 있다.
다만, 실시 예의 증폭부(143)의 구성은 설명의 편의를 위하여 모스펫(MOSFET)을 이용하여 입력된 신호를 증폭하는 이른바 모스펫회로(MOSFET Circuit)로 도시 되었으나, 실시 예의 증폭부(143)의 구성은 모스펫(MOSFET)을 이용한 증폭부에 한정되지 않고, 입력된 신호를 소정 스케일로 증폭하도록 구비되기만 하면 족하며, 사용자의 필요에 따라 다양한 회로 소자를 이용하여 구현 가능하고, 당연히 본 발명의 권리범위를 제한하지 아니한다.
이하, 도 11 내지 도 14를 참조하여 다양한 증폭부를 포함하는 무선 전력 송신기에 대해 설명하도록 한다.
도 11은 본 발명의 일 실시 예에 따른 무선 전력 송신기의 회로도를 도시한 것이다.
도 11을 참조하면, 실시 예의 무선 전력 송신기는 주제어부(150), 주제어부(150)에 의해 제어되어 활성화(Enable) 또는 비활성화(Disable)상태로 천이되는 복수 개의 인버터버퍼(1411, 1413), 소정의 주파수를 갖는 전류를 공급받아 신호를 증폭하는 복수 개의 증폭부(1431, 1433, 1435, 1437) 및 복수 개의 증폭부(1431, 1433, 1435, 1437)에 의해 선택적으로 자기장을 발생하거나 발생하지 않는 상태도 천이되는 복수 개의 코일(L1, L2)을 포함할 수 있다.
상기 복수 개의 코일(L1, L2)은 제1코일(L1) 및 제2코일(L2)을 포함할 수 있다.
일 예로, 상기 주제어부(150)는 상기 인버터버터(1411, 1413)을 제어하여 무선 전력 전송에 사용될 코일을 동적으로 선택할 수 있다.
예컨대, 제1코일(L1)의 일단은 제1증폭부(1431) 및 제1전원부(1441)와 전기적으로 연결되도록 구비되고, 제1코일(L1)의 타단은 제2증폭부(1433) 및 제2전원부(1443)와 전기적으로 연결되도록 구비될 수 있다.
제2코일(L2)의 일단은 제3증폭부(1435) 및 제3전원부(1445)와 전기적으로 연결되도록 구비되고, 제2코일(L2)의 타단은 제4증폭부(1437) 및 제4전원부(1447)와 전기적으로 연결되도록 구비될 수 있다.
제1증폭부(1431)의 일단은 제1전원부(1441)와 전기적으로 연결되어 전력을 공급받을 수 있고, 제1증폭부(1431)의 타단은 제1증폭부(1431)를 제1전원부(1441)와 전기적으로 연결된 상태 또는 연결되지 않은 상태로 천이시키는 제1게이트드라이버(1421)와 전기적으로 연결되도록 구비될 수 있다.
제2증폭부(1433)의 일단은 제2전원부(1443)와 전기적으로 연결되어 전력을 공급받을 수 있고, 제2증폭부(1433)의 타단은 제2증폭부(1433)를 제2전원부(1443) 및 제2게이트드라이버(1423)와 전기적으로 연결되도록 구비될 수 있다.
제1게이트드라이버(1421)와 제2게이트드라이버(1423)는 입력된 신호의 위상에 따라 상술한 바와 같이 제1증폭부(1431) 및 제2증폭부(1433)가 각각 제1전원부(1431) 및 제2전원부(1443)와 전기적으로 연결된 상태 또는 연결되지 않은 상태로 천이되게 제어할 수 있다.
소정의 주파수 및 소정의 진폭을 갖는 초기 신호가 제2게이트드라이버(1423)로 입력되고, 상기 초기 신호가 제1인버터버퍼(1411)를 거쳐 위상이 변환된 신호가 제1게이트드라이버(1421)에 입력될 수 있다.
서로 반대 위상을 갖는 신호를 입력 받은 제1게이트드라이버(1421) 및 제2게이트트라이버(1423)은 소정 주파수를 주기로 하여 제1증폭부(1431) 및 제2증폭부(1433)를 제1전원부(1441) 및 제2전원부(1443)과 전기적으로 연결된 상태 또는 연결되지 않은 상태로 제어할 수 있다.
예컨대, 동시에 초기 신호를 입력 받은 제1게이트드라이버(1421)는 제1증폭부(1431)를 제1전원부(1441)와 전기적으로 연결되는 상태로 천이되도록 제어하고, 제2게이트드라이버(1423)는 제2증폭부(1433)를 제2전원부(1443)와 전기적으로 연결되지 않는 상태로 천이되도록 제어할 수 있다.
