WO2015045160A1 - 送電装置 - Google Patents

送電装置 Download PDF

Info

Publication number
WO2015045160A1
WO2015045160A1 PCT/JP2013/076564 JP2013076564W WO2015045160A1 WO 2015045160 A1 WO2015045160 A1 WO 2015045160A1 JP 2013076564 W JP2013076564 W JP 2013076564W WO 2015045160 A1 WO2015045160 A1 WO 2015045160A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
control unit
resonance
power transmitter
primary
Prior art date
Application number
PCT/JP2013/076564
Other languages
English (en)
French (fr)
Inventor
昭嘉 内田
聡 下川
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to CN201380079900.3A priority Critical patent/CN105594089B/zh
Priority to JP2015538805A priority patent/JP6296061B2/ja
Priority to PCT/JP2013/076564 priority patent/WO2015045160A1/ja
Priority to EP13894808.8A priority patent/EP3054559B1/en
Priority to KR1020167008236A priority patent/KR101789457B1/ko
Publication of WO2015045160A1 publication Critical patent/WO2015045160A1/ja
Priority to US15/083,465 priority patent/US9490665B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a power transmission device.
  • the wireless power feeding system includes a detection unit that detects information related to an arrangement state of the power receiving antenna, and a magnetic field data storage unit that stores magnetic field data related to a magnetic field radiated from the power transmission antenna for each power transmission antenna. .
  • the wireless power feeding system includes a control unit that selectively drives and controls the plurality of power transmission antennas via the plurality of driving units based on the magnetic field data and information related to an arrangement state of the power receiving antenna (for example, see Patent Document 1).
  • the conventional wireless power feeding system selects a power transmitting antenna capable of feeding the largest power among a plurality of power transmitting antennas, and drives only the selected power transmitting antenna, so that the resonance frequency of the plurality of power transmitting antennas is adjusted. not going.
  • an object is to provide a power transmission device that can adjust the resonance frequency of a plurality of power transmitters with high accuracy.
  • a power transmission device is a power transmission device including a first power transmitter and a second power transmitter, wherein the first power transmitter receives a first primary resonance coil that receives power from an AC power source, A first phase difference detector for detecting a first phase difference of a phase of a first current flowing in the first primary side resonance coil with respect to a phase of a first voltage supplied to the first primary side resonance coil; The first variable capacitance unit provided in the first primary resonance coil, and the first position with respect to the change amount of the first capacitance when the first capacitance of the first variable capacitance unit is changed.
  • a first control unit that adjusts the first capacitance so as to obtain a resonance frequency based on a change degree of the phase difference, and the second power transmitter includes a phase adjustment unit that is connected to the AC power source; , Arranged side by side with the first primary side resonance coil, and through the phase adjustment unit A second primary-side resonance coil that receives power from an AC power source and a phase of a second current that flows through the second primary-side resonance coil with respect to a phase of a second voltage supplied to the second primary-side resonance coil A second phase difference detector that detects two phase differences, a second variable capacitor provided in the second primary resonance coil, and a second capacitance of the second variable capacitor when the second capacitance of the second variable capacitor is changed A second control unit that adjusts the second capacitance so as to obtain a resonance frequency based on a degree of change of the second phase difference with respect to an amount of change of the second capacitance.
  • the second power transmitter adjusts a resonance frequency of the first power transmitter when the second power transmitter is off, and the second
  • FIG. 1 is a diagram illustrating a power transmission device 50 including a power transmission device 1.
  • FIG. It is a figure which shows the relationship between the primary side resonance coil 13 and power receiving device 20A, 20B. It is a figure which shows a mode that electric power is transmitted to the power receiving device 20 from the two primary side resonance coils 13A and 13B. It is a figure which shows a mode that electric power is transmitted to the power receiving device 20 from the two primary side resonance coils 13A and 13B. It is a figure which shows the relationship between phase difference (theta) and phase difference (DELTA) phi of an electric current and a voltage.
  • theta phase difference
  • DELTA phase difference
  • FIG. 1 is a diagram illustrating a power transmission device 50 including a power transmission device according to a first embodiment. It is a block diagram which shows the control system of the power transmission apparatus 50 shown in FIG. It is a figure which shows primary side resonance coil 13A, 13B, 13C of the power transmission apparatus 300 of Embodiment 1. FIG. It is a figure which shows the power transmission apparatus 300 of Embodiment 1.
  • FIG. 1 is a diagram illustrating a power transmission device 50 including a power transmission device according to a first embodiment. It is a block diagram which shows the control system of the power transmission apparatus 50 shown in FIG. It is a figure which shows primary side resonance coil 13A, 13B, 13C of the power transmission apparatus 300 of Embodiment 1. FIG. It is a figure which shows the power transmission apparatus 300 of Embodiment 1. FIG.
  • DELTA phase difference
  • FIG. 3 is a diagram illustrating a power transmission device 300 and a power receiver 120 according to Embodiment 1.
  • FIG. Table showing capacitances of capacitors 132A, 132B, and 132C adjusted by power transmission side control circuits 14A, 14B, and 14C of power transmitters 110A, 110B, and 110C, and a flag that is turned on when capacitance adjustment is completed It is a figure which shows an example of the data of a format.
  • 6 is a flowchart illustrating a resonance frequency setting process in power transmission device 300 according to the first embodiment.
  • 6 is a diagram illustrating a power transmission device 400 according to Embodiment 2.
  • FIG. 10 is a flowchart illustrating a resonance frequency setting process in power transmission device 400 according to the second embodiment.
  • Embodiments 1 and 2 Before describing Embodiments 1 and 2 to which the power transmission device of the present invention is applied, the prerequisite technology of the power transmission device according to Embodiments 1 and 2 will be described with reference to FIGS.
  • FIG. 1 is a diagram illustrating a power transmission device 50 including the power transmission device 1.
  • the power transmission device 50 includes a power transmitter 10 on the primary side (power transmission side) and a power receiver 20 on the secondary side (power reception side).
  • the power transmission device 50 may include a plurality of power transmitters 10 and power receivers 20.
  • the power transmission device according to the first embodiment is omitted.
  • the power transmitter 10 includes an AC power source 11 and a power transmission system coil TC including a primary side coil 12 and a primary side resonance coil 13.
  • the power receiver 20 includes a secondary side resonance coil 22 and a secondary side coil 23.
  • the power receiving coil RC and the load device 21 are included.
  • the power transmitter 10 and the power receiver 20 are configured so that the power transmitter 10 and the power receiver 20 are subjected to magnetic field resonance (magnetic field resonance) between the primary resonance coil (LC resonator) 13 and the power reception resonance coil (LC resonator) 22.
  • the energy (electric power) is transmitted from the power receiver 20 to the power receiver 20.
  • the power transmission from the primary side resonance coil 13 to the secondary side resonance coil 22 can be performed not only by magnetic field resonance but also by electric field resonance (electric field resonance).
  • magnetic field resonance is mainly used as an example. explain.
  • the frequency of the AC voltage output from the AC power supply 11 is 6.78 MHz and the resonance frequency of the primary side resonance coil 13 and the secondary side resonance coil 22 is 6.78 MHz will be described. .
  • power transmission from the primary side coil 12 to the primary side resonance coil 13 is performed using electromagnetic induction
  • the secondary side resonance coil 22 is connected to the secondary side coil.
  • the power transmission to 23 is also performed using electromagnetic induction.
  • FIG. 2 is a diagram showing the relationship between the primary side resonance coil 13 and the power receivers 20A and 20B.
  • the power receivers 20A and 20B are the same as the power receiver 20 shown in FIG. 2A and 2B, the direction of the magnetic field formed by the current output from the primary side resonance coil 13 is indicated by a dashed arrow. Dashed arrows represent lines of magnetic force.
  • both the power receivers 20A and 20B can receive power.
  • the power receiver 20A when the power receiver 20A is perpendicular to the magnetic field lines and the power receiver 20B is parallel to the magnetic field lines with respect to the primary side resonance coil 13, the power receiver 20A can receive power. 20B cannot receive power.
  • FIG. 3 is a diagram illustrating a state in which power is transmitted from the two primary resonance coils 13A and 13B to the power receiver 20.
  • lines of magnetic force are indicated by dashed arrows.
  • an XYZ coordinate system that is an orthogonal coordinate system is defined.
  • the two primary resonance coils 13A and 13B are arranged so as to be in a vertical positional relationship with each other.
  • the primary side resonance coil 13A is parallel to the XY plane, and the primary side resonance coil 13B is parallel to the YZ plane.
  • Power is transmitted wirelessly from the two primary resonance coils 13A and 13B to the power receiver 20 by magnetic field resonance.
  • phase difference 0 If power having the same phase (phase difference 0) is output from the primary side resonance coils 13A and 13B when the power receiver 20 is located at the position shown in FIG. 3B, the power is output from both the primary side resonance coils 13A and 13B. Magnetic field lines that pass through the power receiver 20. For this reason, the power receiver 20 can receive power from the primary resonance coils 13A and 13B.
  • the power receiver 20 when the power receiver 20 is located at the position shown in FIG. 3C, if power having a phase difference of 180 degrees is output from the primary side resonance coils 13A and 13B, the power is output from both the primary side resonance coils 13A and 13B. Magnetic field lines that pass through the power receiver 20. For this reason, the power receiver 20 can receive power from the primary resonance coils 13A and 13B.
  • the primary side resonance coils 13A, 13B when power is transmitted from the primary side resonance coils 13A, 13B to the power receiver 20 by magnetic field resonance, the primary side resonance coils 13A, 13A, 13B It is necessary to adjust the phase of the power output from 13B.
  • FIG. 4 is a diagram illustrating a state in which power is transmitted from the two primary resonance coils 13A and 13B to the power receiver 20.
  • amplifiers 31 and 32 are connected to the oscillator 30, and the amplifier 32 is connected to the oscillator 30 via the phase adjustment unit 33.
  • the output terminals of the amplifiers 31 and 32 are connected to the primary side resonance coils 13A and 13B, respectively.
  • the primary side resonance coils 13A and 13B are connected to the oscillator 30 without passing through the primary side coil 12 (see FIG. 1).
  • the AC power output from the oscillator 30 is amplified by the amplifier 31.
  • the AC power output from the oscillator 30 is amplified by the amplifier 32 after the phase is adjusted by the phase adjustment unit 33.
  • the phase of the power output from the primary resonance coil 13B is ⁇ degrees with respect to the phase of the power output from the primary resonance coil 13A. Can be delayed.
  • the power receiver is located at the position shown in FIG. 4 with respect to the primary resonance coils 13A and 13B shown in FIG.
  • 0 degrees is the optimum phase. This is the same as the case shown in FIG.
  • the primary side resonance coil 13A With respect to the phase of the voltage output from the oscillator 30 is supplied.
  • the phase difference of the phase of the flowing current is 0 degree. This point is a resonance point.
  • control is performed by feedback control so that the phase difference of the phase of the current flowing through the primary side resonance coil 13A with respect to the phase of the voltage output from the oscillator 30 becomes 0 degrees.
  • control is performed by feedback control so that the phase difference of the phase of the current flowing in the primary side resonance coil 13B with respect to the phase of the voltage output from the phase adjustment unit 33 becomes 0 degrees.
  • FIG. 5 is a diagram showing the relationship between the phase difference ⁇ and the phase difference ⁇ between current and voltage.
  • the horizontal axis represents the phase difference ⁇ .
  • the phase difference ⁇ is a phase difference of the phase of power output from the primary side resonance coil 13B with respect to the phase of power output from the primary side resonance coil 13A.
  • the vertical axis in FIG. 5A represents the current flowing through the primary side resonance coil 13A with respect to the phase of the voltage output by the oscillator 30 in a state where both the primary side resonance coils 13A and 13B are turned on and outputting power.
  • the phase difference ⁇ of the phase is shown.
  • the vertical axis in FIG. 5B flows to the primary resonance coil 13B with respect to the phase of the voltage output by the phase adjustment unit 33 in a state where the primary resonance coils 13A and 13B are both turned on and power is output.
  • the phase difference ⁇ of the current phase is shown.
  • the magnitudes of the electric power output from the primary side resonance coils 13A and 13B are equal, and both the electric power output from the primary side resonance coils 13A and 13B by the feedback control has the resonance frequency. It has been adjusted.
  • the feedback control unit of the primary side resonance coil 13A determines that the operating point is deviated from the resonance point, and further performs feedback control so that the phase difference ⁇ of the current with respect to the voltage approaches 0 degrees.
  • the feedback control unit of the primary side resonance coil 13B determines that the operating point is deviated from the resonance point, and further performs feedback control so that the phase difference of the current with respect to the voltage approaches 0 degrees.
  • FIG. 6 is a diagram showing the characteristics of the phase difference ⁇ detected by the feedback control unit of the primary side resonance coil 13A when the capacitance of the capacitor inserted in series between both terminals of the primary side resonance coil 13B is changed. It is.
  • the horizontal axis of FIG. 6 represents the capacitance of the capacitor of the primary side resonance coil 13B in a state where the capacitance of the capacitor is set so that both the primary side resonance coils 13A and 13B can output power at the resonance frequency.
  • the ratio of the capacitance value when changing the capacitance of the capacitor of the primary side resonance coil 13B is shown.
  • the ratio of the horizontal axis When the ratio of the horizontal axis is 1, it represents a state in which the capacitance of the capacitor of the primary side resonance coil 13B is adjusted to the capacitance of the capacitor of the primary side resonance coil 13B from which the resonance frequency can be obtained. As the ratio of the horizontal axis deviates from 1, the capacitance of the capacitor of the primary side resonance coil 13B deviates from the capacitance of the capacitor of the primary side resonance coil 13B that gives the resonance frequency.
  • an object is to provide a power transmission device that can adjust the resonance frequency with high accuracy in a power transmission device having a plurality of primary resonance coils.
  • a power transmission device including three primary side resonance coils will be described.
  • a power transmission device 110 including one primary side resonance coil 13 and a power transmission device will be described with reference to FIGS. 7 and 8.
  • the power transmission device 50 including the electric appliance 110 will be described.
  • FIG. 7 is a diagram showing a power transmission device 50 including the power transmission device of the first embodiment.
  • FIG. 7 is a diagram illustrating a detailed configuration of the power transmission device 50 illustrated in FIG. 1.
  • the power transmission device 50 includes a power transmitter 110 and a power receiver 120.
  • the power transmitter 110 includes a primary side resonance coil 13, an AC power source 11, and a power transmission side control circuit 14.
  • the power receiver 120 includes a secondary side resonance coil 22 and a power reception side control circuit 24.
  • a load device 21 is connected to the power receiver 120.
  • the power transmitter 110 does not include the primary side coil 12 (see FIG. 1), and the AC power source 11 is directly connected to the primary side resonance coil 13.
  • the power receiver 120 does not include the secondary coil 23 (see FIG. 1), and the load device 21 is directly connected to the secondary resonance coil 22.
  • the primary side resonance coil 13 includes, for example, a coil 131 in which a metal wire such as a copper wire or an aluminum wire is wound in a circumferential shape, and a capacitor 132 connected to both ends of the coil 131 to form a resonance circuit.
  • the resonance frequency f0 is expressed by the following equation (1).
  • L is the inductance of the coil 131
  • C is the capacitance of the capacitor 132.
  • the coil 131 of the primary side resonance coil 13 is, for example, a one-turn coil, and various types of capacitors can be applied as the capacitor 132. However, it is preferable that the capacitor has as little loss as possible and has a sufficient withstand voltage.
  • the capacitor 132 is an example of a variable capacitance element.
  • variable capacitor is used as the capacitor 132 in order to vary the resonance frequency.
  • a variable capacitor for example, a variable capacitance device manufactured using MEMS technology or a variable capacitance device (varactor) using a semiconductor can be applied.
  • the secondary resonance coil 22 includes, for example, a coil 221 around which a metal wire such as a copper wire or an aluminum wire is wound, and a capacitor 222 connected to both ends of the coil 221.
  • the resonance frequency f0 of the secondary resonance coil 22 is expressed by the above-described equation (1) according to the inductance of the coil 221 and the capacitance of the capacitor 222.
  • the coil 221 of the secondary resonance coil 22 is, for example, a one-turn coil, and various types of capacitors can be applied to the capacitor 222 as described above.
  • a variable capacitor is used as the capacitor 222 in order to vary the resonance frequency.
  • variable capacitor similarly to the capacitor 132, for example, a variable capacitance device manufactured using the MEMS technology or a varactor using a semiconductor can be applied.
  • the load device 21 is connected to both ends of the secondary resonance coil 22.
  • the load device 21 is, for example, a battery used as a power source for the power receiver 120 or a circuit for charging the battery.
  • the coil surfaces are parallel to each other and the coil axes are coincident with each other as shown in FIG. Ideally, they should be located within a suitable distance from each other so that they do not or do not shift too much.
  • the direction along the coil axis KT is the main radiation direction of the magnetic field KK, and the direction from the primary side resonance coil 13 toward the secondary side resonance coil 22 is the power transmission direction TD. It is.
  • the phase ⁇ vt of the AC power supply 11 and the phase ⁇ it of the current flowing through the primary side resonance coil 13 and the secondary side resonance coil 22 are transmitted by the power transmission side control circuit 14 and the power reception side control circuit 24.
  • ⁇ ir are used to control the resonance frequencies ft and fr.
  • the resonance frequencies ft and fr are controlled to be equal to the frequency fd of the AC power supply 11.
  • the power transmission side control circuit 14 detects the phase ⁇ vt of the voltage Vt applied to the primary side resonance coil 13 and the phase ⁇ it of the current It flowing through the primary side resonance coil 13, and the phase difference ⁇ t is a predetermined target value ⁇ mt.
  • the resonance frequency ft of the primary side resonance coil 13 is variably controlled.
  • the power transmission side control circuit 14 includes a current detection sensor SE1, phase detection units 141 and 142, a target value setting unit 143, a feedback control unit 144, and a phase transmission unit 145.
  • the current detection sensor SE1 detects the current It flowing through the primary side resonance coil 13.
  • the current detection sensor SE1 for example, a Hall element, a magnetoresistive element, a detection coil, or the like can be used.
  • the current detection sensor SE1 outputs a voltage signal corresponding to the waveform of the current It, for example.
  • the phase detector 141 detects the phase ⁇ vt of the voltage Vt applied to the primary resonance coil 13 and outputs a voltage signal corresponding to the waveform of the voltage Vt, for example.
  • the phase detector 141 may output the voltage Vt as it is, or may divide and output the voltage Vt with an appropriate resistor. Therefore, the phase detection unit 141 can be a simple conductor or one or a plurality of resistance elements.