이 경우에는 제1코일(L1)의 상부에서 하부를 향하여 전류가 흐르게 된다.
또한, 소정 시간이 흐른 뒤에 초기 신호를 입력 받은 제1게이트드라이버(1421)는 제1증폭부(1431)를 제1전원부(1441)와 전기적으로 연결되지 않은 상태로 천이되도록 제어할 수 있다.
제2게이트드라이버(1423)는 제2증폭부(1433)를 제2전원부(1443)와 전기적으로 연결된 상태로 천이되도록 제어하여, 제1코일(L1)의 하부에서 상부를 향하여 전류가 흐르게 될 수 있다.
제1코일(L1)의 하부는 제1코일(L1)과 제2전원부(1443)가 전기적으로 연결되는 지점을 의미할 수 있고, 제1코일(L1)의 상부는 제1코일과 제1전원부(1441)가 전기적으로 연결되는 지점을 의미 할 수 있다.
이 때, 상기 제1전원부(1441) 및 제2전원부(1443)에 의해 입력된 초기 신호의 진폭보다 소정 배수 증폭 되고, 주파수는 초기 신호의 주파수와 동일한 전류가 제1코일(L1)에 흐르게 된다.
제1 코일(L1)을 가로지르는 전류의 방향은 초기 신호의 주기가 T인 경우, T/2 주기로 역전될 수 있다.
도면에 도시된 바와 같이 제2코일(L2) 역시 제1코일(L1)과 동일하며 독립적인 회로를 포함하여, 초기 신호의 진폭보다 소정 배수 증폭 되고, 주파수는 초기 신호의 주파수와 동일한 전류가 제2코일(L2)에 흐르도록 구비될 수 있다.
주제어부(150)에 의해 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)이 활성상태 또는 비활성상태로 천이됨에 따라 제1코일(L1) 또는 제2코일(L2)에 선택적으로 전류가 흐르도록 제어할 수 있다.
물론, 실시 예의 주제어부(150)는 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)을 모두 활성상태로 천이시켜 제1코일(L1) 및 제2코일(L2)에 모두 전류가 흐르도록 제어하거나, 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)을 모두 비활성상태로 천이시켜 제1코일(L1) 및 제2코일(L2) 모두에 전류가 흐르지 않도록 제어할 수 있으며, 본 발명의 권리범위는 상술한 실시 예에 한정되지 않는다.
또한, 도면에는 실시 예의 코일(L1, L2)이 두 개 구비되도록 도시하였으나 이에 한정되지 아니하고, 사용자는 필요에 따라 둘 이상의 코일 및 이에 증폭된 전류를 공급하는 증폭부를 둘 이상 포함할 수 있으며, 본 발명의 권리범위는 이에 한정되지 아니한다.
또한. 도면의 전원부와 증폭부 사이의 인덕터는 생략되거나 다른 구성이 포함될 수 있다.
다만, 이 경우 코일(L1, L2)의 개수만큼 인버터버퍼(1411, 1413), 게이트드라이버(1423-1427) 및 증폭부(1431-1437)이 증가되게 되어 실시 예의 무선 전력 송신기의 부피가 커지게 되는 문제 및 생산 비용이 증가되는 문제가 있다.
또한 코일(L1, L2)와 전기적으로 연결된 캐패시터는 생략되거나 다른 구성이 포함될 수 있으며, 이 구성은 코일과 캐패시터로 구성되는 공진기(Rasonator)를 의미할 수 있다.
도 12는 본 발명의 다른 실시 예에 따른 무선 전력 송신기의 회로도를 도시한 것이다.
도 12를 참조하면, 실시 예의 무선 전력 송신기는 자기장을 발생시키는 복수 개의 코일(L1, L2), 복수 개의 코일(L1, L2)에 흐르는 전류의 ON/OFF 제어하는 복수 개의 스위치부(1451, 1453), 상기 복수 개의 스위치부(1451, 1453)의 연결 상태를 제어하는 주제어부(150) 및 초기 신호를 증폭시키는 증폭부(1431, 1433)를 포함할 수 있다.
인버터버퍼(141), 복수 개의 게이트드라이버(1421, 1423), 증폭부(1431, 1433) 및 전원부(1441, 1443)는 앞서 설명한 도 11에 도시된 실시 예의 무선 전력 송신기와 동일하므로 자세한 설명은 생략하도록 하고 이하 차이점에 대해서만 서술하도록 한다.