  • the phase detector 142 detects the phase ⁇ it of the current It flowing through the primary side resonance coil 13 based on the output from the current detection sensor SE1, and outputs a voltage signal corresponding to the waveform of the current It, for example.
  • the phase detector 142 may output the output of the current detection sensor SE1 as it is. Therefore, the current detection sensor SE1 can also serve as the phase detection unit 142.
  • the target value setting unit 143 sets and stores the target value ⁇ mt of the phase difference ⁇ t. Therefore, the target value setting unit 143 is provided with a memory for storing the target value ⁇ mt. For example, 0 degree is set as the target value ⁇ mt.
  • the target value ⁇ mt may be set by selecting from one or a plurality of data stored in advance, or may be performed by a command from a CPU, a keyboard, or the like.
  • the feedback control unit 144 adjusts the primary resonance coil 13 so that the phase difference ⁇ t between the phase ⁇ vt of the voltage Vt of the AC power supply 11 and the phase ⁇ it of the current It of the primary resonance coil 13 becomes the set target value ⁇ mt. Is variably controlled.
  • the phase transmission unit 145 wirelessly transmits information about the phase ⁇ vt of the voltage Vt supplied to the primary side resonance coil 13 to the power reception side control circuit 24 as an analog signal or a digital signal.
  • a voltage signal corresponding to the waveform of the voltage Vt can be multiplied by an integral multiple and transmitted.
  • the power receiving side control circuit 24 detects the phase ⁇ vt of the voltage VT supplied to the primary side resonance coil 13 and the phase ⁇ ir of the current IR flowing through the secondary side resonance coil 22, and the phase difference ⁇ r thereof is a predetermined target value ⁇ mr.
  • the resonance frequency fr of the secondary side resonance coil 22 is variably controlled.
  • the power reception side control circuit 24 includes a current detection sensor SE2, a phase reception unit 241, a phase detection unit 242, a target value setting unit 243, and a feedback control unit 244.
  • the current detection sensor SE2 detects the current Ir flowing through the secondary side resonance coil 22.
  • the current detection sensor SE2 for example, a Hall element, a magnetoresistive element, a detection coil, or the like can be used.
  • the current detection sensor SE2 outputs a voltage signal corresponding to the waveform of the current Ir, for example.
  • the phase receiver 241 receives and outputs information about the phase ⁇ vt transmitted from the phase transmitter 145.
  • the phase reception unit 241 performs frequency division to restore the original.
  • the phase receiver 241 outputs a voltage signal corresponding to the voltage Vt.
  • the phase detection unit 242 detects the phase ⁇ ir of the current Ir flowing through the secondary resonance coil 22 based on the output from the current detection sensor SE2, and outputs a voltage signal corresponding to the waveform of the current Ir, for example.
  • the phase detector 242 may output the output of the current detection sensor SE2 as it is. Therefore, the current detection sensor SE2 can also serve as the phase detection unit 242.
  • the target value setting unit 243 sets and stores a target value ⁇ mr for the phase difference ⁇ r. Therefore, the target value setting unit 243 is provided with a memory for storing the target value ⁇ mr. As the target value ⁇ mr, for example, 0 is set to the target value ⁇ mt in the power transmission side control circuit 14.
  • the method for setting the target value ⁇ mr is the same as that for the target value ⁇ mt.
  • the feedback control unit 244 performs secondary side resonance so that the phase difference ⁇ r between the phase ⁇ vt of the voltage Vt of the AC power supply 11 and the phase ⁇ ir of the current Ir of the secondary side resonance coil 22 becomes the set target value ⁇ mr.
  • the resonance frequency fr of the coil 22 is variably controlled.
  • the target value setting unit 143 and the feedback control unit 144 in the power transmission side control circuit 14 are examples of a resonance frequency control unit.
  • the target value setting unit 243 and the feedback control unit 244 in the power receiving side control circuit 24 are examples of a resonance frequency control unit.
  • the primary side resonance coil 13 and the secondary side resonance coil 22 are arranged such that the coil surfaces are parallel to each other and the coil axes coincide with each other or do not deviate so much. It is desirable that they are arranged within a suitable distance.
  • the primary side resonance coil 13 is disposed on the device side that transmits power
  • the secondary side resonance coil 22 is disposed on the device side that receives power
  • the primary side resonance coil 13 and the secondary side resonance coil are arranged.
  • the positional relationship with the coil 22 is not always constant and can change.
  • power transmission by magnetic field resonance is longer than the power transmission by electromagnetic induction, and can transmit power even when the power transmission side and the power reception side are further apart.
  • the distance between the primary side resonance coil 13 and the secondary side resonance coil 22 may be different each time power is transmitted from the power transmission side to the power reception side.
  • the degree of coupling between the primary side resonance coil 13 and the secondary side resonance coil 22 varies depending on the distance between them.
  • FIG. 8 is a block diagram showing a control system of the power transmission device 50 shown in FIG. FIG. 8 shows details of the feedback control unit 144 of the power transmitter 110 and the feedback control unit 244 of the power receiver 120.
  • phase detectors 141, 142, 241, and 242 in FIG. 7 are omitted for simplification. That is, in FIG. 8, the phase ⁇ it of the current It flowing through the primary side resonance coil 13 is directly output from the current detection sensor SE1. It may be output via.
  • the feedback control unit 144 includes a phase comparison unit 151, an addition unit 152, gain adjustment units 153 and 154, a compensation unit 155, and a driver 156.
  • the phase comparator 151 compares the phase ⁇ it of the current It detected by the current detection sensor SE1 with the phase ⁇ vt of the voltage Vt of the AC power supply 11, and outputs a signal representing the phase difference ⁇ t between the phase ⁇ it and the phase ⁇ vt. To do.
  • a signal representing the phase difference ⁇ t output from the phase comparator 151 is input to the adder 152.
  • the phase comparison unit 151 is an example of a phase difference detection unit.
  • the addition unit 152 subtracts (inverts and adds) the target value ⁇ mt set in the target value setting unit 143 from the phase difference ⁇ t output from the phase comparison unit 151. Therefore, when the phase difference ⁇ t matches the target value ⁇ mt, the output of the adder 152 becomes zero.
  • the output of the addition unit 152 is input to the gain adjustment unit 154 and further input to the compensation unit 155.
  • the gain adjusting units 153 and 154 adjust the gain (gain) for each input value or data, or perform conversion of data or the like so that the control is correctly performed.
  • the compensation unit 155 determines the gain for the low frequency component, for example. That is, the feedback control unit 144 can be regarded as a servo system that performs feedback control on the MEMS variable capacitance device that is the capacitor 132, for example.
  • an appropriate servo filter is used for the compensation unit 155 in order to stabilize, increase the speed and increase the accuracy of the servo system. Further, a filter circuit or a differential integration circuit for performing a PID (Proportional Integral Derivative Controller) operation in such a servo system is appropriately used.
  • PID Proportional Integral Derivative Controller
  • the driver 156 for example, outputs a control signal KTt to the MEMS variable capacitance device that is the capacitor 132, and variably controls the capacitance of the MEMS variable capacitance device.
  • the MEMS variable capacitance device includes, for example, a lower electrode and an upper electrode provided on a glass substrate, and a change in gap due to bending caused by an electrostatic attraction force due to a voltage applied between the electrodes. Is used to change the capacitance.
  • an electrode for a capacitor and an electrode for driving may be provided separately. Further, since the relationship between the voltage applied to the electrode for driving and the amount of change in capacitance is not linear, for example, the driver 156 appropriately performs calculations for conversion or table conversion. Yes.
  • the feedback control unit 244 includes a phase comparison unit 251, an addition unit 252, gain adjustment units 253 and 254, a compensation unit 255, a driver 256, and a polarity inversion unit 257.
  • each unit in the feedback control unit 244 is substantially the same as the operation of each unit in the feedback control unit 144 described above, and a description thereof will be omitted.
  • the power transmission side control circuit 14 and the power reception side control circuit 24 in FIG. 7 and the feedback control unit 144 and the feedback control unit 244 in FIG. 8 can be realized by software, hardware, or a combination thereof. .
  • a computer including a CPU, a memory such as a ROM and a RAM, and other peripheral elements and causing the CPU to execute an appropriate computer program.
  • a computer including a CPU, a memory such as a ROM and a RAM, and other peripheral elements and causing the CPU to execute an appropriate computer program.
  • an appropriate hardware circuit is used together.
  • FIG. 9 is a diagram illustrating primary resonance coils 13A, 13B, and 13C of power transmission device 300 according to the first embodiment.
  • an XYZ coordinate system which is an orthogonal coordinate system, is defined as shown.
  • the primary side resonance coils 13A, 13B, and 13C are primary side resonance coils similar to the primary side resonance coil 13 shown in FIGS.
  • the primary resonance coil 13A is arranged in parallel to the XY plane.
  • the primary side resonance coil 13B is disposed in parallel to the XZ plane.
  • the primary resonance coil 13C is disposed in parallel to the YZ plane.
  • the primary side resonance coils 13A, 13B, and 13C are disposed so as to be in a vertical positional relationship with each other in a close state.
  • the power transmission device 300 performs power transmission by magnetic field resonance to the power receiver 20 using the three primary resonance coils 13A, 13B, and 13C illustrated in FIG.
  • FIG. 10 is a diagram illustrating the power transmission device 300 according to the first embodiment.
  • the power transmission device 300 includes three power transmitters 110A, 110B, and 110C, a control unit 200, an oscillator 210, amplifier units 220A, 220B, and 220C, matching units 230A, 230B, and 230C, and phase adjustment units 240A and 240B.
  • any one of the power transmitters 110A, 110B, and 110C is an example of a first power transmitter, and the other arbitrary one is an example of a second power transmitter.
  • the power transmitters 110A, 110B, and 110C have a configuration in which flag setting units 146A, 146B, and 146C are added to the power transmitter 110 illustrated in FIGS.
  • the power transmitters 110A, 110B, and 110C have primary side resonance coils 13A, 13B, and 13C, and power transmission side control circuits 14A, 14B, and 14C, respectively.
  • the power transmission device 300 transmits power from the three power transmitters 110A, 110B, and 110C simultaneously to the power receiver 120 (see FIGS. 7 and 8) located near the power transmitters 110A, 110B, and 110C by magnetic field resonance.
  • the primary side resonance coils 13A, 13B, and 13C have capacitors 132A, 132B, and 132C, respectively.
  • the capacitors 132A, 132B, and 132C are the same as the capacitor 132 shown in FIGS.
  • Arbitrary one of the primary side resonance coils 13A, 13B, and 13C is an example of a first primary side resonance coil, and the other arbitrary one is an example of a second primary side resonance coil.
  • Any one of the capacitors 132A, 132B, and 132C is an example of a first variable capacitance unit, and any other one of the capacitors 132A, 132B, and 132C is an example of a second variable capacitance unit. is there.
  • the power transmitter 110A includes a primary side resonance coil 13A and a power transmission side control circuit 14A.
  • the power transmitter 110B includes a primary side resonance coil 13B and a power transmission side control circuit 14B.
  • the power transmitter 110C includes a primary side resonance coil 13C and a power transmission side control circuit 14C.
  • the power transmission side control circuits 14A, 14B, and 14C have the same configuration, and include a current detection sensor SE1, phase detection units 141 and 142, a target value setting unit 143, a feedback control unit 144, and a phase transmission unit 145, respectively. Have.
  • the power transmission side control circuits 14A, 14B, and 14C further include flag setting units 146A, 146B, and 146C, respectively.
  • the flag setting units 146A, 146B, and 146C have internal memories that hold flags.
  • Arbitrary one of the power transmission side control circuits 14A, 14B, and 14C is an example of the first control unit, and the other arbitrary one is an example of the second control unit. Note that the first control unit and the second control unit may include a part of the control unit 200.
  • the feedback control unit 144 of the power transmission side control circuits 14A, 14B, and 14C is switched on / off by the control unit 200.
  • the flag setting units 146A, 146B, and 146C of the power transmission side control circuits 14A, 14B, and 14C each turn on a flag that will be described later ('1').
  • the flag setting units 146A, 146B, and 146C transmit data indicating flag values to the control unit 200.
  • the control unit 200 performs on / off switching of the feedback control unit 144 of the power transmission side control circuits 14A, 14B, and 14C, and controls the amplifier units 220A, 220B, 220C, and the phase adjustment units 240A, 240B.
  • control unit 200 further obtains the sum of the flags transmitted from the flag setting units 146A, 146B, and 146C, and determines whether or not the resonance frequency adjustment processing of the power transmitters 110A, 110B, and 110C has been completed.
  • adjustment of the resonance frequencies of the power transmitters 110A, 110B, and 110C is completed in advance before power is transmitted to the power receiver 120 by magnetic field resonance.
  • the resonance frequency is adjusted by the feedback control unit 144 of the power transmission side control circuits 14A, 14B, and 14C setting the capacitances of the capacitors 132A, 132B, and 132C.
  • adjustment of the resonance frequency of power transmitter 110A, 110B, 110C is completed, it fixes to the electrostatic capacitance calculated
  • the phases ⁇ 1 and ⁇ 2 adjusted by the phase adjusters 240A and 240B are adjusted according to the position and orientation of the power receiver 120 with respect to the primary resonance coils 13A, 13B, and 13C.
  • the oscillator 210, the amplifier units 220A, 220B, and 220C and the matching units 230A, 230B, and 230C show the configuration of the AC power supply 11 shown in FIGS. 7 and 8 in detail.
  • the oscillator 210 outputs AC power.
  • the amplifier unit 220A amplifies the AC power output from the oscillator 210.
  • a 1 is the amplitude of the voltage of the AC power after being amplified by the amplifier unit 220A, and ⁇ 0 is the angular velocity.
  • the amplification factors in the amplifier units 220A, 220B, and 220C are controlled by the control unit 200.
  • Matching units 230A, 230B, and 230C are circuits that perform matching between the amplifier units 220A, 220B, and 220C and the primary side resonance coils 13A, 13B, and 13C, respectively.
  • the phase adjusters 240A and 240B add the phases ⁇ 1 and ⁇ 2 to the AC power input from the oscillator 210 and output the AC power.
  • the phases ⁇ 1 and ⁇ 2 are controlled by the control unit 200.
  • the phases ⁇ 1 and ⁇ 2 added to the AC power by the phase adjustment units 240A and 240B are obtained by, for example, photographing the power receiver 120 with a camera or the like, detecting the posture of the power receiver 120 by image processing, and detecting the detected power receiver 120. What is necessary is just to set according to an attitude
  • Such setting of the phases ⁇ 1 and ⁇ 2 may be performed by detecting the attitude of the power receiver 120 using a known attitude detection method. Further, table data in which the attitude of the power receiver 120 and the phases ⁇ 1 and ⁇ 2 are associated with each other may be prepared in advance and stored in an internal memory or the like of the control unit 200.
  • FIG. 11 is a diagram illustrating the power transmission device 300 and the power receiver 120 according to the first embodiment.
  • the power transmission device 300 includes three power transmitters 110 ⁇ / b> A, 110 ⁇ / b> B, 110 ⁇ / b> C, the control unit 200, and the AC power supply 11.
  • the AC power supply 11 corresponds to the oscillator 210, the amplifier units 220A, 220B, and 220C and the matching units 230A, 230B, and 230C illustrated in FIG.
  • the power transmitters 110A, 110B, and 110C include primary side resonance coils 13A, 13B, and 13C, power transmission side control circuits 14A, 14B, and 14C, and communication units 15A, 15B, and 15C, respectively.
  • the communication units 15A, 15B, and 15C are connected to the power transmission side control circuits 14A, 14B, and 14C, communicate with each other, and communicate with the communication unit 26 of the power receiver 120. Examples of communication between the communication units 15A, 15B, and 15C and the communication unit 26 include communication between the phase transmission unit 145 and the phase reception unit 241 illustrated in FIG.
  • the communication units 15A, 15B, and 15C may be any communication unit that can perform wireless communication, and the wireless communication format is not particularly limited, and may be of any format.
  • a communication circuit that can perform Bluetooth (registered trademark) communication can be used as the communication units 15A, 15B, and 15C.
  • the power receiver 120 includes a secondary resonance coil 22, a power reception control circuit 24, a rectification unit 25, and a communication unit 26.
  • the load device 21 is connected to the power receiver 120.
  • the rectification unit 25 rectifies the AC power received by the secondary side resonance coil 22 and supplies the rectified power to the power reception side control circuit 24 and the load device 21.
  • the communication unit 26 communicates with the communication units 15A, 15B, and 15C of the power transmitters 110A, 110B, and 110C.
  • the secondary resonance coil 22 of the power receiver 120 receives AC power from the primary resonance coils 13A, 13B, and 13C of the power transmitters 110A, 110B, and 110C.
  • the resonance frequency of the power transmitters 110A, 110B, and 110C is adjusted by the control unit 200 and the power transmission side control circuits 14A, 14B, and 14C.
  • FIG. 12 is turned on when the capacitances of the capacitors 132A, 132B, and 132C adjusted by the power transmission side control circuits 14A, 14B, and 14C of the power transmitters 110A, 110B, and 110C and the adjustment of the capacitance are completed. It is a figure which shows an example of the data of the table format which shows a flag. The flags of the power transmitters 110A, 110B, and 110C are set by the flag setting units 146A, 146B, and 146C.
  • the event represents the content that the control unit 200 causes the power transmitters 110A, 110B, and 110C to adjust the capacitance.
  • the types of events include the first transmitter A resonance adjustment, the first transmitter B resonance adjustment, the first transmitter C resonance adjustment, and the first check of all flags. The same event is set from the second to the fifth. Has been.
  • the first transmitter A resonance adjustment is an event in which the control unit 200 causes the power transmission side control circuit 14A of the power transmitter 110A to set the capacitance of the capacitor 132A. More specifically, according to a command from the control unit 200, the feedback control unit 144 of the power transmission side control circuit 14A sets the capacitance of the capacitor 132A.
  • the method of setting the capacitance of the capacitor 132A is as described with reference to FIGS.
  • the first transmitter B resonance adjustment and the first transmitter C resonance adjustment are events in which the control unit 200 causes the power transmission side control circuits 14B and 14C of the power transmitters 110B and 110C to set the capacitances of the capacitors 132B and 132C, respectively. is there. More specifically, the feedback control unit 144 of the power transmission side control circuits 14B and 14C sets the capacitances of the capacitors 132B and 132C according to a command from the control unit 200. The method of setting the capacitances of the capacitors 132B and 132C is as described with reference to FIGS.
  • FIG. 12 shows a case where the flag sum becomes “3” by the fifth setting as an example. For this reason, FIG. 12 shows the first transmitter A resonance adjustment, the first transmitter B resonance adjustment, the first transmitter C resonance adjustment, the fifth transmitter A resonance adjustment, the fifth transmitter B resonance adjustment, Electric appliance C resonance adjustment up to the fifth time is shown.
  • the flags shown in FIG. 12 are set by the flag setting units 146A, 146B, and 146C.
  • the flag setting units 146A, 146B, and 146C each turn on the flag when the change in the current set value with respect to the previous set value is 0.2 pF or less in absolute value. When the flag is turned on, the value of the flag becomes “1”.
  • the flag is held off because there is no previous set value.
  • the first check of all flags is the sum of the flags (flags) obtained for the transmitters 110A, 110B, and 110C at the first transmitter A resonance adjustment, the first transmitter B resonance adjustment, and the first transmitter C resonance adjustment. Sum) is an event that the control unit 200 calculates.
  • the flag sum indicates the total value of the flags set by the flag setting units 146A, 146B, and 146C of the power transmitters 110A, 110B, and 110C at each time.
  • the confirmation of all such flags is performed in the same manner from the second time to the fifth time.
  • the flag since the flag is held off at the first transmitter A resonance adjustment, the first transmitter B resonance adjustment, and the first transmitter C resonance adjustment, the flag sum in the case of the first all flag confirmation is zero.
  • the flag is turned on ('1').
  • the flag is turned on ('1').
  • the flag is held off.
  • the resonance frequency is repeatedly adjusted for all of the power transmitters 110A, 110B, and 110C until the change amount of the current set value with respect to the previous set value becomes equal to or less than the predetermined value as follows. This is for a reason. That is, since the power transmission device 300 using magnetic field resonance has a very high Q value, it is a sensitive system in which the peak of the Q value is drastically changed only by a slight change in the capacitance of the capacitors 132A, 132B, and 132C. Because.
  • FIG. 13 is a flowchart illustrating a resonance frequency setting process in the power transmission device 300 according to the first embodiment.
  • the resonance frequency setting process illustrated in FIG. 13 is a process executed by the control unit 200 and the power transmitters 110A, 110B, and 110C, and is performed, for example, when the power transmission device 300 is installed at a predetermined location.
  • the control unit 200 starts processing.
  • the control unit 200 instructs adjustment of the resonance frequency of the power transmitter 110A (step S101).
  • the resonance frequency of the power transmitter 110A is adjusted in a state where only the power transmitter 110A outputs AC power from the primary side resonance coil 13A, and the primary side resonance coils 13B and 13C of the power transmitters 110B and 110C do not output AC power. .
  • the state where the primary resonance coils 13B and 13C of the power transmitters 110B and 110C do not output AC power is realized by the control unit 200 causing the feedback control unit 144 of the power transmitters 110B and 110C to stop feedback control.
  • the power transmitter 110A outputs AC power from the primary side resonance coil 13A, adjusts the resonance frequency, and turns on the flag if the difference between the previous capacitance and the current capacitance is within a predetermined range. (Step S102).
  • the feedback control unit 144 of the power transmission side control circuit 14A sets the capacitance of the capacitor 132A while only the power transmission device 110A outputs AC power from the primary side resonance coil 13A.
  • the method for setting the capacitance of the capacitor 132A is as described with reference to FIGS. Then, the flag setting unit 146A of the power transmission side control circuit 14A turns on the flag when the change of the current set value with respect to the previous set value is 0.2 pF or less in absolute value.
  • the flag setting unit 146A transmits data indicating the completion of the n-th resonance frequency adjustment and the flag value to the control unit 200.
  • the value of n represents the number of times the resonance frequency setting process has been performed, and is incremented each time the resonance frequency adjustment process is performed.
  • the feedback control unit 144 of the power transmission side control circuit 14A fixes the capacitance of the capacitor 132A to the adjustment value in step S102.
  • the control unit 200 receives data indicating that the adjustment of the n-th resonance frequency has been completed and a flag value from the power transmitter 110A (step S103).
  • Control unit 200 instructs adjustment of the resonance frequency of power transmitter 110B (step S104).
  • the resonance frequency of the power transmitter 110B is adjusted in a state where only the power transmitter 110B outputs AC power from the primary side resonance coil 13B and the primary side resonance coils 13A and 13C of the power transmitters 110A and 110C do not output AC power. .
  • the power transmission side control circuit 14B of the power transmitter 110B adjusts the resonance frequency, and turns on the flag if the difference between the previous capacitance and the current capacitance is within a predetermined range (step S105). .
  • the feedback control unit 144 of the power transmission side control circuit 14B sets the capacitance of the capacitor 132B in a state where only the power transmission device 110B outputs AC power from the primary side resonance coil 13B.
  • the method of setting the capacitance of the capacitor 132B is as described with reference to FIGS.
  • the flag setting unit 146B of the power transmission side control circuit 14B turns on the flag when the change in the current set value with respect to the previous set value is 0.2 pF or less in absolute value.
  • the flag setting unit 146B transmits data indicating that the adjustment of the n-th resonance frequency is completed and the value of the flag to the control unit 200.
  • the feedback control unit 144 of the power transmission side control circuit 14B fixes the capacitance of the capacitor 132B to the adjustment value in step S105.
  • the control unit 200 receives data indicating that the adjustment of the n-th resonance frequency has been completed and the value of the flag from the power transmitter 110B (step S106).
  • Control unit 200 instructs adjustment of the resonance frequency of power transmitter 110C (step S107).
  • the resonance frequency of the power transmitter 110C is adjusted in a state where only the power transmitter 110C outputs AC power from the primary side resonance coil 13C, and the primary side resonance coils 13A and 13B of the power transmitters 110A and 110B do not output AC power. .
  • the state where the primary resonance coils 13A and 13B of the power transmitters 110A and 110B do not output AC power is realized by the control unit 200 causing the feedback control unit 144 of the power transmitters 110A and 110B to stop feedback control.
  • the power transmission side control circuit 14C of the power transmitter 110C adjusts the resonance frequency, and turns on the flag if the difference between the previous capacitance and the current capacitance is within a predetermined range (step S108). .
  • the feedback control unit 144 of the power transmission side control circuit 14C sets the capacitance of the capacitor 132C in a state where only the power transmission device 110C outputs AC power from the primary side resonance coil 13C.
  • the method of setting the capacitance of the capacitor 132C is as described with reference to FIGS.
  • the flag setting unit 146C of the power transmission side control circuit 14C turns on the flag when the change in the current set value with respect to the previous set value is 0.2 pF or less in absolute value.
  • the flag setting unit 146C transmits to the control unit 200 data indicating that the adjustment of the nth resonance frequency is completed and the value of the flag.
  • the feedback control unit 144 of the power transmission side control circuit 14C fixes the capacitance of the capacitor 132C to the adjustment value in step S108.
  • the control unit 200 receives data indicating that the adjustment of the nth resonance frequency has been completed and a flag value from the power transmitter 110C (step S109).
  • the control unit 200 confirms all the flags of the power transmitters 110A to 110C (step S110).
  • control part 200 determines whether all the flags are ON ('1') (step S111). Specifically, in step S111, the control unit 200 determines whether or not the flag sum is “3”.
  • control unit 200 determines that all the flags are on ('1'), the series of processing ends.
  • the control unit 200 determines that all the flags are not on ('1')
  • the flow returns to S101.
  • the setting process of the resonance frequency of the power transmitters 110A, 110B, and 110C is performed again.
  • the resonance frequency of the power transmitter 110A is adjusted so that only the power transmitter 110A outputs AC power from the primary side resonance coil 13A and the primary side of the power transmitters 110B and 110C.
  • Resonant coils 13B and 13C are performed in a state where AC power is not output. That is, adjustment of the resonance frequency of the power transmitter 110A is performed in a state where only the power transmitter 110A outputs AC power from the primary side resonance coil 13A.
  • the resonance frequencies of the power transmitters 110B and 110C are adjusted in a state where only the power transmitters 110B and 110C output AC power from the primary side resonance coils 13B and 13C, respectively.
  • the resonance frequency can be adjusted in a state in which the influence of the power transmission devices 110A, 110B, and 110C is reduced, so that the resonance frequency of each of the power transmission devices 110A, 110B, and 110C is highly accurate. Can be adjusted.
  • the resonance frequencies of the plurality of power transmitters can be adjusted with high accuracy.
  • the resonance frequency of each of the power transmitters 110A, 110B, and 110C is set with the other two power transmitters turned off.
  • the number of power transmitters and primary resonance coils may be any number as long as it is two or more.
  • the plurality of primary side resonance coils may be arranged in any manner as long as they can be radiated in a wider area than the area in which one primary side resonance coil can radiate radio waves.
  • the plurality of primary side resonance coils need only be in close proximity to each other and radiate power, and may be arranged in parallel without having an angle. This is because the power receiver can receive power in a wider range by outputting power from a plurality of primary side resonance coils.
  • the power transmitters 110 ⁇ / b> A, 110 ⁇ / b> B, and 110 ⁇ / b> C have been described as receiving power directly from the AC power supply 11 without including the primary coil 12.
  • the phase of the current flowing through the primary side resonance coils 13A, 13B, and 13C is equal to the phase of the voltage output from the AC power supply 11, so the target value ⁇ mt of the target value setting unit 143 is set to 0. Set to degrees.
  • the power transmitters 110 ⁇ / b> A, 110 ⁇ / b> B, and 110 ⁇ / b> C may include the primary side coil 12.
  • the primary side resonance coils 13 ⁇ / b> A, 13 ⁇ / b> B, and 13 ⁇ / b> C may receive power input from the AC power source 11 to the primary side coil 12 from the primary side coil 12 by electromagnetic induction.
  • the phase of the current flowing through the primary side resonance coils 13A, 13B, and 13C is delayed by 90 degrees with respect to the phase of the voltage output from the AC power supply 11, so Is set to 90 degrees.
  • the mode in which the resonance frequencies of the power transmitters 110A, 110B and 110C, 110C are adjusted when the power transmission device 300 is installed at a predetermined location has been described.
  • the control unit 200 causes the feedback control unit 144 of the power transmission side control circuits 14A, 14B, and 14C to detect the current phase every predetermined time, and the phase is abnormal
  • the power transmitters 110A, 110B and The resonance frequencies of 110C and 110C may be adjusted.
  • the power transmission side control circuits 14A, 14B, and 14C monitor the phase of the current, and when there is an abnormality in the phase, the resonance frequency of the power transmitters 110A, 110B and 110C, 110C is adjusted in cooperation with the control unit 200. You may make it perform.
  • FIG. 14 is a diagram illustrating a power transmission device 400 according to the second embodiment.
  • the power transmission device 400 includes three power transmitters 110A, 110B, and 110C, a control unit 200A, an oscillator 210, amplifier units 220A, 220B, and 220C, matching units 230A, 230B, and 230C, phase adjustment units 240A and 240B, and switches 401A and 401B. , 401C.
  • the power transmission device 400 of the second embodiment differs from the power transmission device 300 of the first embodiment in the following points.
  • the control unit 200 of the first embodiment is replaced with a control unit 200A.
  • the flag setting units 146A, 146B, and 146C are removed from the power transmitters 110A, 110B, and 110C of the first embodiment.
  • Switches 401A, 401B, and 401C are added between the matching units 230A, 230B, and 230C of the first embodiment and the primary side resonance coils 13A, 13B, and 13C.
  • control process of the control unit 200A of the second embodiment is the same as that of the first embodiment.
  • the control processing of the control unit 200 differs from the following points.
  • the control unit 200A does not perform on / off switching of the feedback control unit 144 of the power transmission side control circuits 14A, 14B, and 14C and processing for obtaining the sum of the flags.
  • control unit 200A is different from the control unit 200 of the first embodiment in that the switching process of the switches 401A, 401B, and 401C is performed.
  • the switches 401A, 401B, and 401C are inserted between the matching portions 230A, 230B, and 230C and the primary side resonance coils 13A, 13B, and 13C, respectively. On / off of the switches 401A, 401B, and 401C is switched by the control unit 200.
  • the matching sections 230A, 230B, 230C and the primary side resonance coils 13A, 13B, 13C are conducted.
  • the switches 401A, 401B, and 401C are off, the matching units 230A, 230B, and 230C and the primary side resonance coils 13A, 13B, and 13C are not electrically connected.
  • the switches 401A, 401B, and 401C are turned on when adjusting the resonance frequencies of the power transmitters 110A, 110B, and 110C, respectively. That is, when adjusting the resonance frequency of the power transmitter 110A, only the switch 401A is turned on. When adjusting the resonance frequency of the power transmitter 110B, only the switch 401B is turned on. When adjusting the resonance frequency of the power transmitter 110C, only the switch 401C is turned on.
  • any one of the switches 401A, 401B, and 401C is an example of a first switch, and the other arbitrary one of the switches 401A, 401B, and 401C is an example of a second switch.
  • FIG. 15 is a flowchart illustrating a resonance frequency setting process in the power transmission device 400 according to the second embodiment.
  • the resonance frequency setting process illustrated in FIG. 15 is a process executed by the control unit 200A and the power transmitters 110A, 110B, and 110C, and is performed, for example, when the power transmission device 400 is installed at a predetermined location.
  • control unit 200A starts processing.
  • the controller 200A turns on the switch 401A and turns off the switches 401B and 401C in order to adjust the resonance frequency of the power transmitter 110A (step S201).
  • Control unit 200A instructs adjustment of the resonance frequency of power transmitter 110A (step S202).
  • the resonance frequency of the power transmitter 110A is adjusted in a state where only the power transmitter 110A outputs AC power from the primary side resonance coil 13A, and the primary side resonance coils 13B and 13C of the power transmitters 110B and 110C do not output AC power. . Since the switches 401B and 401C are turned off, the loop between the oscillator 210 and the power transmitters 110B and 110C is disconnected by the switches 401B and 401C.
  • the power transmitter 110A outputs AC power from the primary-side resonance coil 13A, and the feedback control unit 144 of the power-transmission-side control circuit 14A adjusts the resonance frequency and fixes the capacitance of the capacitor 132A to the adjustment value ( Step S203).
  • the loop of the oscillator 210 and the power transmitters 110B and 110C is disconnected by the switches 401B and 401C, and the power transmission side control is performed in a state where only the power transmitter 110A outputs AC power from the primary side resonance coil 13A.
  • the feedback control unit 144 of the circuit 14A sets the capacitance of the capacitor 132A. Then, the feedback control unit 144 fixes the capacitance of the capacitor 132A to the adjustment value.
  • Control unit 200A receives data indicating that the adjustment of the nth resonance frequency has been completed from power transmitter 110A (step S204).
  • the controller 200A turns on the switch 401B and turns off the switches 401A and 401C in order to adjust the resonance frequency of the power transmitter 110B (step S205).
  • Control unit 200A instructs adjustment of the resonance frequency of power transmitter 110B (step S206).
  • the resonance frequency of the power transmitter 110B is adjusted in a state where only the power transmitter 110B outputs AC power from the primary side resonance coil 13B and the primary side resonance coils 13A and 13C of the power transmitters 110A and 110C do not output AC power. . Since the switches 401A and 401C are turned off, the loop between the oscillator 210 and the power transmitters 110A and 110C is disconnected by the switches 401A and 401C.
  • the power transmitter 110B outputs AC power from the primary-side resonance coil 13B, and the feedback control unit 144 of the power-transmission-side control circuit 14B adjusts the resonance frequency and fixes the capacitance of the capacitor 132B to the adjustment value ( Step S207).
  • the loop of the oscillator 210 and the power transmitters 110A and 110C is disconnected by the switches 401A and 401C, and the power transmission side control is performed in a state where only the power transmitter 110B outputs AC power from the primary side resonance coil 13B.
  • the feedback control unit 144 of the circuit 14B sets the capacitance of the capacitor 132B. Then, the feedback control unit 144 fixes the capacitance of the capacitor 132B to the adjustment value.
  • the control unit 200A receives data indicating that the adjustment of the nth resonance frequency is completed from the power transmitter 110B (step S208).
  • the controller 200A turns on the switch 401C and turns off the switches 401A and 401B in order to adjust the resonance frequency of the power transmitter 110C (step S209).
  • Control unit 200A instructs adjustment of the resonance frequency of power transmitter 110C (step S210).
  • the resonance frequency of the power transmitter 110C is adjusted in a state where only the power transmitter 110C outputs AC power from the primary side resonance coil 13C, and the primary side resonance coils 13A and 13B of the power transmitters 110A and 110B do not output AC power. . Since the switches 401A and 401B are turned off, the loop between the oscillator 210 and the power transmitters 110A and 110B is disconnected by the switches 401A and 401B.
  • the power transmitter 110C outputs AC power from the primary side resonance coil 13C, and the feedback control unit 144 of the power transmission side control circuit 14C adjusts the resonance frequency and fixes the capacitance of the capacitor 132C to the adjustment value ( Step S211).
  • the loop between the oscillator 210 and the power transmitters 110A and 110B is disconnected by the switches 401A and 401B, and the power transmission side control is performed in a state where only the power transmitter 110C outputs AC power from the primary side resonance coil 13C.
  • the feedback control unit 144 of the circuit 14C sets the capacitance of the capacitor 132C. Then, the feedback control unit 144 fixes the capacitance of the capacitor 132C to the adjustment value.
  • the control unit 200A receives data indicating that the adjustment of the nth resonance frequency is completed from the power transmitter 110C (step S212).
  • Control unit 200A determines whether or not adjustment of all the resonance frequencies of power transmitters 110A to 110C has been completed (step S213).
  • control unit 200A determines that all the resonance frequencies have been adjusted, the control unit 200A ends the series of processes.
  • control unit 200A repeatedly executes the process of step S213.
  • the resonance frequency of the power transmitter 110A is adjusted so that only the power transmitter 110A outputs AC power from the primary resonance coil 13A, and the primary side of the power transmitters 110B and 110C.
  • Resonant coils 13B and 13C are performed in a state where AC power is not output. That is, adjustment of the resonance frequency of the power transmitter 110A is performed in a state where only the power transmitter 110A outputs AC power from the primary side resonance coil 13A.
  • the resonance frequencies of the power transmitters 110B and 110C are adjusted in a state where only the power transmitters 110B and 110C output AC power from the primary side resonance coils 13B and 13C, respectively.
  • the switches 401A and 401C are turned off, so that the loop between the oscillator 210 and the power transmitters 110A and 110C is disconnected by the switches 401A and 401C. .
  • the resonance frequency can be adjusted in a state where the influence of the power transmission devices 110A, 110B, and 110C is reduced. Can be adjusted.
  • the switches 401A to 401C are configured to separate the loops of the oscillator 210 and the power transmitters 110A to 110C, respectively, so that the adjustment of the resonance frequency is completed once. For this reason, the adjustment of the resonance frequency can be completed in a shorter time than the power transmission device 300 of the first embodiment.
  • the loop between the transmitter and the oscillator 210 that does not adjust the resonance frequency can be separated by a switch, the resonance of each of the transmitters 110A, 110B, and 110C can be achieved with the influence of other transmitters being further reduced.
  • the frequency can be adjusted with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 複数の送電器の共振周波数を高精度に調整できる送電装置を提供する。 可変容量部の静電容量を変化させたときの静電容量の変化量に対する位相差の変化度合に基づき、共振周波数が得られるように静電容量をそれぞれ調整する第1送電器と第2送電器とを含む送電装置であって、前記第1制御部は、前記第2送電器がオフの状態で、前記第1送電器の共振周波数を調整し、前記第2制御部は、前記第1送電器がオフの状態で、前記第2送電器の共振周波数を調整する。