복수 개의 코일(L1, L2)은 제1코일(L1) 및 제2코일(L2)을 포함할 수 있다.
제1코일(L1)은 일단이 제1스위치부(1451)와 전기적으로 연결되도록 구비되고, 타단이 제2스위치부(1453)와 전기적으로 연결되도록 구비될 수 있다.
제2코일(L2)은 일단이 제1스위치부(1451)와 전기적으로 연결되도록 구비되고, 타단이 제2스위치부(1453)와 전기적으로 연결되도록 구비될 수 있다.
제1스위치부(1451) 및 제2스위치부(1453)에 의해 제1코일(L1) 또는 제2코일(L2)에 전류가 흐르도록 제어될 수 있다.
예컨대, 주제어부(150)는 제1스위치부(1451)가 제1코일(L1)의 일단과 제1증폭부(1431)를 전기적으로 연결시키는 상태로 천이시키고, 제2스위치부(1453)가 제1코일(L1)의 타단과 제2증폭부(1433)을 전기적으로 연결시키는 상태로 천이시킬 수 있다.
이 경우, 제1코일(L1)에만 전류가 흐르는 상태가 되고, 제2코일(L2)에는 전류가 흐르지 않는 상태가 된다.
상술한 바와 반대로 주제어부(150)는 제1스위치부(1451)가 제2코일(L2)의 일단과 제1증폭부(1431)를 전기적으로 연결시키는 상태로 천이시키고, 제2스위치부(1453)가 제2코일(L2)의 타단과 제2증폭부(1433)을 전기적으로 연결시키는 상태로 천이시킬 수 있으며, 이 경우에는 제1코일(L1)에는 전류가 흐르지 않고 제2코일(L2)에만 전류가 흐르는 상태가 된다.
주제어부(150)가 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)를 활성화 또는 비활성화 상태로 천이시켜 제1코일(L1) 또는 제2코일(L2)에 동시에 또는 선택적으로 전류가 흐르게 구비되는 도 11에 도시된 무선 전력 송신기와 달리, 도 12에 도시된 실시 예의 무선 전력 송신기는 하나의 인버터버퍼(141)를 포함하며, 주제어부(150)는 제1스위치부(1451) 및 제2스위치부(1453)을 제어하여 제1코일(L1) 또는 제2코일(L2)에 동시에 또는 선택적으로 전류가 흐르도록 하는 점에 있어 그 구성의 차이가 있다.
도 11에 도시된 무선 전력 송신기와 달리 하나의 인버터버퍼(141) 및 이와 전기적으로 연결되어 초기 신호를 증폭시키는 증폭부(1431)가 두 개만 구비되어 동일한 기능을 수행하지만 송신기의 면적이 감소하며, 비용이 감소하는 효과가 있다.
하지만, 실시 예의 무선 전력 송신기는 주제어부(150)가 제1코일(L1) 또는 제2코일(L2)에 선택적으로 전류를 공급하기 위해서 제1스위치부(1451) 및 제2스위치부(1453)을 작동시켜야 하기 때문에 전력소비 증가되어 에너지 효율이 떨어지는 문제가 있다.
이하, 도 13 및 도 14를 참고하여, 도 11의 무선 전력 송신기의 문제인 송신기 자체의 면적이 증가하는 문제와 도 12의 무선 전력 송신기의 문제인 스위치부를 개별적으로 작동시킴으로 인하여 전력소비가 증가되어 에너지 효율이 떨어지는 문제를 모두 해결하는 다른 실시 예의 무선 전력 송신기를 제안하고자 한다.
도 13은 본 발명의 다른 실시 예에 따른 무선 전력 송신기의 회로도를 도시한 것이다.
도 13을 참조하면, 실시 예의 무선 전력 송신기는 자기장을 발생시키는 복수 개의 코일(L1, L2), 복수 개의 코일(L1, L2)에 흐르는 전류를 제어하는 복수 개의 증폭부(1431, 1433, 1435), 증폭부(1431, 1433, 1435)에 입력되는 전류의 위상을 변환시키는 복수 개의 인버터버퍼(1411, 1413) 및 복수 개의 인버터버퍼(1411, 1413)를 활성화 상태 또는 비활성화 상태로 천이시키는 주제어부(150)를 포함할 수 있다.
복수 개의 코일(L1, L2)은 제1코일(L1) 및 제2코일(L2)을 포함할 수 있다.
제1코일(L1)은 일단이 제1증폭부(1431) 및 제1전원부(1441)와 전기적으로 연결되도록 구비되고, 타단이 제2증폭부(1433) 및 제2전원부(1443)와 전기적으로 연결되도록 구비될 수 있다.