Description

送電装置
 本発明は、送電装置に関する。
 従来より、無線方式により電力を送信するための複数の送電アンテナと、送信された電力を受電するための受電アンテナと、前記複数の送電アンテナを独立に駆動するための複数の駆動部とを有する無線給電システムがある。この無線給電システムは、前記受電アンテナの配置状態に係る情報を検出する検出部と、前記送電アンテナから放射される磁界に係る磁界データを、前記送電アンテナ毎に記憶する磁界データ記憶部とを備える。この無線給電システムは、前記磁界データと前記受電アンテナの配置状態に係る情報とに基づいて、前記複数の送電アンテナを前記複数の駆動部を介して選択的に駆動制御する制御部とを備える(例えば、特許文献1参照)。
特開2008-283791号公報
 ところで、従来の無線給電システムは、複数の送電アンテナのうち、最も大きな電力を給電できる送電アンテナを選択し、選択した送電アンテナのみを駆動するため、複数の送電アンテナの共振周波数を調整することは行っていない。
 そこで、複数の送電器の共振周波数を高精度に調整できる送電装置を提供することを目的とする。
 本発明の実施の形態の送電装置は、第1送電器と第2送電器とを含む送電装置であって、前記第1送電器は、交流電源から受電する第1の一次側共振コイルと、前記第1の一次側共振コイルに供給される第1電圧の位相に対する、前記第1の一次側共振コイルに流れる第1電流の位相の第1位相差を検出する第1位相差検出部と、前記第1の一次側共振コイルに設けられる第1可変容量部と、前記第1可変容量部の第1静電容量を変化させたときの前記第1静電容量の変化量に対する前記第1位相差の変化度合に基づき、共振周波数が得られるように前記第1静電容量を調整する第1制御部とを有し、前記第2送電器は、前記交流電源に接続される位相調整部と、前記第1の一次側共振コイルに並べて配設され、前記位相調整部を介して前記交流電源から受電する第2の一次側共振コイルと、前記第2の一次側共振コイルに供給される第2電圧の位相に対する、前記第2の一次側共振コイルに流れる第2電流の位相の第2位相差を検出する第2位相差検出部と、前記第2の一次側共振コイルに設けられる第2可変容量部と、前記第2可変容量部の第2静電容量を変化させたときの前記第2静電容量の変化量に対する前記第2位相差の変化度合に基づき、共振周波数が得られるように前記第2静電容量を調整する第2制御部とを有し、前記第1制御部は、前記第2送電器がオフの状態で、前記第1送電器の共振周波数を調整し、前記第2制御部は、前記第1送電器がオフの状態で、前記第2送電器の共振周波数を調整する。
 複数の送電器の共振周波数を高精度に調整できる送電装置を提供することができる。
送電装置1を含む電力伝送装置50を示す図である。 一次側共振コイル13と受電器20A、20Bとの関係を示す図である。 2つの一次側共振コイル13A、13Bから受電器20に電力を伝送する様子を示す図である。 2つの一次側共振コイル13A、13Bから受電器20に電力を伝送する様子を示す図である。 位相差θと、電流及び電圧の位相差Δφとの関係を示す図である。 一次側共振コイル13Bの両端子間に直列に挿入するコンデンサの静電容量を変化させた場合に、一次側共振コイル13Aのフィードバック制御部が検出する位相差Δφの特性を示す図である。 実施の形態1の送電装置を含む電力伝送装置50を示す図である。 図7に示す電力伝送装置50の制御系を示すブロック図である。 実施の形態1の送電装置300の一次側共振コイル13A、13B、13Cを示す図である。 実施の形態1の送電装置300を示す図である。 実施の形態1の送電装置300と受電器120を示す図である。 送電器110A、110B、110Cの送電側制御回路14A、14B、14Cが調整するコンデンサ132A、132B、132Cの静電容量と、静電容量の調整が完了した場合にオンにされるフラグを示すテーブル形式のデータの一例を示す図である。 実施の形態1の送電装置300における共振周波数の設定処理を示すフローチャートである。 実施の形態2の送電装置400を示す図である。 実施の形態2の送電装置400における共振周波数の設定処理を示すフローチャートである。
 本発明の送電装置を適用した実施の形態1、2について説明する前に、図1乃至図6を用いて、実施の形態1、2の送電装置の前提技術について説明する。
 図1は、送電装置1を含む電力伝送装置50を示す図である。
 図1に示すように、電力伝送装置50は、一次側(送電側)の送電器10と二次側(受電側)の受電器20を含む。電力伝送装置50は、送電器10及び受電器20を複数含んでもよい。なお、図1では実施の形態1の送電装置を省略する。
 送電器10は、交流電源11と、一次側コイル12及び一次側共振コイル13を含む送電系コイルTCとを有し、受電器20は、二次側共振コイル22及び二次側コイル23を含む受電系コイルRCと、負荷デバイス21とを有する。
 図1に示すように、送電器10及び受電器20は、一次側共振コイル(LC共振器)13と受電共振コイル(LC共振器)22の間の磁界共鳴(磁界共振)により、送電器10から受電器20へエネルギー(電力)の伝送を行う。ここで、一次側共振コイル13から二次側共振コイル22への電力伝送は、磁界共鳴だけでなく電界共鳴(電界共振)等も可能であるが、以下の説明では、主として磁界共鳴を例として説明する。
 また、実施の形態1では、交流電源11が出力する交流電圧の周波数が6.78MHzであり、一次側共振コイル13と二次側共振コイル22の共振周波数が6.78MHzである場合について説明する。
 なお、送電系コイルTCにおいて、一次側コイル12から一次側共振コイル13への電力伝送は電磁誘導を利用して行い、また、受電系コイルRCにおいて、二次側共振コイル22から二次側コイル23への電力伝送も電磁誘導を利用して行うようになっている。
 図2は、一次側共振コイル13と受電器20A、20Bとの関係を示す図である。受電器20A、20Bは、図1に示す受電器20と同様である。図2(A)、(B)では、一次側共振コイル13が出力する電流によって形成される磁界の方向を破線の矢印で示す。破線の矢印は磁力線を表す。
 図2(A)に示すように、一次側共振コイル13に対して受電器20A、20Bが磁力線に垂直な場合は、受電器20A、20Bでともに受電可能である。
 図2(B)に示すように、一次側共振コイル13に対して受電器20Aが磁力線に垂直で、受電器20Bが磁力線に平行な場合は、受電器20Aは受電可能であるが、受電器20Bは受電不能である。
 図3は、2つの一次側共振コイル13A、13Bから受電器20に電力を伝送する様子を示す図である。図3においても、破線の矢印で磁力線を示す。また、直交座標系であるXYZ座標系を定義する。
 図3(A)に示すように、2つの一次側共振コイル13A、13Bは、互いに垂直な位置関係になるように配置されている。一次側共振コイル13AはXY平面に平行であり、一次側共振コイル13BはYZ平面に平行である。2つの一次側共振コイル13A、13Bから受電器20に磁界共鳴によって無線で電力を伝送する。
 図3(B)に示す位置に受電器20がある場合に、一次側共振コイル13A、13Bから同一位相(位相差0)の電力を出力すれば、一次側共振コイル13A、13Bの両方から出力される磁力線が受電器20を貫通する。このため、受電器20は、一次側共振コイル13A、13Bから受電することができる。
 また、図3(C)に示す位置に受電器20がある場合に、一次側共振コイル13A、13Bから位相差が180度の電力を出力すれば、一次側共振コイル13A、13Bの両方から出力される磁力線が受電器20を貫通する。このため、受電器20は、一次側共振コイル13A、13Bから受電することができる。
 このように、一次側共振コイル13A、13Bから磁界共鳴によって受電器20に電力を送電する場合には、一次側共振コイル13A、13Bに対する受電器20の位置に応じて、一次側共振コイル13A、13Bから出力する電力の位相を調整することが必要である。
 なお、ここでは、2つの一次側共振コイル13A、13Bが、互いに垂直な位置関係になるように配置されている場合について説明した。しかしながら、2つの一次側共振コイル13A、13Bがなす角度が90度以外の場合においても、同様に、一次側共振コイル13A、13Bから出力する電力の位相を調整することが必要である。2つの一次側共振コイル13A、13Bがなす角度が0度の場合も同様である。
 図4は、2つの一次側共振コイル13A、13Bから受電器20に電力を伝送する様子を示す図である。
 図4では、発振器30にはアンプ31と32が接続されており、アンプ32は、位相調整部33を介して発振器30に接続されている。アンプ31と32の出力端子は、それぞれ、一次側共振コイル13A、13Bに接続されている。
 図4では、一次側共振コイル13A、13Bは、一次側コイル12(図1参照)を介さずに、発振器30に接続されている。
 発振器30から出力される交流電力は、アンプ31で増幅される。アンプ31から出力される交流電力の電圧はVS1=Asin(ωt)で表される。
 また、発振器30から出力される交流電力は、位相調整部33で位相が調整された後に、アンプ32で増幅される。アンプ32から出力される交流電力の電圧はVS2=Asin(ωt+θ)で表される。
 このように、2つの一次側共振コイル13A、13Bから電力を出力する際に、一次側共振コイル13Aから出力する電力の位相に対して、一次側共振コイル13Bから出力する電力の位相をθ度遅らせることができる。
 一次側共振コイル13A、13Bの両方が共振周波数で電力を出力できる状態に調整されているときに、図4に示す一次側共振コイル13A、13Bに対して、受電器が図4に示す位置にあるときは、θ=0度が最適な位相になる。これは、図3(B)に示す場合と同様である。
 ところで、発振器30から(一次側コイル12(図1参照)を介さずに)一次側共振コイル13Aに電力を入力する場合には、発振器30が出力する電圧の位相に対する、一次側共振コイル13Aに流れる電流の位相の位相差は、0度である。この点が共振点である。
 このため、フィードバック制御により、発振器30が出力する電圧の位相に対する、一次側共振コイル13Aに流れる電流の位相の位相差が0度になるように制御が行われる。
 同様に、発振器30から(一次側コイル12(図1参照)を介さずに)一次側共振コイル13Bに電力を入力する場合には、位相調整部33が出力する電圧の位相に対する、一次側共振コイル13Bに流れる電流の位相の位相差は、0度である。この点が共振点である。
 このため、フィードバック制御により、位相調整部33が出力する電圧の位相に対する、一次側共振コイル13Bに流れる電流の位相の位相差が0度になるように制御が行われる。
 しかしながら、一次側共振コイル13A、13Bを近接して配置すると、互いの影響し合うため、次のような影響が生じる。この影響について、図5を用いて説明する。
 図5は、位相差θと、電流及び電圧の位相差Δφとの関係を示す図である。
 図5(A)、(B)において、横軸は、位相差θである。位相差θは、一次側共振コイル13Aから出力する電力の位相に対する、一次側共振コイル13Bから出力する電力の位相の位相差である。
 図5(A)の縦軸は、一次側共振コイル13A、13Bをともにオンにして電力を出力している状態で、発振器30が出力する電圧の位相に対する、一次側共振コイル13Aに流れる電流の位相の位相差Δφを示す。
 図5(B)の縦軸は、一次側共振コイル13A、13Bをともにオンにして電力を出力している状態で、位相調整部33が出力する電圧の位相に対する、一次側共振コイル13Bに流れる電流の位相の位相差Δφを示す。
 図5(A)、(B)では、一次側共振コイル13A、13Bが出力する電力の大きさは等しく、かつ、ともに、フィードバック制御によって一次側共振コイル13A、13Bから出力する電力が共振周波数に調整されている。
 図5(A)において、θ=90度で位相差Δφが0度になっているのは、一次側共振コイル13Aと13Bが互いに物理的に90度の角度をなす状態で設置されているため、一次側共振コイル13Aと13Bが出力する電力の位相差θが90度のときに、電力が互いに打ち消し合って、位相差Δφが0になるからである。
 図5(B)において、θ=90度で位相差が0度になっているのは、一次側共振コイル13Aと13Bが互いに物理的に90度の角度をなす状態で設置されているため、一次側共振コイル13Aと13Bが出力する電力の位相差θが90度のときに、電力が互いに打ち消し合って、位相差Δφが0になるからである。
 ところで、図5(A)のような特性が得られると、例えば、図4に示すように受電器20を配置した場合には、θ=0度で共振点が得られるはずなのに、図5(A)では、θ=0度で電圧に対する電流の位相差Δφが約45度である。このため、一次側共振コイル13Aのフィードバック制御部は、動作点が共振点からずれていると判定し、電圧に対する電流の位相差Δφが0度に近づくように、さらにフィードバック制御を行う。
 この結果、共振点からどんどんずれて行ってしまう。
 また、図5(B)のような特性が得られると、例えば、図4に示すように受電器20を配置した場合には、θ=0度で共振点が得られるはずなのに、図5(B)では、θ=0度で電圧に対する電流の位相差Δφが約45度である。このため、一次側共振コイル13Bのフィードバック制御部は、動作点が共振点からずれていると判定し、電圧に対する電流の位相差が0度に近づくように、さらにフィードバック制御を行う。
 この結果、共振点から段々とずれて行ってしまう。
 このように、2つの一次側共振コイル13A、13Bを有する系では、互いの影響があるため、共振点の調整がうまく行かなくなる。
 図6は、一次側共振コイル13Bの両端子間に直列に挿入するコンデンサの静電容量を変化させた場合に、一次側共振コイル13Aのフィードバック制御部が検出する位相差Δφの特性を示す図である。
 図6の横軸は、一次側共振コイル13A、13Bがともに共振周波数で電力を出力できるように、コンデンサの静電容量が設定されている状態における一次側共振コイル13Bのコンデンサの静電容量に対して、一次側共振コイル13Bのコンデンサの静電容量を変化させるときの静電容量の値の比を表す。
 横軸の比が1のときは、一次側共振コイル13Bのコンデンサの静電容量が、共振周波数が得られる一次側共振コイル13Bのコンデンサの静電容量に調整されている状態を表す。横軸の比が1からずれるに従って、一次側共振コイル13Bのコンデンサの静電容量は、共振周波数を与える一次側共振コイル13Bのコンデンサの静電容量からずれていることを表す。
 図6の縦軸は、一次側共振コイル13Aのフィードバック制御部が検出する、電圧に対する電流の位相差Δφを表す。
 図6に示すように、一次側共振コイル13Bのコンデンサの静電容量を変化させると、一次側共振コイル13Aのフィードバック制御部が検出する、電圧に対する電流の位相差が変化する。
 これは、2つの一次側共振コイル13A、13Bを有する系では、互いの影響があることを表している。
 従って、2つの一次側共振コイル13A、13Bを有する系では、互いの影響があるため、電圧に対する電流の位相差が0度に近づくように、フィードバック制御を行うと、共振点から段々とずれて行ってしまう。
 また、2つの一次側共振コイル13A、13Bを有する系において、2つの一次側共振コイル13A、13Bの両方に流れる電流を同時に共振点に調整することは非常に困難である。
 従って、以下で説明する実施の形態1、2では、複数の一次共振コイルを有する送電装置において、共振周波数を高精度に調整できる送電装置を提供することを目的とする。
 <実施の形態1>
 実施の形態1では、3つの一次側共振コイルを含む送電装置について説明するが、ここでは、まず、図7及び図8を用いて、1つの一次側共振コイル13を含む送電器110と、送電器110を含む電力伝送装置50とについて説明する。
 図7は、実施の形態1の送電装置を含む電力伝送装置50を示す図である。図7は、図1に示す電力伝送装置50の詳細な構成を示す図である。図7に示すように、電力伝送装置50は、送電器110及び受電器120を含む。
 送電器110は、一次側共振コイル13、交流電源11、及び送電側制御回路14を備える。受電器120は、二次側共振コイル22及び受電側制御回路24を備える。受電器120には、負荷デバイス21が接続されている。
 送電器110は、一次側コイル12(図1参照)を含まず、一次側共振コイル13に交流電源11が直接的に接続されている。
 受電器120は、二次側コイル23(図1参照)を含まず、二次側共振コイル22に負荷デバイス21が直接的に接続されている。
 一次側共振コイル13は、例えば、銅線またはアルミニウム線などの金属線が円周状に巻かれたコイル131、及び、コイル131の両端に接続されたコンデンサ132を含み、共振回路を形成する。なお、共振周波数f0は、次の式(1)で示される。
 f0=1/{2π(LC)1/2}  (1)
 ここで、Lはコイル131のインダクタンス、Cはコンデンサ132の静電容量である。
 一次側共振コイル13のコイル131は、例えば、ワンターンコイルであり、また、コンデンサ132は、種々の形式のコンデンサが適用可能であるが、できるだけ損失が少なく十分な耐圧を有するものが好ましい。コンデンサ132は、可変容量素子の一例である。
 図7に示す電力伝送装置では、共振周波数を可変するために、コンデンサ132として可変コンデンサが用いられている。可変コンデンサとしては、例えば、MEMS技術を用いて製作された可変容量デバイスや半導体を用いた可変容量デバイス(バラクタ)を適用することができる。
 二次側共振コイル22は、例えば、銅線またはアルミニウム線などの金属線が円周状に巻かれたコイル221、及び、コイル221の両端に接続されたコンデンサ222を含む。二次側共振コイル22の共振周波数f0は、コイル221のインダクタンス及びコンデンサ222の静電容量に従って、前述した式(1)で示される。
 二次側共振コイル22のコイル221は、例えば、ワンターンコイルであり、また、コンデンサ222は、前述したように、種々の形式のコンデンサが適用可能である。図7に示す電力伝送装置では、共振周波数を可変するために、コンデンサ222として可変コンデンサが用いられる。
 可変コンデンサとしては、コンデンサ132と同様に、例えば、MEMS技術を用いて製作された可変容量デバイスや半導体を用いたバラクタを適用することができる。
 二次側共振コイル22の両端には負荷デバイス21が接続される。なお、負荷デバイス21は、例えば、受電器120の電源として使用するバッテリやそのバッテリを充電するための回路である。
 ここで、一次側共振コイル13から二次側共振コイル22に、磁界共鳴によって無線で電力を伝送する際には、図7に示すように、コイル面が互いに平行で、コイル軸心が互いに一致するかまたは余りずれないように、互いに適当な距離の範囲内に配置されることが理想的である。
 図7に示すように、電力伝送装置50において、コイル軸心KTに沿う方向が磁界KKの主な放射方向であり、一次側共振コイル13から二次側共振コイル22に向かう方向が送電方向TDである。
 ここで、一次側共振コイル13の共振周波数ft及び二次側共振コイル22の共振周波数frが、両方とも交流電源11の周波数fdと一致しているとき、最大の電力が伝送される。
 図7に示す電力伝送装置50では、送電側制御回路14及び受電側制御回路24により、交流電源11の位相φvt、並びに、一次側共振コイル13及び二次側共振コイル22に流れる電流の位相φit及びφirを用いて、共振周波数ftとfrの制御を行う。共振周波数ftとfrは、交流電源11の周波数fdと等しくなるように制御される。
 ここで、送電側制御回路14は、一次側共振コイル13に印加される電圧Vtの位相φvt及び一次側共振コイル13に流れる電流Itの位相φitを検出し、位相差Δφtが所定の目標値φmtとなるように、一次側共振コイル13の共振周波数ftを可変制御する。
 すなわち、送電側制御回路14は、電流検出センサSE1、位相検出部141,142、目標値設定部143、フィードバック制御部144、及び、位相送信部145を有する。
 電流検出センサSE1は、一次側共振コイル13に流れる電流Itを検出する。電流検出センサSE1としては、例えば、ホール素子、磁気抵抗素子または検出コイルなどを用いることができる。この電流検出センサSE1は、例えば、電流Itの波形に応じた電圧信号を出力する。
 位相検出部141は、一次側共振コイル13に印加される電圧Vtの位相φvtを検出し、例えば、電圧Vtの波形に応じた電圧信号を出力する。ここで、位相検出部141は、電圧Vtをそのまま出力してもよく、また、適当な抵抗によって分圧して出力してもよい。そのため、位相検出部141は、単なる導線、或いは、1つまたは複数の抵抗素子とすることもできる。
 位相検出部142は、電流検出センサSE1からの出力に基づいて、一次側共振コイル13に流れる電流Itの位相φitを検出し、例えば、電流Itの波形に応じた電圧信号を出力する。ここで、位相検出部142は、電流検出センサSE1の出力をそのまま出力してもよい。そのため、電流検出センサSE1は、位相検出部142を兼ねるようにすることもできる。
 目標値設定部143は、位相差Δφtの目標値φmtを設定して記憶する。そのため、目標値設定部143には、目標値φmtを記憶するためのメモリが設けられている。目標値φmtとしては、例えば、0度が設定される。
 なお、目標値φmtの設定は、予め記憶された1つまたは複数のデータの中から選択することにより行ってもよく、また、CPUやキーボードなどからの指令によって行われるようにしてもよい。
 フィードバック制御部144は、交流電源11の電圧Vtの位相φvtと一次側共振コイル13の電流Itの位相φitとの位相差Δφtが、設定された目標値φmtとなるように、一次側共振コイル13の共振周波数ftを可変制御する。
 位相送信部145は、一次側共振コイル13に供給される電圧Vtの位相φvtについての情報を、受電側制御回路24に対してアナログ信号またはデジタル信号として無線で送信する。ここで、例えば、S/N比を向上させるために、電圧Vtの波形に応じた電圧信号を整数倍に逓倍して送信することもできる。
 受電側制御回路24は、一次側共振コイル13に供給される電圧VTの位相φvt及び二次側共振コイル22に流れる電流IRの位相φirを検出し、それらの位相差Δφrが所定の目標値φmrとなるように、二次側共振コイル22の共振周波数frを可変制御する。
 すなわち、受電側制御回路24は、電流検出センサSE2、位相受信部241、位相検出部242、目標値設定部243、及び、フィードバック制御部244を有する。
 電流検出センサSE2は、二次側共振コイル22に流れる電流Irを検出する。電流検出センサSE2としては、例えば、ホール素子、磁気抵抗素子または検出コイルなどを用いることができる。この電流検出センサSE2は、例えば、電流Irの波形に応じた電圧信号を出力する。
 位相受信部241は、位相送信部145から送信された位相φvtについての情報を受け取って出力する。ここで、位相送信部145で電圧信号を逓倍した場合には、位相受信部241で元に戻すために分周を行う。位相受信部241は、例えば、電圧Vtに応じた電圧信号を出力する。
 位相検出部242は、電流検出センサSE2からの出力に基づいて、二次側共振コイル22に流れる電流Irの位相φirを検出し、例えば、電流Irの波形に応じた電圧信号を出力する。ここで、位相検出部242は、電流検出センサSE2の出力をそのまま出力してもよい。そのため、電流検出センサSE2は、位相検出部242を兼ねるようにすることもできる。
 目標値設定部243は、位相差Δφrの目標値φmrを設定して記憶する。そのため、目標値設定部243には、目標値φmrを記憶するためのメモリが設けられている。目標値φmrとして、例えば、送電側制御回路14における目標値φmtに0が設定される。
 なお、目標値φmrの設定方法などについては、目標値φmtの場合と同様である。
 フィードバック制御部244は、交流電源11の電圧Vtの位相φvtと二次側共振コイル22の電流Irの位相φirとの位相差Δφrが、設定された目標値φmrとなるように、二次側共振コイル22の共振周波数frを可変制御する。
 なお、送電側制御回路14における目標値設定部143とフィードバック制御部144は、共振周波数制御部の一例である。同様に、受電側制御回路24における目標値設定部243とフィードバック制御部244は、共振周波数制御部の一例である。
 また、上述のように、一次側共振コイル13と二次側共振コイル22は、図7に示すように、コイル面が互いに平行で、コイル軸心が互いに一致するかまたは余りずれないように、互いに適当な距離の範囲内に配置されることが望ましい。
 しかしながら、一次側共振コイル13は電力を送電する装置側に配設され、二次側共振コイル22は電力を受電する装置側に配設されるため、一次側共振コイル13と、二次側共振コイル22との位置関係は、常に一定ではなく、変化しうる。
 また、磁界共鳴による電力の伝送は、電磁誘導による電力の伝送よりも電力を伝送可能な距離が長く、送電側と受電側がより離れている場合でも電力を伝送することができる。
 このため、磁界共鳴による電力の伝送を行う場合には、送電側と受電側との間にある程度の距離がある場合がある。そして、電力伝送装置50の用途によっては、一次側共振コイル13と二次側共振コイル22との間の距離は、送電側から受電側に電力を伝送する度に異なる可能性がある。
 また、一次側共振コイル13と二次側共振コイル22の結合度合は、互いの間の距離等に応じて変わる。
 図8は、図7に示す電力伝送装置50の制御系を示すブロック図である。図8には、送電器110のフィードバック制御部144、及び、受電器120のフィードバック制御部244の詳細を示す。
 ここで、図8のブロック図では、簡略化のために、図7における位相検出部141,142,241,242は省略されている。すなわち、図8では、電流検出センサSE1から一次側共振コイル13に流れる電流Itの位相φitが直接出力されているが、この位相φitは、例えば、フィードバック制御部144に設けた位相検出部142を介して出力されてもよい。
 図8に示すように、フィードバック制御部144は、位相比較部151、加算部152、ゲイン調整部153,154、補償部155、及び、ドライバ156を備える。
 位相比較部151は、電流検出センサSE1で検出された電流Itの位相φitと、交流電源11の電圧Vtの位相φvtとを比較し、位相φitと位相φvtとの位相差Δφtを表す信号を出力する。位相比較部151から出力される位相差Δφtを表す信号は、加算部152に入力される。位相比較部151は、位相差検出部の一例である。
 加算部152は、位相比較部151の出力する位相差Δφtから、目標値設定部143に設定された目標値φmtを減算(反転して加算)する。従って、位相差Δφtと目標値φmtが一致したときに、加算部152の出力は零となる。
 加算部152の出力は、ゲイン調整部154に入力され、さらに、補償部155に入力される。ここで、ゲイン調整部153及び154は、制御が正しく行われるように、それぞれ入力される値またはデータに対するゲイン(利得)を調整し、或いは、データなどの換算を行う。
 補償部155は、例えば、低周波成分に対するゲインを定める。すなわち、フィードバック制御部144は、例えば、コンデンサ132であるMEMS可変容量デバイスに対するフィードバック制御を行うサーボ系とみることができる。
 従って、補償部155には、サーボ系の安定化、高速化、高精度化を図るための適当なサーボフィルタが用いられる。また、このようなサーボ系においてPID(Proportional Integral Derivative Controller)動作を行わせるためのフィルタ回路または微分積分回路などが、適宜使用される。
 ドライバ156は、例えば、コンデンサ132であるMEMS可変容量デバイスに対して制御信号KTtを出力し、そのMEMS可変容量デバイスの静電容量を可変制御する。
 ここで、MEMS可変容量デバイス(MEMS可変キャパシタ)は、例えば、ガラスの基板上に下部電極及び上部電極を設け、それら電極間に印加する電圧による静電吸引力で生じる撓みに起因した間隙の変化を利用して、静電容量を変化させるようになっている。
 なお、MEMS可変容量デバイス(コンデンサ132)は、キャパシタのための電極と駆動のための電極とが別個に設けられることもある。また、駆動のための電極に印加する電圧と静電容量の変化量との関係が線形ではないため、例えば、ドライバ156において、その変換のための演算またはテーブル換算などを適宜行うようになっている。
 フィードバック制御部244は、位相比較部251、加算部252、ゲイン調整部253,254、補償部255、ドライバ256、及び、極性反転部257を備える。
 なお、フィードバック制御部244における各部の動作は、実質的に、上述したフィードバック制御部144における各部の動作と同様なので、その説明は省略する。
 なお、図7における送電側制御回路14及び受電側制御回路24、並びに、図8におけるフィードバック制御部144及びフィードバック制御部244などは、ソフトウエアまたはハードウエア、或いは、それらの組み合わせで実現可能である。
 例えば、CPU、ROM及びRAMなどのメモリ、その他の周辺素子などを含むコンピュータを用い、適当なコンピュータプログラムをCPUに実行させることで実現することができる。その場合、適当なハードウエア回路を併用することになる。
 図9は、実施の形態1の送電装置300の一次側共振コイル13A、13B、13Cを示す図である。図9では、図示するように直交座標系であるXYZ座標系を定義する。一次側共振コイル13A、13B、13Cは、図7及び図8に示す一次側共振コイル13と同様の一次側共振コイルである。
 一次側共振コイル13AはXY平面に平行に配設されている。一次側共振コイル13Bは、XZ平面に平行に配設されている。一次側共振コイル13CはYZ平面に平行に配設されている。一次側共振コイル13A、13B、13Cは、近接した状態で、互いに垂直な位置関係になるように配設されている。
 実施の形態1の送電装置300は、図9に示す3つの一次側共振コイル13A、13B、13Cを用いて、受電器20に磁界共鳴による送電を行う。
 図10は、実施の形態1の送電装置300を示す図である。送電装置300は、3つの送電器110A、110B、110C、制御部200、発振器210、アンプ部220A、220B、220C、整合部230A、230B、230C、及び位相調整部240A、240Bを含む。ここで、送電器110A、110B、110Cのうちの任意の1つは、第1送電器の一例であり、他の任意の1つは、第2送電器の一例である。
 送電器110A、110B、110Cは、図7及び図8に示す送電器110に、それぞれ、フラグ設定部146A、146B、146Cを追加した構成を有する。送電器110A、110B、110Cは、それぞれ、一次側共振コイル13A、13B、13Cと、送電側制御回路14A、14B、14Cとを有する。
 図10に示す3つの一次側共振コイル13A、13B、13Cは、実際には図9に示すように配設されていることとする。送電装置300は、3つの送電器110A、110B、110Cから同時に、送電器110A、110B、110Cの近傍に位置する受電器120(図7及び図8参照)に磁界共鳴によって電力を送電する。
 一次側共振コイル13A、13B、13Cは、それぞれ、コンデンサ132A、132B、132Cを有する。コンデンサ132A、132B、132Cは、図7及び図8に示すコンデンサ132と同様である。
 一次側共振コイル13A、13B、13Cのうちの任意の1つは、第1の一次側共振コイルの一例であり、他の任意の1つは、第2の一次側共振コイルの一例である。コンデンサ132A、132B、132Cのうちの任意の1つは、第1可変容量部の一例であり、コンデンサ132A、132B、132Cのうちの他の任意の1つは、第2可変容量部の一例である。