제2코일(L2)은 일단이 제2증폭부(1433) 및 제2전원부(1443)와 전기적으로 연결되도록 구비되고, 타단이 제3증폭부(1435) 및 제3전원부(1445)와 전기적으로 연결되도록 구비될 수 있다.
제1증폭부(1431)는 일단이 제1코일(L1) 및 제1전원부(1441)와 전기적으로 연결되도록 구비되고, 타단이 제1게이트드라이버(1421)와 전기적으로 연결되도록 구비될 수 있고, 제2증폭부(1433)는 일단이 제2전원부(1443), 제1코일(L1) 및 제2코일(L2)와 전기적으로 연결되도록 구비되고, 타단이 제2게이트드라이버(1423)와 전기적으로 연결되도록 구비될 수 있으며, 제3증폭부(1435)는 일단이 제3전원부(1445) 및 제2코일(L2)과 전기적으로 연결되도록 구비되고, 타단이 제3게이트드라이버(1425)와 전기적으로 연결되도록 구비될 수 있다.
주제어부(150)는 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)를 활성화 상태 또는 비활성화 상태로 천이되도록 제어하도록 구비될 수 있다.
주제어부(150)가 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)을 활성화 및 비활성화 상태로 제어하여 제1코일(L1) 또는 제2코일(L2) 중 적어도 하나의 코일에 전류를 흐르도록 제어하는 동작과 관련해서는 도 14a 및 도 14b에서 보다 자세히 서술하도록 한다.
상술한 실시 예의 무선 전력 송신기는 도 13에 도시된 바와 같이 제1코일(L1) 및 제2코일(L2)에 해당하는 두 개의 코일을 포함하는 것으로 도시되었으나, 사용자는 도시된 실시 예에 한정되지 않고 둘 이상의 코일을 포함하도록 무선 전력 송신기를 구성할 수 있으며, 이는 본 발명의 권리범위를 제한하지도 않는다.
실시 예의 무선 전력 송신기는 두 개의 코일에 흐르는 전류를 제어하기 위하여 각각 4개의 증폭부(143) 및 게이트드라이버(142)를 필요로 하는 도 11에 도시된 무선 전력 송신기와는 달리, 실시 예의 제2증폭부(1431)는 제1코일(L1) 및 제2코일(L2)과 동시에 전기적으로 연결되도록 구비되어 두 개의 코일에 흐르는 전류를 제어함에 있어 각각 3개의 증폭부(143) 및 게이트드라이버(142)만으로 두 개의 코일에 흐르는 전류를 제어할 수 있어 증폭부(143) 및 게이트드라이버(142)의 개수를 감소시켜 소형화할 수 있는 기술적 특징이 있다.
또한, 주제어부(150)가 제어하는 스위치부에 의해 코일(L1, L2)에 흐르는 전류가 제어되는 도 12에 도시된 무선 전력 송신기와는 달리 실시 예의 무선 전력 송신기는 전력을 소비하는 스위치부를 생략하여 불필요한 전력 손실을 감소시키는 기술적 특징이 존재한다.
상술한 효과는 실시 예의 무선 전력 송신기에 배치되는 코일의 개수를 두 개에 한정하지 않고 둘 이상 구비되는 경우로 확장하는 경우에 더 효과적일 수 있다.
예컨대, 사용자는 제1코일(L1) 및 제2코일(L2)에 추가적으로 n개의 코일을 포함하도록 본 발명을 확장 할 수 있으며, 이 때 실시 예의 무선 전력 송신기는 제1 코일(L1) 내지 제n코일(Ln)을 포함할 수 있다.
이 경우, 인버터버퍼(141)은 제1인버터버퍼(1411) 내지 제n인버터버퍼(141(2n-1))의 n개의 인버터버퍼(141)를 포함할 수 있고, 게이트드라이버(142)는 제1게이트드라이버(1421) 내지 제n+1게이트드라이버(142(2n+1))의 n+1개의 게이트드라이버(142)를 포함할 수 있으며, 증폭부(143)는 제1증폭부(1431) 내지 제n+1증폭부(143(2n+1))의 n+1개의 증폭부(143) 및 전원부(144)는 제1전원부(1441) 내지 제n+1전원부(144(2n+1))의 n+1개의 전원부(144)를 포함할 수 있다.
본 실시 예의 무선 전력 송신기에 n개의 코일을 배치한다는 가정하에 게이트드라이버(142) 및 증폭부(143)는 각각 n+1개 필요하다.
반면, 도 11에 도시된 무선 전력 송신기에 n개의 코일을 배치한다면, 게이트드라이버(142) 및 증폭부(143)는 각각 2n개 필요하다.
따라서, 실시 예의 무선 전력 송신기는 도 11의 무선 전력 송신기에 비해 n-1개의 게이트드라이버(142) 및 증폭부(143)를 생략 할 수 있으며, 이로 인하여 n-1개의 게이트드라이버(142) 및 증폭부(143)가 차지하는 면적 및 n-1개의 게이트드라이버(142) 및 증폭부(143)의 비용을 절감할 수 있다.
이하, 주제어부(150)가 제1인버터버퍼(1411) 및 제2인버터버퍼(1413)을 활성화 및 비활성화 상태로 제어하여 제1코일(L1) 또는 제2코일(L2) 중 적어도 하나의 코일에 전류를 흐르도록 제어하는 동작에 대하여 설명한다.
도 14a 및 도 14b는 주제어부의 제어에 따른 송신 공진기 코일의 작동을 도시한 것이다.
도 14a와 도 14b를 참조하면, 도 14a에 도시된 경우와 같이 실시 예의 주제어부(150)는 제1코일(L1)에 전류가 흐르도록 제1인버터버퍼(1411)을 활성화시키고, 제2인버터버퍼(1413)을 비활성화 시키도록 제어할 수 있다.
보다 자세하게는, 주제어부(150)가 제1인버터버퍼(1411)를 활성화시킴으로 인하여 제1게이트드라이버(1421)에 유입되는 전류의 위상과 제2게이트드라이버(1423)에 유입되는 전류의 위상은 180°차이날 수 있다.
상기 전류의 위상 차이인 180°는 설명의 편의를 위하여 일 예를 설명하기 위한 것이며, 사용자는 필요에 따라 상기 전류의 위상차이를 다양하게 변형 할 수 있고, 본 발명의 권리범위를 제한하려는 의도는 아니다.
서로 180°위상 차이를 가진 전류가 제1증폭부(1431) 및 제2증폭부(1433)에 유입됨으로 인하여 제1코일(L1)에는 180°위상 차이에 해당하는 시간을 주기로 하여 주기적으로 제1전류(iL1)가 방향을 바꾸며 흐를 수 있다.
하지만, 주제어부(150)는 제2인버터버퍼(1423)을 비활성화시킴으로 인하여 제2게이트드라이버(1423)에 유입되는 전류의 위상과 제3게이트드라이버(1425)에 유입되는 전류의 위상은 동일하게 된다.
따라서, 위상차이가 없는 전류가 제2증폭부(1433) 및 제3증폭부(1435)에 유입되는 경우에는 제2코일(L2)에는 전류가 흐르지 않을 수 있다.
도 14b에 도시된 실시 예는 도 14a에 도시된 실시 예의 반대 경우로써, 주제어부(150)가 제1인버터버퍼(1411)을 비활성화시키고, 제2인버터버퍼(1413)을 활성화시켜 제2코일(L2)에만 전류가 흐르도록 제어하는 경우를 도시한 것이다.
사용자는 필요에 따라, 주제어부(150)에서 제1인버터버퍼(1411) 또는 제2인버터버퍼(1413)만을 활성 또는 비활성 시킴으로 인하여 선택적으로 원하는 코일(L1, L2)에 전류가 흐르도록 할 수 있다.
도 13 및 도 14a, 14b에 도시된 바와 같이 실시 예의 무선 전력 공급장치는 적어도 하나 이상의 코일(L1, L2)를 포함하며, 상기 적어도 하나 이상의 코일에 선택적으로 혹은 동시에 전류를 공급하기 위한 구성을 설명하였다.
본 명세서에서는 설명의 편의를 위하여 코일이 두 개로 구비되며, 증폭부가 세 개로 구비되는 것으로 예를 들어 설명하였으나. 코일의 개수, 증폭부 및 기타 구성 요소는 전술한 바와 같이 두 개 혹은 세 개로 한정하려는 의도가 아니며, 사용자는 필요에 따라 실시 예의 목적을 달성하기 위하여 실시 예의 구성 요소의 개수를 감축 혹은 증가 시킬 수 있고, 나아가 본 발명의 권리범위를 한정하는 것도 아니다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 복수의 송신 코일이 구비되는 무선 전력 송신 장치에 적용될 수 있다.
Claims (15)
- 자기장을 전송을 위한 n개의 송신 코일;소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부;상기 AC 신호의 위상을 천이시키는 n개의 인버터버퍼;상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부;상기 AC 신호를 증폭시키는 n+1개의 증폭부; 및입력되는 상기 AC 신호의 위상에 기반하여 상기 증폭부를 제어하는 n+1개의 게이트드라이버;를 포함하는 것을 특징으로 하는 무선 전력 공급 장치.
- 제1항에 있어서,상기 증폭부는,적어도 하나 이상의 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)을 포함하는 무선 전력 공급 장치.
- 제1항에 있어서,상기 송신 코일을 가로지르는 전류는 상기 AC 신호의 주기가 T일 때, T/2주기로 반전되는 것을 특징으로 하는 무선 전력 공급 장치.
- 제1항에 있어서,상기 게이트드라이버의 일단은 상기 인버터버퍼와 전기적으로 연결되도록 구비되고, 상기 게이트드라이버의 타단은 상기 증폭부와 전기적으로 연결되도록 구비되는 무선 전력 공급 장치.
- 제1항에 있어서,상기 n개의 증폭부 중, n-2개의 증폭부는 둘 이상의 서로 다른 상기 송신 코일과 전기적으로 연결되는 것을 특징으로 하는 무선 전력 공급 장치.
- 제1항에 있어서,상기 n개의 증폭부 중, 2개의 증폭부는 복수 개의 송신 코일 중 하나의 송신 코일에만 전기적으로 연결되는 것을 특징으로 하는 무선 전력 공급 장치.
- 자기장을 전송을 위한 복수 개의 송신 코일;소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부;상기 AC 신호의 위상을 천이시키는 복수 개의 인버터버퍼;상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부;상기 AC 신호를 증폭시키는 복수 개의 증폭부; 및입력되는 상기 AC신호의 위상에 기반하여 상기 증폭부를 제어하는 복수 개의 게이트드라이버;를 포함하고,상기 증폭부 중 적어도 하나는 상기 복수 개의 송신 코일과 전기적으로 연결되도록 구비되는 것을 특징으로 하는 무선 전력 공급 장치.
- 제7항에 있어서,상기 송신코일은 제1 내지 제2 송신 코일을 포함하고,상기 증폭부는 제1 내지 제3증폭부를 포함하며,상기 제1 송신코일의 일단과 상기 제2 송신코일의 일단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되는 것을 특징으로 하는 무선 전력 공급 장치.
- 제8항에 있어서,상기 제1 송신 코일의 일단은 상기 제1 전류증폭기와 전기적으로 연결되고, 상기 제1 송신 코일의 타단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되며,상기 제2 송신 코일의 일단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되고, 상기 제2 송신 코일의 타단은 상기 제3 전류증폭기와 전기적으로 연결되도록 구비되는 무선 전력 공급 장치.
- 제9항에 있어서,상기 증폭부는,적어도 하나 이상의 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)을 포함하는 무선 전력 공급 장치.
- 제7항에 있어서,상기 게이트 드라이버는 상기 전류증폭기와 동일한 개수로 구비되는 것을 특징으로 하는 무선 전력 공급 장치.
- 제10항에 있어서,상기 게이트 드라이버는 제1 내지 제3 게이트 드라이버를 포함하고,상기 제1 게이트 드라이버의 일단은 상기 제1 인버터버퍼와 전기적으로 연결되도록 구비되고, 상기 제1 게이트 드라이버의 타단은 상기 제1 전류증폭기와 전기적으로 연결되도록 구비되며,상기 제2 게이트 드라이버의 일단은 상기 전류 공급부와 전기적으로 연결되도록 구비되고, 상기 제2 게이트 드라이버의 타단은 상기 제2 전류증폭기와 전기적으로 연결되도록 구비되며,상기 제3 게이트 드라이버의 일단은 상기 제2 인버터버퍼와 전기적으로 연결되도록 구비되고, 상기 제3 게이트 드라이버의 타단은 제3 전류증폭기와 전기적으로 연결되도록 구비되는 무선 전력 공급 장치.
- 자기장을 전송을 위한 3개의 제1 내지 제3송신 코일;소정 동작 주파수를 갖는 AC 신호를 공급하는 주파수 생성부;상기 AC 신호의 위상을 천이시키는 3개의 제1 내지 제3인버터버퍼;상기 인버터버퍼를 활성화시키거나 비활성화시키는 주제어부;상기 AC 신호를 증폭시키는 4개의 제1 내지 제4증폭부; 및입력되는 상기 AC신호의 위상에 기반하여 상기 증폭부를 제어하는 4개의 제1 내지 제4게이트드라이버;를 포함하고,상기 증폭부 중 적어도 하나는 상기 복수 개의 송신 코일과 전기적으로 연결되도록 구비되는 것을 특징으로 하는 무선 전력 공급 장치.
- 제13항에 있어서,상기 제n전송 코일의 일단은 상기 제n증폭부와 전기적으로 연결되고,상기 제n전송 코일의 타단은 상기 제n+1증폭부와 전기적으로 연결되는 무선 전력 공급 장치.
- 제14항에 있어서,상기 제n증폭부는 상기 제n게이트드라이버와 전기적으로 연결되고,상기 제n인버터버퍼의 일단은 상기 제n게이트드라이버와 전기적으로 연결되고,상기 제n인버터버퍼의 타단은 상기 제n+1게이트드라이버와 전기적으로 연결되는 무선 전력 공급 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/068,802 US20190058358A1 (en) | 2016-01-27 | 2016-12-21 | Wireless power supply method and apparatus therefor |
CN201680080065.9A CN108668523A (zh) | 2016-01-27 | 2016-12-21 | 无线电力供应方法及其装置 |
EP16888321.3A EP3410563A4 (en) | 2016-01-27 | 2016-12-21 | WIRELESS POWER SUPPLY METHOD AND APPARATUS THEREFOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0009890 | 2016-01-27 | ||
KR1020160009890A KR20170089542A (ko) | 2016-01-27 | 2016-01-27 | 무선 전력 공급 방법 및 그를 위한 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017131345A1 true WO2017131345A1 (ko) | 2017-08-03 |
Family
ID=59398258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/014973 WO2017131345A1 (ko) | 2016-01-27 | 2016-12-21 | 무선 전력 공급 방법 및 그를 위한 장치 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190058358A1 (ko) |
EP (1) | EP3410563A4 (ko) |
KR (1) | KR20170089542A (ko) |
CN (1) | CN108668523A (ko) |
WO (1) | WO2017131345A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022074479A1 (en) * | 2020-10-09 | 2022-04-14 | Cochlear Limited | Quantized waveform power transmission |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10615645B2 (en) * | 2011-02-01 | 2020-04-07 | Fu Da Tong Technology Co., Ltd | Power supply device of induction type power supply system and NFC device identification method of the same |
US10630113B2 (en) * | 2011-02-01 | 2020-04-21 | Fu Da Tong Technology Co., Ltd | Power supply device of induction type power supply system and RF magnetic card identification method of the same |
US20180269726A1 (en) * | 2017-03-15 | 2018-09-20 | Apple Inc. | Inductive Power Transmitter |
US10432260B1 (en) * | 2019-01-21 | 2019-10-01 | Nxp B.V. | Circuit for inductive communications with multiple bands |
WO2020206614A1 (zh) * | 2019-04-09 | 2020-10-15 | 北京小米移动软件有限公司 | 信息发送方法、装置及存储介质 |
JP7167829B2 (ja) * | 2019-04-19 | 2022-11-09 | 株式会社デンソー | 走行中給電システム及びその電気特性の異常値判定方法 |
US20230170744A1 (en) * | 2021-11-30 | 2023-06-01 | Qualcomm Incorporated | Charging iot devices |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004007932A (ja) * | 2002-06-03 | 2004-01-08 | Ihi Aerospace Co Ltd | マイクロ波送信システム |
JP2010124545A (ja) * | 2008-11-17 | 2010-06-03 | Olympus Corp | 電力供給装置 |
US20130214591A1 (en) * | 2012-02-14 | 2013-08-22 | Ut-Battelle, Llc | Wireless power charging using point of load controlled high frequency power converters |
WO2015045160A1 (ja) * | 2013-09-30 | 2015-04-02 | 富士通株式会社 | 送電装置 |
KR20150055971A (ko) * | 2013-11-14 | 2015-05-22 | 엘지이노텍 주식회사 | 전력 생성 장치, 무선전력 송신장치 및 무선전력 전송 시스템 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2873869B1 (fr) * | 2004-07-29 | 2006-10-06 | Valeo Equip Electr Moteur | Dispositif de controle et de puissance pour une machine electrique tournante |
JP2012186472A (ja) * | 2011-02-19 | 2012-09-27 | Lequio Power Technology Corp | 給電装置及び受給電装置 |