 送電器110Aは、一次側共振コイル13A及び送電側制御回路14Aを備える。送電器110Bは、一次側共振コイル13B及び送電側制御回路14Bを備える。送電器110Cは、一次側共振コイル13C及び送電側制御回路14Cを備える。
 送電側制御回路14A、14B、14Cは、同様の構成を有し、それぞれ、電流検出センサSE1、位相検出部141,142、目標値設定部143、フィードバック制御部144、及び、位相送信部145を有する。また、送電側制御回路14A、14B、及び14Cは、それぞれ、さらに、フラグ設定部146A、146B、146Cを有する。フラグ設定部146A、146B、146Cは、フラグを保持する内部メモリを有する。
 送電側制御回路14A、14B、14Cのうちの任意の一つは、第1制御部の一例であり、他の任意の一つは、第2制御部の一例である。なお、第1制御部と第2制御部には、制御部200の一部が含まれてもよい。
 送電側制御回路14A、14B、14Cのフィードバック制御部144は、制御部200によってオン/オフの切り替えが行われる。
 送電側制御回路14A、14B、14Cのフラグ設定部146A、146B、146Cは、それぞれ、コンデンサ132Aの静電容量の設定が完了すると、後述するフラグをオン('1')にする。フラグ設定部146A、146B、146Cは、フラグの値を示すデータを制御部200に送信する。
 制御部200は、送電側制御回路14A、14B、及び14Cのフィードバック制御部144のオン/オフの切り替えと、アンプ部220A、220B、220C、位相調整部240A、240Bの制御を行う。
 また、制御部200は、さらに、フラグ設定部146A、146B、146Cから送信されるフラグの和を求め、送電器110A、110B、110Cの共振周波数の調整処理が完了したか否かを判定する。
 実施の形態1の送電装置300では、受電器120に対して磁界共鳴による電力の送電を行う前に、送電器110A、110B、110Cの共振周波数の調整を予め完了させておく。共振周波数の調整は、送電側制御回路14A、14B、14Cのフィードバック制御部144が、コンデンサ132A、132B、132Cの静電容量を設定することによって行う。そして、送電器110A、110B、110Cの共振周波数の調整が完了した後は、調整で求めた静電容量に固定して、電力を送電する。
 なお、この際に、一次側共振コイル13A、13B、13Cに対する受電器120の位置と姿勢に応じて、位相調整部240A、240Bで調整される位相θ、θを調整する。
 発振器210、アンプ部220A、220B、220C、整合部230A、230B、230Cは、図7及び図8に示す交流電源11の構成を詳細に示したものである。
 発振器210は、交流電力を出力する。アンプ部220Aは、発振器210から出力される交流電力を増幅する。アンプ部220Aが出力する交流電力の電圧は、V=Asin(ωt)で表される。Aはアンプ部220Aで増幅された後の交流電力の電圧の振幅であり、ωは角速度である。
 アンプ部220B、220Cは、発振器210から出力され、位相調整部240A、240Bで位相が調整された交流電力を増幅する。位相調整部240A、240Bで調整される位相をθ、θとすると、アンプ部220B、220Cが出力する交流電力の電圧は、それぞれ、V=Asin(ωt+θ)、V=Asin(ωt+θ)で表される。A、Aは、アンプ部220B、220Cで増幅された後の交流電力の電圧の振幅である。
 アンプ部220A、220B、220Cにおける増幅率は、制御部200によって制御される。
 整合部230A、230B、230Cは、それぞれ、アンプ部220A、220B、220Cと一次側共振コイル13A、13B、13Cとの間の整合をとる回路である。
 位相調整部240A、240Bは、それぞれ、発振器210から入力される交流電力に、位相θ、θを付加して出力する。位相θ、θは、制御部200によって制御される。
 位相調整部240A、240Bが交流電力に付加する位相θ、θは、例えば、受電器120をカメラ等で撮影し、画像処理で受電器120の姿勢を検出し、検出した受電器120の姿勢に応じて、設定すればよい。これは、図3(B)、(C)で位相を変化させたことと同様である。このような位相θ、θの設定は、周知の姿勢検出方法を用いて受電器120の姿勢を検出することによって行えばよい。また、受電器120の姿勢と、位相θ、θとを対応させたテーブルデータを予め用意しておき、制御部200の内部メモリ等に格納しておけばよい。
 図11は、実施の形態1の送電装置300と受電器120を示す図である。送電装置300は、3つの送電器110A、110B、110C、制御部200、及び交流電源11を含む。交流電源11は、図10に示す発振器210、アンプ部220A、220B、220C、整合部230A、230B、230Cに対応する。
 送電器110A、110B、110Cは、それぞれ、一次側共振コイル13A、13B、13C、送電側制御回路14A、14B、14C、通信部15A、15B、15Cを有する。
 通信部15A、15B、15Cは、送電側制御回路14A、14B、14Cに接続されており、互いに通信を行うとともに、受電器120の通信部26と通信を行う。通信部15A、15B、15Cと、通信部26との通信としては、例えば、図7に示す位相送信部145と、位相受信部241との通信がある。通信部15A、15B、15Cは、無線通信を行える通信部であればよく、無線通信の形式は特に限定されるものではなく、どのような形式のものであってもよい。通信部15A、15B、15Cとしては、例えば、Bluetooth(登録商標)の通信を行うことのできる通信回路を用いることができる。
 受電器120は、二次側共振コイル22、受電側制御回路24、整流部25、通信部26を有する。受電器120には、負荷デバイス21が接続される。整流部25は、二次側共振コイル22で受電した交流電力を整流して受電側制御回路24及び負荷デバイス21に供給する。通信部26は、送電器110A、110B、110Cの通信部15A、15B、15Cと通信を行う。
 受電器120の二次側共振コイル22は、送電器110A、110B、110Cの一次側共振コイル13A、13B、13Cから交流電力を受電する。
 次に、図12及び図13を用いて、実施の形態1の送電装置300において、送電器110A、110B、110Cの共振周波数の調整方法について説明する。送電器110A、110B、110Cの共振周波数の調整は、制御部200と、送電側制御回路14A、14B、14Cとによって行われる。
 図12は、送電器110A、110B、110Cの送電側制御回路14A、14B、14Cが調整するコンデンサ132A、132B、132Cの静電容量と、静電容量の調整が完了した場合にオンにされるフラグを示すテーブル形式のデータの一例を示す図である。送電器110A、110B、110Cのフラグは、フラグ設定部146A、146B、146Cによって設定される。
 図12において、イベントは、制御部200が送電器110A、110B、110Cに対して、静電容量の調整を実行させる内容を表す。イベントの種類としては、送電器A共振調整1回目、送電器B共振調整1回目、送電器C共振調整1回目、及び全フラグ確認1回目があり、2回目から5回目まで同様のイベントが設定されている。
 送電器A共振調整1回目は、制御部200が送電器110Aの送電側制御回路14Aにコンデンサ132Aの静電容量を設定させるイベントである。より具体的には、制御部200の指令により、送電側制御回路14Aのフィードバック制御部144が、コンデンサ132Aの静電容量を設定する。コンデンサ132Aの静電容量の設定の仕方は、図7及び図8を用いて説明した通りである。
 送電器B共振調整1回目と送電器C共振調整1回目は、それぞれ、制御部200が送電器110B、110Cの送電側制御回路14B、14Cにコンデンサ132B、132Cの静電容量を設定させるイベントである。より具体的には、制御部200の指令により、送電側制御回路14Bと14Cのフィードバック制御部144が、コンデンサ132B、132Cの静電容量を設定する。コンデンサ132B、132Cの静電容量の設定の仕方は、図7及び図8を用いて説明した通りである。
 また、このような静電容量の設定は、後述するフラグ和が'3'になるまで実行される。
 図12には、一例として、5回目の設定でフラグ和が'3'になるケースを示す。このため、図12には、送電器A共振調整1回目、送電器B共振調整1回目、送電器C共振調整1回目から、送電器A共振調整5回目、送電器B共振調整5回目、送電器C共振調整5回目までを示す。
 また、図12に示すフラグは、フラグ設定部146A、146B、146Cによって設定される。フラグ設定部146A、146B、146Cは、それぞれ、今回の設定値の前回の設定値に対する変化分が絶対値で0.2pF以下の場合にフラグをオンにする。フラグがオンにされるとフラグの値は'1'になる。
 なお、送電器A共振調整1回目、送電器B共振調整1回目、送電器C共振調整1回目の場合は、前回の設定値が存在しないため、フラグはオフに保持される。
 全フラグ確認1回目は、送電器110A、110B、110Cについて、送電器A共振調整1回目、送電器B共振調整1回目、及び送電器C共振調整1回目で得られたフラグの合計値(フラグ和)を制御部200が演算するイベントである。フラグ和は、各回における送電器110A、110B、110Cのフラグ設定部146A、146B、146Cによって設定されるフラグの合計値を示す。
 このような全フラグの確認は、2回目から5回目まで同様に行われる。なお、送電器A共振調整1回目、送電器B共振調整1回目、送電器C共振調整1回目でフラグはオフに保持されるため、全フラグ確認1回目の場合のフラグ和は0である。
 例えば、送電器A共振調整3回目の場合には、前回の設定値が27.0pFであり、今回の設定値が26.8pFであるため、フラグはオン('1')になる。送電器B共振調整3回目の場合には、前回の設定値が30.2pFであり、今回の設定値も30.2pFであるため、フラグはオン('1')になる。送電器C共振調整3回目の場合には、前回の設定値が40.0pFであり、今回の設定値が41.1pFであるため、フラグはオフに保持される。
 従って、全フラグ確認3回目のフラグ和は'2'である。
 図12では、一例として、5回目の設定でフラグ和が'3'になっているため、5回目の設定で処理が完了する。
 なお、このように、送電器110A、110B、110Cのすべてについて、今回の設定値の前回の設定値に対する変化分が所定値以下になるまで共振周波数の調整を繰り返し行うのは、次のような理由によるものである。すなわち、磁界共鳴を用いる送電装置300は、Q値が非常に高いので、コンデンサ132A、132B、132Cの静電容量が少し変わっただけで、Q値のピークがドラスティックに変わるセンシティブな系であるためである。
 次に、図13を用いて、実施の形態1の送電装置300における共振周波数の設定処理について説明する。
 図13は、実施の形態1の送電装置300における共振周波数の設定処理を示すフローチャートである。図13に示す共振周波数の設定処理は、制御部200、送電器110A、110B、110Cによって実行される処理であり、例えば、送電装置300を所定の場所に設置する際に行われる。
 送電装置300の電源が投入されることにより、制御部200は処理を開始する。
 制御部200は、送電器110Aの共振周波数の調整を指示する(ステップS101)。送電器110Aの共振周波数の調整は、送電器110Aのみが一次側共振コイル13Aから交流電力を出力し、送電器110B、110Cの一次側共振コイル13B、13Cが交流電力を出力しない状態で行われる。
 送電器110B、110Cの一次側共振コイル13B、13Cが交流電力を出力しない状態にすることは、制御部200が送電器110B、110Cのフィードバック制御部144に、フィードバック制御を停止させることによって実現される。
 送電器110Aは、一次側共振コイル13Aから交流電力を出力し、共振周波数の調整を実行し、前回の静電容量と今回の静電容量との差分が所定範囲内であれば、フラグをオンにする(ステップS102)。
 具体的には、送電器110Aのみが一次側共振コイル13Aから交流電力を出力している状態で、送電側制御回路14Aのフィードバック制御部144がコンデンサ132Aの静電容量を設定する。
 コンデンサ132Aの静電容量の設定の仕方は、図7及び図8を用いて説明した通りである。そして、送電側制御回路14Aのフラグ設定部146Aは、今回の設定値の前回の設定値に対する変化分が絶対値で0.2pF以下の場合に、フラグをオンにする。フラグ設定部146Aは、n回目の共振周波数の調整が完了したことと、フラグの値を示すデータを制御部200に送信する。ここで、nの値は、共振周波数の設定処理を行った回数を表し、共振周波数の調整処理を行う度にインクリメントされる。
 なお、送電側制御回路14Aのフィードバック制御部144は、コンデンサ132Aの静電容量をステップS102における調整値に固定する。
 制御部200は、送電器110Aからn回目の共振周波数の調整が完了したことと、フラグの値を示すデータを受信する(ステップS103)。
 制御部200は、送電器110Bの共振周波数の調整を指示する(ステップS104)。送電器110Bの共振周波数の調整は、送電器110Bのみが一次側共振コイル13Bから交流電力を出力し、送電器110A、110Cの一次側共振コイル13A、13Cが交流電力を出力しない状態で行われる。
 送電器110A、110Cの一次側共振コイル13A、13Cが交流電力を出力しない状態にすることは、制御部200が送電器110A、110Cのフィードバック制御部144に、フィードバック制御を停止させることによって実現される。
 送電器110Bの送電側制御回路14Bは、共振周波数の調整を実行し、前回の静電容量と今回の静電容量との差分が所定範囲内であれば、フラグをオンにする(ステップS105)。
 具体的には、送電器110Bのみが一次側共振コイル13Bから交流電力を出力している状態で、送電側制御回路14Bのフィードバック制御部144がコンデンサ132Bの静電容量を設定する。コンデンサ132Bの静電容量の設定の仕方は、図7及び図8を用いて説明した通りである。そして、送電側制御回路14Bのフラグ設定部146Bは、今回の設定値の前回の設定値に対する変化分が絶対値で0.2pF以下の場合に、フラグをオンにする。フラグ設定部146Bは、n回目の共振周波数の調整が完了したことと、フラグの値を示すデータを制御部200に送信する。
 なお、送電側制御回路14Bのフィードバック制御部144は、コンデンサ132Bの静電容量をステップS105における調整値に固定する。
 制御部200は、送電器110Bからn回目の共振周波数の調整が完了したことと、フラグの値を示すデータを受信する(ステップS106)。
 制御部200は、送電器110Cの共振周波数の調整を指示する(ステップS107)。送電器110Cの共振周波数の調整は、送電器110Cのみが一次側共振コイル13Cから交流電力を出力し、送電器110A、110Bの一次側共振コイル13A、13Bが交流電力を出力しない状態で行われる。
 送電器110A、110Bの一次側共振コイル13A、13Bが交流電力を出力しない状態にすることは、制御部200が送電器110A、110Bのフィードバック制御部144に、フィードバック制御を停止させることによって実現される。
 送電器110Cの送電側制御回路14Cは、共振周波数の調整を実行し、前回の静電容量と今回の静電容量との差分が所定範囲内であれば、フラグをオンにする(ステップS108)。
 具体的には、送電器110Cのみが一次側共振コイル13Cから交流電力を出力している状態で、送電側制御回路14Cのフィードバック制御部144がコンデンサ132Cの静電容量を設定する。コンデンサ132Cの静電容量の設定の仕方は、図7及び図8を用いて説明した通りである。そして、送電側制御回路14Cのフラグ設定部146Cは、今回の設定値の前回の設定値に対する変化分が絶対値で0.2pF以下の場合に、フラグをオンにする。フラグ設定部146Cは、n回目の共振周波数の調整が完了したことと、フラグの値を示すデータを制御部200に送信する。
 なお、送電側制御回路14Cのフィードバック制御部144は、コンデンサ132Cの静電容量をステップS108における調整値に固定する。
 制御部200は、送電器110Cからn回目の共振周波数の調整が完了したことと、フラグの値を示すデータを受信する(ステップS109)。
 制御部200は、送電器110A~110Cのすべてのフラグを確認する(ステップS110)。
 そして、制御部200は、すべてのフラグがオン('1')であるか否かを判定する(ステップS111)。具体的には、ステップS111において、制御部200は、フラグ和が'3'であるか否かを判定する。
 制御部200は、すべてのフラグがオン('1')であると判定すると、一連の処理を終了する。
 一方、制御部200は、すべてのフラグがオン('1')ではないと判定すると、フローをS101にリターンする。この結果、送電器110A、110B、110Cの共振周波数の設定処理が再度行われる。
 以上のように、実施の形態1の送電装置300では、送電器110Aの共振周波数の調整は、送電器110Aのみが一次側共振コイル13Aから交流電力を出力し、送電器110B、110Cの一次側共振コイル13B、13Cが交流電力を出力しない状態で行われる。すなわち、送電器110Aの共振周波数の調整は、送電器110Aのみが一次側共振コイル13Aから交流電力を出力する状態で行われる。
 同様に、送電器110B、110Cの共振周波数の調整は、それぞれ、送電器110B、110Cのみが一次側共振コイル13B、13Cから交流電力を出力する状態で行われる。
 従って、実施の形態1の送電装置300では、送電器110A、110B、110Cの互いの影響を低減した状態で共振周波数を調整できるので、送電器110A、110B、110Cの各々の共振周波数を高精度に調整することができる。
 このように、実施の形態1の送電装置300では、複数の送電器の共振周波数を高精度に調整することができる。送電器110A、110B、110Cの各々の共振周波数は、他の2つの送電器をオフにした状態で設定される。
 なお、以上では、3つの送電器110A、110B、110Cを含み、3つの送電器110A、110B、110Cの一次側共振コイル13A、13B、13Cが互いに垂直に配置される形態について説明した。
 しかしながら、送電器及び一次側共振コイルの数は、2つ以上であれば幾つであってもよい。
 また、複数の一次側共振コイルは、一つの一次側共振コイルで電波を放射できる領域よりも広い領域に電波を放射できるように配置されていればよく、どのように配置されていてもよい。複数の一次側共振コイルは、互いが電力を放射する領域が近接していればよく、角度を有さずに、平行に配列されていてもよい。これは、複数の一次側共振コイルから電力を出力することにより、よりも広い範囲で受電器が受電できるようにするためである。
 また、以上では、送電器110A、110B、110Cが一次側コイル12を含まずに、交流電源11から直接的に電力の供給を受ける形態について説明した。この場合には、共振周波数において、一次側共振コイル13A、13B、13Cに流れる電流の位相は、交流電源11から出力される電圧の位相と等しいため、目標値設定部143の目標値φmtを0度に設定した。
 しかしながら、送電器110A、110B、110Cは一次側コイル12を含んでもよい。この場合には、一次側共振コイル13A、13B、13Cは、交流電源11から一次側コイル12に入力される電力を一次側コイル12から電磁誘導で受電すればよい。
 なお、この場合には、共振周波数において、一次側共振コイル13A、13B、13Cに流れる電流の位相は、交流電源11から出力される電圧の位相に対して90度遅れるため、目標値設定部143の目標値φmtを90度に設定すればよい。
 また、以上では、送電装置300を所定の場所に設置する際に、送電器110A、110B及び110C、110Cの共振周波数の調整を行う形態について説明した。しかしながら、例えば、制御部200が所定時間毎に、送電側制御回路14A、14B、14Cのフィードバック制御部144に電流の位相を検出させて、位相に異常がある場合に、送電器110A、110B及び110C、110Cの共振周波数の調整を行うようにしてもよい。
 また、送電側制御回路14A、14B、14Cが電流の位相を監視し、位相に異常がある場合に、制御部200と連携して、送電器110A、110B及び110C、110Cの共振周波数の調整を行うようにしてもよい。
 <実施の形態2>
 図14は、実施の形態2の送電装置400を示す図である。送電装置400は、3つの送電器110A、110B、110C、制御部200A、発振器210、アンプ部220A、220B、220C、整合部230A、230B、230C、位相調整部240A、240B、及びスイッチ401A、401B、401Cを含む。
 実施の形態2の送電装置400は、実施の形態1の送電装置300と次の点で異なる。実施の形態1の制御部200を制御部200Aに置き換えてある。実施の形態1の送電器110A、110B、110Cからフラグ設定部146A、146B、146Cをそれぞれ取り除いてある。実施の形態1の整合部230A、230B、230Cと、一次側共振コイル13A、13B、13Cとの間に、スイッチ401A、401B、401Cを追加してある。
 このため、実施の形態1の送電装置300と同様の構成要素には同一符号を付し、その説明を省略する。
 送電器110A、110B、110Cの送電側制御回路14A、14B、14Cがフラグ設定部146A、146B、146Cを含まないことにより、実施の形態2の制御部200Aの制御処理は、実施の形態1の制御部200の制御処理と以下の点が異なる。
 制御部200Aは、送電側制御回路14A、14B、及び14Cのフィードバック制御部144のオン/オフの切り替えと、フラグの和を求める処理を行わない。
 また、制御部200Aは、スイッチ401A、401B、401Cの切り替え処理を行う点で、実施の形態1の制御部200と異なる。
 スイッチ401A、401B、401Cは、それぞれ、整合部230A、230B、230Cと、一次側共振コイル13A、13B、13Cとの間に、挿入されている。スイッチ401A、401B、401Cのオン/オフは制御部200によって切り替えられる。
 スイッチ401A、401B、401Cがオンのときは、それぞれ、整合部230A、230B、230Cと、一次側共振コイル13A、13B、13Cとは導通する。スイッチ401A、401B、401Cがオフのときは、それぞれ、整合部230A、230B、230Cと、一次側共振コイル13A、13B、13Cとは導通しない。
 スイッチ401A、401B、401Cは、それぞれ、送電器110A、110B、110Cの共振周波数を調整するときにオンにされる。すなわち、送電器110Aの共振周波数を調整するときには、スイッチ401Aのみがオンにされる。送電器110Bの共振周波数を調整するときには、スイッチ401Bのみがオンにされる。送電器110Cの共振周波数を調整するときには、スイッチ401Cのみがオンにされる。
 これは、送電器110A、110B、110Cの各々の共振周波数を調整するときに、発振器210と、他の2つの送電器とが構築するループを切り離すためである。
 なお、スイッチ401A、401B、401Cのうちの任意の1つは、第1スイッチの一例であり、スイッチ401A、401B、401Cのうちの他の任意の1つは、第2スイッチの一例である。
 次に、図15を用いて、実施の形態2の送電装置400における共振周波数の設定処理について説明する。
 図15は、実施の形態2の送電装置400における共振周波数の設定処理を示すフローチャートである。図15に示す共振周波数の設定処理は、制御部200A、送電器110A、110B、110Cによって実行される処理であり、例えば、送電装置400を所定の場所に設置する際に行われる。
 送電装置400の電源が投入されることにより、制御部200Aは処理を開始する。
 制御部200Aは、送電器110Aの共振周波数の調整を行うために、スイッチ401Aをオンにするとともに、スイッチ401B及び401Cをオフにする(ステップS201)。
 制御部200Aは、送電器110Aの共振周波数の調整を指示する(ステップS202)。送電器110Aの共振周波数の調整は、送電器110Aのみが一次側共振コイル13Aから交流電力を出力し、送電器110B、110Cの一次側共振コイル13B、13Cが交流電力を出力しない状態で行われる。また、スイッチ401B及び401Cはオフにされているため、発振器210と、送電器110B及び110Cとのループは、スイッチ401B及び401Cによって切り離されている。
 送電器110Aは、一次側共振コイル13Aから交流電力を出力し、送電側制御回路14Aのフィードバック制御部144は、共振周波数の調整を実行し、コンデンサ132Aの静電容量を調整値に固定する(ステップS203)。
 具体的には、発振器210と送電器110B及び110Cとのループは、スイッチ401B及び401Cによって切り離され、送電器110Aのみが一次側共振コイル13Aから交流電力を出力している状態で、送電側制御回路14Aのフィードバック制御部144がコンデンサ132Aの静電容量を設定する。そして、フィードバック制御部144は、コンデンサ132Aの静電容量を調整値に固定する。
 制御部200Aは、送電器110Aからn回目の共振周波数の調整が完了したことを示すデータを受信する(ステップS204)。
 制御部200Aは、送電器110Bの共振周波数の調整を行うために、スイッチ401Bをオンにするとともに、スイッチ401A及び401Cをオフにする(ステップS205)。
 制御部200Aは、送電器110Bの共振周波数の調整を指示する(ステップS206)。送電器110Bの共振周波数の調整は、送電器110Bのみが一次側共振コイル13Bから交流電力を出力し、送電器110A、110Cの一次側共振コイル13A、13Cが交流電力を出力しない状態で行われる。また、スイッチ401A及び401Cはオフにされているため、発振器210と、送電器110A及び110Cとのループは、スイッチ401A及び401Cによって切り離されている。
 送電器110Bは、一次側共振コイル13Bから交流電力を出力し、送電側制御回路14Bのフィードバック制御部144は、共振周波数の調整を実行し、コンデンサ132Bの静電容量を調整値に固定する(ステップS207)。
 具体的には、発振器210と送電器110A及び110Cとのループは、スイッチ401A及び401Cによって切り離され、送電器110Bのみが一次側共振コイル13Bから交流電力を出力している状態で、送電側制御回路14Bのフィードバック制御部144がコンデンサ132Bの静電容量を設定する。そして、フィードバック制御部144は、コンデンサ132Bの静電容量を調整値に固定する。
 制御部200Aは、送電器110Bからn回目の共振周波数の調整が完了したことを示すデータを受信する(ステップS208)。
 制御部200Aは、送電器110Cの共振周波数の調整を行うために、スイッチ401Cをオンにするとともに、スイッチ401A及び401Bをオフにする(ステップS209)。
 制御部200Aは、送電器110Cの共振周波数の調整を指示する(ステップS210)。送電器110Cの共振周波数の調整は、送電器110Cのみが一次側共振コイル13Cから交流電力を出力し、送電器110A、110Bの一次側共振コイル13A、13Bが交流電力を出力しない状態で行われる。また、スイッチ401A及び401Bはオフにされているため、発振器210と、送電器110A及び110Bとのループは、スイッチ401A及び401Bによって切り離されている。
 送電器110Cは、一次側共振コイル13Cから交流電力を出力し、送電側制御回路14Cのフィードバック制御部144は、共振周波数の調整を実行し、コンデンサ132Cの静電容量を調整値に固定する(ステップS211)。
 具体的には、発振器210と送電器110A及び110Bとのループは、スイッチ401A及び401Bによって切り離され、送電器110Cのみが一次側共振コイル13Cから交流電力を出力している状態で、送電側制御回路14Cのフィードバック制御部144がコンデンサ132Cの静電容量を設定する。そして、フィードバック制御部144は、コンデンサ132Cの静電容量を調整値に固定する。
 制御部200Aは、送電器110Cからn回目の共振周波数の調整が完了したことを示すデータを受信する(ステップS212)。
 制御部200Aは、送電器110A~110Cのすべての共振周波数の調整が完了したか否かを判定する(ステップS213)。
 制御部200Aは、すべての共振周波数の調整が完了したと判定すると、一連の処理を終了する。
 一方、制御部200Aは、すべての共振周波数の調整が完了していないと判定すると、ステップS213の処理を繰り返し実行する。
 以上のように、実施の形態2の送電装置400では、送電器110Aの共振周波数の調整は、送電器110Aのみが一次側共振コイル13Aから交流電力を出力し、送電器110B、110Cの一次側共振コイル13B、13Cが交流電力を出力しない状態で行われる。すなわち、送電器110Aの共振周波数の調整は、送電器110Aのみが一次側共振コイル13Aから交流電力を出力する状態で行われる。
 また、このとき、スイッチ401B及び401Cはオフにされているため、発振器210と、送電器110B及び110Cとのループは、スイッチ401B及び401Cによって切り離されている。
 同様に、送電器110B、110Cの共振周波数の調整は、それぞれ、送電器110B、110Cのみが一次側共振コイル13B、13Cから交流電力を出力する状態で行われる。
 また、送電器110Bの共振周波数の調整を行うときは、スイッチ401A及び401Cはオフにされているため、発振器210と、送電器110A及び110Cとのループは、スイッチ401A及び401Cによって切り離されている。
 また、送電器110Cの共振周波数の調整を行うときは、スイッチ401A及び401Bはオフにされているため、スイッチ401A及び401Bはオフにされているため、発振器210と、送電器110A及び110Bとのループは、スイッチ401A及び401Bによって切り離されている。
 従って、実施の形態2の送電装置400では、送電器110A、110B、110Cの互いの影響を低減した状態で共振周波数を調整できるので、送電器110A、110B、110Cの各々の共振周波数を高精度に調整することができる。
 実施の形態2の送電装置400では、スイッチ401A~401Cで、それぞれ、発振器210と、送電器110A~110Cとのループを切り離すため、共振周波数の調整を1度で終えるようにしている。このため、実施の形態1の送電装置300よりも短時間で共振周波数の調整を終えることができる。
 特に、共振周波数の調整を行わない送電器と発振器210とのループをスイッチで切り離すことができるので、他の送電器の影響をより低減した状態で、送電器110A、110B、110Cの各々の共振周波数を高精度に調整することができる。
 以上、本発明の例示的な実施の形態の送電装置について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 300 送電装置
 13A、13B、13C 一次側共振コイル
 110A、110B、110C 送電器
 200 制御部
 210 発振器
 220A、220B、220C アンプ部
 230A、230B、230C 整合部
 240A、240B 位相調整部
 110、110A、110B、110C 送電器
 14、14A、14B、14C 送電側制御回路
 24 受電側制御回路
 120 受電器
 SE1 電流検出センサ
 132A、132B、132C コンデンサ
 141,142 位相検出部
 143 目標値設定部
 144 フィードバック制御部
 145 位相送信部
 146A、146B、146C フラグ設定部
 400 送電装置
 200A 制御部
 401A、401B、401C スイッチ