KR101599172B1 (ko) * | 2012-01-12 | 2016-03-02 | 후지쯔 가부시끼가이샤 | 송전 장치 및 송수전 시스템 |
KR101963906B1 (ko) * | 2013-03-19 | 2019-03-29 | 지이 하이브리드 테크놀로지스, 엘엘씨 | 무선 전력 전송 시스템, 이에 이용되는 무선 충전 기능을 구비한 가구 및 무선 전력 전송 장치 |
-
2016
- 2016-01-27 KR KR1020160009890A patent/KR20170089542A/ko not_active Application Discontinuation
- 2016-12-21 WO PCT/KR2016/014973 patent/WO2017131345A1/ko active Application Filing
- 2016-12-21 US US16/068,802 patent/US20190058358A1/en not_active Abandoned
- 2016-12-21 EP EP16888321.3A patent/EP3410563A4/en not_active Withdrawn
- 2016-12-21 CN CN201680080065.9A patent/CN108668523A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004007932A (ja) * | 2002-06-03 | 2004-01-08 | Ihi Aerospace Co Ltd | マイクロ波送信システム |
JP2010124545A (ja) * | 2008-11-17 | 2010-06-03 | Olympus Corp | 電力供給装置 |
US20130214591A1 (en) * | 2012-02-14 | 2013-08-22 | Ut-Battelle, Llc | Wireless power charging using point of load controlled high frequency power converters |
WO2015045160A1 (ja) * | 2013-09-30 | 2015-04-02 | 富士通株式会社 | 送電装置 |
KR20150055971A (ko) * | 2013-11-14 | 2015-05-22 | 엘지이노텍 주식회사 | 전력 생성 장치, 무선전력 송신장치 및 무선전력 전송 시스템 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3410563A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022074479A1 (en) * | 2020-10-09 | 2022-04-14 | Cochlear Limited | Quantized waveform power transmission |
Also Published As
Publication number | Publication date |
---|---|
KR20170089542A (ko) | 2017-08-04 |
CN108668523A (zh) | 2018-10-16 |
US20190058358A1 (en) | 2019-02-21 |
EP3410563A1 (en) | 2018-12-05 |
EP3410563A4 (en) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017030354A1 (ko) | 무선 전력 송신기 및 이와 연결되는 차량 제어 유닛 | |
WO2018004130A1 (ko) | 무선 전력 송신 코일 형상 및 코일의 배치 방법 | |
WO2017131345A1 (ko) | 무선 전력 공급 방법 및 그를 위한 장치 | |
WO2017111369A1 (ko) | 다중 모드를 지원하는 무선 전력 송신기 | |
WO2017122928A1 (ko) | 무선 전력 제어 방법 및 그를 위한 장치 | |
WO2017003117A1 (ko) | 다중 모드 무선 전력 송신 방법 및 그를 위한 장치 | |
WO2016200028A1 (ko) | 무선 충전 시스템을 이용한 전력 관리 방법 및 그를 위한 장치 및 시스템 | |
WO2017018668A1 (ko) | 무선 전력 수신기 식별 방법 및 장치 | |
WO2016182208A1 (ko) | 무선 전력 송신 방법, 무선 전력 수신 방법 및 이를 위한 장치 | |
WO2017034134A1 (ko) | 무선 충전 배터리 및 무선 충전 제어 방법 | |
WO2017164525A1 (ko) | 무선 충전 시스템 및 그를 위한 장치 | |
WO2017209381A1 (ko) | 무선 전력 송신 방법 및 그를 위한 장치 | |
WO2017209390A1 (ko) | 무선 전력 전송 방식 스위칭 방법 및 장치 | |
WO2019160351A1 (ko) | 무선전력 전송 시스템에서 이종 통신을 지원하는 장치 및 방법 | |
WO2017142235A1 (ko) | 무선 전력 전송 장치를 포함하는 마우스 패드 및 마우스 | |
WO2018093099A1 (ko) | 무선 전력 전달 방법 및 이를 위한 장치 | |
WO2018004117A1 (ko) | 무선 충전을 위한 무선 전력 제어 방법 및 장치 | |
WO2019143028A1 (ko) | 높은 품질 인자를 가지는 무선 충전 코일 | |
WO2018105915A1 (ko) | 이물질 검출 방법 및 그를 위한 장치 | |
WO2018004116A1 (ko) | 무선 충전 시스템에서의 무선 전력 송신 방법 및 장치 | |
WO2017195977A2 (ko) | 무선 충전 방법 및 그를 위한 장치 및 시스템 | |
WO2019139326A1 (ko) | 무선전력 전송 시스템에서 전력 보정을 수행하는 장치 및 방법 | |
WO2018008841A1 (ko) | 무선 충전을 위한 무선 전력 제어 방법 및 장치 | |
WO2014021636A1 (ko) | 무선 전력 전송 네트워크 및 무선 전력 전송 방법 | |
WO2017200193A1 (ko) | 무선 전력 제어 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16888321 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016888321 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016888321 Country of ref document: EP Effective date: 20180827 |