Claims (7)

  1.  第1送電器と第2送電器とを含む送電装置であって、
     前記第1送電器は、
     交流電源から受電する第1の一次側共振コイルと、
     前記第1の一次側共振コイルに供給される第1電圧の位相に対する、前記第1の一次側共振コイルに流れる第1電流の位相の第1位相差を検出する第1位相差検出部と、
     前記第1の一次側共振コイルに設けられる第1可変容量部と、
     前記第1可変容量部の第1静電容量を変化させたときの前記第1静電容量の変化量に対する前記第1位相差の変化度合に基づき、共振周波数が得られるように前記第1静電容量を調整する第1制御部と
     を有し、
     前記第2送電器は、
     前記交流電源に接続される位相調整部と、
     前記第1の一次側共振コイルに並べて配設され、前記位相調整部を介して前記交流電源から受電する第2の一次側共振コイルと、
     前記第2の一次側共振コイルに供給される第2電圧の位相に対する、前記第2の一次側共振コイルに流れる第2電流の位相の第2位相差を検出する第2位相差検出部と、
     前記第2の一次側共振コイルに設けられる第2可変容量部と、
     前記第2可変容量部の第2静電容量を変化させたときの前記第2静電容量の変化量に対する前記第2位相差の変化度合に基づき、共振周波数が得られるように前記第2静電容量を調整する第2制御部と
     を有し、
     前記第1制御部は、前記第2送電器がオフの状態で、前記第1送電器の共振周波数を調整し、
     前記第2制御部は、前記第1送電器がオフの状態で、前記第2送電器の共振周波数を調整する、送電装置。
  2.  前記第1制御部及び前記第2制御部は、それぞれ、前記第1送電器及び前記第2送電器のオン/オフを制御しており、
     前記第1制御部は、前記第1送電器の共振周波数を調整するときに、前記第2制御部に前記第2送電器をオフにさせ、
     前記第2制御部は、前記第2送電器の共振周波数を調整するときに、前記第1制御部に前記第1送電器をオフにさせる、請求項1記載の送電装置。
  3.  前記第1制御部は、前記第2制御部に前記第2送電器の出力をオフにさせた状態で、前記第1送電器の共振周波数を調整し、
     前記第2制御部は、前記第1制御部に前記第1送電器の出力をオフにさせた状態で、前記第2送電器の共振周波数を調整する、請求項2記載の送電装置。
  4.  前記第1制御部は、前記第2制御部に前記第2送電器の出力をオフにさせた状態で、今回の調整処理で設定した第1静電容量と、前回の調整処理で設定した第1静電容量との第1の差が絶対値で所定値以下になるまで、前記第1送電器の共振周波数を調整し、
     前記第2制御部は、前記第1制御部に前記第1送電器の出力をオフにさせた状態で、今回の調整処理で設定した第2静電容量と、前回の調整処理で設定した第2静電容量との第2差が絶対値で所定値以下になるまで、前記第2送電器の共振周波数を調整し、
     前記第1制御部及び前記第2制御部は、前記第1の差と前記第2の差がともに絶対値で前記所定値以下になると、前記第1送電器及び前記第2送電器の共振周波数の調整処理を終了する、請求項1乃至3のいずれか一項記載の送電装置。
  5.  前記交流電源と、前記第1の一次側共振コイルとの間に挿入され、前記第1制御部によって接続状態が切り替えられる第1スイッチと、
     前記交流電源と、前記第2の一次側共振コイルとの間に挿入され、前記第2制御部によって接続状態が切り替えられる第2スイッチと
     をさらに含み、
     前記第1制御部は、前記第2制御部に前記第2スイッチを非導通状態にさせることによって前記第2送電器がオフになった状態で、前記第1送電器の共振周波数を調整し、
     前記第2制御部は、前記第1制御部に前記第1スイッチを非導通状態にさせることによって前記第1送電器がオフになった状態で、前記第2送電器の共振周波数を調整する、請求項2記載の送電装置。
  6.  前記第1送電器の共振周波数を調整と、前記第2送電器の共振周波数を調整とが完了した後は、前記第1可変容量部の第1静電容量と、前記第2可変容量部の第2静電容量とを固定して送電を行う、請求項1乃至5のいずれか一項記載の送電装置。
  7.  前記第1送電器は、
     前記交流電源と前記第1の一次側共振コイルとの間に設けられ、前記交流電源から電力を受電する第1の一次側コイルをさらに有し、
     前記第1の一次側共振コイルは、前記第1の一次側コイルから電磁誘導によって電力を受電し、
     前記第2送電器は、
     前記位相調整部を介して前記交流電源に接続される第2の一次側コイルをさらに有し、
     前記第2の一次側共振コイルは、前記第2の前記一次側コイルから電磁誘導によって電力を受電する、請求項1乃至6のいずれか一項記載の送電装置。
PCT/JP2013/076564 2013-09-30 2013-09-30 送電装置 WO2015045160A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201380079900.3A CN105594089B (zh) 2013-09-30 2013-09-30 送电装置
JP2015538805A JP6296061B2 (ja) 2013-09-30 2013-09-30 送電装置
PCT/JP2013/076564 WO2015045160A1 (ja) 2013-09-30 2013-09-30 送電装置
EP13894808.8A EP3054559B1 (en) 2013-09-30 2013-09-30 Power transmission apparatus
KR1020167008236A KR101789457B1 (ko) 2013-09-30 2013-09-30 송전 장치
US15/083,465 US9490665B2 (en) 2013-09-30 2016-03-29 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/076564 WO2015045160A1 (ja) 2013-09-30 2013-09-30 送電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/083,465 Continuation US9490665B2 (en) 2013-09-30 2016-03-29 Power transmission device

Publications (1)

Publication Number Publication Date
WO2015045160A1 true WO2015045160A1 (ja) 2015-04-02

Family

ID=52742357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076564 WO2015045160A1 (ja) 2013-09-30 2013-09-30 送電装置

Country Status (6)

Country Link
US (1) US9490665B2 (ja)
EP (1) EP3054559B1 (ja)
JP (1) JP6296061B2 (ja)
KR (1) KR101789457B1 (ja)
CN (1) CN105594089B (ja)
WO (1) WO2015045160A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170769A1 (ja) * 2015-04-24 2016-10-27 日本電気株式会社 無線給電システムおよび無線給電方法
JP2017108481A (ja) * 2015-12-07 2017-06-15 ラピスセミコンダクタ株式会社 送電装置及び電力伝送システム
WO2017131345A1 (ko) * 2016-01-27 2017-08-03 엘지이노텍(주) 무선 전력 공급 방법 및 그를 위한 장치
WO2018037698A1 (ja) * 2016-08-26 2018-03-01 株式会社日立製作所 無線通信機
KR20190062710A (ko) * 2017-11-29 2019-06-07 연세대학교 산학협력단 다중 동시 충전을 위한 무선 전력 송신 장치 및 무선 전력 수신 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2940829B1 (en) * 2012-12-28 2017-03-08 Panasonic Intellectual Property Management Co., Ltd. Non-contact power supply apparatus
JP6344182B2 (ja) * 2014-09-26 2018-06-20 パナソニックIpマネジメント株式会社 給電装置
KR102655847B1 (ko) * 2016-07-08 2024-04-09 주식회사 워프솔루션 원거리 및 근거리 무선 충전을 위한 다중 주파수 기반의 무선 충전 시스템
KR20180006176A (ko) * 2016-07-08 2018-01-17 재단법인 다차원 스마트 아이티 융합시스템 연구단 원거리 및 근거리 무선 충전을 위한 다중 주파수 기반의 무선 충전 시스템
WO2018111421A1 (en) 2016-12-15 2018-06-21 General Electric Company Charging pads and methods for charging receiver devices having different frequency standards
CN108258815B (zh) * 2016-12-29 2022-07-22 博西华电器(江苏)有限公司 一种无线充电系统及射频接收端
CN110383630B (zh) * 2017-02-22 2023-04-28 三星电子株式会社 无线电力发送器、无线地接收电力的电子设备及其操作方法
US10714983B2 (en) * 2017-12-21 2020-07-14 Apple Inc. Near-field microwave wireless power system
US11018779B2 (en) * 2019-02-06 2021-05-25 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
DE102020210894A1 (de) 2020-08-28 2022-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Sendevorrichtung und Energieübertragungssystem zum kontaktlosen Übertragen von elektrischer Energie

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283791A (ja) 2007-05-10 2008-11-20 Olympus Corp 無線給電システム
WO2011099071A1 (ja) * 2010-02-10 2011-08-18 富士通株式会社 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置
JP2011199975A (ja) * 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法
JP2012143131A (ja) * 2010-12-28 2012-07-26 Tdk Corp ワイヤレス給電装置およびワイヤレス受電装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5106237B2 (ja) 2008-05-02 2012-12-26 オリンパス株式会社 無線給電システム
US8598743B2 (en) * 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8729735B2 (en) * 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
US8829725B2 (en) * 2010-03-19 2014-09-09 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
KR101599172B1 (ko) 2012-01-12 2016-03-02 후지쯔 가부시끼가이샤 송전 장치 및 송수전 시스템
US20140021798A1 (en) * 2012-07-17 2014-01-23 Witricity Corporation Wireless energy transfer with repeater resonators
WO2014018967A1 (en) * 2012-07-27 2014-01-30 Thoratec Corporation Self-tuning resonant power transfer systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283791A (ja) 2007-05-10 2008-11-20 Olympus Corp 無線給電システム
WO2011099071A1 (ja) * 2010-02-10 2011-08-18 富士通株式会社 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置
JP2011199975A (ja) * 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法
JP2012143131A (ja) * 2010-12-28 2012-07-26 Tdk Corp ワイヤレス給電装置およびワイヤレス受電装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170769A1 (ja) * 2015-04-24 2016-10-27 日本電気株式会社 無線給電システムおよび無線給電方法
JP2017108481A (ja) * 2015-12-07 2017-06-15 ラピスセミコンダクタ株式会社 送電装置及び電力伝送システム
US11437853B2 (en) 2015-12-07 2022-09-06 Lapis Semiconductor Co., Ltd. Power transmission apparatus and power transmission system
WO2017131345A1 (ko) * 2016-01-27 2017-08-03 엘지이노텍(주) 무선 전력 공급 방법 및 그를 위한 장치
WO2018037698A1 (ja) * 2016-08-26 2018-03-01 株式会社日立製作所 無線通信機
JPWO2018037698A1 (ja) * 2016-08-26 2019-04-04 株式会社日立製作所 無線通信機
KR20190062710A (ko) * 2017-11-29 2019-06-07 연세대학교 산학협력단 다중 동시 충전을 위한 무선 전력 송신 장치 및 무선 전력 수신 장치
KR102032619B1 (ko) * 2017-11-29 2019-10-15 연세대학교 산학협력단 다중 동시 충전을 위한 무선 전력 송신 장치 및 무선 전력 수신 장치
US11190057B2 (en) 2017-11-29 2021-11-30 Industry-Academic Cooperation Foundation, Yonsei University Apparatus for transmitting wireless power for multiple simultaneous charging and apparatus for receiving wireless power

Also Published As

Publication number Publication date
JPWO2015045160A1 (ja) 2017-03-09
EP3054559A4 (en) 2016-10-12
EP3054559A1 (en) 2016-08-10
EP3054559B1 (en) 2019-11-13
US9490665B2 (en) 2016-11-08
KR20160046913A (ko) 2016-04-29
US20160211704A1 (en) 2016-07-21
CN105594089B (zh) 2018-10-12
CN105594089A (zh) 2016-05-18
JP6296061B2 (ja) 2018-03-20
KR101789457B1 (ko) 2017-10-23

Similar Documents

Publication Publication Date Title
JP6296061B2 (ja) 送電装置
JP5673783B2 (ja) 磁界共鳴型電力伝送システムにおける送電装置、および受電装置
JP6137201B2 (ja) 無線電力伝送システム、受電器および無線電力伝送方法
KR101783727B1 (ko) 수전 장치, 급전 시스템
WO2016007674A1 (en) Resonator balancing in wireless power transfer systems
WO2015196123A2 (en) Wireless power transfer systems for surfaces
WO2014207804A1 (ja) 電力伝送装置、及び、電力伝送方法
US20140092649A1 (en) Contactless inductively coupled power transfer system
JP7131539B2 (ja) ワイヤレス送電装置及びワイヤレス電力伝送システム
US10476320B2 (en) Power transmission device
WO2013183700A1 (ja) 受電機器及び非接触電力伝送装置
JP5523540B2 (ja) 無線電力伝送による伝送システム及び送信側伝送装置
JP2012147632A (ja) 電力伝送装置及び電力伝送方法
JP6819951B2 (ja) 無線電力伝送システム
JP5454590B2 (ja) 磁界共鳴型電力伝送システムにおける共振周波数制御方法、送電装置、および受電装置
Tsuchida et al. Development of magnetic resonant wireless power transfer system robust to position gap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538805

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20167008236

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013894808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013894808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE